

Preview

◆ A Little Embedded Background/Motivation

- "Embedded" is almost 100% of the market
 - Big CPUs don't necessarily Rule

Course Administrative Information

- Grading
- · Course policies
- This course has a lot of moving parts, so it takes a while to cover them all
 - In industry there are lots of moving parts to making a project work; the experience is really not all that different

Lab Equipment

- Hardware, Software
- How the labs are going to work
- Key idea: hands-on experience with lecture topics, *NOT* killer design projects!
 There will be a larger last project, but complexity is mostly up to you

Instructor Background

Prof. Phil Koopman

- HH A-308
- ece348-staff@ece.cmu.edu

Research:

- Dependable & secure embedded systems
- Embedded real-time networking

Engineering experiences outside Carnegie Mellon

- US Navy submarine officer
- Startup company that created an embedded CPU design
- Embedded CPU designer for Harris Semiconductor
- Embedded system architect for United Technologies (Otis, UT Automotive, Pratt & Whitney, Carrier, Norden, Sikorsky, ...)
- Numerous design reviews (~140 and counting) of industry embedded systems
- Software safety expert for Toyota Unintended Acceleration lawsuits

Small Computers Rule The Marketplace

• Everything here has a computer – but where are the Pentiums?

Course Contents

- Using a simpler CPU makes it easier to get at the "bare metal"
- Part 1 Hardware and Software; Intro to I/O
 - Embedded HW; assembly language; embedded C
 - Bit manipulation; multiprecision math; optimization
 - Memory bus; serial ports; debug/test
 - <u>Mid-Term Exam is Wed., Feb 24, 2016 be there!</u>

Part 2 – Control, Interrupts, Concurrency, Scheduling

- Counters/timers; watchdog timers; robust systems
- · Interrupts; concurrency; real time scheduling
- Analog inputs; analog outputs; Filtering; feedback control
- Advanced networking (Bluetooth; CAN)
- Safety critical systems and other "kids don't try this at home" topics
- Second Exam is Wed., Apr 20, 2016 be there!

Weekly lab/project content

- · Weekly labs to give hands-on exposure to most lecture topics
- Two-week project at end of course to demonstrate putting pieces together
 - Last week of classes leaves time to work on this; due finals week; no final exam
 You pick the project; most of you will want to keep it simple

http://www.ece.cmu.edu/~ece348 always has the most up-to-date lecture schedule

Course Structure – 1

Lectures – Mondays & Wednesdays 10:30-12:20

- Anything presented in lecture is fair game, even if not in handouts – Textbook is meant to supplement and explain lecture material
- Hard-copy handouts only (no electronic copies)
 - Ask someone to pick one up for you if you are missing class
 - TA will bring spare copies to following recitation; after that they are recycled.

Recitations – Fridays 10:30-11:20

- Q&A about lectures, pre-labs, lab skills, etc.
- Walk-through of lab exercises read lab assignment before recitation!
- Generally an open book quiz to make sure you're "getting it"

Pre-Labs==Homework – Due each Friday at 9:00 PM

- Bonus points for hand-in by 1:30 PM
 - Encourages you to find out if there are problems in time to ask at recitation
- Individual work individual grade do NOT get help from lab partner!
- Some traditional homework questions
- Some preparation for the lab

17

Course Structure – 2

Lab skills – evenings, topics follow lectures by ~1-2 weeks

- Apply concepts from lecture in the lab after you see them in lecture
- Teams of 2 (think about who you want as a lab partner) (not 3; not 1 only 2)
 - A couple singles may need to switch lab sections to get balanced pairs
 - We can work out flexible lab demo arrangements to make this work
- Joint effort for your team of 2; joint grade
- Lab rooms are open as much as possible (normally 24x7), but are shared spaces
- Demos must be done by <u>YOUR ASSIGNED</u> scheduled lab demo time
- Lab writeups due on Wednesday following lab (9:00 PM)

Tests

- 1st Exam during class hours
- 2nd Exam during class hours
- You're allowed one 8.5"x11" 2-sided "crib sheet" for exams only
 - Must be <u>Hand Written in your own hand writing</u>
 - Must have your name on it
 - Must be turned in with exam
 - Printouts of slides, non-hand-written, or someone else's writing is prohibited

Course Materials

• Free required reading materials via course web site

- Some lectures have reading beyond book see the web site
- Processor Data Sheet
- Some articles on embedded systems
- Lab assignments
 - Get printed handouts at class or at following Friday recitation
 - If you miss those two opportunities get them from a friend; we don't stockpile back issues

Required microcontroller module

- Get a kit at lab hours: 1 CPU module per student
 - 1 proto-board + 1 parts pack per team of 2 students
- You can do much of the lab work at home with a Windows PC and USB port without the prototype board
 - You can do pre-lab 1 just with the simulator downloaded from course web page
- A Mac might work, but we can only officially support the lab machine version of the windows build. (Development software is free download for student use)

Required text

- Valvano, Embedded Microcomputer Systems: Real Time Interfacing, <u>2nd Edition</u>, ISBN 0534551629
- Can get new/used on-line (hint: try bookfinder.com or addall.com used book search)
- Be sure to get 2nd Edition!
 - We can NOT use the newer 3rd edition due to deleted material

19

Registration & Grading Grading • A is 90% or above: B at 80%; C at 70%; D at 65% using following weights: – Pre-Labs: 15% (lowest 1 dropped, except double weight final lab) (final demo counts double weight) – Lab Demos: 14% - Lab Writeups 14% (lowest 1 dropped, except double weight final lab) – First Exam: 25% - Second Exam: 25% – Participation: 7% (lowest 2 dropped) All assignments within a category are normalized (equally weighted) All grading issues/appeals must be made in writing within ONE WEEK of hand-back! No make-up events (labs, exams, recitations) • If you have special needs (e.g., extra test time) give >30 days advance notice Late penalty for Labs & Pre-Labs = 10% for first hour + 10% per day "N" • Up to 1 hour: 90% of grade; 1 hour to 24 hours late: 81% of grade *LateGrade* = $RawGrade * 0.9^{\lceil N+1 \rceil}$

"Extra Credit" and Bonus Points

Pre-labs early hand-in

- Bonus: hand in pre-lab before (1:30 PM) on Friday it is due
- You can get 5% extra credit (grade multiplied by 1.05)
- <u>Go to recitation</u> the point is to make sure you know what questions to ask

Pre-lab & lab bonus points

- Intended <u>only</u> for students who are finding the course "easy" for <u>some</u> labs
 - A few points (10-20%) for doing extra work to make things more challenging
 Gives you bragging rights, especially if you want a recommendation letter
- If you are spending fewer than 12 hours per week, you should do the bonus assignments to get more out of the course
- If you are spending more than 12 hours per week, you should <u>not</u> do these
 - Instead, spend your time getting pre-labs handed in early
 - Instead, spend your time studying for the tests before the last minute
 - <u>Do not</u> spend insane hours in the lab chasing these few points; that's the wrong priority to have!

21

Multiple Choice Grading

Most test questions are multiple choice

- Requires more work for me to compose good questions
- Less ambiguity and variation in grading
- You have plenty of "essay" problems in homework and lab already
- But, traditionally, has problems with quantization noise in grading

• Our approach – partial credit for multiple choice

- One or more answers are correct (usually one, but sometimes more than one)
- We will provide example questions for study/practice
- You get credit in proportion to the number of correct answers you choose
 - 1 answer correct; you pick it = full credit
 - 1 answer correct; you pick two (one correct; one incorrect) = $\frac{1}{2}$ credit
 - 2 answers correct; you pick one correct = full credit
 - Credit = (# correct answers you pick) / (Total # answers you pick)
 - If unsure, you can guess two, and get half credit if one is true
 - If unsure, you can mark all answers and get ~20% credit (depending on question)

WAIT LIST INFORMATION

• Class has hard limit of 72 students, 5 lab sections

• Attendance sheets show current status

Lab sections

- Need to have roughly even lab sections
- It is always OK to demo early if you have an occasional conflict
- Partial lab conflicts are OK
 - Just need to hit a ~30-minute demo window
 - AND, you can request a demo window that doesn't conflict for you

Let us know if you want to move to empty sections

- · Need to get sections reasonably balanced
- If you want to partner with someone in a different section, let us know – Give us ALL available possibilities so we can figure out a workable schedule

If waitlist/switch request,

use Doodle Poll to let us know your possible sections

23

LAB PARTNER ANNOUNCEMENT

• WEDNESDAY by about 5 PM:

send e-mail to <u>ece348-staff@ece.cmu.edu</u> with your lab partner choice; no mail means we will randomly assign you

- INCLUDE:
 - BOTH student names
 - BOTH student andrew IDs
 - Don't use your Gmail account and just say "Me and Joe want to be partners"
- If you want to partner with someone in a different section, make sure you tell us <u>*all*</u> sections (Mon-Fri) you can both make. Please be flexible. Use the Doodle Poll to do this.
- If you don't have a partner, send us mail saying so and we'll assign you one

• If you are wait-listed, still pick a partner

- Hard limit of 72 students (room capacity is listed as 73)
- Usually all or almost all ECE students get in

Web, Blackboard, E-mail

Course home page is definitive source for information:

• http://www.ece.cmu.edu/~ece348

Blackboard used for

- Posting grades
- Course announcements (we expect you will check blackboard daily)

E-mail use:

- Asking questions about course content, labs, etc. should be done in person at office hours and the lab, not via e-mail!
- Reasonable e-mail use includes:
 - Asking to schedule a special meeting of some sort outside office hours
 - Notifying staff of a technical problem ("lab equipment X is broken")
 - Notifying staff of defects in assignments ("looks like a typo on assignment Y")
- Send <u>all course e-mails</u> to: ece348-staff@lists.andrew.cmu.edu (if you send it elsewhere and it doesn't get read, don't be surprised)

Lab Partners

• Get a partner. We have limited lab facilities and staff

- · Perhaps pick somebody with complementary skills
- (Like somebody who actually *knows* something about, say, *hardware*, or *software* if one of those is a weak spot for you.)

Manage group dynamics.

- It's your problem ...
 - ... unless you tell <u>us</u> early enough.
- If you are awake all night worrying about your lab partner, you should be talking to us sooner rather than later
- If you cover for your lab partner and it bites you later, don't come crying to us

Course lab philosophy

- Lab is a place to demonstrate you "got" what the lectures were about
- The lab is not a place for fancy design projects take 18-549 for that!

27

Cheating No tolerance for cheating at all • <u>READ the course policy on cheating on the course web page.</u> • Penalty for being convicted of cheating is failing the course. No kidding. • If you think you are too smart for us to figure out you are cheating, think again - We will use MOSS and other techniques to find code copying • If you honestly aren't cheating, don't worry about this. Being "perfect" isn't cheating. Examples of cheating behavior (non-comprehensive list): • Did someone else tell you how to do any aspect of your homework? - General discussions of lecture material are fine if not specific to homework - Lab partners collaborate on joint assignments only (not pre-labs) - Did you help someone else with their homework? (that's cheating too) • Did you look at a previous semester solution or someone else's solution? - Did you look up stuff on the web and use it in your solution? - Did you look at quizzes, or other stuff from a previous year not on blackboard? • Did you access anything other than the permitted "crib sheet" during an exam? - Did you let your eyes roam on to others' papers during an exam? • Did you do homework sitting next to each other and ask leading TA questions? - "Dear TA, I think I should do it this way. Is that right?" (Is my friend taking notes of this?)

• Are you involved in faking attendance or results at a class, lab, recitation, or exam? 28

Actual Examples of Cheating

• Doing prelabs (which are homeworks) as a group

- Discussing lecture slides as a group is encouraged and fine
- Discussing **pre**labs as a group is NOT ok we want you to make your own mistakes and learn from them; don't do your prelab next to your partner
- Discussing \underline{labs} with anyone other than your partner (and staff) is NOT ok

Looking at or copying a prelab program you "found" in the lab

- <u>Erase your files when you leave the lab</u>, or you risk being the same as someone else who copies you!
- It is OK to look at your partner's relevant prelab code *after both of you* have handed in your prelabs for grading

Sharing a calculator

• "I didn't have a calculator with me, and it makes no sense for me to punch in numbers that my lab partner just punched in, so I just used his numbers"

Looking at a previous year pre-lab or lab you find on the web

• Showing someone else your prelab to help them, even if it is simply a cosmetic issue or otherwise just a general look rather than detailed copying

We are really serious about this – no exceptions!

• We have found you don't really learn the stuff if you don't do it on your own

Course Lab Microcontroller: MC9S12C128

MC9S12C128:

- "M" = "Motorola" ... but spun off as new company "Freescale"
- C9S = "C" for CMOS technology; "9S" is general model number
- "12" = mostly code compatible with older 68HC12 chip and 68HC11
- C = Has a CAN network controller (might be useful for 18-549 projects!)
- 128 = 128KB of on-chip flash memory (and 12KB of RAM)

General specs

- 16-bit CPU
- 4-25 MHz bus; 3.3V to 5V operation
- Timers, A-to-D converters, pulse generator ... lots of cool stuff on chip
- Very popular mid-range microcontroller sold for use in automotive applications

• Web site has Data "Sheet" (684 pages)

• Industrial automation and automotive

Lab Software

CodeWarrior IDE

- Integrated editor, C compiler, debugger
- Also supports assembly language
- Official support for windows
 - Might work on Mac with emulation software, but we don't support that
 - Linux probably does not work

• Can develop with lab module

• Cross-compiled from PC onto lab module via serial cable

• Can develop with project board + lab module

• Cross-compiled from PC through project board via USB or serial cable

Go to lab this week and pick up your equipment

- We'll announce when it is available
- Recitation Friday will explain how to use the equipment and prepare you for next week's lab
- You only need the simulator for the pre-lab, which is on the course web site

Look For The Schedule Grid On Web Page Below might change – web site has up to date version									
1	11-Jan 2016	No Lab	No Lab	Open Lab	Open Lab	Open Lab	None	1	1, 2
2	18-Jan	MLK Day	1	1	1	1	None	2	2,3
3	25-Jan	1	2	2	2	2	1	3	3, 4
4	1-Feb	2	3	3	3	3	2	4	4, 5
5	8-Feb	3	4	4	4	4	3	5	5,6
6	15-Feb	4	5	5	5	5	4	6	6, 7
7	22-Feb	5	Open Lab	TEST b	Open Lab	6	None	None	7, 8
8	29-Feb	6	6	6	6	BREAK	5	7 Due <u>Thursday</u>	No Recitation
	7-Mar	SPRING	BREAK	SPRING	BREAK	BREAK	None	None	No Recitation
9	14-Mar	Open Lab	Open Lab	7	7	7	6	8	8, 9
10	21-Mar	7	7	8	8	8	7	9	9, 10
11	28-Mar	8	8	9	9	9	8	10	10, 11
12	4-Apr	9	9	10	10	10	9	11	11
13	11-Apr	10	10	Open Lab	Carnival	Carnival	None	None	No Recitation
14	18-Apr	Open Lab	Open Lab	TpEST ab	Open Lab	Open Lab	10	None	Optional/In-Lab
15	25-Apr	Open Lab	Open Lab	Open Lab	Open Lab	Open Lab	None	None	Optional/In-Lab
16	2-May Finals	TBD	TBD	TBD	TBD	TBD	11 Due (Thursday)	None	No Recitation

How Lab Sessions Will Work

(*See blackboard for Lab 11 prelab, demo & writeup information)

Homework/Pre-Lab

• Start early! - Be done enough to ask intelligent questions at recitation Friday - (If you haven't read the assignment, don't expect TAs to spoon-feed you!)

(Thursday)

- · Hand in pre-labs Friday evening at 9 PM via afs
 - 5% bonus points for early hand-in by 1:30 PM

After Pre-lab Hand-In (we urge you to hand in even earlier!!)

- Work with your partner on a solution strategy for the lab demo
- Spend some time in the lab to make sure your stuff will work

During scheduled lab time

- · Arrive prepared
- · Do your demo at assigned demo slot
 - Early demos are fine, but students with assigned time slot have priority
- · Lab writeups are due at 9 PM Wednesday a week or so later via afs
- TA may leave 1 hour before end of lab if nobody is there at 8:20 PM
 - If you are going to arrive after 8:20PM send e-mail to course staff

Lab Writeups

Lab writeup content

- · Lab assignment will specify writeup
- You must actually follow directions points off even for "minor" things like forgetting to put your name in comments within the code
 - You MUST follow file name conventions!
 - This is a huge problem for us if you don't
 - → 1 minute/student * class size = > 1 hour of wasted time for us
- Usually has three elements:
 - Code listings, circuit diagrams
 - Answers to questions (sketch a curve of this measurement, etc.)
 - How can we make the lab better for next time?

Electronic hand-in via afs

- Writeup
- We will spot-check to make sure code really works
- Do your writeup right after the lab; don't wait

IMPORTANT: save your lab code!

- Some labs require code from previous labs
- Try out version management software (Git may work, but hates .xlsx files)
- **<u>Do NOT</u>** use software that makes your code publicly available (e.g., Google)

37

Lab Hours & Expectations

Scheduled lab times

- We will schedule demo slots be there when it is your slot!
- This means partial conflicts with lab session are OK, but tell us the situation

During schedule lab times

- Be there when it is your section (e.g., Section A is Tuesday night)
- Don't get in the way when it isn't your section
- Our class has priority during our lab times (other class has priority in theirs)

At other times

- TAs have office hours in the lab
- Use the lab as much as possible
- But, you can do a lot of the course work on the MCU module with your laptop or home PC!

If you see a problem in the lab, let us know right away via e-mail

- Missing equipment, supplies have run out, safety issues
- Too hot/too cold, anything that doesn't seem right
- Also can notify Tech Electronics (but tell us too)

"Its a course that teaches a lot about real world cases and hence is very useful for job interviews."

*"The Embedded Systems programming was useful, but what was more so was the mindset behind the course: learning how to set up and create an engineering project from groundup."

Should You Attend Lecture?

Unedited 18-348 Spring 2014 FCE comment:

"Very great course. I didn't go to too many lectures because I had a full schedule, and I did not want to have to wake up at 10:30 after staying up late into the night, but I wish I had gone to class.
 Also, I applied to a Tesla embedded systems internship, and didn't get the job. But I'm pretty sure that, had I shown up to class, I would have been able to answer the technical questions much better (they were on CRC checking and communications between MCU and pc)."

Review (*This Is Where You Get Exam Hints*)

Course overview

- Course organization
- Assignments: Pre-labs, labs, weekly quizzes, mid-term exam, final exam
- Cheating policy

• WEDNESDAY (before 4 PM):

send e-mail to <u>348 TAs <ece348-staff@lists.andrew.cmu.edu></u> with your lab partner choice; no mail means we can randomly assign you

Lab orientation

- Lab #1 is just to make sure you can use all the lab hardware and software
 - Pre-lab due on Friday

Lab Skills For This Lecture Board hook up Be able to correctly hook up cables and power without board damage Download and execute program Be able to down-load a pre-prepared program and run it: On simulator On microcontroller module On module + proto-board Assembly language program

- C program
- General idea of Lab #1 make sure you can get everything to work so that in Lab #2 we can get on to doing real stuff.

(Don't worry, lab skills will get a more challenging after this!!)