
 

1. Introduction 
 
Assessing the quality of service of a computer system is 

a difficult task. A lot of work has been conducted on evaluat-
ing quality of service attributes like performance, robustness, 
and dependability. Two approaches used for evaluating per-
formance and robustness are modeling and benchmarking. 
For evaluating dependability, modeling can be used either 
alone or combined with fault injection [Sie92, Kan91]. How-
ever, less work has been conducted on building dependabil-
ity benchmarks. A dependability benchmark can be defined 
as “a way to evaluate the behavior of components and com-
puter systems in the presence of upsets, allowing the quanti-
fication of dependability attributes or the characterization of 
the systems into well defined dependability classes” 
[Mad01]. 

This paper focuses on the quantification part of the defi-
nition. The goal of this paper is to propose the use of Bayes-
ian estimation methods for quantifying dependability attrib-
utes. We first will give a brief overview of two estimation 
Schools in Section 2. We will then illustrate our proposal by 
focusing on a key parameter for fault-tolerant systems, the 
coverage factor. We will introduce the coverage factor in 
Section 3 and present coverage factor estimations in Section 
4. 

 

2. How does the Bayesian theory differ from the 
frequentist theory? 

 
The frequentist School and the Bayesian School are two 

important estimation branches in statistics. We now briefly 
compare the applicability of the two theories. After having 
conducted some experiments, there are different ways for 
processing the obtained results in order to get an estimation. 

An estimation obtained using the frequentist theory is 
based only on the results collected during the experiments. 
The distribution associated with the experiment is often in-
troduced in order to obtain more accurate estimations. 

When applying the Bayesian theory, an estimation is 
based on the results collected during the experiments and a 
prior knowledge of the estimation. This prior knowledge 
could be based on previous experimental results or on expert 
knowledge. As for the frequentist case, a distribution is often 
associated with the experiment. In the Bayesian case, another 
distribution is introduced to include the prior knowledge, 
called a prior distribution. The combination of these two 
distributions leads to the posterior distribution. The poste-
rior distribution is then used to calculate the estimation. 

This combination of two sources of information often has 
the advantage that, if the experimental results confirm the 
prior knowledge, a smaller number of experimental results 
compared to the frequentist approach will be needed to ob-
tain the same estimation. 

One of the purposes of a benchmark is to obtain an esti-
mation without having to gather too many experimental re-
sults. However, in that case, the estimation might then not be 
very accurate. The use of Bayesian methods might increase 
the accuracy since, besides experimental results, a prior 
knowledge is also used to calculate an estimation. The fol-
lowing sections will present some examples showing the ad-
vantages of the Bayesian method for an important parameter 
of fault-tolerant systems: the coverage factor. 

 

3. Coverage factor 
 
Let us first formally define the coverage factor. The reac-

tion of a fault-tolerant system will depend on two different 
inputs: the inserted upsets and the submitted workload. The 
upsets are the inputs specific to the fault tolerance mecha-
nisms. The workload represents the environment. The overall 
input space of a fault-tolerant system is then the Cartesian 
product WUG ×= , where U is the upset space and W is the 
workload space. Let us define H as a variable characterizing 
the handling of a particular upset. The coverage (factor) of a 
fault-tolerant system can then be defined as: 

{ }GgHc ∈== 1Pr  
i.e., the conditional probability of correct upset handling, 
given the occurrence of an upset/workload pair g. 

 

4. Frequentist and Bayesian estimations  
 
From now, we assume a representative sample, i.e., where 

the selection probability is  equal to the relative probability of 
the occurrence of a given upset/workload pair.  

Since fault-tolerant systems will, most of the time, cor-
rectly handle an upset, we will focus on the non-coverage as 
a measure ( cc −= 1 ), and more specifically on the upper 
confidence limit of the non-coverage. Since the number of 
upsets not correctly handled follows a binomial distribution 
with parameters n (number of inserted upsets) and c  (non-
coverage), the 100γ upper confidence limit is given by: 

• Frequentist theory: 
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• Bayesian theory: 
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where n is the number of inserted upsets, x is the number of 
upsets incorrectly handled, γ is the confidence level, and 

γυν ,2,1F  is 100γ percentile points of an F distribution with 
2,1υυ  degrees of freedom [Joh69, p.59]. Moreover, in the 

Bayesian case, we have selected a prior distribution follow-
ing a beta distribution with parameters l and k : beta(k , l). The 
reasons for this choice are: first, that one special type of a 
beta distribution is the uniform distribution (when k=l=1), 
which effectively expresses the fact that there is no prior 
knowledge, and second, that since the experiment follows a 
binomial distribution, the posterior distribution will also be a 
binomial distribution with parameters x+k  and n-x+l: 
beta(x+k , n-x+l). 

Let us now compare the estimations obtained with the 
frequentist approach with the ones from the Bayesian. We 
will consider three prior distributions: the uniform distribu-
tion (k=l=1) where no assumption is made on the fault-
tolerant system behavior, a distribution with a slight confi-
dence that the fault tolerance system will behave correctly 
(k=1, l=3), and a distribution with a very high confidence that 
the system will correctly handle upsets (k=1, l=100). The 
density function ( ( )zfZ ) for these three prior distributions 
with a beta(1, 2) for completeness are shown on  
Figure 1. 

 
Figure 1 Prior distribution density functions 

 
Since fault-tolerant systems will correctly handle most of 

the upsets, we will compare the frequentist and Bayesian es-
timations when 0 or 1 upset is not correctly handled. We 
compare these estimations when 10, 100 and 1000 upsets are 
inserted. The obtained estimations are shown in Table 1. 

From the table, we observe that the confidence limit is 
smaller when using the Bayesian approach, leading to a 
smaller confidence interval and thus a more accurate estima-
tion. When applying a prior distribution with high confi-
dence in the correct upset handling, the obtained estimations 
become more accurate. The reason is that the small number 
of incorrectly handled upsets (0 or1) is in accordance with 
the prior knowledge that almost no upset will be incorrectly 
handled. An important observation is that for a small number 
of inserted upsets, an order of magnitude might be gained in 

the estimation accuracy when using the Bayesian approach 
and a strong confidence of upsets being correctly handled 
by the system. 

 
Up-
sets 

Incor. Bayesian 

N X 

Frequentist 

k=1, 
l=1 

k=1, 
l=3 

k=1, 
l=100 

0 0.369 0.342 0.298 0.0410 10 
1 0.504 0.470 0.413 0.0588 
0 0.0450 0.0446 0.0437 0.0227 100 
1 0.0645 0.0639 0.0627 0.0327 
0 0.00459 0.00459 0.00458 0.00418 1000 
1 0.00662 0.00661 0.00660 0.00602 

 

Table 1 Comparison of frequentist and  
Bayesian estimations 

 

5. Conclusion 
 
We have shown in this paper that Bayesian theory might 

be worth considering when quantifying dependability attrib-
utes. We have illustrated the relevance of the Bayesian the-
ory by presenting a simple example: the estimation of the 
coverage factor of a fault-tolerant system. 
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