
Challenges in
Embedded Systems
Research & Education

Philip Koopman
koopman@cmu.edu - http://www.ices.cmu.edu/koopman

Institute
for Complex
Engineered
Systems

&Electrical Computer
ENGINEERING

Circa 1980:
What in the world are you

going to do with all those
computers?

It's not as if you want one
in every doorknob!

- Danny Hillis, circa 1980, as told by
Guy Steele at 1996 CMU SCS
commencement

1981:

Atari 800 used by hotel
control startup company

3

Overview
20 Years Later, What’s Left To Research?

u What’s an embedded system?

u Why can’t you just design them like desktop systems?
• Or, how to succeed in a research project and find out you were asking the

wrong question

u What’s coming next?
• It’s not only stranger than we imagine,

It’s probably stranger than we can imagine.

u What does it take to do good embedded system research?
• What about good embedded system education?

Embedded System =
Computers Inside a Product

5

Embedded System Context
u Don’t think in terms of just cost or just performance --

think in terms of how much you get for:
• $1 chip (on-chip memory only) -- most of the market
• $10 chip (with one RAM/ROM combo chip) -- much of the market
• $100 chip (with DRAM + 1 boot flash chip) -- a tiny piece of the market

Approximated from EE Times,
March 20, 1995

Source: The Information Architects

1994 Worldwide
Microcontroller Revenue

($Million U.S.)

8-Bit
$4,520M 16-Bit

$2,910M

64-Bit
$220M

$13,490M Total
1994 Worldwide

Microcontroller Units
(Million Devices)

8-Bit
1,200M

16-Bit
276M

64-Bit
2M

2,683M Total

6

It’s About the Applications, Not the Technology
u Technology is not the end; it is the means

– the goal is solving (highly constrained) problems!

7

There Are Many Application Areas

8

Typical Embedded System Constraints
u Small Size, Low Weight

• Hand-held electronics
• Transportation applications -- weight costs money

u Low Power
• Battery power for 8+ hours (laptops often last only 2 hours)
• Limited cooling may limit power even if AC power available

u Harsh environment
• Power fluctuations, RF interference, lightning
• Heat, vibration, shock
• Water, corrosion, physical abuse

u Safety-critical operation
• Must function correctly
• Must not function incorrectly

u Extreme cost sensitivity
• $.05 adds up over 1,000,000 units

Why Can’t You Design
Embedded Systems

Just Like
Desktop Systems?

10

Case Study: Synthesize A Remote Entry Receiver
u Use Fidelity: a commercial schematic synthesis tool

• Replicate a real automotive product design
• Assess viability in real-world embedded system design environment

u Note: already we are diverging
from the research mainstream
• Most embedded system

research is about chip synthesis,
BUT
most real embedded system
design is about component
composition

• Fidelity was chosen because it
is a design-by-composition tool

11

What’s A Remote Entry Receiver?
u RF receiver for door locks,

trunk (boot), latch, etc.
• 8-bit microcontroller
• Outputs and inputs vary in:

– Current capacity
– Signal type

• Very cost constrained, but must
satisfy goals for:

– Power consumption
– Performance @ 5 MHz
– Lifetime
– Warranty period reliability

u Newer functions:
• Transmissions encrypted
• Monitors tire pressure
• “Panic” alarm feature

Remote
Entry

Receiver

Passenger Door
Lock Solonoid

Driver Door
Lock Solonoid

Other Actuators/
Other Outputs

RF Antenna/
IR detector

Other
Inputs

12

The Experiment
u Automotive business driven by 2-week responses to Quote Requests

• Engineer gets 2 weeks to estimate price
• Bid lost if too high
• Business gets 3 years to lose money if too low

u Wouldn’t it be nice if you could do an optimized design in a few
hours?
• Optimal component selection for price
• Guaranteed to meet all constraints
• Generates input to PCB layout tools

u Wouldn’t it be nice if you could re-design monthly for cost savings?
• But, can a CAD tool really match super-macho embedded system engineers?

u Fidelty promised it could do all that
• So, let’s see if it really can

13

Fidelity Tool Details
u Design-by-composition tool from Omniview, Inc.

• Commercialization of Carnegie Mellon Micon tool
• Designed to automated PC motherboard synthesis, and it’s good at that
• Arbitrary synthesis from equations is not the point (it’s not Verilog/VHDL)

u Schematic hierarchy in Mentor Graphics tool set used
• Each “symbol” can link to multiple child “schematics”/(components)
• Exactly one such schematic is used in any given design instance

14

Fidelity Design Representation
u Represents all known components/subsystems

• Searches for optimal combination that meets constraints

SYMBOLSYMBOLSYMBOL

COMPONENT COMPONENT COMPONENT COMPONENT COMPONENT

SYMBOLSYMBOLSYMBOL

SCHEMATIC

TOP-LEVEL
SCHEMATIC

SYMBOLSYMBOL

SCHEMATIC

SYMBOLSYMBOL

SCHEMATIC

SYMBOL

SCHEMATIC

SYMBOL

SCHEMATIC

AND

AND AND AND

OR

OR

15

Design Constraints etc.
u “Design equations” communicate constraints within hierarchy

• Values or value ranges can state power, signal, voltage requirements
• Interval arithmetic inequalities can specify analog circuit parameters

u Global constraints can be used to filter designs
• Power
• Cost
• One or two other user-defined global constraints

16

Fidelity Design Result
u Select optimal set of schematics (design options) given constraints

• Picks exactly one schematic/component per symbol

SYMBOLSYMBOLSYMBOL

COMPONENT COMPONENT COMPONENT COMPONENT COMPONENT

SYMBOLSYMBOLSYMBOL

SCHEMATIC

TOP-LEVEL
SCHEMATIC

SYMBOLSYMBOL

SCHEMATIC

SYMBOLSYMBOL

SCHEMATIC

SYMBOL

SCHEMATIC

SYMBOL

SCHEMATIC

AND

AND AND AND

17

Did It Work?
u Yes, it was able to find optimal design points

• Reproduced hand-done designs using component database
• Used design-by-selection, which was required

(synthesized designs undesirable because of NRE and lead time issues)

u But it was not able to meet all the other requirements!
• Additional engineering constraints
• Business constraints
• Cultural issues

18

Lessons Learned: Electronic Design
u Digital, analog, and power components

• There is often only one digital component (a microcontroller)
Embedded designs interface to an analog world!

u Digital design vs. digital component selection
• Standard components are used for cost, flexibility & cycle time
• Digital design consists of selecting a microcontroller, not IC synthesis
Selecting components may be more important than synthesizing them.

u Incremental design updates
• Want minimum manufacturing disruption for updates, not complete redesign
• Ideally, all design changes are 100% in software
Redesign needs to limit scope of changes, not seek perfect optimality

19

Lessons Learned: System Design
u Design margin & customer variation

• Some customers want it “cheap”, others want it “good”
• Customer-specific input protection circuits, etc. (need product families)

– This was easily handled with design equations
– Variations also occurred per country of sale per manufacturer

• ASICs undesirable; customer changes requirements several times/year
Designs must be tailored and change regularly; investment in ASICs is

sometimes impractical

u Clock speed limitations
• Receiver CPU limited to 5 MHz by RFI concerns (RF interference)
• Transmitter limited to 1 MHz(!)
• Cryptographic algorithms were tailored to minimize clock cycles & memory
Faster raw clock rates may not help at all due to RFI & power limitations

20

Lessons Learned: Business & Process
u Lifecycle component cost is more complex than quantity-1 cost:

• Volume-purchasing discounts
• Cost of purchasing dept. time for each component type
• Cost of component qualification
• Cost of vendor qualification
• Cost of component database maintenance
• Cost of logistics (spare parts, warehousing, etc.)
• Limited number of component bins on pick&place equipment
Use minimum number of component types across all products.

u System certification and lifecycle costs can dominate
• All changes must be vetted by customer (warranty cost concerns)
• Many changes must undergo FCC recertification
• Many changes require a new shake&bake life test
Weigh potential benefits against validation & certification costs;
Don’t underestimate cost of recertifying a critical system for a “minor” change

21

More Business & Process Lessons
u CAD tool proficiency matters

• Engineers assigned to products, not engineering functions
• CAD tools have a steep learning curve; expertise evaporates clearly
• Elite corps of CAD experts isn’t viable due to turnover, cost
Complex digital CAD tools may not be viable in many situations

u Model & library database maintenance
• Who updates the price information?
• Companies use internal part numbers, requiring format & number translation
• Who polices database quality?

– Do you want to go bankrupt because someone mis-typed a component price?

Infrastructure costs can be significant when using design tools

u Legacy designs & understandability
• Deep hierarchies for decoupling design issues don’t print well
• Archives are all on paper (for good reason)
CAD designs still have to be printed for long-term records

22

Cultural Issues
u Compelling advantage required to change current practices

• If they can build products today, why should they change?
• “Engineers are free” paradox - why buy them a $50K tool?
Compelling advantage required. In this case design-to-quote cycle time was a

very good incentive.

u Computer culture vs. “metal-bending” cultures
• Non-computer engineers may not appreciate (or even believe in) simulation-

based design methods
• Computers are a small part of embedded systems (weight, size, to some

degree cost)
– But, some companies are waking up to the fact that their main cost is

bending software instead of metal.

• It’s the system that matters, not the whizziness of the technology (usually)
Things we take for granted become major battles in embedded applications

What Does
The Future
Look Like?

24

Today:

25

Embedded + Distributed – Caterpillar 797

ADEM II
Master

ADEM II
Slave 2

ADEM II
Slave 1

ET Service Tool

VIMS II
(ABL2M)

RAC/CLIM
(68K Module)

Chassis Control
(ABL2C)

Braking/Cooling
(ABL2C)

Tire
Monitor

797 System

VIMS - PC

Xmsn/TC
(ABL2C)

CAT Datalink

CAN SAE J1939 Datalink

797sys.vsd
6-18-98
dab/jwf
Warning: All paper copies of this document are uncontrolled

+ 195 sensors and actuators
+ wireless data link

26

Tomorrow: Embedded Computers Everywhere
u Sewing Machines

u Home Appliances

u Communications &
Translation

u Transportation
u Consumer

Electronics
u Concrete (sensors)
u Clothing(?)

27

The Future(?)
u Every time I hear a far fetched idea, I can find a web page with a

photo of a prototype or product

Embedded web server
Digital Frying Pan

29

Sun’s Version of the Wired House

u Will people adopt this other than as a toy?
• Will the same people who can’t set time on a VCR be able to debug their

house?

u If we can make the system readily accessible, reliable, affordable,
…the possibilities are almost endless

30

Would You Drive A Car In Which:

“THE SOFTWARE is provided ‘AS IS’ and
with all faults. THE ENTIRE RISK AS TO
SATISFACTORY QUALITY,
PERFORMANCE, ACCURACY, AND
EFFORT (INCLUDING LACK OF
NEGLIGENCE) IS WITH YOU.”

(You will.)

u Virtually all embedded OS vendors are requiring end-user licenses
with liability waivers (and they’re already legally binding in some
states!)

Research & Education

32

Educational Issues
u Embedded system engineers are more generalists in an age of

specialization
• Multi-disciplinary tradeoffs, often with design team size of 1 engineer

u Need education way beyond traditional A/D, D/A, and assembly:
• Real time operating systems & scheduling
• System design methodologies (requirements / design / test / etc.)

– Many engineers need software/system engineering literacy

• Distributed systems & distributed networks
– Entirely different set of tradeoffs for embedded than for “regular” networks

• Architectural approaches to distributed systems
• Critical system design (dependability, safety)
• Human/computer interfaces
• Specialty skills: low power, design for particular constraints

33

Different Systems Have Different Problems
u Near-desktop systems (set-top box; wearable computer; etc.)

• Time to market
• Cost

u Embedded control systems (elevators, aircraft, factories)
• Real-time determinacy (architecture) & predictability (compiler)
• Off-the-shelf RTOS (Real Time Operating System)
• Software development problems
• Cost

u Tiny embedded systems (rice cookers, etc.)
• Cost
• Cost
• Compilers/runtime targeting a $1 chip
• Time to market
• Cost

35

Relative Embedded System Importance

…
#837 - Instruction Level Parallelism

• Does ILP make sense on an 8051? That is still much of the market
• Most embedded systems use older CPU designs (how many MIPS do you

need in a toaster oven?)

#1 - Cost
• Cost + performance often matters more than performance
• (“Cost” includes issues such as power, size, weight too)

#2 - Time to Market
• (Debugability is an important factor)

#3 - Predictability/Determinacy
• It is important to pick a fast enough processor for worst case
• Is this really debugability in the performance space?

#4 - Security
• Do you want someone hacking your digital wallet?

36

Pressing Research Topics
u System level tradeoffs.

“System” =
• Digital hardware + Analog hardware
• Software
• People/operators
• Mechanical components
• Life cycle support/logistics -- trade off from transistors to business process

u Affordable dependability
• How can we trust our lives to a $1 microcontroller? (we will…)
• How can we get a clue about making dependable software for less than $1M

u Design for embedded constraints
• Hard real time
• Harsh environments
• Low cost security

• Low power
• Small memory footprints
• etc.

37

New Applications/Problems
u Very Low Power (wearables; stand-alone devices)

• Battery operation for days, not hours
• Thermal dissipation will be limited by small surface area

u MEMS-based devices
• Micro-Electro-Mechanical

Systems
• In the future, “system-level

integration” includes
electro-mechanical I/O

38

RoSES: Robust Self-Configuring Embedded Systems
u Product families + automatic reconfiguration =

• Operation with failed components
• Automatic integration of inexact spares
• Automatic integration of upgrades
• Fine-grain product family capability

u Potential Impact:
• Logical component interfaces + configuration mgr.
• Fine-grain software component run-time support
• Architectures that are naturally resilient

u First demos in late 2001

39

Generic RoSES System Architecture

Object Bus (Run-Time Infrastructure & Network)

Baseline
Sensor SW
Functionality

Dynamic Interface
to Object Bus

SW
Adapter for
High Level

Logical
Interface

SW
Adapter for
High Level

Logical
Interface

…

Basic
Sensor
Device

SMART SENSORS
Lo

ca
l C

P
U

Lo
ca

l M
em

or
y

Baseline
Actuator SW
Functionality

Dynamic Interface
to Object Bus

SW
Adapter for
High Level

Logical
Interface

Adapter Repository Co-Scheduling & Assigment Tool

SW
Adapter for
High Level

Logical
Interface

…

Basic
Actuator
Device

SMART ACTUATORS

CUSTOMIZATION MANAGER

Lo
ca

l C
P

U
Lo

ca
l M

em
or

y

40

Conclusions
u What’s an embedded system?

• Contains computers that interact with the real world
• Pretty soon, it may be everything!

u Why can’t you just design them like desktop systems?
• Design constraints can be much tighter (cost, size, power, speed, …)
• Life cycle effects are far more important than the disposable PC market
• Software can kill people in these systems

u What about embedded system research & education?
• It’s about the system!
• Requires broad perspective, multidisciplinary tradeoffs, and attention to the

“ilities”

