Lecture #4

Microcontroller
Instruction Set — 2

18-348 Embedded System Engineering
Philip Koopman
Monday, 25-Jan-2016

Carnegie
) Electrical &Com ter g
) ENGINEER NG Mello

Example Application: Coriolis Mass Flow Meter

CPU Module &
«— Network Interface

[Emerson Process Management]|

Vibrating The Tube Permits Flow Measurement

¢ Used to precisely measure viscous fluids and slurries

[http://en.wikipedia.org/wiki/Mass_flow_meter]|

Outlet

e
b - . l As density increases, [Www.isa.org]

+ J tube period increases

Where Are We Now?

¢ REMINDER: Do Pre-Labs COMPLETELY ON YOUR OWN!
< Do not work with your lab partner (or anyone else)
< Do not talk about it with your lab partner until AFTER you BOTH hand in

¢ Where we’ve been:
e Embedded hardware
< Microcontroller Instruction Set — the basics
¢ Where we’re going today:
< Microcontroller Instruction Set — advanced
Note: you saw assembly stuff in 18-240, so we’re covering it pretty quickly
« If this stuff is confusing, go to office hours to get help

¢ Where we’re going next:
< Engineering process & design
¢ Embedded-specific C
¢ Coding hacks & multiprecision math

Preview

¢ Stack usage
¢ Pushing & popping with stack
« Subroutine linkage

¢ Other assembler operations
 Position, memory, and other management
o Labels
* Macros

¢ More on timing
¢ Cycle-accurate simulation

The Stack — Concept & Implementation

¢ Concept: = =] [Koopman]
PI.;.BH PUSH
Fl 2
9 EN ER
H- =
=] (=
PljSH Fé\ﬁ POP
9 9 2
¢ Implementation: 6812 stack
« Uses a pointer to memory
¢ The pointer moves up and down as top
of stack, not the memory contents! SP—{5 | Top
« Points to top of stack 2
1
[Valvano]

Pushing To The Stack

¢ “PSH” instructions — pushes a register onto the stack
* PSHA, PSHB, PSHD, PSHX, PSHY
e PSHC - condition codes (will get to that in a moment)

Example:
LDAA #1
LDAB #2
PSHA
PSHB
LDAA #3 End value:
PSHA

6812 stack

Atend, A=3, B=2
e PSH doesn’t change register values

SP—r=="3 Top
(On 6812, SP always points to top-most 2
element in use)

[Valvano]

PS HA Push A onto Stack PS HA

Operatlon:
(SP) - $0001 = SP
(A) = Mgpy
Description:

Stacks the content of accumulator A. The stack pointer is decremented by one. The content of A
is then stored at the address the SP points to.

Push instructions are commonly used to save the contents of one or more CPU registers at the
start of a subroutine. Complementary pull instructions can be used to restore the saved CPU
registers just before returning from the subroutine.

CCR Detalls: S X H I N Z2 VvV C
EEEEEEEE
Source Form Aﬁlil‘::s Object Code Access Detail
HCS12 M&sHC12
PSHA INH e - —

[Freescale]

Pulling (“Popping”) From The Stack

¢ “PUL” instructions — pulls a register value from the stack
* PULA, PULB, PULD, PULX, PULY
¢ PULC - condition codes (will get to that in a moment)

. 6812 stack
Example: Start
PULA
PULB iy — Top
2
PULB :
Atend, A=3, B=1 [Valvano]
« PUL doesn’t erase memory values BUT ~ End: 0812stack
unsafe to access them after PUL due to
interrupts!!! — .
5 op

(On HC12, SP always points to top-most >
element in use) 1

SP—f—

P U LC Pull Condition Code Reglster from Stack PU LC

Operatlon:

(Msp)) = CCR
(SP) + $0001 = SP

Description:
The condition code register is loaded from the address indicated by the stack pointer. The SP is
then incremented by one.

Pull instructions are commonly used at the end of a subroutine to restore the contents of CPU
registers that were pushed onto the stack before subroutine execution.

CCR Detalls: S X H I N Z V C

[afvfafafafafala]

Condition codes take on the value pulled from the stack, except that the X mask bit cannot change
from 0 to 1. Software can leave the X bit sat, leave it cleared, or change it from 1 to 0, but it can
be set only by a reset or by recognition of an XIRQ interrupt.

Access Detail
Source Form Aﬂld r;zss Object Code
ode HCS12 M&sHC12
PULC INH 38 ufo ufo

[Freescale] 10

Stack Implementation

¢ Implementation of stack grows from top of memory down

$500 unused; start stack position ... “BOTTOM>” PULL
$4FF “bottom” of stack (deepest byte) 4
$4FE ... Pl

$4B0 “top” of stack if there are $50 elements on it {ge—— SP

$4AF ... next unused element for stack ... “TOP” :

.... expansion space for stack v

.... expansion space for stack PUSH
RAM data

$0000 start of RAM

11

Hardware Support For Subroutines

¢ Allows use of a procedure (or method in Object Oriented terminology)

X=a+b;

¢ = dosomething(x,a);

y=c+d; int dosomething(int a, int b)
oturn(k ;

z = dosomething(w,k); } return(k)

¢ What has to happen to make this work?
» Prepare parameters for use
— Itisn’t always the same variables passed to the subroutine
« Unconditional branch to subroutine
« Execute subroutine
e Prepare return value
— The result doesn’t always go in the same output variable
< Return to calling point to resume caller execution

— How do we know where that is?
12

Subroutine Calls

¢ Hardware support: JSR, BSR
e JSR - full, 16-bit address mode subroutine call
¢ BSR — REL mode branch (8-bit PC-relative address), otherwise same as JSR
e They pretty much do the same thing

— BSR saves a byte of memory for instruction...
... but still uses 2 bytes of stack space for return address

¢ JSR (and BSR) operations:
* PUSH current program counter onto stack (2-byte value)
¢ Put address of subroutine into the PC
« Start executing code at new PC value (the subroutine)

« This takes care of saving return address and the actual jump
« But, doesn’t help with parameter values

13

JSR Jump to Subroutine JS R

Operatlon:

(SP) — $0002 = SP

RTN ¢ _FlTNL = Mgpy: Migp, 4y

Subroutine Address = PC
Description:

Sets up conditions to return to normal program flow, then transfers control to a subroutine. Uses
the address of the instruction following the JSR as a return address.

Decrements the SP by two to allow the two bytes of the return address to be stacked.

Stacks the return address. The SP points to the high order byte of the return address.
Calculates an effective address according to the rules for extended, direct, or indexed addressing.
Jumps to the location determined by the effective address.

Subroutines are normally terminated with an RTS instruction, which restores the return address
from the stack.

CCR Detalls: S X H I N Z V C
Access Detail
Source Form A;inird\e:s Object Code
HCS12 MegHC12
JSR opréa DIR 17 ad SPPP PEPS
JSR opriga EXT 16 hh 11 SPPP PEPS
JSR oprx0_xysp DX 15 xb DEPS PEDE
JSR oprx8.xysp 1DX1 15 xb ff DEPS DEDS
JSR oprx 16.xysp IDx2 15 xb ee £f fDDEE £PDPS
JSR [D.xysp] [D,IDX] 15 xb EIfDDDS EIEDRDE
JSR [opmx16,xysp] [IDX2] 15 xb ea Ef EIfDDDS EIEDDDE [Freescale]

Subroutine Returns

¢ Hardware support: RTS
¢ RTS - INH address mode (how do you know the return address?)

¢ RTS operations:
* POP top of stack and put it into PC
» Start executing program at that new PC value (back to calling program)

« This takes care of jumping back to calling program
« But, doesn’t help with parameter values

15

I i I E; Return from Subroutlne I i I E;

Opetratlon:
(M(Spji M(SP+‘I]) = pCH : pCL: (Sp) + $0002 = SP

Descriptlon:

Bestores context at the end of a subroutine. Loads the program counter with a 16-bit value pulled
from the stack and increments the stack pointer by two. Program execution continues at the
address restored from the stack.

CCR Detalls: S X H I N Z VvV C
Access Detail
Source Form Aﬂd ':55 Object Code
ode HCS12 M68HC 12
RTS INH iD UE£LDD U£DPP

[Freescale]

How Do You Pass Parameters?

Multiple methods, all of which can be useful

4

Put values in particular registers

« Example: sqrt(D)=>D D register used as both input and output

e Fast, but very limited by number of registers!

< Inthe C language, it is very common to put the single return value in a register

Hard-code addresses into subroutine

e Easytodo
« But, makes subroutine less flexible — need a different version for each data structure
e Can make sense when you are just saving space by avoiding duplicated code

Pass parameters on stack

e Pass pointers to data structures

e Pass values of variables

e Flexible, usual method of passing parameters

(Note: we’ll do stack frames and C variables in a later lecture ...)

17

Example: Passing By Registers

LDAA #47

LDAB #63

BSR COMPUTE_AVERAGE
STAA Average_result

; note — the below code only works on unsigned numbers!
COMPUTE_AVERAGE:

ABA ; sumto A, assume both are non-negative
; top bit of A contains carry-out of add
LSRA ; divide by two for unsigned number sum

RTS ; result is in register A

18

Passing Parameters To A Subroutine (simple version)

1. PUSH parameters onto stack

CALL subroutine

Subroutine reads parameters from stack and does computations
RTS

Calling program deletes parameters from stack

e Why done here? (look at next slide to understand reason)

LA SR o

19

Example: Passing Via Stack (simple version)

; Assume SP value is $4FA at this point

LDAA #47
PSHA
LDAA #63
PSHA
JSR COMPUTE_AVERAGE
PULB ; discard second parameter (could also use INS, but that is 2 bytes)
PULB ; discard first parameter (could also use INS, but that is 2 bytes)
STAA Average_result
; SP is back to $4FA at this point Stack
Address Memory
; only works on unsigned numbers! $4FA
COMPUTE_AVERAGE: $4F9 47
LDAA +2,SP ; second parameter
ADDA +3,SP ; first parameter $4F8 63
LSRA ; divide by two for non-negative $aF7 RetlLo
RTS ; result is in register A SP—> $4F6 RetHi
$4F5 invalid
$4F4 invalid

20

Passing Parameters To A Subroutine (complete)

1. PUSH parameters onto stack

2. CALL subroutine

3. Save registers that are going to be modified by subroutine

« Avoids unexpected corruption of registers used by the calling program
Subroutine reads parameters from stack and does computations
Subroutine writes results back to parameters on stack

Restore registers modified by subroutine

RTS

Calling program PULLSs parameters from stack

L

21

Passing Via Stack Example (complete version)

;5 Assume SP value is $4FA at this point

LDAA #47
PSHA
LDAA #63
PSHA

PSHA ; dummy push to make room for result; could also use DES
JSR COMPUTE_AVERAGE

PULA; result stored in third parameter

STAA Average_result

PULB; discard second parameter Stack
PULB; discard first parameter Address Memory
;5 SP is back to $4FA at this point $4FA
$4F9 a7

; only works on non-negative numbers!

COMPUTE_AVERAGE: $4F8 63
PSHA ; make sure A isn’t trashed $4F7 Result
LDAA +4,SP ;second parameter
ADDA +5,SP ; first parameter $4F6 RetLo
LSRA ; divide by two for non-negative number sum $4F5 RetHi
STAA +3,SP ; store result in third parameter position s
PULA ; restore register A SP $4F4 SaveA

RTS ; result is on stack $4F3 invalid

22

Rules For Safe Stack Use

¢ PULL as many times as you PUSH
« Stack overflow will trash RAM

 Stack underflow will give invalid PULL values
— Very often it will also trash RAM
¢ Mismatched number results in invalid subroutine return address

¢ Don’t access stack memory after that value has been PULLed

 Interrupts can change the memory values at random times
— We’ll talk about interrupts later in course
« The program will still work most of the time — very nasty bug to track down

¢ Beware of “stack smashing” attacks

« Frequent security vulnerability is someone intentionally over-running data
structure to modify return address

23

Netrino °
Bad Code in a 3" Party Library

1 char * getProductName (void)

2

3 char productName[l1l28]:

4 char *cp = productName:;

5

] readNameFromEEPROM (cp, 127):
7

8 return (cp):

9 }

runs on the

same stack.

This Gode Stinks! | Septembsr 22, 2008 o—

Assembler Pseudo-Ops

¢ Not everything in a program is “executable code”
< By end of this lecture, you should know what everything below is doing...

ROMStart EQU $C000 ; absolute address to place my code/constant data
RAMStart EQU $0 ; absolute address to place my variable data
RAMEnd EQU $03FF ; absolute address of last usable RAM byte

; variable/data section

ORG RAMStart
; Insert here your data definition.
Average_result DS.B 1

; code section
ORG ROMStart

Entry:
LDS #RAMEnd+1 ; initialize the stack pointer
cL1 ; enable interrupts

LDAA #$47

PSHA

LDAA #$63

PSHA

JSR COMPUTE_AVERAGE

ORG $FFFE
DC.W Entry ; Reset Vector

25

Labels

¢ Labels are a convenient way to refer to a particular address

» Can be used for program addresses as well as data addresses

¢ You know it is a label because it starts in column 1 (“:” is optional)
¢ Assume you are currently assembling to address $4712

¢ (how you do that comes in a moment)

Mylabela:

ABA ; this is at address $4712
Mylabelb:

Mylabelc

PSHA ; this is at address $4713
« The following all do EXACTLY the same thing:
- JMP $4713
— JMP Mylabelb
— JMP Mylabelc
— JMP Mylabela+1

e Anditis valid to say: LDDA Mylabelb (what does this do?)

26

ORG ; DS ;DC

¢ DS — define storage space, but don’t initialize (RAM usually)
— (“Define Space”)

DS.B 1 ; allocate 1 byte of storage
DS.W 1 ; allocate one word (2 bytes)
DS.B 370 ; 370 more bytes
DS.W 100 ; 200 more bytes

¢ DC - define storage space, and initialize with a value (ROM only)
— (“Define Constant™)

DC.B 13 ; one byte, with value $0D
DC.W 13 ; two bytes, with value $000D
DC.B 370 ; illegal — 8-bit value > 255

¢ ORG - start laying down bytes at this address (ROM or RAM)
— (“Origin”)
ORG $3000
: next instruction, DS, DC,... is at address $3000 .

EQU

¢ EQU is “equate” — means give this label a certain value
e Thisis a “compiler directive” — done at compile time, not at run time!
« No bytes are deposited in memory!
e Format: Label EQU Value

Foo EQU $C000

Bar EQU Foo
LDAA Foo ; same as LDAA $C000
LDAA Bar ; same as LDAA $C000

28

Labels vs. ORG vs .EQU

ORG $5000
Foo EQU $CO000
DS.W $17
Baz DC.W $19
ORG Foo
DS.W $53
ORG Fo0+$1000
DC.B $54
DC.W $5657
¢ Questions:
e What is the address of Baz?
e What address does the DS.W $53 start at? What value is stored there?
* What value is at address $D001 (high byte stored first)

* Note: don’t intermingle DS and DC in real programs — this is just an illustration

— DS is for RAM; DC is for ROM/Flash memory in our hardware 20

Does It Create Bytes?

¢ These DO NOT create bytes of data in memory
< Label — creates a value for use by the assembler, no run-time effect
e EQU - creates a value for use by the assembler, no run-time effect
— (Really, it’s just a more general way to create a “label” value)
« ORG - directs where the next byte goes
« DS.B; DS.W - allocates storage space, but doesn’t put in any values

¢ These DO create bytes of data in memory
« Instructions — these put opcode etc. for instructions in ROM

« DC.B, DC.W - these store a “constant” value (pre-initialized variable, etc.) in
ROM

30

Now Do We Know What All This Means?

ROMStart EQU
RAMStart EQU
RAMEnd EQU

Average_result

; code section
ORG
Entry:
LDS
cL1

LDAA
PSHA
LDAA
PSHA

#$47

#$63

ORG $FFFE
DC.W Entry

$C000
$0
$O3FF

; variable/data section

ORG RAMStart
; Insert here your data definition.

DS.B 1

ROMStart

#RAMENd+1

; absolute address to place my code/constant data
; absolute address to place my variable data
; absolute address of last usable RAM byte

; initialize the stack pointer

; enable interrupts

JSR COMPUTE_AVERAGE

; Reset Vector

31

Other Info

*

e (“essential code warrior syntax” for assembly)

& Codewarrior documentation is available on the course web site

¢ Assembler manual

C compiler manual
Build tools manual
Debugger manual

32

Netrino ;

Bad Code in a Telematics Application

1 void version_send (void)

2 {

3 char * my_ver = “Version X.Y.Z";

4 my_ver[8] = ‘0’ + (major_version & 0x07); is ROMable
5 my_ver[1l0] = ‘0’ + (minor_version & 0x07);

6 my ver[l2] = ‘0O’ + (revision code & 0x07);

7 output_version(my_ver);

8 }

when it was consistently executed out of RAM

Rebuilt for flash download, the program bus faulted.

This Code Stinks! | September 22, 2008 O—

Cycle Counting for Branches

¢ Some instructions have variable execution times — especially branches

¢ Branch timing cases:
< Branch not taken
— Just continues along as if it were a no-op

< Branch taken
— Must refill instruction prefetch queue to get back to normal operation
— (Remember, small microcontrollers don’t have cache memory, don’t speculate, etc.)

34

B E Q Branch if Equal B E Q

Operation:
If Z =1, then (PC) + $0002 + Rel = PC

Simple branch

Description:
Tests the Z status bit and branches if Z =1.
See 3.8 Relative Addressing Mode for details of branch execution.

CCR Details: S X H I N Z V C
Access Detail
Source Form A:ﬂdrgss Object Code
ode HCs12 M68HC12
BEQ rel8 REL 27 rr ppp/ Pl ppp,/ ol

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

[Freescale] 35
Lab Cycle-Accurate Simulator
The IDE simulator provides several g | -
useful capabilities [® smasar Bv 3
« Run code without a module e
B readmend nfa nfm+ A
< Easy single-step debugging =‘=m moglia

=3 St Code 57 M

e Count CPU cycles

¢ Generally a simulator is the only way to get exact CPU cycle counts
< But only if the simulator is actually accurate (a problem on complex CPUSs)
< And only if the actual run-time environment matches the simulation

m=Register _lalx]
HCI2 [CPU Cycles: 124 Aty
o A B
Ix 1108 I¥ | BPL
P - P PPAGE o
ag OF1 ccn [oxnmnz

[Code Warrior Screenshots]

36

Simulator vs. Real Hardware vs. Hand Counting

¢ Motivation: need to know execution time for real time scheduling

¢ Hand counting
« Doesn’t require fancy tools
¢ |stedious
* Is OK for “best case” but often humanly impossible for worst case
— in critical systems worst case is the important case!
¢ Simulator
« If you have a simulator (luckily we do!) counting isn’t so bad
— Single-step through program and subtract start count from end count
— Can use “break points” (covered in debugging lecture)
¢ Real hardware
« Can use hardware timers to assist (covered in counter/timer lecture)
« Can use a stopwatch if timing is repeatable
« Other approaches (covered in debugging lecture)
 Issue: hard to get really precise and accurate times

37

NOP Timing Loops

What if your CPU doesn’t even have a timer?
What if you need just a few microseconds of delay?

¢ Sometimes (and frequently in old systems) => NOP Timing Loops
LDAA #$FF
Start_loop:
NOP
NOP
NOP
DBNE A,Start_loop ; Cool loop instruction

¢ Number of NOP instructions and index values used to tune time
« Very commonly used in 1980s era embedded systems
— BUT —really a problem if you have cache memory, interrupts, etc. etc.
— What happens if you start using a new chip that is faster/different timing?
e Westill use it in this class until you know more advanced techniques
— BUT - dangerous to use in production systems unless you are really sure it is OK!

38

D B N E Decrement and Branch if Not Equal to Zero D B N E

Operation:

{Counter) = 1 = Counter
If {Counter) not = 0, then (PC) + $0003 + Rel = PC

Description:

Subtract one from the spacified counter register A, B, D, X, ¥, or SP. If the counter ragistar has
not been decremeanted to zero, executa a branch to the specified relative destination. The DBNE
instruction is encoded into three bytes of machine code including a 9-bit relative offset (-256 to
+255 locations from the start of the next instruction).

IBNE and TBNE instructions are similar to DENE except that the counter is incremented or tested
rather than being decremented. Bits 7 and & of the instruction postbyle are used to determine
which operation is to be performed.

CCR Details: S X H I N Z V ¢©
Access Detail
Source Form Addrees Object Codel!!
Mode HCE12 MEBHC12
DBNE abdxys, reld REL a4 1b rr PPRSPPO PPP]

1. Encading for 1b Ia summarizad in the following table. Bit 3 ks not usad (don't cara), bit 5 sslects branch on zers (DBEQ - 0
or mot zero (DBMNE = 1) versions, and bit 4 is the sign bit of the S-bit relative offset. Bits 7 and & would be 0:0 for DBNE.

Count Bits 2:0 Source Form Object Code Object Code

Register {1f Offset is Positive) | (If Offset is Negative)
A | o000 |DBNEA red |04 20 rr 04 30 rr
B o DBNEB, reld |04 21 zx 04 31 rr
[100 |DBNED, e |04 24 rr 04 34 rr
X 10 DBNE X, reld |04 25 zx 04 35 rr
¥ 110 |DBNEY, el |04 26 rr 04 35 rr
5P 111 DBME SP, reld |04 27 rr @4 37 rr

[Freescale]

Advance Processors & Timing Prediction

¢ Fancy CPUs and systems have practically unpredictable timing
< Speculative execution
e Cache memory
¢ Virtual memory
< Variable timing on multiplication and division
« DRAM refresh delays
¢ System-level interrupts
e Operating system latencies

¢ Timing analysis for complex systems is a tough problem
e Something to NOT do - “run loop 1 million times and divide by 1 million”
e Why?

40

Intel 80386 Timing For Simple Loop

¢ Interrupt Service Routine that puts bytes into a queue
« “Memory sweeper” task running in foreground, including Virtual Memory

1,000,000 =
: TLB &
: CACHE TLB &
100,000 - HITS CACHE

MISSES

~ "NAIVE
10,000 pATA BOOK":

- 104 CLOCKS
) 1
1,000 ' "MILLION
: | TIMES" with
100 < , ho translation:
: , 149.6 CLOCKS
R /7
10 = L)
: I ’
: L
1 vr_ |
0 100 200 300 T400 500 600 700 800 9?
368 Clock Cyecles 900
[Koopman] “
Review

& Stack usage

e Pushing & popping with stack

¢ Subroutine calls

< Parameter passing to/from subroutines
¢ SP-relative loads and stores

¢ Other assembler operations
« Position, memory, and other management

e Labels
« Differences among label, EQU, DS, DC, ORG

¢ More on timing
¢ Cycle-accurate simulation
« Nop timing loop

42

Lab Skills

& Register-based subroutine interface
« Write a program that uses registers to pass values

¢ Stack-based subroutine interface
« Write a program that uses the stack to pass values

¢ Timing
e Hand compute timing
e Simulation-based timing
« Stop-watch based timing

43

