BINAR™ Evaluation Board Reference

Preliminary - Version 0.0
March 1, 1990
BINAR EVALUATION BOARD

The BINAR evaluation board has been designed to provide an evaluation platform for the BINAR core processor. In addition to the BINAR processor, the board contains hardware for an IBM PC bus interface, memory support, and a parallel port. Additional features include a small prototyping area and three sets of header pins that provide quick access to the board's bus signals.

The PC bus interface is a standard 8-bit interface that allows the evaluation board to use the PC as an I/O terminal. The evaluation board is mapped into the PC I/O space using a base address of 300 Hex. (If this particular base address is already being used, the user can change to another base address by reprogramming PAL chip U11.) The host PC I/O addresses used to interface to the evaluation board are as follows:

READ OPERATIONS:

300 Hex - Read byte 0 from the BINAR Evaluation board to the PC and reset BOARD_READY signal.

301 Hex - Read byte 1 from the BINAR Evaluation board to the PC.

302 Hex - Read byte 2 from the BINAR Evaluation board to the PC.

303 Hex - Read byte 3 from the BINAR Evaluation board to the PC.

304 Hex - Cycle OSC to perform a read-from-board operation.

305 Hex - Read status from BINAR Evaluation board, where:

 bit 0 = Master mode
 bit 1 = Test mode
 bit 2 = DMA read to PC mode
 bit 3 = DMA write from PC mode
 bit 4 = Board is ready for data (BOARD_READY)
WRITE OPERATIONS:

300 Hex - Write byte 0 to BINAR Evaluation board from PC and set HOST_READY signal.

301 Hex - Write byte 1 to BINAR Evaluation board from PC.

302 Hex - Write byte 2 to BINAR Evaluation board from PC.

303 Hex - Write byte 3 to BINAR Evaluation board from PC.

304 Hex - Cycle OSC to perform a write-to-board operation.

305 Hex - Write status to BINAR Evaluation board, where:
bit 0 = Master mode
bit 1 = Test mode
bit 2 = DMA read to PC mode
bit 3 = DMA write from PC mode.

307 Hex - Resets board by clearing HOST_READY, BOARD_READY, Master mode, Test mode, DMA modes, and asserts RESET pin on BINAR. Same operation is performed when the PC RESET line is active.

The BINAR Evaluation Board I/O addresses for interfacing to the host PC are as follows. Note that only bits RAD2 and RAD3 are actually decoded by the board.

READ OPERATIONS:

007FFFF0 Hex - Performs a 32-bit transfer from the board holding registers to BINAR and resets the HOST_READY signal.

007FFFF4 Hex - Returns the status of the HOST_READY signal in bit 0 of the result, other bits returned are undefined.

007FFFF8 Hex - Transfers 8 bits of data from the Parallel I/O Port Input Register.

007FFFFC Hex - RESERVED, must be left unused.
WRITE OPERATIONS:

007FFFF0 Hex - Performs a 32-bit transfer to the board holding registers from BINAR and sets the BOARD_READY signal.

007FFFF8 Hex - Transfers 8 bits of data to the Parallel I/O Port Output Register.

007FFFFC Hex - RESERVED, must be left unused.

The BINAR Evaluation board provides support for 128K x 32 bits of static RAM memory (i.e. 512K bytes). This memory is divided into four banks of 32K x 32 bits. Each bank consists of four 32K x 8 static memory chips. A minimum of one bank of memory must be populated for evaluation purposes. If fewer than four banks are to be populated, the lowest numbered memory banks should be used first. For example, if only two banks are going to be populated, they should be BANK0 and BANK1. Memory bank : IC Sockets correspondence is as follows:

- BANK0 - U32, U33, U34, & U35
- BANK1 - U28, U29, U30, & U31
- BANK2 - U24, U25, U26, & U27
- BANK3 - U20, U21, U22, & U23

In addition to the requirement for populating correct sockets, each bank of memory has a BANK# select signal which must be enabled (# denotes the corresponding memory bank number). The BANK# signals are the output of a 3 to 8 decoder chip. The inputs to the decoder come from a 6 X 2 header. Jumpers must be placed on the header to selectively enable the appropriate BANK# signals. This is required to map the high end of the BINAR address range (used for booting and interrupt vectors) into the installed memory chips.

If only one bank of memory has been installed, jumper clips should be placed on headers: JP2, JP4, and JP6. This jumper configuration will enable the BANK0 select signal. Note that with this configuration, any attempted memory write operation to an address above the 128K byte boundary will result in a write operation being performed on BANK0, with possible corruption of data.

If two banks of memory are installed, jumper clips should be placed on headers JP1, JP4, and JP6. Either the BANK0 or
BANK1 select signal will be active during a memory operation. When this configuration is set, it is important to note that any attempt to perform a memory write operation above the 256K byte boundary will result in a write operation being performed on the lower two banks of memory, with possible corruption of data.

If four banks of memory are installed, jumper clips should be placed on headers JP1, JP3, and JP6. Either the BANK0, BANK1, BANK2, or BANK3 select signal will be active during a memory operation. When this configuration is set, it is important to note that any attempt to perform a memory write operation above the 512K byte boundary will result in a write operation being performed on the lower two banks of memory, with possible corruption of data.

The use of three banks of memory is not recommended.
module BINAR

title 'PC plug-in board for BINAR
converted from PALASM files by phil koopman
krl 10/30/89'

U11_DEC_SEL,U14_STATE device 'P16V8R';
U16_KITCHEN,U40_RD_DEC,U15 ASIC_Dec device 'P16V8C';
U13_WR_DEC device 'P16V8C';

!ALE,PCAD3,PCAD4,PCAD5,PCAD6 pin in U11_DEC_SEL 1,2,3,4,5;
PCAD7,PCAD8,PCAD9,AEN,OE pin in U11_DEC_SEL 6,7,8,9,11;
!WRITE4,!SLOWEST4 pin in U11_DEC_SEL 12,13;
!DECODED,!SEL pin in U11_DEC_SEL 17,18;
!SLOW4 pin in U11_DEC_SEL 19;

PCADO,PCAD1,PCAD2,IOR,!SEL pin in U40_RD_DEC 1,2,3,4,5;
READ_HOST,!WRITE4,!READ0 pin in U40_RD_DEC 6,7,12;
!READ4,!READ5,!ENB0 pin in U40_RD_DEC 13,14,15;
!ENB1,!ENB2,!ENB3,DIR pin in U40_RD_DEC 16,17,18,19;

PCADO,PCAD1,PCAD2,IOW,!SEL pin in U13_WR_DEC 1,2,3,4,5;
PC_RESET,DMA_READ pin in U13_WR_DEC 13,14,15;
DMA_WRITE,BOARD_READY pin in U13_WR_DEC 16,17,18,19;

STATE_CLK,PC0,PC1,PC2,PC3 pin in U14_STATE 1,2,3,4,5;
!RESET,!DMA_ACK,T_C,!WRITE5 pin in U14_STATE 6,7,8,9;
!READ5,MASTER,!TEST,STATE0 pin in U14_STATE 11,12,13,14;
STATE1,STATE2,STATE3 pin in U14_STATE 15,16,17;
DMA_READ,DMA_WRITE pin in U14_STATE 18,19;

RAD2,RAD3,!ASIC,!OE,!WRO pin in U15 ASIC_Dec 1,2,3,4,5;
!READ0,!WRITE0,!DMA_ACK,IOR pin in U15 ASIC_Dec 6,7,8,9;
IOW,!READ_HOST,!WRITE_HOST pin in U15 ASIC_Dec 11,12,13;
!READ_STATUS,!READ_I_O pin in U15 ASIC_Dec 15,16,17,18;
!HOST_PUT pin in U15 ASIC_Dec 19;

IOR,IOW,!SEL pin in U16_KITCHEN 1,2,3;
DMA_READ,DMA_WRITE pin in U16_KITCHEN 4,5;
!DMA_ACK,!XRES,T_C,!WRITE5 pin in U16_KITCHEN 6,7,8,9;
!CHIP_RESET,!XENB,STATE_CLK pin in U16_KITCHEN 13,14,15;
!READ_STATUS,!RESET,!READ5 pin in U16_KITCHEN 16,17,18;
BOARD_READY,RC3,PC4 pin in U16_KITCHEN 11,12,19;
EQUATIONS in U11_DEC_SEL
" CLOK FOR DECODED IS /ALE
" DECODED FOR $300, Other addresses will change this equation

DECODED := PCAD9 & PCAD8 & PCAD7 & PCAD6 & PCAD5 & PCAD4 & PCAD3;

SEL = DECODED & !AEN;

!SLOW4 = !WRITE4;
!SLOWEST4 = !SLOW4;

EQUATIONS in U40_RD_DEC
READ0 = IOR & SEL & !PCAD2 & !PCAD1 & !PCAD0;
READ4 = IOR & SEL & PCAD2 & !PCAD1 & !PCAD0;
READ5 = IOR & SEL & PCAD2 & !PCAD1 & PCAD0;

" enbx = read_host # readx

ENB0 = READ_HOST # WRITE4 # IOR & SEL & !PCAD2 & !PCAD1 & !PCAD0;
ENB1 = READ_HOST # WRITE4 # IOR & SEL & !PCAD2 & !PCAD1 & PCAD0;
ENB2 = READ_HOST # WRITE4 # IOR & SEL & !PCAD2 & PCAD1 & !PCAD0;
ENB3 = READ_HOST # WRITE4 # IOR & SEL & !PCAD2 & PCAD1 & PCAD0;

" dir true passes data from PC to CPU

!DIR = IOR & SEL & !PCAD2;

EQUATIONS in U13_WR_DEC
WRITE0 = IOW & SEL & !PCAD2 & !PCAD1 & !PCAD0;
WRITE1 = IOW & SEL & !PCAD2 & !PCAD1 & PCAD0;
WRITE2 = IOW & SEL & !PCAD2 & PCAD1 & !PCAD0;
WRITE3 = IOW & SEL & !PCAD2 & PCAD1 & PCAD0;
WRITE4 = IOW & SEL & PCAD2 & !PCAD1 & !PCAD0;
WRITE5 = IOW & SEL & PCAD2 & !PCAD1 & PCAD0;

XRES = PC_RESET # IOW & SEL & PCAD2 & PCAD1 & PCAD0;

NEED_DMA_XFER = DMA_WRITE & !HOST_READY # DMA_READ & BOARD_READY;

EQUATIONS in U14_STATE
!STATE0 := !PC0;
!STATE1 := !PC1;
!STATE2 := !PC2;
!STATE3 := !PC3;

!MASTER = !STATE0;
TEST = STATE1;
!DMA_READ = !STATE2;
!DMA_WRITE = !STATE3;

EQUATIONS in U15_ASEIC_DEC

READ_HOST = !RAD2 & !RAD3 & ASIC & OE;
WRITE_HOST = !RAD2 & !RAD3 & ASIC & WRO # READ4;
READ_STATUS = RAD2 & !RAD3 & ASIC & OE;
READ_I_O = !RAD2 & RAD3 & ASIC & OE;
WRITE_I_O = !RAD2 & RAD3 & ASIC & WRO;
BOARD_TAKE = IOR & DMA_ACK # READ0;
HOST_PUT = IOW & DMA_ACK # WRITE0;

EQUATIONS in U16_KITCHEN

XENB = SEL;

!STATE_CLK = WRITE5;
RESET = !CHIP_RESET & !XRES;
CHIP_RESET = !RESET & !READ5;
PC4 = BOARD_READY;
 enable PC4 = READ5;
RD3 = BOARD_READY;
 enable RD3 = READ_STATUS;
end