
[www.dsn.org]

Classical features such as raw performance and functionali-
ty have long driven the computer industry to improve their
products. But now, dependability and maintainability are
seen as equally important. While there are relatively
straightforward ways to evaluate and compare performance
and functionality of different systems or components, the
evaluation of dependability and maintainability features is
much more difficult. Among the challenges that must be
addressed are: incorporating the effects of software fail-
ures, characterizing the dependability of opaque off-the-shelf
hardware and software components, including the effects of
typical maintenance, operational, and configuration manage-
ment procedures, and accommodating the fact that different
application areas have different requirements for the various
factors influencing dependability.

The goal of the Dependability Benchmarking Workshop is to
provide a forum for the computer industry and academia to
discuss problems associated with the evaluation and char-
acterization of dependability and maintainability of compo-
nents and computer systems. The identification of depend-
ability benchmarking measures and the essential technolo-
gies for dependability benchmarking, including both experi-
mental measuring and modeling technologies, are central
aspects of this large discussion meant to garner ideas on
practical and cost-effective ways to evaluate dependability
and maintainability features.

This proceedings preprint contains short papers, work-
in-progress reports, and position papers. These workshop
contributions are being published in the:
Supplement of the 2002 International Conference on
Dependable Systems and Networks.

Co-Chairs

Philip Koopman
CMU, USA
<koopman@cmu.edu>

Henrique Madeira
Univ. of Coimbra, Portugal
<henrique@dei.uc.pt>

Program Committee

Wilson, Don (Compaq, USA)
Murphy, Brendan (Microsoft Research, UK)
Kanoun, Karama (LAAS-CNRS, France)
Cukier, Michel (UIUC, USA)
Blanquart, Jean-Paul (Astrium, France)
Karlsson, Johan (Chalmers Univ. Sweden)

Workshop on Dependability Benchmarking

#4WORKSHOP

Workshop on Dependability Benchmarking

Classical features such as raw performance and func-

tionality have long driven the computer industry to improve

their products. But now, dependability and maintainability

are seen as equally important. While there are relatively

straightforward ways to evaluate and compare performance

and functionality of different systems or components, the

evaluation of dependability and maintainability features is

much more difficult. Among the challenges that must be

addressed are: incorporating the effects of software fail-

ures, characterizing the dependability of opaque

off-the-shelf hardware and software components, including

the effects of typical maintenance, operational, and config-

uration management procedures, and accommodating the

fact that different application areas have different require-

ments for the various factors influencing dependability.

The goal of the Dependability Benchmarking Workshop

is to provide a forum for the computer industry and acade-

mia to discuss problems associated with the evaluation and

characterization of dependability and maintainability of

components and computer systems. The identification of

dependability benchmarking measures and the essential

technologies for dependability benchmarking, including

both experimental measuring and modeling technologies,

are central aspects of this large discussion meant to garner

ideas on practical and cost-effective ways to evaluate de-

pendability and maintainability features.

This workshop is the outcome of the first two years of

work of the IFIP 10.4 WG SIG on Dependability

Benchmarking (SIGDeB) [SIGDeB02]. That SIG was

formed in November 1999 under the IFIP 10.4 WG to pro-

mote the research, practice, and adoption of benchmarks

for computer-related system dependability. Koopman &

Madeira were the founding co-chairs.

The SIGDeB charter focusses on four areas in particular:

• Exchanging ideas about dependability benchmarking,

including researchers and practitioners from

universities, industry, and government agencies.

• Documenting the state of the art for dependability

measurement and benchmarking.

• Creating lists of issues that must be resolved to advance

dependability benchmarking to a mature science.

• Eventually, proposing a mechanism and agenda for a

group to propose dependability benchmarks.

Of course those are long term objectives that will require

far more than two years of work to accomplish. But several

of the papers presented are the results of SIGDeB collabo-

rations that have made progress. Beyond that, this work-

shop represents the first focussed exchange of ideas about

dependability benchmarking in a public forum.

While the SIGDeB has been working, two other re-

search programs have been created to address related areas:

DBench and HDCP. Both DBench and HDCP have mem-

bership overlaps with SIGDeB, but are different in purpose.

DBench is a 3-year European research program to “de-

fine a conceptual framework and an experimental environ-

ment for benchmarking the dependability of COTS and

COTS-based systems” [DBench02]. It emphasizes the ar-

eas of dependability measurement, identification of mal-

functions/weaknesses, tuning components to improve

dependability, and dependability comparisons. Most mea-

surements use fault injection, and the majority of partici-

pants come from the fault tolerant computing community.

The HDCP (High Dependability Computing Program) is

a long-term collaboration of US universities and NASA,

with expected industry participation, to “ensure that the

software we create meets the ever more challenging re-

quirements of continuous operation, safety critical reliabil-

ity, high integrity and high security” [HDCP02]. HDCP is

formed largely of researchers from the software engineer-

ing community.

We are pleased that the papers being presented represent

the SIGDeB, DBench, HDCP, and other researchers not

formally affiliated with any of those groups.

References:
[DBench02] Dependability Benchmarking Project,

http://www.laas.fr/DBench/ accessed April 4, 2002.

[HDCP02] High Dependability Computing Program,

http://west.cmu.edu/research/hdcp.html accessed June 11, 2002.

[SIGDeb02] SIG on Dependability Benchmarking

http://www.dependability.org/wg10.4/SIGDeB/ accessed April 4,

2002.

i

Philip Koopman
ECE Department & ICES

Carnegie Mellon University
Pittsburgh, PA, USA
koopman@cmu.edu

Henrique Madeira
Information Engineering Deptartment

University of Coimbra
Coimbra, Portugal
henrique@dei.uc.pt

Workshop on Dependability Benchmarking
Tuesday, June 25, 2002

Co-chairs: Philip Koopman (Carnegie Mellon, USA), Henrique Madeira (Univ. Coimbra, Portugal)

Program Committee: Jean-Paul Blanquart (Astrium, France), Michel Cukier (Univ. Maryland at College Park, USA), Ka-

rama Kanoun (LAAS-CNRS, France), Johan Karlsson (Chalmers Univ. Sweden), Brendan Murphy (Microsoft Re-

search, UK), Don Wilson (Compaq, USA)

“Joint Panel with IPDS on Dependability Benchmarking: Methods, Techniques and Approaches,” Ravi Iyer, UIUC, USA,

(moderator), Günter Heiner, Daimler-Chrysler, Germany, Karama Kanoun, LAAS-CNRS, France, Haim Levendel,

Motorola, USA, Brendan Murphy, Microsoft, UK, Larry Votta, Sun Microsystems, USA, Don Wilson, Compaq, USA

“Progress on Defining Standardized Classes for Comparing the Dependability of Computer Systems,” Don Wilson

Compaq/Tandem Labs, USA; Brendan Murphy, Microsoft UK; Lisa Spainhower, IBM, USA F-1

“A Framework for Dependability Benchmarking,” Karama Kanoun, LAAS-CNRS, France; Henrique Madeira,

University of Coimbra, Portugal; Jean Arlat, LAAS-CNRS, France . F-7

“Including the Human Factor in Dependability Benchmarks,” Aaron B. Brown, Leonard C. Chung, and David A.

Patterson, University of California at Berkeley, USA . F-9

“Benchmarking Semantic Availability of Dynamic Data Feeds,” Orna Raz, Philip Koopman, and Mary Shaw,

Carnegie Mellon University, USA . F-15

“Using Bayesian Theory for Estimating Dependability Benchmark Measures,” Michel Cukier and Carol S. Smidts,

University of Maryland at College Park, USA . F-17

“Empirical Evaluation of Techniques and Methods Used for Achieving and Assessing Software High Dependability,”

Ioana Rus, Fraunhofer Center for Empirical Software Engineering, USA; Victor Basili and Marvin Zelkowitz,

University of Maryland USA; Barry Boehm, University of Southern California, USA F-19

Extended questions to panel of presenters, Moderator: Philip Koopman, Carnegie Mellon University, USA

“The Set-Check-Use Methodology for Detecting Error Propagation Failures in I/O Routines,” Michael W. Bigrigg

and Jacob J. Vos, Carnegie Mellon University, USA . F-21

“Defect and Fault Seeding In Dependability Benchmarking,” Barry Boehm and Daniel Port, University of Southern

California, USA . F-25

“System Recovery Benchmarking,” Ji Zhu, James Mauro, and Ira Pramanick, Sun Microsystems, USA F-27

“Faultload Representativeness for Dependability Benchmarking,” Jean Arlat and Yves Crouzet,

LAAS-CNRS, France . F-29

“What’s Wrong With Fault Injection As A Benchmarking Tool?” Philip Koopman, Carnegie Mellon University,

USA . F-31

Extended questions to panel of presenters, Moderator: Henrique Madeira, University of Coimbra, Portugal

Progress on Defining Standardized Classes
for Comparing the Dependability of Computer Systems

Don Wilson Brendan Murphy Lisa Spainhower
NonStop Enterprise Lab. Microsoft Corporation International Business Machines

Hewlett-Packard Company Cambridge Poughkeepsie, NY
Aptos, CA, USA UK USA

Abstract

A number of the industrial partners of the IFIP WG 10.4
Dependability Benchmarking SIG (SIGDeB) have
identified a set of standardized classes for characterizing
the dependability of computer systems. The proposed
classification system seeks to enable comparison of
different computer systems in the dimensions of
availability, data integrity, disaster recovery, and security.
Different sets of criteria are proposed for computer
systems that are used for different application types, e.g.
transaction processing, process control, etc. This paper
describes the classification system, and gives a progress
report on the work to fill in the details of the classification
criteria

1. Introduction

As computer systems become more and more
continuously integrated into the daily activities of
business, engineering, and scientific users, there is
increased interest in being able to evaluate and compare
the dependability of these systems. Considerable research
has been done in an effort to establish benchmark tests for
this purpose (e.g., see [1-5]), usually based on some form
of fault-injection testing focused on single computers
[6,11].

In spite of these efforts, and even considering that fault
injection techniques are commonly used by developers to
assess and tune their designs (e.g., see [7-10]), nothing has
emerged which has gained even modest adoption in the
industry for making comparisons among systems.
Researchers acknowledge that:
• emulated faults will not represent the variety and scope

of actual field faults [6, 14],
• fault injection cannot predict actual availability or

MTBF [13],
• comparison of dissimilar architectures is extremely

problematic [7, 13, 14].

The authors, working as members of the IFIP WG 10.4
Dependability Benchmarking SIG (SIGDeB) [15], are
proposing a different method for making dependability

comparisons. This method is to create a standardized
classification system that could rate systems in each of the
dimensions that affect dependability.

Unlike performance benchmarks, which need to compare
only the rate at which specific, pre-defined work gets
done, dependability comparisons must consider many
different aspects [12]. Is the system accessible when
needed? Are the results correct? Is the data protected
from physical hazards and unauthorized access?

To simplify the creation of comparison classes, it is useful
to separate the various threats to dependability and treat
them as different dimensions of the problem space. The
authors have chosen Availability, Data Integrity, Disaster
Recovery, and Security as the dimensions to be
considered. When a system is rated according to the
proposed classification scheme, it would receive an
independent rating for each of these dimensions.

These dimensions are not truly independent; for example
corrupted data could easily make an application
unavailable. Thus, the problem space could certainly be
divided up differently. However, these dimensions were
chosen because they are readily understandable and are
important concerns to users. It may also be argued that
there are still other dimensions to the problem, such as
physical safety. The structure of this proposal makes it
simple to add further dimensions if they are deemed useful
enough to the user community.

Unlike performance benchmarks, it was felt that
dependability assessments should not restrict the system
under test to be a single computer. Very few customers,
requiring a highly dependable solution, would implement
it on a single computer with a single data store. Any
solution would likely be designed with a minimum of two
interconnected computers, with some form of highly
dependable storage configuration. As the system
configuration is unrestricted, then any comparison of
different systems should include the cost of each solution.

Users of different types of applications tend to have
differing priorities when it comes to dependability.

A telephony application prizes availability and
responsiveness very highly, but can afford minor data
errors.

A stock trading application prizes data integrity above all
else, requires high availability, must often adhere to strict
securities regulations, but may have frequent off-hours
where maintenance can be done.

A factory control system finds availability and accuracy
essential, but is not concerned about operating during a
power failure.

The authors have accordingly divided the application
space into types that appear to have similar dependability
requirements, as listed in Table 1.

The proposed classification scheme will define a different
set of classes for each application type, on each
dependability dimension. This structure is shown in
Table 2.

The boundaries between classes are intended to be natural
breakpoints in the spectrum of user-perceived availability
requirements. The highest class is always intended to be
essentially perfect behavior, whether or not it is
achievable with current technology.

Transaction
Processing

Typical applications are order processing, automated billing, credit authorization,
automated retail, securities trading, reservations.

Message
Handling

Typical applications are telephony, email, packet switching and routing, protocol
conversion.

Process
Control

Typical applications are manufacturing control, embedded device controllers, servo
systems, network and system management.

Search
and Retrieval

Typical applications are web-page serving, decision support, classical business
reporting, broadcasting.

Analytical
Calculation

Typical applications are simulation, modeling, and scientific data reduction.

Table 1: Application Types

Application
Type

Availability
Classes

Data Integrity
Classes

Disaster Recovery
Classes

Security
Classes

Transaction
Processing

1. Perfection 1. Perfection 1. Perfection 1. Perfection

2a. Retryable
Workload

2. Complete
Detection

2. Resume with
Delay

2. Less

2b. Retryable /
Planned Outages

3. Enhanced 3. DB Preservation 3. Lesser

3a. Delayable
Workloads

4. Unprotected 4. Unprotected 4. Unprotected

3b. Delayable /
Planned Outages

4. Enhanced

5. Unprotected

Message
Handling

Classes 1 to n Classes 1 to n Classes 1 to n Classes 1 to n

Process
Control

Classes 1 to n Classes 1 to n Classes 1 to n Classes 1 to n

Search
and Retrieval

Classes 1 to n Classes 1 to n Classes 1 to n Classes 1 to n

Analytical
Calculation

Classes 1 to n Classes 1 to n Classes 1 to n Classes 1 to n

Table 2: Classification Structure

The authors have been developing the details of the
proposal for Transaction Processing applications.

A discussion of the classes defined for Availability will
illustrate how the classification system will function and
suggest the work that still needs to be done for other
application types and dimensions.

Systems are assigned to one of five Classes by meeting
Basic Requirements over a set of Factors that affect
availability. The Classes and Basic Requirements are
shown in Table 3. The Factors are shown in Table 4.

The criteria vary widely in scope, so each will need to be
evaluated by its own appropriate method, e.g. a standard
benchmark, a design audit, or analysis of field data. Since
there are very many criteria to be satisfied, it is proposed
that systems may still be evaluated for a given class, even
if their designs do not meet all of the criteria, as long as all
exceptions are disclosed.

One of the drawbacks of standardized performance
benchmarks is the high cost of conducting and certifying a
test run. Since a comprehensive dependability benchmark
would be more complex, the implementation cost would
be even more discouraging and the authors believe that
vendors would not bear it.

Class Basic Requirements

1. Perfection • The system must be able to correctly process every transaction submitted to it, within normal response
times, all of the time.

• All single failures, corrective actions, maintenance, and other potentially disruptive events are handled by the
system without any noticeable effect on the users.

2a. Retryable
Workload

• The system must be able to correctly process every transaction submitted to it, either within normal response
times, or after a brief delay to recover from a disruptive event.

• Disruptive events may not cause users to have to re-establish connection to the system nor to suspend
submitting transactions.

• No transactions may be lost nor may the database be left with inconsistent data due to incomplete
transactions.

• The system may request that incomplete transactions be re-submitted after recovering from an event, but the
number of such transaction may not exceed 1 second worth of Normal Transaction Processing Capacity.

• The Recovery Period for disruptive events may not exceed 10 minutes. Average capacity during the period
may not be below 80% of Normal Transaction Processing Capacity.

2b. Retryable /
Planned Outages

• Same as 2a, but the system may rely on taking an outage to perform certain planned operations,
maintenance, repair, and upgrade tasks.

3a. Delayable
Workloads

• The system must be able to respond to disruptive events and be ready to process transactions within
5 minutes.

• The recovery period for disruptive events may not exceed 25 minutes. Average capacity during the recovery
period may not be below 60% of Normal TP Capacity.

• No transactions may be lost, nor may the database be left with inconsistent data due to incomplete
transactions.

• The users may be required to re-establish connection to the system and to identify and re-submit
transactions that did not complete before the event. The number of such transactions may not exceed
1 second worth of Normal Transaction Processing Capacity.

3b. Delayable /
Planned Outages

• Same as 3a, but the system may rely on taking an outage to perform certain planned operations,
maintenance, repair, and upgrade tasks.

4. Enhanced • The user can evaluate, for cost and effectiveness, the individual features that are intended to improve
availability.

• Disruptive events may result in a total outage of a system (requiring user intervention to perform reboot and
recovery).

• No transactions may be lost, nor may the database be left with inconsistent data due to incomplete
transactions.

5. Unprotected • None.

Table 3: Basic Requirements for Transaction Processing Availability Classes

The intention of this classification system is that the
evaluation would be self-certified. Vendors or others
wishing to classify a particular system would do the
evaluation and publish the results, answering a set of
standardized questions or performing tests that validate
the evaluation criteria. This approach rests on the
assumption that vendors would not risk their reputations,
nor product liability claims, by making false statements
against very specific standards.

To date, initial drafts have been written for Availability,
Data Integrity, and Disaster Recovery for Transaction
Processing applications. These drafts include classes,
factors, minimum standards and evaluation criteria.
Evaluation methods have not yet been proposed. A sub-
committee of SIGDeB is currently doing a trial evaluation
of a specific system to see if a standardized set of
questions or evaluation tests can be developed.

Classes Perfection
Retryable

Workloads
Delayable
Workloads

Reduced Impact
of Failure

Minimum Standard • No single HW failure may cause a properly configured system to violate the Basic Requirement.

Required
Disclosures

• What, if anything, is required in the application code or configuration
to meet the standards.

• Any cases where the system might lose its ability to recover from a HW
failure, but not report this condition to the user (e.g., a backup resource
fails, but the system does not detect the failure until it attempts to use the
resource in a recovery action).

• History of user-reported HW defects that violated minimum standards.

• Any exceptions (to the minimum standards) in the system design,
with quantified impacts.

• Cost / benefit of
features to be
evaluated

Comparative
Measurements

• How long is the system susceptible to a second (unprotected) failure,
i.e., while the first failure is detected and repaired?

• Frequency of failures that cause a recovery process or remove a
resource from the system.

• Duration and impact of the recovery process.

• Frequency of failures
that benefit from
each feature

Table 5: Evaluation Criteria for Hardware Failure

Factor Description

HW Failure Intermittent or permanent HW fault, including design errors that manifest as component failure.

SW Failure Improperly designed, built, or installed software that results in a detected failure that takes
resources out of use.

Environmental Failure A failure to provide power, cooling or other environmental requirement of the system.

HW Repair or Upgrade Repair failed components, re-integrate repaired components, or install newer version
(same form, fit, function).

SW Repair or Upgrade Action to replace a faulty component, or install newer versions (same external interfaces);
or to revert to previous versions.

Operating Configuration Change Action to adjust system parameters for performance tuning, policy administration, access
control, etc.

System Maintenance Action required to maintain the integrity of the application, e.g. data backups, log dumps,
resource monitoring.

Capacity Expansion
(or Reduction)

Scaling the system for changes in volume of usage, e.g. additional HW, new SW, database
reorganization.

System Management Skills The level of skills, training, process control, and other human factors required to obtain the
desired availability.

Denial of Service Attack Attempt by un-authorized users to render the system inaccessible or unusable

Table 4: Factors that Affect Availability

[1] D. P. Siewiorek, J. J. Hudak, B.-H. Suh and
Z. Segall, “Development of a Benchmark to
Measure System Robustness”, in Proc. 23rd Int.
Symp. on Fault-Tolerant Computing (FTCS-23),
Toulouse, France, 1993, pp. 88-97 (IEEE CS
Press).

[2] T. K. Tsai, R. K. Iyer and D. Jewitt, “An Approach
Towards Benchmarking of Fault-Tolerant
Commercial Systems”, in Proc. 26th Int. Symp. on
Fault-Tolerant Computing (FTCS-26), Sendai,
Japan, 1996, pp. 314-323 (IEEE CS Press).

[3] P. Koopman and J. DeVale, “Comparing the
Robustness of POSIX Operating Systems”, in
Proc. 29th Int. Symp. on Fault-Tolerant Computing
(FTCS-29), Madison, WI, USA, 1999, pp. 30-37
(IEEE CS Press).

[4] A. Brown and D. A. Patterson, “Towards
Availability Benchmarks: A Cases Study of
Software RAID Systems”, in Proc. 2000 USENIX
Annual Technical Conference, San Diego, CA,
USA, 2000 (USENIX Association).

[5] J. Arlat, J.-C. Fabre, M. Rodríguez and F. Salles,
“Dependability of COTS Microkernel-Based
Systems”, IEEE Trans. on Computers, vol. 51,
no. 2, pp. 138-163, February 2002.

[6] J. V. Carreira, D. Costa and J. G. Silva, “Fault
Injection Spot-checks Computer System
Dependability”, IEEE Spectrum, vol. 36, pp. 50-55,
August 1999.

[7] R. Chillarege and N. S. Bowen, “Understanding
Large System Failures — A Fault Injection
Experiment”, in Proc. 19th Int. Symp. on Fault-
Tolerant Computing (FTCS-19), Chicago, IL,
USA, 1989, pp. 356-363 (IEEE CS Press).

[8] A. M. Amendola, L. Impagliazzo, P. Marmo and
F. Poli, “Experimental Evaluation of Computer-
Based Railway Control Systems”, in Proc. 27th
Int. Conf. on Fault-Tolerant Computing Systems
(FTCS-27), Seattle, WA, USA, 1997, pp. 380-384
(IEEE CS Press).

[9] C. Constantinescu, “Validation of the Fault/Error
Handling Mechanisms of the Teraflops
Supercomputer”, in Proc. 28th Int. Symp. on Fault-
Tolerant Computing (FTCS-28), M u n i c h ,
Germany, 1998, pp. 382-389 (IEEE CS Press).

[10] H. Madeira, R. Some, F. Moreira, D. Costa and
D. Rennels, “Experimental Evaluation of a COTS
System for Space Applications”, in Proc. Int.
Conference on Dependable Systems and Networks
(DSN-2002), Washington, DC, USA, 2002 (IEEE
CS Press).

[11] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie and
D. Powell, “Fault Injection and Dependability
Evaluation of Fault-Tolerant Systems”, IEEE
Transactions on Computers, vol. 42, no. 8.,
pp. 919-923, August 1993.

[12] J.-C. Laprie, Ed., “Dependability: Basic Concepts
and Terminology”, (Dependable Computing and
Fault Tolerance, vol. 5, A. Avizienis, H. Kopetz
and J.-C. Laprie, Eds.), Vienna: SpringerVerlag,
1992.

[13] M. Hsueh, T. Tsai and R. K. Iyer “Fault Injection
Techniques and Tools”, Computer, vol. 30, no. 4,
pp. 75-82, April 1997.

[14] J. Clark and D. Pradhan, “Fault Injection: A
Method for Validating Computer-System
Dependability”, C o m p u t e r , vol. 28, no. 6,
pp. 47-56, June 1995.

A Framework for Dependability Benchmarking

Karama Kanoun*, Henrique Madeira** and Jean Arlat*

* LAAS-CNRS, 7, Avenue du Colonel Roche, 31077 Toulouse Cedex 4 — France
** DEI-FCTUC, University of Coimbra, 3030 Coimbra — Portugal

(kanoun@laas.fr , henrique@dei.uc.pt , arlat@laas.fr)

Abstract
This paper outlines a framework for defining dependabil-
ity benchmarks of computer systems that is being investi-
gated by the European project DBench*. The multiple
dimensions of the problem are classified, then examples of
benchmarking scenarios are presented. Finally, some
research issues are discussed.

1. Introduction
The goal of benchmarking the dependability of

computer systems is to provide generic ways for
characterizing their behavior in the presence of faults.
Benchmarking must provide a uniform, and repeatable way
for dependability characterization. The key aspect that
distinguishes benchmarking from existing evaluation and
validation techniques is that a benchmark fundamentally
should represent an agreement that is accepted by the
computer industry and by the user community. This
technical agreement should state the measures, the way
these measures are obtained, and the domain in which these
measures are valid and meaningful. A benchmark must be
as representative as possible of a domain. The objective is
to find a representation that captures the essential elements
of the domain and provides practical ways to characterize
the computer dependability to help system manufacturers
and integrators improving their products and end-users in
their purchase decisions.
The DBench project aims at defining a conceptual frame-
work and an experimental environment for dependability
benchmarking. This paper summarizes our first thoughts on
the conceptual framework, as investigated in [1]. Section 2
identifies the various dimensions of dependability bench-
marks. Section 3 presents some benchmarking scenarios.
Section 4 introduces some research
issues.
 2. Benchmark Dimensions
The definition of a framework for
dependability benchmarking requires first
of all the identification and the clear
understanding of all impacting
dimensions. The latter have been grouped
into three classes as shown in Figure 1.
• Categorization dimensions concern

system and benchmark context

* IST 2000-25425 http://www.laas.fr/DBench

description and thus allow organization of the
dependability benchmark space into different categories.

• Measure dimensions identify dependability benchmarking
measure(s) to be assessed depending on the choices made
for the categorization dimensions.

• Experimental dimensions include all aspects related to
experimentation on the target system to get the base data
needed to obtain the selected measures.

Categorization dimensions
The target system nature and application area impact at
the same time measures to be evaluated and measurements
to be performed on the target system to obtain them.

The benchmark context includes:
• Life-cycle phase in which the benchmark is performed

and the phase for which the results are intended..
• Benchmark user: person or entity who actually uses the

benchmark results.
• Benchmark scope: results can be used either to charac-

terize system dependability capabilities in a qualitative
manner, to assess quantitatively these capabilities, to
identify weak points or to compare alternative systems.

• Result purpose: External use involves standard results
that fully comply with the benchmark specifications, for
public distribution, while internal use is intended for
system validation and tuning.

• Benchmark performer: Person or entity who performs the
benchmark (e.g., manufacturer, integrator, third party,
end-user). These entities have i) different visions of the
target system, ii) distinct accessibility as well as
observability levels for experimentation, and iii) different
expectations from the measures.

Figure 1 - Dependability benchmarking dimensions

Categorization

Target system
 (system nature
 application area
 operational environment)

Benchmarking context
 (Life-cycle phase
 benchmark user
 benchmark scope
 result purpose
 benchmark performer)

Measure

Measure nature
 (qualitative / quantitative)

Measure type
 (dependability / performance-related)

Measure extent
 (comprehensive / specific)

Assessment method
 (experimentation / modeling)

Workload

Faultload

Measurements

Experimentation

Measure dimensions
The various usage perspectives impact the type (and the
detail) of benchmark measures. Typically, end-users are
interested in dependability measures defined with respect to
the expected services (i.e., comprehensive measures, such
as availability), while manufacturers and integrators could
be more interested in specific measures related to particular
features of the target system (e.g., error detection coverage).
Comprehensive measures might be evaluated based on
modeling.

Experimentation dimensions
The operating environment traditionally affects very much
system dependability. The workload should represent a
typical operational profile for the considered application
area. The faultload consists of a set of faults intended to
emulate faults that the system would experience in real-life
situations. This is clearly dependent on the operating
environment for the external faults, which in turn depends
on the application area. Internal faults (e.g., software and
some hardware faults) are mainly determined by the actual
target system implementation. A dependability benchmark
must include standards for conducting experiments and to
ensure uniform conditions for measurement. These
standards and rules must guide all the processes of
producing dependability measures using a dependability
benchmark.

3. Benchmark Scenarios
The set of successive steps for benchmarking dependability
together with their interactions form a benchmarking
scenario. Benchmarking starts by an analysis step for allo-
cation of specific choices to all categorization and measure
dimensions. The selection of the experimental dimensions
is then achieved based according to theses choices.
Figure 2 gives a high level overview of the activities and
their interrelations (represented by arrows A to E) for
system dependability benchmarking. To illustrate how this
general framework can be used in real situations, we have
selected four examples of benchmark scenarios (S1 to S4).
S1: Benchmark based on experimentation only
S1 includes analysis and experimental steps, and link A. It
is actually an extension of the well-established performance
benchmark setting.

C D E

Analysis

Modeling

Experimentation

Target System
Experimental
Measures
& Features

Comprehensive
 Measures

Workload

Faultload

A

B

Figure 2 - Dependability benchmarking scenarios

S2: Experimentation supported by modeling
S2 includes the three steps and links A, B, C and D. The
experimentation is guided, at least partially, by modeling.
S3: Modeling supported by experimentation
S3 includes the three steps and links A, B and E.
Experimentation supports model validation and refinement.
The expected outputs are comprehensive measures obtained
from processing the model(s). However, the experimental
measures and features, assessed for supporting modeling,
may be made available from the experiments.
S4: Modeling and experimentation
S4 is a combination of S2 and S3 and includes all steps
and all links. Its outputs are experimental measures and
features, and comprehensive measures based on modeling.

4. Some Research Issues
Representativeness is a crucial concern, as benchmark
results must characterize the addressed aspects of the target
system in a realistic way. Regarding established
performance benchmarks, the problem is reduced to the
representativeness of performance measures and of the
workload. For dependability, it is also necessary to define
representative dependability measures and representative
faultloads. Although the problem seems clearly more
complex than for performance benchmarks, the pragmatic
approach used in the established performance benchmarks
offers a basis for identifying adequate solutions for
dependability benchmarking representativeness.
It is worth mentioning that many technical problems still
need to be resolved. The subsequent points summarize
crucial research issues.
• The adoption of the workloads of established performance

benchmarks is the starting point for the definition of
workloads. However, some work still has to be done. For
example one has to check whether the way the application
spectrum as partitioned by the performance benchmarks is
adequate for this new class of dependability benchmarks.

• The definition of representative faultloads encompasses
specific problems that are currently being studied

• Definition of meaningful measures. In particular, special
attention should be paid to confidence and accuracy of
measurements and the possible impact of the measure-
ments on the target system behavior (intrusiveness).

Finally, dependability benchmarks must meet certain prop-
erties to be valid and useful. In fact, benchmarks can be
accepted only if results can be repeated and reproduced by
another party.
Acknowledgement
All partners of the DBench project contributed to the work
presented in this paper. The list of names is too long to be
included in a two-page position paper.

Reference
[1] H. Madeira, K. Kanoun, J.Arlat, Y. Crouzet, A. Johanson,

R Lindström, “Preliminary Dependability Benchmark
Framework”, DBench deliverable, September 2001.
Available at http://www.laas.fr/dbench/delivrables.html

Abstract

We describe the construction of a dependability benchmark
that captures the impact of the human system operator on
the tested system. Our benchmark follows the usual model
of injecting faults and perturbations into the tested system;
however, our perturbations are generated by the unscripted
actions of actual human operators participating in the
benchmark procedure in addition to more traditional fault
injection. We introduce the issues that arise as we attempt
to incorporate human behavior into a dependability bench-
mark and describe the possible solutions that we have
arrived at through preliminary experimentation. Finally,
we describe the implementation of our techniques in a
dependability benchmark that we are currently developing
for Internet and corporate e-mail server systems.

1. Introduction

Dependability benchmarks are a crucial factor in driv-
ing progress toward highly reliable, easily maintained
computer systems [3] [9]. Well-designed benchmarks pro-
vide a yardstick for assessing the state of the art and pro-
vide the framework needed to evaluate and inspire progress
in research and development. To achieve these goals,
benchmarks must be accurate, realistic, and reproducible;
in the case of dependability benchmarks, this means that
they must evaluate systems against the same set of depend-
ability-influencing factors seen in real-life environments.

One of the most significant of these factors is human
behavior. A system’s human operators exert a substantial
influence on that system’s dependability: they can increase
dependability via their monitoring, diagnosis, and prob-
lem-solving abilities, but they can also decrease depend-
ability by making operational errors during system mainte-
nance. The human error factor is particularly important to
dependability: anecdotal data from many sources has sug-
gested that human error on the part of system operators
accounts for roughly half of all outages in production
server environments [2]. Recent quantitative studies of
Internet server sites and of the US telephone network infra-

structure numerically confirm the significance of human
error as a primary contributor to system failures [4] [12].

Most existing work on dependability benchmarks has
ignored the effects of human behavior, positive or nega-
tive; this is unfortunate, but perhaps not surprising given
that human behavior is typically studied by psychologists
or HCI specialists, not systems benchmarkers. In this
paper, we present our first steps at bringing consideration
of human behavior into the dependability benchmarking
world, and describe our work-in-progress toward building
a human-aware dependability benchmark. Although our
methodology begins with a reasonably traditional depend-
ability benchmarking framework, we expand on existing
work by directly including human operators in the bench-
marking process as a source of system perturbation.

Humans add significant complications to the bench-
marking process, and much of our research focus is on how
to include humans while keeping the benchmarks efficient
and repeatable. A key insight is to measure the human
dependability impact indirectly: our benchmarks measure
the system, not the human, and we deduce the human
dependability impact indirectly through its effects on the
system. Other simplifying techniques that we will discuss
include approaches for choosing and preparing human
operators for our tests (Section 3), selecting human-depen-
dent metrics that can be automatically collected (Section
2), developing an appropriate workload for the human
operator (Section 2), and managing the inherent variability
introduced by human operators (Section 3). We consider
these approaches in the concrete example of an e-mail
benchmark in Section 4.

2. Methodology

Traditional dependability benchmarks measure the
impact of injected software and hardware faults on the per-
formance and correctness of a test system being subjected
to a realistic workload [3] [9]. For example, the system’s
performance might fall outside its window of normal
behavior while it recovers from a hardware fault; the length
of the recovery process and the magnitude of the perfor-

Including the Human Factor in Dependability Benchmarks

Aaron B. Brown, Leonard C. Chung, and David A. Patterson
Computer Science Division, University of California at Berkeley

387 Soda Hall #1776, Berkeley, CA, 94720-1776
{abrown,leonardc,pattrsn}@cs.berkeley.edu

mance drop are measures of the system’s dependability in
response to that fault. Typically, dependability benchmarks
are run without human operator intervention in order to
eliminate the possible variability that arises when human
behavior is involved. But as dependability emerges from a
synergy of system behavior and human response, ignoring
either component or their interactions significantly limits
the accuracy of the benchmark; both system and operator
must be benchmarked together.

To accomplish this joint measurement of system and
operator, we extend the traditional dependability bench-
marking methodology by allowing the human operator(s)
to interact with the system during the benchmark. The
interaction takes two forms. First, the operator plays an
active role in detecting and recovering from injected fail-
ures, just as they would in a real environment with real fail-
ures. Second, the operator is asked to carry out pre-selected
maintenance tasks on the system (for example, backups/
restores, software upgrades, system reconfiguration, and
data migration), again to simulate real-world operator
interaction with the system. We then measure the system’s
dependability as usual; unlike the traditional approach, the
dependability result now reflects the net dependability
impact of the human operator, be it positive or negative.

In essence, our approach is to create a standard system
dependability benchmark with the human operator as a
new source of perturbation, in addition to the standard per-
turbations injected in the form of software and hardware
faults. We can classify the human perturbation based on
how it arises. Reactive perturbation results from unscripted
human action in response to an injected hardware or soft-
ware fault, and reflects the operator’s ability to detect and
repair failures. If the operator is quick to respond and
recovers the system efficiently, the perturbation will have a
positive impact on dependability; if the operator makes
mistakes, is slow to respond, or simply fails to respond at
all, the impact will be negative. In contrast, proactive per-
turbations arise as the operator performs system mainte-
nance tasks unrelated to failure occurrences. These too can
have a negative or positive dependability impact depending
on how well the operator performs the task, how many
errors are made, and how the maintenance task itself
affects the system.

An important change in the benchmark semantics arises
when we include proactive perturbations. In traditional
dependability benchmarks the system is expected to have a
constant level of fault-free dependability; in contrast, with
our methodology this baseline can change as the result of
maintenance on the system (for example, an “upgrade”
maintenance task could increase performance or redun-
dancy). While this complicates the interpretation of bench-
mark results, it is more indicative of real-world depend-
ability, where maintenance is common. It does require
some care in cross-system benchmarking to ensure that

similar maintenance is performed on all tested systems.
While the above description of our methodology

implies that human operators must participate in the bench-
mark process, one might wonder if we could simulate the
human perturbations and thus eliminate the human. Unfor-
tunately, this reduces to an unsolved problem—if we were
able to accurately simulate human operator behavior, we
would not need human system operators in the first place!
While the HCI community has developed techniques for
modeling human behavior in usability tests [5], even in
those approaches human involvement is required at least
initially to build the model, and the resultant models are
typically highly constrained and system-specific, making
them inappropriate for use in a comparison benchmark.

Thus we are left with the approach of using live human
operators in the benchmarks; this is the only way to truly
capture the full unpredictable complexities of the human
operator’s behavior and the resulting impact on a system’s
dependability. To flesh out the approach, we must consider
how to choose operators for the benchmarks, what mainte-
nance tasks to give them, and what metrics we should use
for the final dependability scores. We must also confront
the challenges of dealing with human variability, perform-
ing valid cross-system comparisons with different opera-
tors, and structuring benchmark trials so that the number of
human operators is minimized. We discuss workloads and
metrics in the balance of this section, and return to the
remaining challenges in Section 3.

2.1. Human operator workload

The human operator workload consists of two parts: a
pre-specified set of maintenance tasks, and the interactions
that arise naturally as the operator repairs injected faults.
Since the reactive part of the workload is unscripted and
depends on the particular operator’s approach to the fail-
ures, we do not specify it in advance, and we will not con-
sider it further here.

The pre-specified set of tasks that the operator carries
out during the benchmark should be representative of the
real-world maintenance carried out in production installa-
tions of the type of system under test. Note that we define
“maintenance” rather broadly: any operator (non-end-user)
interaction with the system that is not an immediate reac-
tion to a failure is considered maintenance.

The ideal way to obtain a representative set of mainte-
nance tasks is to carry out a “task analysis” study in which
the experimenter shadows real operators as they run a pro-
duction system similar to that being benchmarked [8];
recording how these operators spend their time provides a
list of tasks ranked by importance or frequency. The draw-
back of task analyses is that they are time consuming and
often impractical, especially when the type of system being
benchmarked has never been deployed in production.

In such cases, a satisfactory set of maintenance tasks
can be selected by an expert familiar with the target sys-
tem’s application domain, using published studies of what
system administrators do as a guide [1] [6] [7]. An analysis
of these studies suggests a set of general categories of
maintenance tasks that apply to most systems:

Initial configuration: setting up new systems, includ-
ing hardware, operating system, and application installa-
tions. Increasing the capacity of an existing system.

Reconfiguration: a broad category covering everything
from small configuration tweaks to significant reconfigura-
tions like hardware, OS, or application upgrades.

Monitoring: using monitoring tools or probes to detect
failures, security incidents, and performance problems.

Diagnosis and repair: recovery from problems
detected by monitoring tasks. Diagnostic procedures, root-
cause analysis, and recovery techniques like hardware
repairs, software reinstallation/configuration, security inci-
dent response, and performance tuning. Unlike “Reconfig-
uration” tasks, these are unplanned and unscheduled.

Preventative maintenance: non-urgent tasks that
maintain a system’s integrity, redundancy, and perfor-
mance, or that adapt the system to changes in its workload.

For an example of how these task categories were spe-
cialized for a dependability benchmark for e-mail server
systems, see Section 4.

2.2. Metrics

Traditional dependability benchmarks use performance
and correctness measures to quantify dependability.
Dependability scores are produced by examining how
these measures deviate from their expected norms as the
system is perturbed by injected faults. We can use this
same approach to quantify dependability in our human-
aware dependability benchmarks, since we are considering
human operator involvement as just another perturbation
source to the system. Dependability as measured by this
approach reflects the net impact of the human operator:
human error that affects performance or correctness will be
manifested as reduced dependability, whereas human inge-
nuity in efficiently repairing problems or performing main-
tenance will manifest as improved dependability.

The major advantage of this approach is that it vastly
simplifies the benchmark process compared to the alterna-
tive of trying to directly measure the human impact on
dependability. Because there is no need to directly measure
human error rate or the dependability impact of individual
human actions, the collection of dependability results can
be automated. Furthermore, it is easier to design bench-
marks for cross-system comparison, as there is no need to
match operator actions on one system to equivalent actions
on another (often an impossible task). Of course, there is
nothing preventing the benchmarker from collecting addi-

tional data on human error rates, error severity, or recovery
time; such data can prove useful in evaluating a system’s
maintainability, although they are not needed for a depend-
ability evaluation.

3. Reproducible benchmarks with humans

The inherent variability and unpredictability of human
behavior makes it a challenge to achieve reproducibility
when we include humans in our benchmarks. A crucial part
of our human-aware benchmarking methodology is to
manage the variance introduced by our human operators,
both within a single benchmarking experiment and across
benchmark runs on different systems or over time.

Variability in human operators comes from at least three
sources. First, different prospective operators will have dif-
ferent backgrounds and base skill levels (compare, for
example, an experienced sysadmin to a CS student). Sec-
ond, operators may have different levels of experience with
the system and the benchmark tasks. This is a particularly
acute problem when benchmarks are carried out iteratively,
as each iteration of the benchmark process increases the
operator’s experience with the system and can alter his or
her behavior on subsequent iterations. Finally, there is a
level of inherent variability in human behavior: two opera-
tors with identical experience and identical training given
identical benchmark tasks may still behave differently.

3.1. Managing variability: single system runs

We propose a two-pronged approach for managing vari-
ability in one-off, single-system benchmarks. First, we
appeal to statistical averaging, deriving the final depend-
ability result from multiple iterations of the benchmark
with different operators participating in each iteration. Sec-
ond, we attempt to minimize the pre-averaging variability
by selecting the participating operators from a set of people
with approximately-equal levels of background and experi-
ence, and by providing training and support resources to
further equalize their knowledge bases.

Results from our pilot studies suggest that between 5
and 20 operators (iterations) will be needed to gain a statis-
tically-sufficient averaging effect; work from the UI com-
munity confirms these estimates and suggests that 4 or 5
operators maximizes the benefit/cost ratio [11].

3.1.1. Choosing operators

We can significantly reduce the variance between oper-
ator-participants by controlling for their background and
skill levels. Because real operators vary greatly in their
skills and experience, and because real installations have
different demands for operator quality and dependability,
we cannot establish a single set of selection criteria for all
dependability benchmarks. Instead, we define several

classes of operators, and allow the benchmarker to choose
those which best match the target environment of the tested
system. With this approach, results from one benchmark
run should be comparable to results from other benchmarks
using the same class of operators; benchmarks using differ-
ent classes of operators might also be comparable if the
operator level is used as a “handicap” on the results.

We observe at least three classes of benchmark opera-
tors (from highest to lowest qualification):

Expert: The operators have intimate knowledge of the
target system, unsurpassed skills, and long-term experience
with the system. These are operators who run large produc-
tion installations of the target system for their day jobs, or
are supplied by the system’s vendor. Benchmarks involv-
ing these operators will report the best-case dependability
for the target system, but may be realistic only for a very
small fraction of the system’s potential installed base.

Certified: The operators have passed a test that verifies
a certain minimum familiarity and experience with the tar-
get system; ideally the certification is issued by the system
vendor or an independent external agency. Benchmarks
involving these operators should report dependability simi-
lar to what would be seen in an average corporate installa-
tion of the tested system.

Technical: The operators have technical training and a
general level of technical skill involving computer systems
and the application area of the target system, but do not
have significant experience with the target system itself.
These operators could be a company’s general systems
administration or IT staff, or computer science students in
an academic setting. Benchmarks involving these operators
will report dependability that is on average similar to that
measured with certified operators, but there may be more
inter-operator variance and more of a learning curve factor.

Should human-aware dependability benchmarks reach
widespread commercial use (like the TPC database bench-
marks [15]), they will probably use expert operators.
Expert operators offer the lowest possible variance, are
unlikely to make naïve mistakes that could make the sys-
tem look undeservedly bad, yet still provides a useful indi-
cation of the system’s dependability and maintainability.
Published results from benchmarks like TPC often already
involve a major commitment of money and personnel on
the part of the vendor, so supplying expert operators should
not be a significant barrier.

For non-commercial use of dependability benchmarking
where experts are unavailable (as in academic or internal
development work), using certified operators is ideal since
certification best controls the variance between non-expert
operators. As it may be difficult to recruit certified opera-
tors, it is likely that technical operators will be often be
used in practice; we believe that accurate dependability
measurements can still be obtained in this case by provid-
ing suitable resources and training as described below.

3.1.2. Training operators

We can reduce any remaining variance within a chosen
class of operators by using standardized training to bring
all operators to the same level of understanding of the test
system. It has been our experience that this training must
be done at a conceptual level to help the operator build a
mental model of the system. The alternative, training on
specific tasks that appear in the benchmark, leads to the
unrealistic situation of operators follow checklists during
the benchmark rather than relying on ingenuity, explora-
tion, and problem-solving, as they would in real life.

Our initial experiments have suggested that an effective
method for conceptual training is to first provide a high-
level overview of the system’s purpose and design, then
have the operator carry out a simple maintenance task that
requires exploration of the system’s interfaces (for exam-
ple, changing a configuration parameter that is buried deep
in an unspecified configuration file or dialog box). If the
initial task is well-designed, the operator will have built up
enough of a mental model of the system and its interfaces
to proceed with the benchmark. With this approach, very
little formal training need be given, simplifying the deploy-
ment of the benchmark.

3.1.3. Resources for operators

Even with training, different operators may have differ-
ent gaps in their knowledge that show up during the bench-
mark. To mitigate the resulting variance, operators should
be provided with resources to fill these gaps. Two effective
forms of resources are documentation and expert help.

Documentation provides a knowledge base upon which
the operator can draw while performing the benchmark
tasks. For maximum realism, we believe the operator
should be provided with the unedited documentation
shipped with the testbed system and be given access to the
Internet and its various search engines. If at all possible,
the documentation should be provided electronically so
that its usage can be monitored automatically.

When documentation fails in real life, operators turn to
experts for help. It is important to provide a similar, but
standardized, option in the benchmarking process, both to
increase realism and to provide an “out” should the opera-
tor get stuck or frustrated with a task. We propose to do this
by making available a single “oracle” or expert during all
runs of the benchmark. The expert must be intimately
familiar with the system and the operator tasks; oftentimes
the benchmarker can play this role.

A challenge is making the oracle available in such a
way that it remains an appeal of last resort; if overused, the
oracle becomes the target of the benchmark, not the opera-
tor. One approach used successfully in user studies is to
make the oracle available via email [16], an approach that

also reduces the demands on the oracle’s time. Other possi-
bilities include providing only a limited number of calls to
the oracle, imposing an artificial time penalty for using the
oracle, or implementing the oracle as an automated “I give
up” button that simply completes the current task automat-
ically or restores the system to a known state.

3.2. Managing the learning curve effect

One of the most challenging problems with using live
human operators in dependability benchmarks is the learn-
ing curve effect: at the end of a benchmark iteration, the
operator has learned something about the system, and will
likely use that experience to perform better on subsequent
iterations. This is particularly a problem in cross-system
comparison benchmarks or iterative benchmarking of the
same system, where the cost of using a fresh set of opera-
tors for each system/iteration would be excessive.

Compensating for the learning curve effect is a chal-
lenging problem that we are only beginning to address. A
simple approach for comparison benchmarks is to random-
ize the order in which each operator uses the test systems;
with a large enough pool of operators, the learning curve
effects will be averaged across the systems. Alternately, the
effect of the learning curve can be estimated and factored
out by benchmarking each system repeatedly until its
dependability results stabilize.

For iterative benchmarking of a single system (for
example, during system development), other techniques
are needed. The most promising approach is to create a
system-specific model of human operator behavior,
describing how long operators take to respond to problems,
what kinds of responses are used, and what kinds of errors
are made. Although general simulation of a human opera-
tor is intractable, it should be possible to achieve a system-
and task-specific model using techniques developed in the
HCI community. In particular, models might be created by
observing live human operators in an initial benchmark
iteration, or perhaps by using expert analysis in a cognitive
walkthrough [5]. The benchmarker could use the model to
simulate the operators’ behaviors in later iterations, either
manually or automatically. An open question is how long
such a model would remain valid; after major changes to
the system or its interfaces, it is likely that the model would
need to be rebuilt.

4. An example: benchmarking e-mail

Our first target for evaluating our human-aware depend-
ability benchmarking methodology is e-mail. E-mail has
grown from its origins as a best-effort convenience to what
is today a mission-critical enterprise service with stringent
dependability needs. Surprisingly, no existing e-mail
benchmark attempts to quantify dependability.

Our approach follows the general methodology
described in Section 2. The benchmark applies a workload,
injects perturbations, and collects metrics while the system
is under the supervision of a human operator. The bench-
mark treats the e-mail service as a black-box for generality.

The workload of the benchmark consists of three com-
ponents: performance, perturbation, and human workloads.
The performance workload consists of a realistic simula-
tion of e-mail traffic injected using standard protocols
(SMTP and POP3). The simulated workload is based on
the SPECmail2001 workload parameters [14] but is fully
parameterizable to allow the user to explore system behav-
ior under different load scenarios (for example, load
spikes, which are an increasingly relevant dependability
threat to Internet services). The perturbation workload has
not yet been finalized, but we will likely start with two
main types of fault injection: coarse-grained hardware and
software faults. For example, we will inject storage system
failures (corrupt data, failed disks, timeouts), network fail-
ures (corruption, transient connectivity loss, routing anom-
alies), and OS-level software faults (terminated processes,
driver hangs, erroneous return values), among others.

Finally, the human workload consists of maintenance
tasks chosen from the categories defined in Section 2.1 and
arranged in three steps of increasing difficulty. The first
step is a warm-up task consisting of a simple software
reconfiguration such as changing the default domain of
unqualified e-mail addresses; this step also serves as a
“training” step, allowing the operator to become familiar
with the system. The second step is a moderately difficult
task such as installing and configuring a server-side e-mail
virus filter. The third step is a challenging task such as
moving a group of users from one server to another.

During each task, the benchmark measures the overall
service dependability. Our dependability metrics consist of
e-mail delivery delays and errors, the number of dropped/
corrupted e-mails, and service performance in fault-free,
induced-fault, recovery, and service overload scenarios.

Due to the difficulty of finding certified operators in an
academic setting, we intend to use technical-level opera-
tors in our benchmark experiments as described in Section
3.1.1. We plan to automate the benchmark as much as pos-
sible, including the workload generator and instrumenta-
tion. Through these and other techniques, we hope to be
able run operators through without a benchmarker present,
except perhaps to serve as the on-call oracle.

5. Related work

Our perturbation-based benchmark methodology fol-
lows in the footsteps of existing work on dependability
benchmarking and extends our earlier work on availability
benchmarking, which measured the availability of RAID
systems by perturbing them with simulated disk failures

[3]. Our methodology also fits into the dependability
benchmarking framework defined by Madeira and Koop-
man [9], with our human-operator-induced perturbations
making up the “upsetload” in their terminology. Where our
methodology is unique is in its inclusion of the human
operator as a perturbation source: we are not aware of any
dependability benchmarks to date that include the human
component in their dependability measurements.

Many of the techniques, issues, and proposed solutions
in this paper are adaptations of traditional behavioral
research techniques for human-computer interaction, such
as those described in Landauer’s excellent survey [8].
However, unlike the HCI approaches, it is our goal to mea-
sure the system’s behavior rather than the human’s—in our
benchmarks, the human operator is not there to be directly
observed or measured, but to provide realistic perturbation
and stimulus to the system. In that sense our work is most
similar to work in the security community on the effective-
ness of security-related UIs, such as Whitten and Tygar’s
study of PGP [16]. While we can (and do) borrow advice
on topics like selection of operators, task analysis, and
experiment logistics from the HCI community, their stan-
dard experimental designs and metrics do not directly
apply to our dependability benchmarking task.

Finally, our proposed e-mail benchmark differs from
other widely-used e-mail benchmarks in that it measures
dependability as well as performance. In particular, the two
major email benchmarks in production use today (SPEC’s
SPECmail2001 [14] and Netscape’s Mailstone [10]) focus
only on performance, do not include facilities for injecting
perturbations, and do not measure dependability beyond a
simple count of dropped client connections. While some
research e-mail systems have been evaluated under simple
perturbation (e.g., Porcupine [13]), none have included
consideration of the human operator.

6. Conclusions and future directions

As dependability increasingly supplants performance as
the essential metric for computer systems, dependability
benchmarks are becoming essential tools for system
designers and evaluators. Yet to date, dependability bench-
marks have ignored the behavior of a computer system’s
human operators and administrators, a key piece of the
dependability puzzle. In this paper we have presented a
first attempt at addressing this deficiency: our human-cen-
tric benchmarking methodology should provide an effec-
tive means of incorporating the effects of human operator
behavior into dependability measurements.

What we have presented here is just a first step, how-
ever. Our methodology will need to be proven and refined
through extensive experimental verification; experimenta-
tion will also help explore the extent of cross-operator vari-
ability and the tradeoffs involved in issues such as select-

ing and training operators. We are pursuing this follow-on
work in the context of our e-mail dependability bench-
mark. Other issues that remain to be explored include the
development of techniques for pre-evaluating the skill
level of participating operators, more advanced depend-
ability metrics that are parameterized by the operator’s
skill level, and extensions that allow for a direct measure of
a system’s maintainability and scalability along with the
indirect measurements extracted through the dependability
metrics. These are all fruitful and important directions for
future research, and we look forward to seeing them
addressed by the community.

References

[1] Anderson, E. and D. A. Patterson. “A Retrospective on
Twelve Years of LISA Proceedings.” Proc. 13th Systems
Administration Conference (LISA XIII), Seattle, WA, 1999.

[2] Brown, A. and D. A. Patterson. “To Err is Human.” Proc. 1st
Workshop on Evaluating and Architecting System depend-
abilitY (EASY ’01), Göteborg, Sweden, July 2001.

[3] Brown, A. and D.A. Patterson. “Towards Availability
Benchmarks: A Case Study of Software RAID Systems.”
Proc. 2000 USENIX Annual Technical Conf., San Diego,
CA, June 2000.

[4] Enriquez, P. “Failure Analysis of the PSTN.” Unpublished
talk available at http://roc.cs.berkeley.edu/retreats/spring_
02/d1_slides/RocTalk.ppt, January 2002.

[5] Ivory, M. and M. Hearst. “The State of the Art in Automat-
ing Usability Evaluation.” ACM Computing Surveys,
33(4):470–516, December 2001.

[6] Kolstad, R. “1992 LISA Time Expenditure Survey.” ;login:,
the USENIX Association Newsletter, 1992.

[7] Kolstad, R. “Sysadmin Book of Knowledge.” http://ace.
delos.com/taxongate.

[8] Landauer, T. K. “Research Methods in Human-Computer
Interaction.” In Handbook of Human-Computer Interaction,
2e, M Helander et al. (ed), Elsevier, 1997, 203–227.

[9] Madeira, H. and P. Koopman. “Dependability Benchmark-
ing: making choices in an n-dimensional problem space.”
Proc. 1st Workshop on Evaluating and Architecting System
dependabilitY (EASY ’01), Göteborg, Sweden, July 2001.

[10] Netscape, Inc. Mailstone Utility. http://docs.iplanet.com/
docs/manuals/messaging/nms41/mailston/stone.htm.

[11] Nielsen, J., and Landauer, T. K. “A mathematical model of
the finding of usability problems.” Proc. ACM INTERCHI
’93, Amsterdam, The Netherlands, April 1993, 206–213.

[12] Oppenheimer, D. and D. A. Patterson. “Architecture, opera-
tion, and dependability of large-scale Internet services.”
Submission to IEEE Internet Computing, February 2002.

[13] Saito, Y., B. Bershad, and H. Levy. “Manageability, Avail-
ability, and Performance in Porcupine: A Highly Scalable
Internet Mail Service.” Proc. 17th Symposium on Operating
Systems Principles (SOSP ’99), Kiawah Island, SC, 1999.

[14] Standard Performance Evaluation Corporation.
SPECmail2001, http://www.spec.org/osg/mail2001/.

[15] Transaction Processing Performance Council Benchmarks.
http://www.tpc.org.

[16] Whitten, A. and J. D. Tygar. “Why Johnny Can’t Encrypt: A
Usability Evaluation of PGP 5.0.” Proceedings of the 9th
USENIX Security Symposium, August 1999.

Benchmarking Semantic Availability of Dynamic Data Feeds

Orna Raz, Philip Koopman, Mary Shaw
Carnegie Mellon University

forna.raz@cs, koopman@ece, mary.shaw@csg.cmu.edu

Abstract
Many of the software systems we use for everyday pur-

poses incorporate elements developed and maintained by
third parties. These elements include not only code com-
ponents and data bases but also dynamic data feeds from
online data sources. Even though everyday software is not
mission critical it must be dependable enough for its in-
tended use. This is limited by the dependability of its con-
stituting elements.

It is especially difficult to assess the dependability of dy-
namic data feeds because they exhibit not only “fail-silent”
behavior but also semantic failures—delivery of unreason-
able yet well structured results by a responsive data feed.
Further, it is normal for the behavior of such data feeds to
change. Unfortunately, the specifications of these data feeds
are often too incomplete and sketchy to support failure de-
tection.

We propose an approach for benchmarking the seman-
tic availability of redundant data feeds. The fault model is
defined as violations of inferred invariants about the usual
behavior of a data feed.

1. Introduction

Everyday software is usually not mission critical, yet it
must be dependable enough for its intended use. Assessing
dependability requires a model of proper and improper be-
havior. However, specifications for everyday software are
often incomplete and imprecise. When the software incor-
porates third party elements, such as code components, data
bases, and dynamic data feeds from online data source, this
situation is exacerbated. Assessing the dependability of dy-
namic data feeds is especially challenging, because a data
feed remains under the control of its proprietor, who might
change its format, semantics, or even remove it, as it is be-
ing used.

Examples of data sources include stock quotes, weather
forecasts and airline ticket prices. A data feed captures a
particular usage of a data source: for example, stock quotes
for a specific company, the weather forecast for a specific

city and airfare for specific origin and destination.
It is especially hard to automatically detect changes in

the semantics of a data feed, since the data feed might su-
perficially appear to be delivering the required service. This
is the availability facet of dependability, under a semantic
fault model: the data is delivered, it is syntactically correct,
but it is inconsistent, out of range, incorrect, or otherwise
unreasonable.

1.1. Semantic availability

Availability is defined as “readiness for correct service”,
“a measure of the delivery of correct service with respect
to the alternation of correct and incorrect service” [1]. We,
therefore, define semantic availability of a data feed to be its
readiness for usage, indicated by whether the data feed de-
livers reasonable results. We assume the data feed is respon-
sive (no connectivity failures) and delivers parsable results
(no syntax/form failures). The availability of the data feed
directly affects the availability of the system using it. To
measure and assess this availability, the delivery of seman-
tically correct service needs to be estimated, with respect
to the alternation of semantically correct and semantically
incorrect service. Detecting semantic failures would enable
us to estimate the semantic correctness of a service.

Fault tolerance approaches to detection often use state-
space methods [4]. This requires specifications of states and
transition probabilities between states (left hand side of Fig-
ure 1). Masking, which does not require detection, requires
specifications of outputs and their selection.

However, a particular problem in the domain of dynamic
data feeds is that their specifications are sketchy and incom-
plete. Unfortunately, the analysis simplicity of the state-
space model is not applicable in our setting. In [2] we noted
state-space models are difficult to work with when the spec-
ifications are inaccurate and suggested an alternative gra-
dient view. The gradient view, depicted on the right hand
side of Figure 1, emphasizes the direction of the transitions
rather than the precise distinction among states: transitions
may degrade or improve performance, though the distinc-
tion between working and broken may be fuzzy.

Normal

Broken

Degraded

Normal

Broken

P_db
P_bd

P_nd

P_dn

P_bb

P_nn P_dd

Degraded

P_bn

P_nb

Figure 1. Degradation and failure described by a
state-transition diagram and by a gradient view

In [3] we introduced an approach for detecting seman-
tic anomalies in dynamic data feeds, following the gradient
view. Rather than demanding better specifications, we infer
invariants about the behavior of a data feed using and adapt-
ing existing statistical and machine learning techniques. We
then use these invariants as proxies for missing specifica-
tions. Initial feasibility results indicate these invariants suf-
fice for good-enough detection of semantic anomalies (in
the context of stock market tickers).

We believe our approach of inferring proxies for missing
specifications, in the form of invariants, can be used to cre-
ate benchmarks for the semantic availability of redundant
data feeds.

2. Benchmarking redundant data feeds

We propose to define benchmarks for evaluating and com-
paring redundant data feeds (data feeds that provide similar
service) based on invariants about the behavior of the data
feeds. The measures we propose for the benchmark are the
number and nature of violations of invariants (anomalies).

Fault injection approaches often use bit flips to emulate
failures and assume a fail-fast, fail-silent behavior. How-
ever, for semantic failures in data feeds, it is not clear what
a bit-flip fault model would measure. It may test a subset
of correctness failures, but we believe there is a need for a
stronger fault model. Instead of bit flips we propose viola-
tion of invariants as a fault model.

Unfortunately, not only are invariants about the behav-
ior of a data feed rarely provided but also the behavior of
the data feed may change. We suggest determining, period-
ically, a standard set of invariants to be used as a benchmark.
These invariants may be not only stationary, but often adap-
tive: the invariants may change as the behavior of the data
feed changes.

Our approach of inferring proxies for missing specifica-
tions could be used to automate parts of both creating the
standard set of invariants and producing benchmark mea-
surements, as follows: periodically,

1. use our invariant inference framework and tools to
synthesize a list of candidate adaptive invariants, then

2. have a certification authority, composed of domain
experts, select the standard set of invariants from the
list (selection through a social process). Constantly:

3. use the standard set of invariants for anomaly detec-
tion in the redundant data feeds under test.

Anomalies are detected by evaluating each invariant in the
standard set over fresh observations of each of the redun-
dant data feeds and reporting an anomaly when an invariant
evaluates to false. We assume it is possible to synchronize
the redundant data feeds.

Various comparison metrics of redundant data feeds are
possible. For example: (1) the number of detected anoma-
lies and (2) the nature of the anomalies; a larger weight
should probably be given to anomalies that are more severe.
These metrics could be combined with metrics that measure
connectivity and syntax/form availability, for a more com-
plete picture regarding the availability of a data feed.

3. Summary and challenges
We propose: (1) a reference model for how to bench-

mark the semantic availability of redundant data feeds and
(2) tools to aid certification authorities in creating a stan-
dard set of invariants. Our premise is that choosing from a
list of inferred invariants is easier than creating this list, so
having a machine synthesize the list is helpful.

The process of deciding what to benchmark and how to
do so is inherently subjective. The task of a certification
authority should be made feasible. We believe a fruitful
direction is to limit the human intervention and level of ex-
pertise required. A possible direction is to require experts
to approve only templates of invariants.

Our invariant inference engine cannot guarantee to de-
tect all anomalies. This is true for any technique that does
not demand complete specifications. Further, data feeds are
dynamic: they are often expected to change. The bench-
marks we suggest are, therefore, adaptive. An open issue
is when the benefits of adapting to data feed changes are
greater than the risks of having a drifting benchmark.

4. Acknowledgments
This research is supported by the National Science Foun-

dation under Grant CCR-0086003 and by the Software In-
dustry Center at Carnegie Mellon University.

References

[1] A. Avizienis et al. Fundamental concepts of dependability.
Technical report, UCLA CSD Report no. 010028, 2001.

[2] O. Raz et al. An approach to preserving sufficient correctness
in open resource coalitions. In IWSSD-10, 2000.

[3] O. Raz et al. Semantic anomaly detection in online data
sources. In ICSE’02, 2002.

[4] A. Villemeur. Reliability, Availability, Maintainability, and
Safety Assessment. Jon Wiley & Sons, 1992.

1. Introduction

Assessing the quality of service of a computer system is

a difficult task. A lot of work has been conducted on evaluat-
ing quality of service attributes like performance, robustness,
and dependability. Two approaches used for evaluating per-
formance and robustness are modeling and benchmarking.
For evaluating dependability, modeling can be used either
alone or combined with fault injection [Sie92, Kan91]. How-
ever, less work has been conducted on building dependabil-
ity benchmarks. A dependability benchmark can be defined
as “a way to evaluate the behavior of components and com-
puter systems in the presence of upsets, allowing the quanti-
fication of dependability attributes or the characterization of
the systems into well defined dependability classes”
[Mad01].

This paper focuses on the quantification part of the defi-
nition. The goal of this paper is to propose the use of Bayes-
ian estimation methods for quantifying dependability attrib-
utes. We first will give a brief overview of two estimation
Schools in Section 2. We will then illustrate our proposal by
focusing on a key parameter for fault-tolerant systems, the
coverage factor. We will introduce the coverage factor in
Section 3 and present coverage factor estimations in Section
4.

2. How does the Bayesian theory differ from the
frequentist theory?

The frequentist School and the Bayesian School are two

important estimation branches in statistics. We now briefly
compare the applicability of the two theories. After having
conducted some experiments, there are different ways for
processing the obtained results in order to get an estimation.

An estimation obtained using the frequentist theory is
based only on the results collected during the experiments.
The distribution associated with the experiment is often in-
troduced in order to obtain more accurate estimations.

When applying the Bayesian theory, an estimation is
based on the results collected during the experiments and a
prior knowledge of the estimation. This prior knowledge
could be based on previous experimental results or on expert
knowledge. As for the frequentist case, a distribution is often
associated with the experiment. In the Bayesian case, another
distribution is introduced to include the prior knowledge,
called a prior distribution. The combination of these two
distributions leads to the posterior distribution. The poste-
rior distribution is then used to calculate the estimation.

This combination of two sources of information often has
the advantage that, if the experimental results confirm the
prior knowledge, a smaller number of experimental results
compared to the frequentist approach will be needed to ob-
tain the same estimation.

One of the purposes of a benchmark is to obtain an esti-
mation without having to gather too many experimental re-
sults. However, in that case, the estimation might then not be
very accurate. The use of Bayesian methods might increase
the accuracy since, besides experimental results, a prior
knowledge is also used to calculate an estimation. The fol-
lowing sections will present some examples showing the ad-
vantages of the Bayesian method for an important parameter
of fault-tolerant systems: the coverage factor.

3. Coverage factor

Let us first formally define the coverage factor. The reac-

tion of a fault-tolerant system will depend on two different
inputs: the inserted upsets and the submitted workload. The
upsets are the inputs specific to the fault tolerance mecha-
nisms. The workload represents the environment. The overall
input space of a fault-tolerant system is then the Cartesian
product WUG ×= , where U is the upset space and W is the
workload space. Let us define H as a variable characterizing
the handling of a particular upset. The coverage (factor) of a
fault-tolerant system can then be defined as:

{ }GgHc ∈== 1Pr
i.e., the conditional probability of correct upset handling,
given the occurrence of an upset/workload pair g.

4. Frequentist and Bayesian estimations

From now, we assume a representative sample, i.e., where

the selection probability is equal to the relative probability of
the occurrence of a given upset/workload pair.

Since fault-tolerant systems will, most of the time, cor-
rectly handle an upset, we will focus on the non-coverage as
a measure (cc −= 1), and more specifically on the upper
confidence limit of the non-coverage. Since the number of
upsets not correctly handled follows a binomial distribution
with parameters n (number of inserted upsets) and c (non-
coverage), the 100γ upper confidence limit is given by:

• Frequentist theory:
() () ()

() () () () γ

γ
γ

,2,12

,2,12

1

1

xnx

xnx

Fxxn

Fx
c

−+

−+

++−
+

=

Using Bayesian Theory for Estimating Dependability Benchmark Measures

Michel Cukier and Carol S. Smidts

Center for Reliability Engineering
Department of Materials and Nuclear Engineering

University of Maryland at College Park
{mcukier, csmidts}@eng.umd.edu

• Bayesian theory:
() () ()

() () () () γ

γ
γ

,2,2

,2,2

lxnkx

lxnkx

Fkxlxn

Fkx
c

+−+

+−+

+++−
+

=

where n is the number of inserted upsets, x is the number of
upsets incorrectly handled, γ is the confidence level, and

γυν ,2,1F is 100γ percentile points of an F distribution with
2,1υυ degrees of freedom [Joh69, p.59]. Moreover, in the

Bayesian case, we have selected a prior distribution follow-
ing a beta distribution with parameters l and k : beta(k , l). The
reasons for this choice are: first, that one special type of a
beta distribution is the uniform distribution (when k=l=1),
which effectively expresses the fact that there is no prior
knowledge, and second, that since the experiment follows a
binomial distribution, the posterior distribution will also be a
binomial distribution with parameters x+k and n-x+l:
beta(x+k , n-x+l).

Let us now compare the estimations obtained with the
frequentist approach with the ones from the Bayesian. We
will consider three prior distributions: the uniform distribu-
tion (k=l=1) where no assumption is made on the fault-
tolerant system behavior, a distribution with a slight confi-
dence that the fault tolerance system will behave correctly
(k=1, l=3), and a distribution with a very high confidence that
the system will correctly handle upsets (k=1, l=100). The
density function (()zfZ) for these three prior distributions
with a beta(1, 2) for completeness are shown on
Figure 1.

Figure 1 Prior distribution density functions

Since fault-tolerant systems will correctly handle most of

the upsets, we will compare the frequentist and Bayesian es-
timations when 0 or 1 upset is not correctly handled. We
compare these estimations when 10, 100 and 1000 upsets are
inserted. The obtained estimations are shown in Table 1.

From the table, we observe that the confidence limit is
smaller when using the Bayesian approach, leading to a
smaller confidence interval and thus a more accurate estima-
tion. When applying a prior distribution with high confi-
dence in the correct upset handling, the obtained estimations
become more accurate. The reason is that the small number
of incorrectly handled upsets (0 or1) is in accordance with
the prior knowledge that almost no upset will be incorrectly
handled. An important observation is that for a small number
of inserted upsets, an order of magnitude might be gained in

the estimation accuracy when using the Bayesian approach
and a strong confidence of upsets being correctly handled
by the system.

Up-
sets

Incor. Bayesian

N X

Frequentist

k=1,
l=1

k=1,
l=3

k=1,
l=100

0 0.369 0.342 0.298 0.0410 10
1 0.504 0.470 0.413 0.0588
0 0.0450 0.0446 0.0437 0.0227 100
1 0.0645 0.0639 0.0627 0.0327
0 0.00459 0.00459 0.00458 0.00418 1000
1 0.00662 0.00661 0.00660 0.00602

Table 1 Comparison of frequentist and
Bayesian estimations

5. Conclusion

We have shown in this paper that Bayesian theory might

be worth considering when quantifying dependability attrib-
utes. We have illustrated the relevance of the Bayesian the-
ory by presenting a simple example: the estimation of the
coverage factor of a fault-tolerant system.

Acknowledgments

The authors would like to thank David Powell and Jean
Arlat for their comments and for providing the example used
in this paper.

References
[Cuk99] M. Cukier, D. Powell, J. Arlat, Coverage Estimation
Methods for Stratified Fault-Injection, in IEEE Trans. On
Computers, vol. 48, no. 7, pp.707-723, July 1999.
[Joh69] N.L. Johnson, S. Kotz, Distributions in Statistics –
Discrete Distributions, New York, John Wiley & Sons, 1969.
[Kan91] K. Kanoun, J. Arlat, L. Burrill, Y. Crouzet, S. Graf, E.
Martins, A. MacInnes, D. Powell, J.-L. Richier, J. Voiron,
“Validation”, in Delta-4: A Generic Architecture for De-
pendable Distributed Computing, (D. Powell, Ed.), pp. 371-
406, Berlin, Germany, Springer-Verlag, 1991.
[Mad01] H. Madeira, P. Koopman, Dependability Bench-
marking: making choices in an n-dimensional problem
space, in First Workshop on Evaluating and Architecting
System Dependability (EASY), joint organized with
IEEE/ACM 28th International Symposium on Computer Archi-
tecture (ISCA) and the IEEE International Conference on De-
pendable Systems and Networks (DSN), Gothemburg, Swe-
den, July 2001.
[Sie92] D.P. Siewiorek, R.S. Swarz, Reliable Computer Sys-
tems – Design and Evaluation, Bedford, MA, USA, Digital
Press, 1992.

Empirical Evaluation of Techniques and Methods
Used for Achieving and Assessing Software High Dependability

Ioana Rus

Fraunhofer Center for
Empirical Software

Engineering Maryland
irus@fc-md.umd.edu

Victor Basili
Marvin Zelkowitz

University of Maryland and
Fraunhofer Center for

Empirical Software
Engineering Maryland
Basili,mvz@cs.umd.edu

Barry Boehm
University of Southern

California boehm@usc.edu

For achieving high dependability of software

intensive systems, not only product dependability
benchmarking is needed but also benchmarking of
technologies and processes for achieving and assessing
software dependability. Dependability engineering, and
more specifically technology management and
assessment of effectiveness and efficiency of different
technology interventions, is the objective of the work
we introduce here. This work is performed as part of
the High Dependability Computing Project (HDCP)1
that is an incremental, five-year, cooperative agreement,
part of a broad strategy for dependable computing, that
links NASA, corporate partners and universities and
research centers such as Carnegie Mellon, University of
Maryland, Fraunhofer Center Maryland, University of
Southern California, Massachusetts Institute of
Technology, University of Washington and University
of Wisconsin. For now the focus is on NASA projects,
but the results will be captured and organized in an
experience base, so that they could be disseminated and
applied to other organizations. For example, the first
step would be to extend the results to organizations that
are members of the High Dependability Computing
Consortium (HCC)2 and the Sustainable Computing
Consortium (SCC)3.

As part of our activities we are looking at a series of
steps to evaluate such interventions. Developing high
dependability software requires specifying the
dependability requirements, using development
techniques and methods (that we will call
“technologies”) to build-in high-dependability as the
product is developed, and also technologies to verify
that the required dependability has been achieved. Our
research focuses on evaluating the effectiveness of
these technologies with respect to achieving and
assessing the desired dependability, and also the cost of

1 http://amesnews.arc.nasa.gov/releases/2002/02_03AR.html
2 http://www.hdcc.cs.cmu.edu/
3 http://www.sustainablecomputing.org/

using these techniques. For this purpose we are
employing diverse empirical evaluation methods such
as case studies, pilot projects, project monitoring,
assertion, field study, literature search, lessons learned,
static analysis, replicated experiment, synthetic
experiment, dynamic analysis, product and process
simulation.

The technologies might be evaluated with respect to
dependability if applied in isolation, as well as if they
are combined in various ways (since different
technologies are used in different development phases
and also different technologies might address different
attributes of dependability). Technology comparison
might also be required, therefore the need for a common
set of measures that can be applied to the results of all
technologies (or at least to the ones comparable to each
another, i.e., addressing the same attribute). Some
technologies might work for specific contexts (e.g.
application domain, type of system - concurrent
processes, distributed systems, real-time systems, db
transactions, operational environment) but not for all
situations, so these circumstances must also be studied
and identified.

In order to perform technologies evaluations we need
to determine the variables that we will observe,
measure, and analyze. Therefore we need to have a
model of dependability (sub-attributes and measures),
for the delivered software. In addition we also need
indicators that can be measured during development and
help predicting the dependability of the operational
system.

Given that dependability is a behavioral property of a
system, depending on the environment and the way the
system is operated, we see the following questions to be
addressed for determining useful measures for our
technology evaluation:

What are the measures for the dependability of a
system and how does that translate to software?

What does high dependability mean (if
dependability is a combination of other attributes
such as reliability, security, availability,
robustness, then what are the values of these
attributes and how are they combined to result in
high dependability)?
What are the indicators in intermediate phases of
development that allow prediction of the
dependability of the deployed system?

If we consider the perspective of a maturing
dependability technology we can view each high-
dependability technology as passing through a series of
evaluation milestones, each stressing the technology and
demonstrating its context of effectiveness. Technology
researchers will specify the goals for their technologies
relative both to needs—as specified by users or
identified by empirical investigation—and to the models
for high-dependability. These goals will be established
as criteria for studying the technology and identifying
the characteristics of the milestone in which the
technology is applied. In the assessment process, we
identified four steps and corresponding milestones
described below. Having a well-defined model and
measures of dependability is an indispensable
requirement for each of the four test-bed levels
mentioned here.

Milestone 1. Internal set: Typically, the technology
researcher (creator) has applied the technology to some
internally developed set of examples. This set will act as
a first milestone for that technology. The technology
will be applied to that set of examples defining the
milestone by an independent source to make sure the
documentation and robustness is sufficient to allow for
independent application of the new technology. Thus,
before moving the initial examples to the basic common
milestone, the technology must have been applied on a
technologist-developed test set and that test set should
be characterized and used to generate a technology
specification and set of criteria for dependability
specific to that technology. That initial test set of
examples should be contributed to the basic common
set, which will be stored in the experience base.

Milestone 2. Basic common set: We can build a
basic set of common examples that we can use for
applying each of the technologies. The goal is to create
a larger universe of problems on which to stress and
analyze technologies, both individually and in groups.
As stated above, one source of such examples is the
internal test sets of the individual developers. However,
based on the models, the analysis of the individual test
sets, and the analysis of industry problem areas, new
examples can be added to this set. This set will allow
various technologies to be compared and their strengths
and limits assessed empirically. And, of course, it
provides a larger domain of potential application for

each of the technologies by enlarging the universe of
examples. Experiments will be defined for this
milestone based on the technology to be tested and the
goals established for that technology relative to the
milestone.

From industry’s point of view, this level offers some
insight into what combinations of technologies might be
most effective under what conditions and for which
problems. From the technology researcher’s point of
view it provides feedback on how a technique might be
expanded and evolved. For the empirical researcher, this
milestone will provide new insights into models and
goals.

Milestone 3. HDCP domain-specific off-line set:
This milestone consists of a domain-specific set of
examples, from areas of greatest high-dependability.
Ideally, examples in this set will have failure data from
real experience associated with them. A committee
consisting of NASA personnel as well as HDCP
decision makers and technology researchers, again
supported by empiricists, will make the choices. This
milestone will provide better models of dependability
more directly pointed at NASA and HDCC
requirements. We will define a different class of
experiments for this milestone, involving application
domain experts.

Once again insights will be gained on how the various
technologies can be integrated and under which
circumstances each should be applied, based on
decisions such as understanding of the anticipated
failures for the problem, the expertise of the appliers of
the technology, the effectiveness of the technology for
certain classes of faults, and the cost of applying the
technique. Success at this milestone should imply that
the technology deserves more careful packaging for
wider application—high-quality documentation, training
materials, tool support, and the like.

Milestone 4. Live examples: This milestone
definition is specific to part or all of a system currently
under development. Although the techniques have
passed through each of the prior milestones, there is
clearly a need for risk mitigation. Continual observation
by the empiricists is needed and alternate actions are
predefined to make change possible when necessary.
Experiments may consist of the technology being
applied on only part of the system, so a comparison can
be drawn with other parts, or it might be a case study of
the entire project.

Based on the results of these studies, the technology
can be fully packaged for use and placed on the NASA
technology shelf as a transferred technology, or it may
require a second or third live example for further study
of its effectiveness. Ideally, examples in this set will
have failure data sets from real experience associated
with them.

The Set-Check-Use Methodology for Detecting Error Propagation
Failures in I/O Routines

Michael W. Bigrigg
Institute for Complex Engineered Systems

Carnegie Mellon University
Pittsburgh PA 15217

bigrigg@ices.cmu.edu

Jacob J. Vos
Institute for Complex Engineered Systems

Carnegie Mellon University
Pittsburgh PA 15217
jvos@ece.cmu.edu

Abstract

A methodology is presented that will detect robustness
failures in source code where I/O errors could occur and
where there is no mechanism in place to handle the error.
The details of the methodology are described showing
how traditional compiler data flow analysis can be aug-
mented to find structurally, within the application, code
that can be used to perform error checking. In addition
we describe how this code can be used to ensure the cor-
rectness of the I/O error checking.

1. Introduction

File systems routinely make extraordinary attempts on
behalf of the application to provide data whenever possi-
ble to the user. Yet, problems such as network congestion
or outages and heavily loaded systems can lead to failure-
like situations, making it impossible for the file system to
complete the entire requested operation. These situations
are usually only transient and still enable the file system to
provide a partial result. An example of a true failure condi-
tion for a file system is a request for data where no data is
available, i.e., a read past the end of a file. This is different
from a situation in which data is available, but is currently
not accessible, such as when using a disconnected mobile
device. When applications not intended for an unreliable
environment are ported from a desktop environment to a
wireless system, the application programmer must account
for all such unpredictable behavior. As programmers, we
often overlook error checking when we are overwhelmed
with the task of identifying all possible error situations, or
neglect checking in the belief that some errors are incon-
ceivable.

Local file system interfaces are typically identical to
those of a distributed file system, though the potential for
failure at each is greatly different. In a local file system,
failures are catastrophic. If the hard drive or other local
storage device fails, it often signals the end of the device’s

usable lifetime. Failures in distributed file systems are
more common and it is possible to recover from them.
They are usually the result of unreachable remote storage
devices or device overloading due to network partitioning,
poor load balancing, or denial of service attacks. Users
have fundamental, but not often expressed assumptions
about the reliability of the system an application is built
for. Yet unhandled error conditions lead to potential soft-
ware failures when the underlying system cannot satisfy
our requests and the application was built assuming that it
can.

We present a methodology based upon program static
analysis to track the propagation of error reporting in or-
der to determine the assumptions used when the software
was created.

2. Software Fault Detection Related Work

There are many approaches to using program analysis
for the detection of software faults. These systems are
typically aimed at providing information to the program-
mer in order that the program source code may be modi-
fied to eliminate software faults. In identifying code er-
rors, there are strict guidelines regarding right and wrong
within an application, i.e. dealing with the disabling and
re-enabling interrupts, or the assumptions about integer
size. Our method does not establish the correctness of
code, instead establishing the existence of code that will
ensure correctness.

Errors in an I/O system can only be identified at run-
time and only after checking the status of the I/O call. One
type of fault analysis techniques will run the entire pro-
gram or a subset of the program to observe its behavior.
As well, controlled errors can be introduced to examine
how the software behaves by passing external faults into
the application that cause it to fail. Such approaches in-
clude fault injection through random memory corruption
or corruption of the storage system (FlakyIO) [1], passing
values typically known to cause exceptions into an indi-

vidual software module through its software interface
(Ballista) [5], and the creation and use of a comprehensive
test suite. In particular, this type of approach makes it pos-
sible to identify the type of input or condition that has led
to the fault, but does not identify any remedial action that
should be taken by the application.

Compile-time analysis attempts to identify program
features that would cause a program to behave improperly.
The analysis focuses on a particular characteristic that is
typically the base cause of faults such as portability prob-
lems (i.e., when moving an application from one machine
architecture to another (lint) [4]). We, however, are at-
tempting to find portability problems, not between archi-
tectures, but between systems that have different reliability
guarantees on their file system. Other approaches, such as
LcLint [3] and mc [2] use programmer-defined rules that
specify acceptable behavior to drive the analysis. These
two systems are the most closely related projects to ours in
method, but their purpose is to capture the assumptions
about a program in order to establish correctness, while
our focus is to uncover the original assumptions made
about a program.

We present a methodology that will detect robustness
failures in source code where I/O errors could occur and
where there is no mechanism in place to handle the error.
Many programmers fail to incorporate error checking in
specific classes of I/O operations and rely on certain as-
sumptions such as “file output is always guaranteed” to
ensure correct application operation. It is this absence of
error checking that we intend to detect with our methodol-
ogy. Our approach to uncovering these situations com-
bines an augmented data flow analysis with the semantics
of the I/O error reporting.

We describe the details of the methodology showing
how traditional compiler data flow analysis can be used to
find structurally, within the application, code that can be
used to perform error checking. In addition we describe
how this code can be used to ensure the correctness of the
error checking.

3. Error Reporting in C I/O Routines

Errors are reported in C I/O routines using out-of-range
values. The return values of these routines are either a
useful result (upon successful completion of the call) or an
indication of the error that occurred (upon an unsuccessful
completion). For instance, the successful return of the
fopen call is a handle to a file. The range of values for a
file handle is an unsigned integer greater than zero. A zero,
also referred to as NULL, is then used to report that the
file system was unable to open the file. The return of a
fread call uses out-of-range values to transmit not only
an error condition, but also specifies an end of file condi-
tion as well. The return identifies the number of bytes that

have actually been read. The fread call, like all data buffer
operations, will read up to but no more than the number of
bytes that have been requested. A return of zero does not
signify an error condition, just that no data is currently
accessible such as at the end of a file. It is a negative re-
turn value that signifies an error condition. Since a single
value can potentially be both an error condition and also a
valid result, it is not until tested that we know. Just like
Schroedinger’s cat, we cannot tell what the value is until it
is examined. When writing a program, we have to assume
that both outcomes are likely and cannot assume one or
the other.

The values that specify an error condition are based on
the I/O routine itself. An examination of the C standard
I/O library [8] shows the behavior of I/O function calls
upon an error condition:

• Functions that return pointers use a NULL to desig-
nate an error condition: fmpfile, fopen, freopen,

fgets.

• Functions that use EOF as an error condition:
fclose, fgetc, getchar, putchar,

puts, ungetc.

• Functions that use a non-zero for an error condi-
tion: remove, rename.

• Functions that use a negative number for an error
condition: fputs, fgetpos, fseek, fset-

pos, fprintf, fscanf, print, sprintf,

sscanf, vfprintf, vsprintf, fputc,

fputs, gets, putc, fread, fwrite.

• Functions that use a -1 for an error condition:
ftell.

Only the data buffer operations (fprintf, fscanf,

print, sprintf, sscanf, vfprintf, vsprintf, fputc,

fputs, gets, putc, fread, and fwrite) overload the
return with three potential values.

In addition, we must identify the result value. The re-
sult is the value achieved upon successful completion of
the call and may be passed through a return or through an
argument. The buffer operations have not only the result in
the return but also an argument (a buffer), which is also a
result. Not only is it important to distinguish the error
from the result in the return, but also it is important to
acknowledge the error before using the buffer contents.
Therefore, error checking must occur before the use of any
result values.

4. Identification of Error Checking

Correct error checking associated with an I/O routine
must occur between the set (called a definition or simply
def) of the potential error value and use of a result value or
values along all possible paths of execution. For instance,
the C code example in Figure 1 could lead to a program

crash, while the code example in Figure 2 uses program
logic to safeguard against a possible error condition.

fin = fopen("foo","r");
fread (buf, sizeof(int), 10, fin);

Figure 1. Code that may lead to a failure

fin = fopen("foo","r");
if (fin != NULL) {

fread(fin, sizeof(int), 10, buf);
}

Figure 2. Program logic guards against a possible un-
successful result

We augment traditional data flow analysis to identify
missing error checking. Data flow analysis is a traditional
technique used by compilers during the optimization phase
as a tool to guarantee the correctness of program trans-
formations. Value chains, called def-use chains, are identi-
fied between the definition of a value and the places the
value is used. Data analysis is performed on values and
not on variables. Figure 3 shows how a value chain is
formed, dependent on the instance of a value in a variable,
rather than on the name of the variable.

a =3; /* def of a1 */
b =a +5; /* use of a1 , def of b1 */
a =8; /* def of a2 */

Figure 3. Formation of a value chain

We augment the def-use chains to additionally include
the check of a value. We define a check as a use of a value
that additionally falls within the expression of a condi-
tional statement. There is already a large body of work on
the mechanisms for computing def-use chains [7]. The
conditional is a guard against incorrect usage of the result
value. The conditional expression that acts as an error
guard may be part of any conditional structure including if
and if-else statements as well as while and repeat loops as
shown in Figure 4.

n = fread (fin, sizeof(int), 1, buf);
while (n > 0) {

k += buf[0];
n = fread (buf, sizeof(int), 1, fin);

}

Figure 4. Formation of a value chain

While set-check-use is a straightforward approach,
there are a few issues to incorporate into our methodology.
Error values and the result values are not bound to a spe-
cific variable as shown in Figure 5. These values can be
assigned to other variables or even modified. In these
cases, we need to track the values to make sure that the

use of the result values does not occur before the check of
the error values.

a = fopen ("foo.txt","r");
b = a;
if (b != NULL) {

n = fread(buf, sizeof(int), 1, a);
}

Figure 5. Analysis based on values not variables.lue
chain

It is also important to note that the use of the result
value need not exist only within the body of the condi-
tional, and that the conditional may be used to reset the
result variable as shown in Figure 6. Again this involves
tracking the values through all execution paths. Once the
tracked value is overridden with another value, the track-
ing of the previous value stops along that path of execu-
tion.

a = fopen ("foo.txt", "r");
if (a == NULL) {

a = stdin;
}

Figure 6. Resetting a value for protection

We know that there is a check, but that does not mean
that the expression will accurately identify an error situa-
tion.

Finally, in order to determine if the check is valid we
must examine the conditional expression. This will be ex-
plained in the remainder of this section.

Another aspect to detecting missing robustness checks
is the use of error information from the language, as out-
lined in the previous section, to guide the set-check-use
approach by determining which value identifies the error.
The error propagation information provides a heuristic
approach similar to error classification schemes [6]. An
example is given to show how semantic information would
drive the def-check-use analysis. In the case of file open-
ing as shown in Figure 7, the def, check, and use locations
use the same value for the analysis. Between the def and
use of a, there should be a check of a.

a = fopen("foo","r"); /* def of a */
if (a != NULL) /* check of a */
fread (buf, sizeof(int), 10, fin); /*use of a */

Figure 7. Def-Check-Use of the same value

In an fopen call, the return holds the error value. A
NULL return value designates an error condition. The def,
check, and use is to use the same value, a, which is the
value returned from the fopen call. We acknowledge that
it may not be possible to statistically determine the validity
of the check.

5. Analysis of a Simple Program

The wc program is part of the GNU textutils collection
of programs. Its purpose is to count the number of lines,
words, and characters in a file or files identified on the
command line. The v2.0 program consists of 371 text lines
with 118 lines of code. It can be identified to have been in
use for the past 16 years (from 1985 to 2001). It was writ-
ten in C and consists of four functions. There are no in-
stances of control flow issues where error checking only
exists in a subset of execution paths. A hand analysis of
the main source program was performed using the meth-
odology presented to detect failure and to check for error
conditions. The results are summarized in Table 1.

Table 1. Hand Analysis of the wc program

Routine Total Checked Unchecked

fprintf 1 0 1

Printf 7 0 7

Puts 1 0 2

putchar 1 0 2

fstat 1 1 0

lseek 2 2 0

read 3 3 0

open 1 1 0

close 2 2 0

setlocale 1 0 1

SUMMARY 20 9 11

A simple calculation of the number of checks that
should be performed against the number of checks actually
produced results in a 45% reliability rating. The usefulness
of this rating is not promoted as it does not reflect the fre-
quency of each call, but can be included as a guide to un-
derstand the program behavior.

The major assumption that was made by the wc pro-
gram is that all output is guaranteed to succeed.

6. Future Work

The Set-Check-Use Methodology (SCUM) work is part
of the PARIS project at CMU, which is attempting to use
program analysis techniques to analyze the reliability of
programs. We can see the strength of this methodology for
determining the reliability of an I/O program, and are in
the process of implementing it in a tool that will report on
the presence and absence of error checking in programs to

construct a rating of reliability. At the same time, we are
attempting to classify the missing error checks, and so
become able to specify the types of assumptions that are
made about the operating environment for I/O applications
automatically.

7. Acknowledgements

This work supported by the Pennsylvania Infrastructure
Technology Alliance and also as part of the PASIS project
supported by DARPA/ISO’s Intrusion Tolerant Systems
program (Air Force contract number F30602-99-2-0539-
AFRL). We would also like to thank Joan Digney for her
help in preparing this paper.

8. References

[1] Michael W. Bigrigg and Joseph Slember. Testing the Port-
ability of Desktop Applications to a Networked Embedded Sys-
tem. Workshop on Reliable Embedded Systems, Oct. 2001.
[2] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth
Hallem. Checking System Rules Using System-Specific, Pro-
grammer-Written Compiler Extensions. Proceedings of the
2000 OSDI Conference, Oct. 2000.
[3] David Evans, John Guttag, Jim Horning, and Yang Meng
Tan. LCLint: A tool for using specifications to check code.
SIGSOFT Symposium on the Foundations of Software Engi-
neering, Dec. 1994.
[4] S.C. Johnson. lint, a C Program Checker, Computer Sci-
ence Technical Report, Number 65, 1978.
[5] Philip Koopman. Toward a Scalable Method for Quantify-
ing Aspects of Fault Tolerance, Software Assurance, and Com-
puter Security. Computer Security, Dependability, and Assur-
ance: From Needs to Solutions (CSDA'98), Nov. 1998.
[6] Roy A. Maxion and Robert T. Olszewski. Improving Soft-
ware Robustness with Dependability Cases. 28th International
Symposium on Fault Tolerant Computing, June 1998.
[7] Steven S. Muchnick. Advanced Compiler Design and Im-
plementation. Morgan Kaufmann Pub. 1997.
[8] P.J. Plauger. The Standard C Library. Prentice Hall, 1992.

Defect and Fault Seeding In Dependability Benchmarking

Barry Boehm, Daniel Port
University of Southern California
{boehm, dport}@sunset.usc.edu

Abstract

Defect and fault seeding is often considered for
gathering empirical estimates within reliability models.
Traditional defect seeding is fraught with difficult to
resolve validity concerns when attempting to estimate true
defect and fault populations. With dependability
benchmarking we are less concerned about true defect
and fault estimates, rather we wish to compare the
relative effectiveness of dependability approaches. We
propose that in this context the traditional concerns
regarding defect and fault seeding techniques may not be
as difficult to address and that potential new approaches
may be useful as a means of benchmarking approaches to
dependability.

1. Introduction

Within the context of traditional defect seeding
suppose you use a dependability benchmarking capability
to compare the performance of two tools on a system
under test (SUT) – or its equivalent in code, design, or
specification analysis – and both tools find the same 3
defects. This gives you a good comparative analysis of
the tools, but leaves you wondering whether these three
defects are 100% of the three remaining defects in the
SUT, 10% of the 30 remaining defects, or something else.

Defect seeding approaches attempt to estimate the size
of the defect population and the absolute effectiveness of
defect detection techniques by deliberately introducing
defects into a system. The general approach is:

Insert N defects in the system under test (SUT).
Run the tests, find M seeded defects, K unseeded
defects.
Estimate remaining defects as:

R= K *((N-M)/M), from K/(K+R) = M/N.

Thus, if you seed the SUT with 10 defects and each

tool also finds 6 of the 10 seeded defects, you can
estimate that the 3 defects found by the tools are 60% of 5
previously-undetected defects in the SUT, and that two
remain.

The defect seeding concept has been around since at
least the early 1970’s, but has fallen from practice because
of difficulties in seeding defects in ways which satisfy the
underlying assumptions of the estimation formula. These
include:

1. The seeded defects are representative of existing
defects. Seeding is mostly done by developers, whose
blind spots miss many sources of defects.

2. The test profile is representative of the
operational profile. Again, the developers’ knowledge of
actual usage patterns is generally highly imperfect.

3. The SUT is developed without knowledge of the
seeding profile. If the seeded defects become well-
known, there are risks of consciously or unconsciously
tailoring the tool to look good on the seeded defect
sample.

4. The source code available for defect seeding. As
systems become increasingly COTS-based, this difficulty
increases.

Individually and in concert, therefore, these
assumptions are often invalid to some extent, leading to
inaccurate estimates. However, there are not many strong
alternative approaches available, and we feel it is worth
exploring new approaches to defect seeding, which
significantly strengthen the ability to satisfy these
assumptions.

2. Potential New Approaches

We present several approaches that may help address
some of the complications of the traditional approach to
defect seeding (see [1] for details on several of these).

1. Change Histories. If the SUT is (say) version 3.4

of a given system, one can use fixes from earlier versions
as sources of seeded defects. These have the
representativeness advantage of having been real defects,
but have the shortfall of having been the most detectable
defects using current techniques. Also, the version
changes may be complex combinations of defect fixes and

general upgrades, which makes preparing an
appropriately-seeded SUT more difficult.

2. N-Version Programming. One can generate
further representative defects by giving the specs to
different programmers and generating a family of SUT
versions. Comparative analysis of the defects found in the
SUT versions can also generate estimates of the likely
number of residual defects. Studies of N-version
programming have shown that it is an imperfect source of
independent implementations, and it can also be
expensive, but it appears to be worth exploration.
Program mutations are a similar source of defect-seeding
alternatives.

3. Randomized Defect Seeding. One way to reduce
the risks of gaming the seeding profile is to select random
seeded defects from a large and/or parameterized sample.
This also opens up the possibility of using multiple-run
population estimators such as jackknife and bootstrap
methods.

4. Use of Defect Distribution Statistics. One can
also combine randomized defect seeding with defect
distribution statistics to address the defect
representativeness issue. Orthogonal Defect
Classification statistics are a good example.

5. Connectors and Wrappers. One can deal with
COTS defect and fault seeding to some extent by using
connectors or wrappers to simulate potential real faults.
Examples are data corruption faults via wrapper
modifications of the output stream, or uses of connectors

to generate communication failures (timing, handshaking,
noise, etc.)

3. Issues for Discussion

Some issues worth exploring at the Workshop include:

Mapping of preferred defect seeding approaches to
dependability attributes. These include: Robustness
(reliability, availability, survivability), Protection
(security, safety), Quality of Service (accuracy,
fidelity, performance assurance), and Integrity
(correctness, verifiability).

Alternative concepts and approaches. These could
include mutation testing as defect seeding; model-
driven approaches; information theoretic approaches;
or game theoretic approaches.

Special application challenges, such as scalability,
test oracles (e.g., for agent-based systems of systems),
and Heisenbug effects (additional defects induced by
seeded defects, such as timing and synchronization
defects).

4. References

[1] Voas, J., McGraw, G., Software Fault Injection,
Wiley, 1998.

Abstract

This paper presents the rationale and usefulness of
developing a system recovery benchmark. The speed with
which a system can return to service following an outage
is a critical factor in overall system availability. General
purpose computer systems, such as UNIX based systems,
tend to execute the same sequence or series of steps
during outage recovery and system startup. Our
experience has shown that these steps are repeatable and
measurable, and can thus be benchmarked, much like
performance benchmarks (e.g. TPC, SPEC). A defined set
of measurements, coupled with a specification for
representing the results and system variables, provides
the foundation for system recovery benchmarking.

1. Introduction

In [7], a hierarchical framework, named R3, is
established to benchmark availability. R3 represents the
three system attributes that are key to availability
identified in the framework. These attributes are Rate
(rate of fault and maintenance events), Robustness (a
system's ability to handle fault, maintenance, and
system-external events, and the resulting degree to which
it remains available in the face of these events), and
Recovery (the speed with which a system can return to
operation following an outage). The R3 framework
provides for a benchmark that incorporates all defined
attributes, thus yielding a downtime-per-year metric.
Alternatively, benchmarks can be defined that focus on
some subset of the framework attributes and their sub-
metrics. This is very similar to the performance
benchmarking space, where there are benchmarks that
measure the system as a whole, as well as benchmarks
that measure a specific subsystem.

In this paper, we discuss our rationale for creating a
benchmark specification designed to measure the
recovery attribute of general purpose computer systems.
Our objective is to convey two basic assertions: recovery
time can be benchmarked; and a recovery time
benchmark is useful and meaningful. Previous research
in availability benchmarking has been focused on
benchmarking system robustness attribute [1, 2, 3, 6].

There has been a lack of research in benchmarking
recovery aspect of system availability.

2. Background and Motivation

Historically, there have been several design
approaches to building computer systems that can meet
strict business requirements for availability. Fault tolerant
systems implement lock-step execution with results
comparison across redundant hardware components,
providing the ability to detect and recover from faults
without a service disruption. Such designs have carved
out a niche market in the industry, but have not seen
broad adoption due to cost (overall price/performance)
and scalability considerations.

General purpose computer platforms, such as Unix-
based servers, offer designs that allow system to recover
quickly from an outage. In the context of this paper,
quick recovery refers to a computer platform returning to
service in an automated fashion.

On a standalone server, quick recovery is facilitated
through system firmware and component blacklisting
capabilities. When a fault event occurs, the system panics
and reboots. During the reboot process, hardware
diagnostic software configures around the failed
component, allowing the system to return to service
quickly and without human intervention. Clustered
systems provide redundancy by clustering two or more
systems together with a software framework that does
cluster management, failure detection and automated
recovery. When a cluster node fails, the cluster software
initiates a failover of the services that were being
provided by the failed node, to other nodes in the cluster,
thereby minimizing service disruption.

There are several major benefits of choosing quick
recovery over fault tolerance. General purpose computers
provide better price/performance, better scalability, and a
much larger selection of commercially available software.
From an availability perspective, general purpose
computers have been proven adequate even in
environments demanding very high levels of availability.
General purpose computers have been installed across a
broad range of industry segments to run mission critical
applications for years.

System Recovery Benchmarking

Ji Zhu, James Mauro, Ira Pramanick
Sun Microsystems, Inc.

{ji.zhu, james.mauro, ira.pramanick}@sun.com

3. Can We Benchmark Quick Recovery
Time?

General purpose computer systems tend to execute the
same sequence or series of steps during outage recovery
and system startup. On a standalone server, quick
recovery is mostly in the form of a kernel panic call and a
core dump, followed by a system reboot, which usually
includes firmware-based hardware diagnostics prior to the
operating system boot. On clustered systems, quick
recovery is in the form of a reconfiguration of cluster
framework and a restart of services on the surviving
nodes. Our experience has shown that recovery times are
repeatable and measurable, and can thus be benchmarked,
much like performance benchmarks (e.g. SPEC[4],
TPC[5]).

4. Is A Quick Recovery Time Benchmark
Meaningful?

For general purpose computers, outages that can
quickly be recovered from, account for most of the
system outages. On mid-range and high-end Unix
servers, systems can quickly recover from faults of most
its components (processors, memory, cache, interconnect,
controller, etc.). Together these components account for
up to 80% of total system hardware failure rate. Software
faults can also be worked around by rebooting the system.
For clustered systems, failover is the dominant mode of
recovering from a hardware or a software fault.

Most outages on mid-range and high-end general
purpose computer servers fall into the quick recovery
category. This makes a system quick recovery benchmark
useful for evaluating a broad range of systems, as it
provides a meaningful representation of system outage
duration.

5. Issues

A full discussion of the issues and their solutions in a
quick recovery benchmark is outside the scope of this
position paper. We are working on them and will
report our progress in the future. The following is a list
of a few important issues we have identified in the quick
recovery benchmark for a standalone server.

� System Size - The number of processors, amount of
physical memory, number of IO channels and the
number of actual storage devices (disks) directly
impact system recovery time.

� Service Processor - Systems with service processors
add a level of complexity to a full restart cycle if the
service processor must be restarted as well.

� Domains - Single physical systems able to run
multiple operating system kernel instances have

multiple recovery scenarios; those effecting the
domain, and those effecting the entire system.

� Firmware Setting - Most systems offer parameters
that determine the level of diagnostic testing the
system will do at startup/restart. Going from least
intensive to most intensive settings can dramatically
alter restart time.

� File Systems - File system integrity checking is a
critical phase of system startup/restart. The number
and size of file systems, as well as options such as
logging, can have a significant impact of
startup/restart time.

We are working on defining outstanding issues for
clustered systems.

6. Conclusions

It is our contention that quick recovery time
measurement is a meaningful availability benchmark
since it represents one important aspect of system
availability - the outage duration when a recoverable fault
occurs. We believe that it is an attainable goal to develop
a benchmark on quick recovery time much like
performance benchmarks. We are currently working on
system quick recovery benchmark specifications for a
standalone server and a clustered system.

7. References

[1] P. Koopman et al, "Comparing Operating Systems Using
Robust Benchmarks", Proceedings of the 16th Symposium on
Reliable Distributed Systems, pp. 72-79, Oct. 1997.

[2] H. Madeira and P. Koopman, “Dependability
Benchmarking: making choices in an n-dimensional problem
space.” Proceedings of the first workshop on Evaluating and
Architecting System Dependability, July, 2001.

[3] D. P. Siewiorek et al, "Development of a Benchmark to
Measure System Robustness", Proceedings of the 1993
International Symposium on Fault-Tolerant Computing, pp.
88-97, June 1993.

[4] Standard Performance Evaluation Corporation, http:
// www.spec.org / , Current.

[5] Transaction Processing Council, http:// www.tpc.org /,
Current.

[6]. T. Tsai et al, "An Approach Towards Benchmarking of
Fault Tolerant Commercial Systems", Proceedings of the 1996
Symposium on Fault-Tolerant Computing, pp. 314-323, June
1996.

[7] J. Zhu et al, "R-Cubed: Rate, Robustness and Recovery - An
Availability Benchmark Framework". To appear in Technical
Report Series, Sun Microsystems Inc.

Faultload Representativeness for Dependability Benchmarking

1

 As shown by Figure 1, s
system
be

M
i
d
d
l
e
w
a
r
e

K
e
r
n
e
l

-
d
e
v
i
c
e

L
o
g
i
c

R
T
L

A
l
g
o
r
i
t
h
m
i
c

A
p
p
l
i
c
a
t
i
o
n

O
p
e
r
a
t
i
o
n

X

X

X
X

X: reference fault locations — O: Observation locations
Figure 1: Target system levels and fault pathology

dr2

do1

do2

M
i
d
d
l
e
w
a
r
e

K
e
r
n
e
l

-
d
e
v
i
c
e

L
o
g
i
c

R
T
L

A
l
g
o
r
i
t
h
m
i
c

A
p
p
l
i
c
a
t
i
o
n

O
p
e
r
a
t
i
o
n

X

dr1

Injected
Fault

X

X

•

Figure 2: Reference fault and observation distances

í

[12] D. Powell, E. Martins, J. Arlat, Y. Crouzet, “Estimators for
Fault Tolerance Coverage Evaluation”, IEEE Trans. on
Computers, vol. 44, no. 2, pp. 261-274, 1995.

What’s Wrong With Fault Injection As A Benchmarking Tool?

Abstract

This paper attempts to solidify the technical issues
involved in the long-standing debate about the
representativeness of fault injection as a tool for measuring
the dependability of general-purpose software systems.
While direct fault injection seems appropriate for
evaluating fault tolerant computers, most current software
systems are not designed in a way that makes injection of
faults directly into a module under test relevant for
dependability benchmarking. Approaches that seem more
likely to create representative faults are ones that induce
exceptional operating conditions external to a module
under test in terms of exceptional system state, exceptional
parameters/return values at an API, failed system
components, or exceptional human interface inputs.

1. Introduction

Fault injection has long been used as a way to evaluate

the robustness of computer systems. Traditional fault in-

jection techniques involve perturbing or corrupting a com-

puter’s memory or operating elements to create a fault.

Mechanisms to inject faults include heavy-ion radiation,

probes that inject electrical signals into hardware circuits,

mutation of programs, and software probes that corrupt sys-

tem state as programs are being executed. These tech-

niques are widely considered useful in evaluating a

system’s response to a hardware fault such as a radia-

tion-induced bit value inversion or a “stuck-at” fault. They

also can be effective at exercising various fault handling

mechanisms, both software and hardware.

While previous generation system dependability was of-

ten dominated by hardware faults, in the vast majority of

modern computer systems it is widely believed that soft-

ware problems are a more frequent cause of system-level

failures. Thus, attempts to measure and improve overall

system dependability are in need of a way to measure soft-

ware dependability. Over time, fault injection has come to

be used as a controversial technique for assessing software

fault tolerance and system-level dependability.

It is arguably the case that the question of representative-

ness is the single biggest open issue in fault injection today.

Fault injection, especially software-based fault injection, is

a reasonably convenient and effective way to evaluate sys-

tems. However, it is not always clear what fault injection

results mean for fielded systems. Proposing the use of fault

injection to benchmark system dependability typically trig-

gers vigorous debate, often with polarized viewpoints.

This paper seeks to identify a possible source of the large

gap between opposing views in the debate on fault injection

representativeness as well as place into perspective some of

the strengths and weaknesses of fault injection approaches.

While this paper presents opinions rather than scientific

facts, it is based on experiences from extensive interactions

with industry and the technical community as part of the

Ballista robustness testing project as well as two years as

co-chair of the IFIP 10.4 WG SIG on Dependability

Benchmarking.

This paper has been written to start a discussion rather

than end one. None of the issues discussed below are really

quite as black and white as they are portrayed to be. In par-

ticular, any tool that affords a different view of a system for

analysis brings with it some benefits. However, the dispar-

ity between benefits claimed by some fault injection propo-

nents versus the lack of value perceived by some fault

injection opponents suggests that a clear and precise articu-

lation of issues would help focus the debate. It is our hope

that this paper will put future discussions on this topic on a

more solid technical foundation.

2. Fault injection as a fault tolerant comput-
ing evaluation tool

Oneway to understand fault injection is to hypothesize a

system that would be sure to detect and recover from all

possible fault injection experiments (i.e., one that would be

perfect if evaluated using fault injection, although of course

in practice such perfection is not attainable). We assume

the classical situation in which faults are only injected

within the boundaries of a software module under test

(other situations are discussed Section 5). Thus, a software

fault injection experiment consists of injecting a fault into

the data or program of a module and evaluating whether the

Philip Koopman
ECE Department & ICES
Carnegie Mellon University

Pittsburgh, PA, USA
koopman@cmu.edu

result matches that of a so-called golden run of an uncor-

rupted copy of that same module. Compared to traditional

software testing techniques, this method of evaluation has

the distinct virtues of being relatively inexpensive to de-

velop and execute, as well as requiring minimal informa-

tion about the software being tested.

A software module which would be completely invul-

nerable to such injected faults would have to incorporate

exception handlers and acceptance tests. Exception han-

dlers would catch and convert any possible exceptions gen-

erated by an injected fault into a clean error return operation

followed by a subsequent recovery operation. Because ar-

bitrary changes can be made to a module under test by fault

injection, exceptions generated can potentially include

those from illegal instructions, memory protection viola-

tions, and other activations of machine checks. However,

not all program state corruptions result in exceptions.

Thus, acceptance tests would also be required in order to

catch and recover from any possible incorrect (but non-ex-

ceptional) result due to program or data mutation.

The above description of an idealized system should

help explain why fault injection is historically popular in

the fault tolerant computing community. A system that can

withstand an arbitrary fault can be said to be dependable

without concern for the specifics of the situation it is being

used in. Systems that employ fault tolerant techniques of-

ten have hardware support that tends to detect or correct in-

jected faults, as well as software that is designed for

recoverability after failure and for self-checking of compu-

tational results. Note that the requirement for an accep-

tance test that can detect an arbitrary fault can be difficult to

meet, and often leads to multi-version software design and

other expensive implementation techniques that can be jus-

tified only for the most critical systems.

Perhaps surprisingly, the widely used technique of input

value validity checking is not sufficient to assured depend-

ability against arbitrary fault injections. In the common

case, an injected fault can be expected to create an excep-

tion or incorrect value after a module performs validity

checking on input values. Thus, software would have to be

able to handle arbitrary corruptions of data values even if

they had previously passed input validity tests. Adding in-

put value tests can help strengthen a weak system by adding

indirect acceptance tests so that one module’s output gets

tested as it becomes the next module’s input. But, it does

not seem that a fully robust system can rely upon them ex-

clusively.

Put another way, all exceptions that can be generated by

hardware in any circumstance must be handled, even ones

that appear to be impossible based on the software design.

For example, a null pointer check might be changed by an

injected fault into an instruction that corrupts a pointer in-

stead of ensuring it is valid – there is no assurance that input

validity checks will suffice.

The issue of what happens when exception handlers or

acceptance tests are themselves corrupted is of course rele-

vant. One can argue that the chance of a value being

changed after its validity check is larger than the chance

that an arbitrary fault will result in both a corrupted value

and the propagation that value past an acceptance test. But

regardless of that argument, it is clear that validity checks

alone do not suffice to ensure dependability for an arbitrary

fault model.

Although it is still an open question whether direct injec-

tion of arbitrary faults leads to representative results with

regard to software dependability evaluation, systems built

to withstand arbitrary fault injections successfully can

clearly endure very difficult operating conditions. And in

fact these are the kind of systems that the fault tolerant com-

puting community has long dealt with. While it is impossi-

ble to be perfectly robust under every conceivable set of

concurrently injected faults, systems that perform well dur-

ing a fault injection campaign truly deserve to be called ro-

bust, but are likely to achieve this result at significant

expense.

The controversial question of concern is: should we

measure all systems by their response to arbitrarily injected

faults? Or, for that matter, is it appropriate to compare any

systems by such a standard?

3. Everyday, but mission-critical, software

In most computing, even many mission-critical comput-

ing applications, the expense of creating and operating a

completely fault tolerant computing system can be too

high. Thus, optimizations are employed to reduce develop-

ment and run-time costs. While programs employing these

optimizations can at times be less dependable than more

traditional fault-tolerant software systems, there is no es-

sential reason why this need be the case for the types of

faults actually encountered in everyday operation.

First and foremost, general purpose computing assumes

that hardware faults are rare, are detected by hardware

mechanisms, and need not be dealt with by application soft-

ware. This is by and large a reasonable set of assumptions.

In current systems, system crashes and problems created by

software failures seem to outnumber hardware failures by a

large margin. Furthermore, well known and affordable

hardware techniques such as using error detection coding

on memory and buses are available to reduce the chance of

undetected hardware faults and, if desired, provide auto-

matic recovery from likely hardware faults. (Whether cus-

tomers decide to actually pay for hardware reliability

features is in fact an issue, but arguably one that won’t be

resolved by creating even more hardware or software reli-

ability mechanisms that have non-zero cost to implement or

execute.) Mainframe computers have provided very reli-

able hardware for many years – thus the capability to pro-

vide effectively failure-free hardware environments is

more a matter of economy than practicability.

Given that application software can consider hardware

to be failure-free for practical purposes, significant and im-

portant optimizations can be employed to simplify software

and speed up execution. The general idea behind these

optimizations is to avoid repeating validity checks and

avoid providing unnecessary exception handlers.

Given failure-free hardware, validity checks need only

be computed once for any particular value. As a simple ex-

ample, if a memory pointer must be validated before it is

dereferenced, it suffices to check pointer validity only once

upon entry to a module (and after pointer updates) rather

than every time that pointer is dereferenced. Many such

checks can be optimized using the general technique of

common subexpression elimination. (Compilers might

well perform this optimization even if checks are explicitly

included before each pointer use in source code.) Further-

more, if a set of related modules is designed to be used to-

gether, such checks can be optimized across module

boundaries and only invoked at external entry points into

the set of modules. Similarly, if exception handlers are pre-

ferred to data validity checks, these need only be provided

at external software interfaces.

Of course it is well known that data validity checks used

in practice are typically imperfect and could easily be im-

proved in many systems. However, the important point for

present purposes is that this is the preferred approach to at-

taining robustness in such systems, and that most such sys-

tems typically have at least some validity checks of this

nature in place. For example, in mission-critical software

systems, it is common practice to add additional “wrap-

pers” to perform validity checks at strategic places in the

system, such as before every call to the operating system.

An additional situation that can be considered an optimi-

zation is that acceptance tests used at the end of module ex-

ecution are often omitted or reduced to rudimentary form.

Instead, what is supposed to happen is that correctness

checks are moved from run time to development time, and

take the form of software testing suites and compiler analy-

sis to ensure software conformance to specifications.

Given the assumption of no hardware failures, this is a rea-

sonable way to reduce fielded software size and execution

time while ensuring correct operation. It is of course recog-

nized that test suites are generally imperfect; however this

does not change the fact that this is the prevalent approach

in ordinary software systems. Even in systems with rigor-

ously defined exception-handling interfaces, it is com-

monly the case that only exceptions that are expected to be

generated are supported, documented, and tested. Excep-

tions that are impossible to generate, based on analysis of

source code and a failure-free hardware assumption, are

usually not handled gracefully since doing so would be

seen as a waste of development resources within a finite

budget of time and money.

Now let us say that a software module developed ac-

cording to the above implementation philosophy is sub-

jected to fault injection as a way to exercise the system in an

attempt to find software dependability problems. The im-

portant question for this case is how to interpret a failure

that is created by a fault injected into the code or data spaces

of a module under test. There are twomain cases of interest

to consider based on the fault injection outcome.

(1) The injected fault produces a valid, but incorrect,

intermediate result that propagates to the output. If there

are no correctness defects in the module under test, this can

only correspond to incorrect data being presented at the ex-

ternal inputs of the module. That situation does not corre-

spond to a defect of any kind in the module under test

because the program that was actually written does not pro-

duce the same output as the fault-injected output for that

particular system state and set of input conditions, and is

therefore not representative of expected failures. Saying

that an ordinary software module is defective because it

gives a different answer when processing internally cor-

rupted data (or executing arbitrarily modified instructions)

than when processing uncorrupted data is, in the general

case, unreasonable.

Adifferent argument that is sometimes made is that such

a situation represents a hypothesized fault (similar in intent

to the concept of “bebugging” via source code mutation in

the software testing community). In this case such a fault

can only be argued to be useful in evaluating the effective-

ness of the test suite. But even then interpretation of results

must be made carefully if tests have been designed in a

“white box”manner, taking into account the structure of the

module being tested. It might not be reasonable to criticize

a test suite for failing to find a defect in a program that has

been mutated to have a different structure or functionality

than the one the tests were designed for. In other words, the

concept of optimization can and does extend to designing

tests that are only relevant for the software that has been

specified in light of reasonable and common defects. Fur-

thermore, this use of fault injection requires availability of a

test suite, which is seldom the situation encountered when

fault injection is used as a dependability metric.

(2) The injected faults produce an inappropriate ex-

ception or crash. In this case determining the correctness

of module functionality is simplified by applying a default

specification that the module should not produce an undoc-

umented (or unrecoverable) exception and should not crash

or hang. These sorts of module failures can be legitimately

called robustness failures, which reduce software depend-

ability, but only if they could plausibly happen during the

execution of a real application program.

Consider a pointer validity check to illustrate the issue of

representativeness in this situation. Aprogrammight check

a pointer passed as an input parameter at the beginning of a

module, and then dereference it many times during execu-

tion without altering its value. Given that hardware faults

are not under consideration, that program can never suffer a

memory protection violation by dereferencing that pointer.

However, a fault injection campaign might well create an

invalid pointer and a subsequent exception or crash. It is

difficult to claim that this result measures software depend-

ability, because it could never happen during production

use. Evenmore importantly, it is unreasonable to claim that

it is representative of a hypothesized software robustness

defect, because in fact this is a case in which the software

was specifically designed to be robust to the very type of

fault that was injected!

To further illustrate the problem with representativeness

in this case, consider a situation in which a null pointer

check has been omitted from a piece of off-the-shelf soft-

ware available only in executable form. The traditional so-

lution to cure robustness failures of this type would be to

add an external wrapper to the module that checks for

pointer validity. Adding that wrapper makes the software

robust to null pointer inputs. But, this wrapped module

would still suffer an exception in response to a fault injec-

tion that creates a null pointer after the wrapper performs its

check. Thus not only would robust software appear to have

robustness failures under a fault injection experiment, but

hardened software would similarly appear to be non-robust.

Software that performs acceptance tests might tend to

appear more robust under fault injection than software that

just performs input validity checks. This is because any in-

jected faults that are activated during the execution of a

module would, theoretically, be detected and handled by an

acceptance test. However, optimizations would still intro-

duce vulnerabilities to fault injection, such as not imple-

menting exception handlers for exceptions that are

impossible in fault-free hardware operation. For an invalid

pointer example, there is no reasonable basis for incurring

the cost of memory address exception handlers if all point-

ers are known to be valid based on previous validity checks.

Thus, direct fault injection experiments are not suitable

for general-purpose software robustness benchmarking.

They are unlikely to show an improvement in robustness

when proven techniques are used to improve software ro-

bustness via filtering out invalid or exceptional input val-

ues. While it could then be claimed that fault injection

would alternately test whether all possible exceptions were

caught by a module, this approach has a similar problem in

that fault injection is likely to generate exceptions that can’t

possibly happen in real program runs. Furthermore, even

adding exception handlers will not necessarily catch in-

jected faults that generate unexpected exceptions or, worse,

disable or subvert the exception handler itself.

4. The importance of realistic fault activation

The key problem with using direct fault injection on a

software module is that doing so does not take into account

whether the injected fault can be activated by inputs during

real execution, and similarly whether it can slip by any

available exception handler. Mainstream software devel-

opment, even for critical systems, traditionally achieves ro-

bust operation in large part by restricting the ability of

exceptional values to activate potential fault sites via a set

of input validity checks. It then seeks to handle only those

exceptions that can actually be encountered (i.e., ones for

which input checks are not implemented or cannot provide

complete coverage) to minimize software complexity.

Of course most software is certainly not perfect. Not all

values are checked before being used. Not all exceptions

that can be generated are handled gracefully. However, it

appears that fault injection has trouble distinguishing

whether a general purpose software module (as opposed to

a specially created fault tolerant software module) would in

fact be operationally robust.

To use an analogy to the problem under consideration,

consider the task of making a camping tent absolutely dark,

with no light entering whatsoever, perhaps for the purpose

of photographic film processing. A single layer of black

plastic sheetingmight suffice for this task, but might also be

imperfect or develop holes while in use. A fault tolerant

computing analogy might well involve using multiple lay-

ers of plastic sheeting to reduce the probability of aligned

multi-layer holes. Fault injection would then involve putt-

ing a few small holes in individual layers to ensure that light

still did not penetrate, simulating the process of holes ap-

pearing due to wear and tear during use.

By the same analogy, a fault injection technique applied

to a cost-sensitive situation would be to prick holes in a sin-

gle layer plastic tent and assert that light indeed penetrated

into the tent when a hole was made (assume that after each

such hole is evaluated it is automatically patched). Further-

more, fault injection might prick and illuminate holes in

portions of the tent which were not exposed to light in the

first place such as plastic buried under dirt at the edges of

the tent. (A more extreme version of fault injection would

be to shine a flashlight inside the tent and assert that light

had entered; but an expected response in that case would be

to eject the person holding the flashlight!)

While pricking holes in a single-layered plastic tent in-

deed serves to illustrate the vulnerability of using a single

layer of plastic, one should not be surprised that owners of

such a tent don’t see much value in a fault injection exer-

cise. Amore effective approach for their situation would be

to create ways to identify existing holes so they could be

patched, perhaps by entering the tent and patching places

where light leaked in, analogous to installing software

wrappers to improve dependability. Thus, the core prob-

lems of a fault-injection based approach in this analogy of

an optimized, cost-sensitive system are (1) identifying de-

fects that aren’t in the system as it is actually implemented,

and (2) creating false alarms to such a degree that effort is

arguably better spent on other activities. Saying that opti-

mizing systems for cost can lead to less robust systems is of

course a valid point, but does not change the fact that most

purchasers demand optimized systems; insisting that no

such systems be implemented is simply unrealistic.

The key problem is one of whether activation of a given

potential fault could actually occur in a real system under

real operating conditions, or if it can occur, whether it takes

place under a condition that the designers of the system feel

justified in ignoring. Direct fault injection creates situa-

tions that might be impossible to achieve in real execution,

by for example creating an exceptional value just after a va-

lidity check. Without a measure of whether activation of an

injected fault is possible in a real system, it is difficult to use

the results of direct fault injection for everyday software.

For this reason, direct fault injection is ultimately no substi-

tute for a good development and test process. It can, how-

ever, help in designing a module to tolerate design faults

contained in other modules and its execution environment

as discussed in the next section.

5. Representative uses of fault injection

Given the above discussion, it would be a mistake to

conclude fault injection is of no use in evaluating the de-

pendability of mainstream software. The real issue is using

fault injection in a manner appropriate to the relevant as-

sumptions and development model for any particular sys-

tem under consideration. For systems designed to tolerate

generalized failures as described in Section 2, fault injec-

tion seems like a useful tool to use in overall system evalua-

tion. But lack of tolerance for directly injected faults does

not demonstrate software undependability; it merely fails

to make a case for software being dependable in the face of

arbitrary runtime faults.

Some of the ways in which fault injection can be helpful

are listed below. Note that these techniques avoid injecting

faults directly into the module under test, but rather inject

faults into external interfaces or the surrounding environ-

ment. Thus all such approaches have the virtue of being

non-invasive with respect to the actual execution of the

module under test and thus present a fault model that does

not assume a particular approach is used within a module

for providing dependable operation.

• Callee interface fault injection. Faults can be injected

into the inputs of a module to check for

out-of-specification responses. The presumption here is

that some external software defect exists that feeds an

exceptional value (one that is invalid rather than merely

incorrect) to the module under test. This approach is

only representative to the degree that injected faults

could really happen in operation. It tends to be most

useful for very widely used application programming

interfaces (APIs) for which all uses cannot possibly be

foreseen, as well as for faults injected that are common

results of programming errors (e.g., submitting a null

value as a pointer parameter to a procedure call). A

variation on this theme is testing for security

vulnerabilities such as buffer overflow vulnerabilities.

• Caller interface fault injection. Faults can be injected

in values returned to the module under test from other

software that it calls via external calling interfaces.

Representativeness in this situation can be tricky to

determine if the module is only destined to run on one

version of supporting software if that software cannot

actually generate the faults used for testing. However,

the utility of this approach increases if the module under

test must be portable or the underlying software can be

expected to be upgraded or revised over time.

• Forced resource exhaustion and environmental

exceptions. Exceptional conditions such as having no

allocable memory or a full hard disk can stress a

software module under test in terms of its ability to

process exceptions. This can be seen as a special case of

fault injection into the external caller interface as just

described, but is in general an important case to cover.

• Failure of cooperating processes, tasks, and computers

in a distributed system.

• Configuration, maintenance, and other failures in the

supporting infrastructure and execution environment,

including failed hardware components such as disk

drives, missing or incorrectly configured software

supporting the execution of a module under test, and

even installation of incompatible versions of software.

• User interface failures, in which users create

exceptional inputs or operational situations.

The above approaches are all relevant to some degree to

both fault tolerant software systems as well as general-pur-

pose, optimized software systems because they deal with

factors outside the control of designers performing soft-

ware module optimization.

6. Conclusions

Direct injection of faults into a software module can pro-

vide evidence of software dependability. Certainly any

piece of software that can tolerate a large fraction of possi-

ble arbitrary changes to its operation and still provide cor-

rect answers is dependable, and is likely to provide

extensive exception handling capabilities to provide that

dependability. However, this does not make such fault in-

jection suitable as a benchmarking technique in general, be-

cause much software is not designed to withstand fault

injection, but rather is optimized assuming correct hard-

ware operation.

Using direct fault injection as a dependability bench-

mark commits the logical fallacy of “denying the anteced-

ent” (this fallacy is an argument of the form: “If A then B;

Not A, thus not B”). In this instance the specific logical fal-

lacy would be: “if software performs well under fault injec-

tion then it is dependable; a particular piece of software

performs poorly on a fault injection test, thus it is not de-

pendable.” Because much software is optimized in ways

that preserve dependability for the expected case of fail-

ure-free hardware, one cannot conclude that software that

does poorly at direct fault injection is undependable. The

most that can be inferred is that the results provide sugges-

tive evidence that software does not use exception handling

as its primary means of providing dependability (but even

that statement assumes that injected faults did not affect ex-

ception handling itself).

It is possible that the controversy over fault injection

continues because of disparate world-views of how robust

software should be created. For systems that must achieve

comprehensive fault tolerant operation, including with-

standing hardware faults, injecting faults directly into a

module under test can yield insight into operation in the

face of equipment faults. Traditional fault tolerant soft-

ware, and in particular software that has comprehensive ac-

ceptance test support and exception handling, might be

evaluated using fault injection techniques. The ability to

demonstrate how such injected faults correspond to mea-

surements of software defects rather than hardware defects

is still a research topic. But, the arbitrary nature of injected

faults that are permitted to activate at the software level

rather than being compensated for by hardware mecha-

nisms can be argued to provide a substantial exercise of the

software fault tolerance designed into a system.

General-purpose software tends to be optimized to elim-

inate redundant validity checks and superfluous exception

handlers under the assumption that hardware faults are both

rare and detected without the involvement of application

software. This means that a fault that is injected might well

result in a failure that is not representative of the particular

software module under test (i.e., the injected fault might

create an exceptional value at a point in a computation

where such a value would have already been caught by va-

lidity checks). Direct fault injection experiments on gen-

eral-purpose software tend to underestimate the degree of

operational robustness available, and in particular are

poorly suited to measuring the improvement of robustness

afforded by adding input value checks to software inter-

faces via code modification or addition of robustness wrap-

pers. Thus, fault injection results in this case distinguish

which approach was used to ensure software dependability

(validity checks versus exception handling) rather than

solely whether the software is in fact dependable.

For systems in which hardware is presumed to have

enough built-in capabilities to offer fault-free operation for

practical purposes, direct fault injection seems to offer little

evaluative benefit in the absence of an accurate fault activa-

tion analysis. But, fault injection into the surrounding envi-

ronment seems attractive as a way to characterize

exceptional condition response. It is important in every

such experiment to clearly state several things for the re-

sults to be meaningful: the fault hypothesis being evalu-

ated, the correspondence between the faults being injected

versus that fault hypothesis, and the assumptions being

made about the structure of software being evaluated. And

finally, it is important to avoid confusing the ability of fault

injection to demonstrate robustness with the fact that lack

of such a demonstration does not prove that software is

non-robust within reasonable operating environments.

7. Acknowledgments

The reader will note a lack of scholarly references in this

paper. The important parts of the relevant discussions have

taken place in meetings and e-mails over a period of years,

and thus are impractical to cite or even attribute. Citing

only scholarly publications as sources of various current

and historical ideas would overlook that many of these

ideas circulated long before they were published or aren’t

formally published, and would likely provoke a variety of

divisive responses from authors who object to our interpre-

tation of their work. Thus we simply assume that the reader

is familiar with fault injection as a general technique, and

we acknowledge that none of the technical ideas in this pa-

per are new; we simply summarize experiences and possi-

bly present them in a new light.

Discussions with the members of the IFIPWG 10.4 SIG

on Dependability Benchmarking and in particular with

Henrique Madeira have been invaluable in forming the

thoughts presented in this paper. This paper is, however,

solely the opinion of the author. This material is based

upon work supported in part by DARPA and US Army Re-

search Office under Award No. C-DAAD19 01-1-0646,

and the High Dependability Computing Program from

NASA Ames cooperative agreement NCC-2-1298. Any

opinions, findings, and conclusions or recommendations

expressed in this publication are those of the author and do

not necessarily reflect the view of the sponsoring agencies.

	Front Cover
	Introduction
	Table of Contents
	F-1 Wilson
	F-7 Kanoun
	F-9 Brown
	F-15 Raz
	F-17 Cukier
	F-19 Rus
	F-21 Bigrigg
	F-25 Boehm
	F-27 Zhu
	F-29 Arlat
	F-31 Koopman

	PAGE:
	page F-1: F-1
	page F-2: F-2
	page F-3: F-3
	page F-4: F-4
	page F-5: F-5
	page F-6: F-6
	page F-7: F-7
	page F-8: F-8
	page F-9: F-9
	page F-10: F-10
	page F-11: F-11
	page F-12: F-12
	page F-13: F-13
	page F-14: F-14
	page F-15: F-15
	page F-16: F-16
	page F-17: F-17
	page F-18: F-18
	page F-19: F-19
	page F-20: F-20
	page F-21: F-21
	page F-22: F-22
	page F-23: F-23
	page F-24: F-24
	page F-25: F-25
	page F-26: F-26
	page F-27: F-27
	page F-28: F-28
	page F-29: F-29
	page F-30: F-30
	page F-31: F-31
	page F-32: F-32
	page F-33: F-33
	page F-34: F-34
	page F-35: F-35
	page F-36: F-36

