Recitation #2

18-649 Embedded System Engineering
Friday 5 Sept 2014
Announcements and Administrative Stuff

- Project 2 posted

- TA office hours
 - http://www.ece.cmu.edu/~ece649/admin.html#info
 - Monday: 5-6 PM (Sajjan Gundapuneedi)
 - Tuesday: 6-7 PM (Felix Hutchison)
 - Wednesday: 6-7 PM (Patrick Jang)
 - Thursday: 5-6 PM (Jeff Lau)
 - Friday: 6-7 PM (Felix Hutchison)
 - This week, undergrad lounge

- Course announcements will be made mostly via blackboard
 - Check blackboard prior to emailing staff
 - You are responsible for reading these (check it once a day or so)
 - Only critical notices sent by e-mail
Weekly Progress & Individual Contribution

• Fill these in status reports every week and submit with your project

• Weekly progress updates due every week with your project submission

• First one due this project:
 • Report hours
 • From the beginning of the semester till Project 1 submission
 • From handing in Project 1 to handing in Project 2
 • Report Contributions for each team member

• Each project handin should have an Progress/Contribution report
 • Projects without a report are not considered turned in.
 • You **WILL** receive the late penalty every day until it is resubmitted
 • We will try to remind you, but ultimately it is your responsibility to have it in your portfolio.
Weekly Progress & Individual Contribution

• Lying on the Individual Contribution is a violation of Academic Integrity
 • In industry this is called *FRAUD*

• Both the person who claims to have done the work, and the person whose work it is are in violation of Academic Integrity policy.
 • Both students will *FAIL* the course.

• The academic integrity policy can be found at http://www.ece.cmu.edu/~ece649/admin.html#cheating
A Note on Late Submissions

• If you submit late, e-mail staff

• If there is an on-time submission, the TA will grade that
 • Unless you tell us otherwise (e.g., “please grade my late submission instead”)
 • Either place a readme in the on-time submission folder or e-mail staff

• TAs are obligated to grade only one copy of your project
 • Specifically, we aren’t going to grade two versions and give you the higher of the two grades
Project 2 - Overview

- **Lecture Mon & Wed will go over all the material for Project 2**
 - We suggest you look through project 2 *now* so you can tie lecture to the project

- **Download the portfolio**
 - You will be responsible for submitting an updated portfolio every week
 - Refer to the portfolio matrix to see which parts you’re updating each week

- **READ the architecture diagram**
 - Understand how modules are connected and communicate
 - Understand network vs physical messages
 - Architecture is fixed

- **READ the elevator behavioral requirements**
 - Detailed description of each part of the system
 - Defines inputs and outputs
 - Communication requirements are fixed

- **We give you a set of use cases**
 - Create scenarios for each use case
 - Create sequence diagrams based on each scenario
We provide a fixed architecture

- Your sequence diagrams will show communication between these components
- Blue arc = physical commands, black arc = network message
Use Cases

- How can an outside entity interact with our elevator?
 - Use cases define actions a passenger can perform with respect to the system

```
Passenger

1. Passenger Makes a Hall Call
2. Passenger Makes a Car Call
3. Passenger Enters Car
 <<uses>>
4. Passenger Exits Car
 <<uses>>
5. Passenger Triggers Door Reversal
6. Determine Car Position
7. Determine Car Direction
```
Use Cases (cont.)

- The passenger is not the only entity that interacts with the elevator
 - Dispatcher - Determines which floor to service and when to cycle the doors
 - In our system this is another controller (not a person)
 - But there are still elevators that use a person in this role
Behavioral Requirements

• **Read these**
 • Plan to spend some time getting familiar with this

• **Detailed description of what each part does**
 • Replication, instantiation, and assumptions
 • Behavioral requirements and constraints
 • Inputs and outputs

• **You’ll notice some look very “empty”**
 • The baseline elevator is very simple (and inefficient)
 • Over the semester you’ll be improving most of these components

• **Message library**
 • The communications requirements are fixed
 • You can ONLY use messages that we have defined for you
 • Use the defined inputs and outputs for each component
Scenarios

- There are one or more scenarios for each use case
 - 12 total, each team member does at least 3
 - Over the semester, you’ll likely have to define more for a complete elevator
 - You’re encouraged to think of more scenarios, but 12 is the minimum

- We give you a set of preconditions
 - You specify a scenario (similar to what you did in project 1)
 - Scenario describes what happens from preconditions to postconditions
 - Remember you’re describing all system components, not just one
 - You specify the post conditions for the scenario
 - The state of the system after the scenario completes
 - Create a sequence diagram showing component interaction for the scenario

- How long are scenarios supposed to be?
 - Rule of thumb: Stop when you begin to describe another use case
Example Scenario 1B

- Passenger arrives at a hallway when elevator is already there and the car is traveling in the same direction as desired by passenger.

- Preconditions:
 - Car is at same floor as passenger.
 - Car is traveling in same direction d as desired by passenger.
 - At least one door[b,r] is open.
 - Hall button light [f,b,d] for passenger's desired direction is off.
Example Scenario 1B

- Passenger arrives at a hallway when elevator is already there and the car is traveling in the same direction as desired by passenger.

- Preconditions:
 - Car is at same floor as passenger.
 - Car is traveling in same direction d as desired by passenger.
 - At least one door[b, r] is open.
 - Hall button light [f, b, d] for passenger's desired direction is off.

- Scenario:
 - Door[b, r] starts closing.
 - Passenger arrives at a hallway[f, b] to use the elevator, with intent to travel in direction d.
 - Passenger presses hall call button before doors are fully closed, but after doors are too fully closed for passenger to enter.
 - Hall button lights up.
 - Doors complete closing.

- Postconditions:
 - Elevator is at the passenger's floor.
 - Door is closed.
 - Hall button light for passenger's desired direction is on.
Sequence Diagrams

- **Sequence diagrams illustrate the flow of messages between objects**
 - Each component is shown as a box
 - Time progresses downward from the components
 - Arcs go between objects to show messages and physical commands
 - You must number all arcs!
 - Use the following color coding:
 - Blue box = Sensor/actuator
 - Blue arc = Physical command
 - Black box = Controller
 - Black arc = Network message

Sequence Diagram 1B:

- Passenger
- DoorControl
- DoorMotor
- DoorClosed
- Hall Call
- HallButtonControl
- HallLight

1. Passenger Arrives
2. 1a. DoorMotor[b,r]=Close
3. 3a. HallCall[f,b,d]=true
4. 3b. HallCall[f,b,d]=true
5. 5a. mDoorClosed[b,r]=True
6. 5b. DoorMotor[b,r]=Stop

Notice: Network messages have an “m” prefix.

They’re numbered!
Audit

- Once you finish your (at least) three sequence diagrams

- Have one of your partners review them according to audit procedure
 - Name of the person conducting the audit?
 - Are the events in the sequence diagram consistent with the steps in the scenario?
 - Are all arcs labeled with a valid command in the sequence diagram?
 - Are all arcs correctly colored (blue for physical message, black for network messages)?
 - Are all boxed items correct parts of the elevator architecture?
 - Does each message arc in the sequence diagram originate from the correct object (according to the interfaces defined in the Requirements I and II documents)?

- Include a copy of every audit as directed on project web page
Individual Contribution

- Track your own contributions to each project
 - Each task for that week belongs to at least one team member
 - Comprehensive weekly list of who was in charge of completing what
 - We want to know how you tend to divvy the work

- This will add detail to your progress report
 - Minimum list of project requirements given, add any additional work you did as well

- For this week
 - Who worked on a Sequence Diagram? the Team Portfolio? a peer review?
 - This is all divided in a straightforward way this week, in future weeks the division of work will not be so neatly split
Portfolio

- Update the appropriate parts of the portfolio template
 - Portfolio Table of Contents
 - Scenarios and Sequence Diagrams
 - Improvements Log

- Double-check
 - The required parts of the portfolio are up to date (check the portfolio matrix)
 - All documents have group number and member names (including code)
 - All documents have uniform appearance
 - They don’t look like four people slapped them together at the last minute
 - Hint: Agree ahead of time what tools to use
What Do We Expect?

- **Grading criteria is focused on process**
 - The project is designed to teach you the importance of process and how to do it!
 - Don’t just go through the motions
 - Traceability, audits, logs, -- These things matter in industry!

- **We expect a design that passes acceptance test criteria**
 - You must have a working elevator to complete the course

- **Much of the project is open-ended**
 - Requires you to think about what is reasonable
 - We have fixed the architecture and message requirements to guide you

- **What do we NOT expect?**
 - A perfect elevator (how would you know?)
Project Tips

- Leave time for traceability, audits and other process steps
 - These can take longer than you expect

- Put REAL effort into the early design phases
 - Each project builds on the previous one
 - **Every** single group in years past recommended this by the end of the semester
 - If your design barely scrapes by, you will eventually have to fix it
 - Traceability requirements mean that your fixes will have to be propagated all the way through the design

- Don't blow off bug tracking
 - When you fix a bug, log it, and propagate the fix through the whole design
 - We’ll do diffs on your submissions to check bug tracking / propagating fixes

- Look at tools for automating repetitive tasks (e.g. makefiles)
 - The simulator might have the feature you’re about to implement

- Resist the urge to put lots of time into automating one-off tasks
Teamwork and Administration Tips

• Deal with these issues early (first or second week)

• Establish meeting times and team roles
 • Plan to meet with your group the same time every week
 • Exchange contact info too!

• Decide what tools to use
 • Pick tools everyone can use (especially for diagrams)
 • Look at tools for collaboration (e.g. version control)
 • Or at least set up a location to share the current design files
 • Use a version control tool (e.g., SVN, GIT)
 • Note: GitHub can be tricky for spreadsheet merges

• Read over the project before Recitation
 • Come ready with questions, it’s the best time to ask
Team Meeting Tips

• Meet early for planning
 • Review the assignment together
 • Make sure everyone in your group understands the assignment
 • Get started on the assignment together
 • Record things you don’t understand or need clarifications on
 • Assign a member to visit office hours with your questions
 • Distribute the remaining work before you end the meeting

• Establish a checkpoint mid-week (even if just by e-mail)
 • Make sure everyone’s on track prior to the deadline

• Keep meeting minutes
 • Decisions made, tasks assigned, etc.
 • Make sure everyone gets a copy so they know what they’re responsible for!
Suggestions and Reminders

• For project 2, spend some time reviewing the documentation
 • There’s a lot of documentation, it takes time to review
 • Do it prior to your team meeting

• Start early with assignments

• Reminder: Assignments are due Thursday evening by 10:00 PM
Questions?