
Recitation #10

18-649 Distributed Embedded Systems
TA: Rohit Vijayaraghavan

8th November 2013

Note: Course slides shamelessly stolen from lecture
All course notes © Copyright 2006-2011, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Announcements and Administrative Stuff

u  Project 11 due Thursday Nov 14th
u  Project 12 due Monday November 25th
u  Presentation slides due Sunday December 1st at 5 PM
u  Presentations week: December 2nd 2013 onwards
u  Final project due Tues, Dec. 10th.

u  10th December 2013 is hard deadline.

3

Weekly Progress Update Page
u  Fill these in status reports every week by the deadline
u  http://www.ece.cmu.edu/~ece649/progress/

u  Your participation grade heavily depends on these reports
•  Participation is 5% of total grade

u  Weekly progress updates due every week Friday 9:00 PM

u  Everyone submits one report each week
•  Even if they’re late, we still want them (Standard late penalties apply)

u  All students should be able to access the progress page

4

A Few Words on Traceability
u  We noticed a few discrepancies in presentations over past few weeks

•  Some sequence diagrams, requirements, state charts, code, etc. didn’t seem to
trace correctly

•  If we point out issues during the presentation, make sure you go through your
design and look for more similar issues

u  Just as a heads-up, the final project grading criteria requires complete
end-to-end traceability
•  Avoid taking shortcuts with process
•  Introduces errors in design traceability and makes bugs harder to track down
•  End up generating extra work for yourselves

u  You should NOT be using the Future Expansion column anymore to
complete your traceability tables.

5

Drive Controller Requirements
u  Some question on which requirements take priority

•  Drive should be Stopped whenever mEmergencyBrake is activated
•  The commanded value of Drive shall either be the same as or "adjacent to" the

value of DriveSpeed

u  Technically, in simulation, its unclear if it makes a difference
•  Once the emergency brake is triggered, the simulation ends

u  According to the requirements, adjacency takes priority over the safety
brake
•  Shall vs. should
•  This means your Drive has to be designed to sequence Fast è Slow è Stop

during an emergency brake event

6

Final Presentation
1.  Showcase design aspects of your elevator

•  You spent the whole semester working on it
•  Tell us about the coolest parts or biggest challenges!

2.  Lessons learned about process
•  Now that you’ve had a chance to do a relatively large design project using

process, tell us about it
•  Good vs. bad
•  What bugs you found in various phases of review and testing

u  We want to emphasize that there is much more flexibility for content in
the design explanation portion than previous presentation
•  If you’re unsure whether what you want to present is appropriate in content or

scope, ask us!
•  But, required elements need to all be there (especially the metrics)

7

Project 11
u  Use runtime monitoring to verify high level requirements

•  Verify R-T6 through R-T10
•  State Chart required for each requirement

u  Implement an advanced runtime monitor
•  Build upon your project 7 monitor
•  Use this to find requirements violations in your design

–  These violations may not be obvious during acceptance tests
–  Its possible to deliver all the passengers and still violate high level reqs

u  When we grade your project, we run our runtime monitor
•  Don’t write yours to handle weird edge cases you know exist in your design

–  Run straightforward tests based directly on the requirements
•  Be thorough! Final Project is worth a big percentage of your grade!

8

Requirement State Chart Example
u  High Level Requirement: “The elevator shall never stop at floor six”
u  State charts should:

•  Mirror the actual state of the elevator
•  Contain both valid and invalid states
•  Throw a warning in invalid states

9

The monitor is NOT a new controller
u  Monitor takes mostly physical payloads (few network messages)

u  receive() function executes when the physical payload is sent

 public void receive(DriveSpeedPayload msg) {
 checkFastSpeed(msg);
 }

 private void checkFastSpeed(DriveSpeedPayload msg) {
 // Update variables and check for violations
 // If between floors, at some point must go faster than slow speed
 // If reach a new floor and haven’t, then print violation

u  Monitor must use SystemTimer objects (if you need them)
•  Don’t use Timer objects (only use these in your controllers)
•  This prevents the runtime monitor from contributing to randomness in

simulation

10

Looking ahead to Project 12
u  Introduce faster speed

•  Commit point can now potentially be multiple floors away
•  May require updating calculation of commit point

–  Depends on your implementation
•  Use “-fs 5.0” to set fast speed to 5 m/s

u  All unit tests must pass

u  All integration tests must pass

u  Run acceptance tests
•  Acceptance tests must run, but do not have to pass
•  Use –b 200 and -fs 5.0
•  If you successfully run at 200k bps or below you get full credit.

u  Update traceability

11

Course Project Exit Criteria
u  Run Time Monitor Must Be Implemented

•  Pass all unit tests with zero failed assertions
•  Pass all integration tests with zero failed assertions

u  Pass all acceptance tests
•  Using -b 200 and -fs 5.0
•  Zero failed assertions (after startup)

u  Must have a working elevator to complete the course
•  “Working” means passes the set of tests listed on the final project web page
•  Non-working results in Incomplete if you don’t get it working by grade deadline

u  +1% final grade for best elevator (one group only)
•  Rank groups by average performance and satisfaction across acceptance tests

u  +2% final grade for complete and consistent design portfolio
•  All groups are eligible for this

12

Questions?

