Why Things Break --With Examples From Autonomous Vehicles

Phil Koopman Department of Electrical & Computer Engineering & Institute for Complex Engineered Systems (based, in part, on material from Dan Siewiorek)

Outline

- Why aerospace approaches don't work on automobiles
- How and why things break
- Designing systems for failure detection & recovery
 - Practical limits of fault tolerant design
 - Environment & other sources of problems
 - How to (and not to) design a highly available system
- Conclusions

Why Not Build Cars Like Aircraft?

- We all "know" that flying is safer than driving
 (This is only true from a certain point of view...)
- So, use commercial aircraft techniques to build automated vehicles
 - Computer-controlled navigation & tactical maneuvers
 - Redundant hardware
 - High-quality design and components
 - Highly trained professional operators (oops...)

Automotive vs. Aviation Safety

R RV

	U.S. Automobiles	U.S. Commercial Aircraft
Deployed Units	~100,000,000	~10,000
Operating hours/year	~30,000 Million	~55 Million
Cost per vehicle	~\$20,000	~\$65 Million
Mortalities/year	42,000	~350
Accidents/year	21 Million	170
Mortalities / Million Hours	0.71	6.4
Operator Training	Low	High
Redundancy Levels	Brakes only	All flight-critical systems

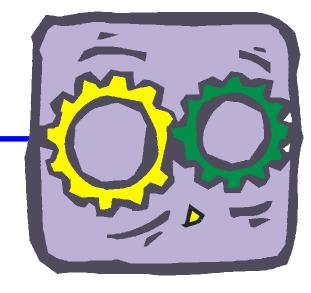
Why Aerospace Approaches Will Fail

- Too expensive
 - Component "Pain threshold" for vehicles is at the \$.05 level
- Different operating environment/reaction time
- Difficult to enforce maintenance
 - People run out of gas & engine oil; ignore "idiot lights"
 - Aircraft don't leave gate if something is broken
 - End-of-life wearout -- old vehicles stay on the road
- Poorly trained operators
 - Yearly driver exam with road test?
 - Required simulator time for accident response?

Definitions

- RELIABILITY -- Aviation model
 - Survival probability for given "mission time"
 - Good when repair is difficult
- AVAILABILITY -- Automotive model
 - The fraction of time a system meets its specification
 - Good when continuous service is important

DEPENDABILITY


 Generalization: system does the right thing at the right time

Fault Classification

- Duration
 - Transient -- design flaws, environmental factors, etc.
 - Intermittent -- recurring events
 - Permanent -- "hard" failures/replace component --10% effect
- Extent
 - Local (independent)
 - Distributed (related)
- Value
 - Determinate (stuck-at-high or -low)
 - Indeterminate (varying values)

Generic Sources of Faults

- Mechanical -- "wears out"
 - Deterioration: wear, fatigue, corrosion
 - Shock: fractures, stiction, overload
- Electronic Hardware -- "bad fabrication; wears out"
 - Latent manufacturing defects
 - Operating environment: noise, heat, ESD, electro-migration
 - Design defects (Pentium FDIV bug)
- Software -- "bad design"
 - Design defects
 - "Code rot" -- accumulated run-time faults
- People
 - Takes a whole additional page...

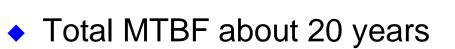
How Often Do Components Break?

 Failure rates often expressed in failures / million operating hours ("Lambda" λ):

Military Microprocessor	0.022
Automotive Microprocessor	0.12 (1987 data)
Electric Motor	2.17
Lead/Acid battery	16.9
Oil Pump	37.3
Human: single operator best case	100 (per Mactions)
Automotive Wiring Harness (luxury)	775
Human: crisis intervention	300,000 (per Mactions)

Errors By Development Phase

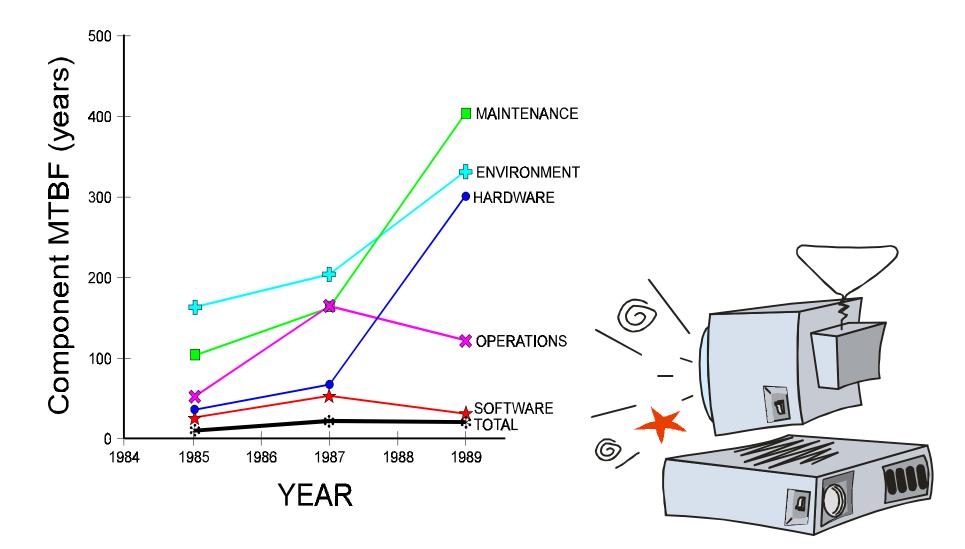
STAGE Specification & design	ERROR SOURCES Algorithm Design Formal Specification	ERROR DETECTION Simulation Consistency checks
Prototype	Algorithm design Wiring & assembly Timing Component Failure	Stimulus/response Testing
Manufacture	Wiring & assembly Component failure	System testing Diagnostics
Installation	Assembly Component failure	System Testing Diagnostics
Field Operation	Component failure Operator errors Environmental factors	Diagnostics

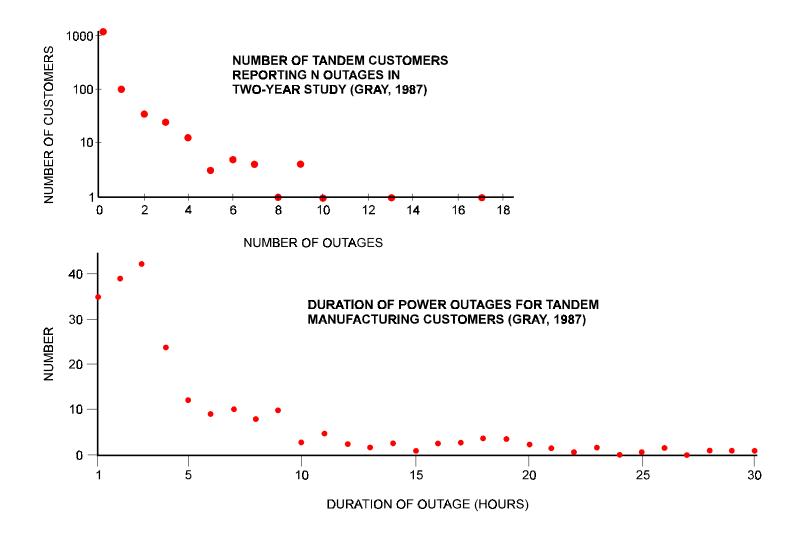

"Mainframe"Outage Sources

	AT&T Switching System	Bellcore Commercial	Japanese Commercial Users	Tandem 1985	Tandem 1987	Northern Telecom	Mainframe Users
Hardware	0.20	0.26	0.75*	0.18	0.19	0.19	0.45
Software	0.15	0.30	0.75*	0.26	0.43	0.19	0.20
Maintenance			0.75*	0.25	0.13		0.05
Operations	0.65	0.44	0.11	0.17	0.13	0.33	0.15
Environment			0.13	0.14	0.12	0.15	0.15
Power						0.13	

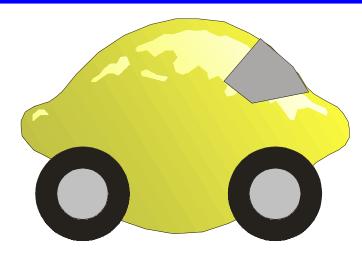
(* the sum of these sources was 0.75)

Tandem Environmental Outages


- Extended Power Loss 80%
- Earthquake 5%
- Flood4%
- Fire 3%
- Lightning 3%
- Halon Activation
 2%
- Air Conditioning 2%


- MTBAoG* about 100 years
 - Roadside equipment will be more exposed than this

* (AoG= "Act Of God")


Tandem Causes of System Failures

Tandem Outages

Lemons Or Just Statistics?

Poisson distributed failures :

$$p(x) = \frac{(\lambda t)^{x}}{x!} e^{-\lambda t}$$
 $x = 0, 1, 2, ...$

Annual failures for	Vehicles failing	Vehicles failing		
100,000,000 vehicles	<u>given 10 year MTBF</u>	given 100 year MTBF		
0	90,483,741	99,004,983		
1	9,048,374	990,050		
2	452,419	4,950		
3	15,081	17		
4	377	0		
5	8	0		
6	0	0		

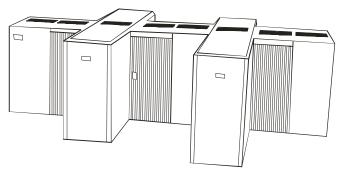
IBM 3090 Fault Tolerance Features

Reliability

- Low intrinsic failure rate technology
- Extensive component burn-in during manufacture
- Dual processor controller that incorporates switchover
- Dual 3370 Direct Access Storage units support switchover
- Multiple consoles for monitoring processor activity and for backup
- LSI Packaging vastly reduces number of circuit connections
- Internal machine power and temperature monitoring
- Chip sparing in memory replaces defective chips automatically

Availability

- Two or tour central processors
- Automatic error detection and correction in central and expanded storage
- Single bit error correction and double bit error detection in central storage
- Double bit error correction and triple bit error detection in expanded storage
- Storage deallocation in 4K-byte increments under system program control
- Ability to vary channels off line in one channel increments
- Instruction retry
- Channel command retry
- Error detection and fault isolation circuits provide improved recovery and serviceability
- Multipath I/O controllers and units


More IBM 3090 Fault Tolerance

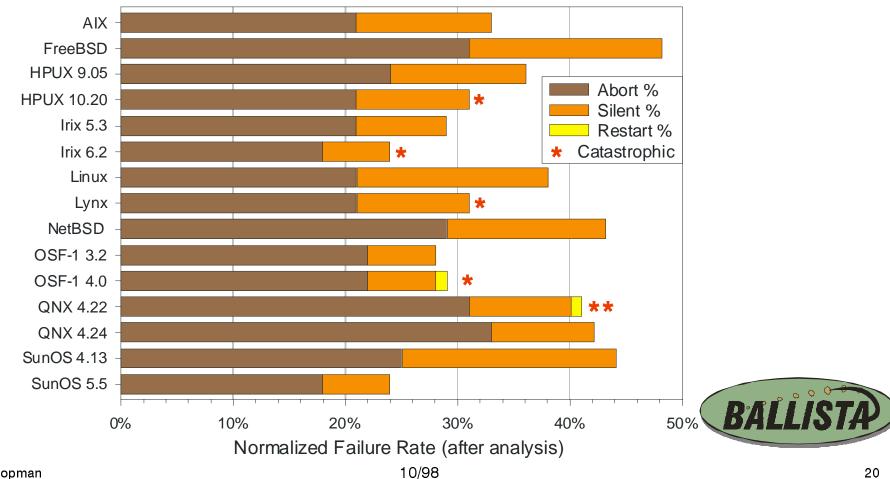
Data Integrity

- Key controlled storage protection (store and fetch)
- Critical address storage protection
- Storage error checking and correction
- Processor cache error handling
- Parity and other internal error checking
- Segment protection (S/370 mode)
- Page protection (S/370 mode)
- Clear reset of registers and main storage
- Automatic Remote Support authorization
- Block multiplexer channel command retry
- Extensive I/O recovery by hardware and control programs

Serviceability

- Automatic fault isolation (analysis routines) concurrent with operation
- Automatic remote support capability auto call to IBM if authorized by customer
- Automatic customer engineer and parts dispatching
- Trade facilities
- Error logout recording
- Microcode update distribution via remote support facilities
- Remote service console capability
- Automatic validation tests after repair
- Customer problem analysis facilities

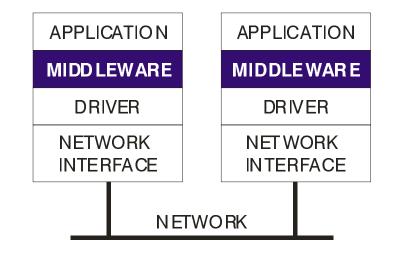
IBM 308X/3090 Detection & Isolation


- Hundreds of Thousands of isolation domains
- 25% of IBM 3090 circuits for testability -- only covers 90% of all errors
- Assumed that only 25% of faults are permanent
 - If less than two weeks between events, assume same intermittent source
 - Call service if 24 errors in 2 hours
- (Tandem also has 90% FRU diagnosis accuracy)

Typical PC Hardware ED/FI

this space intentionally blank

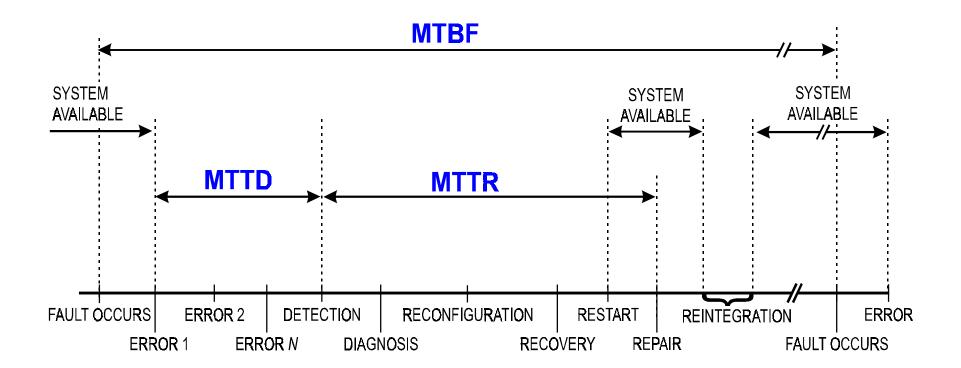
Typical Workstation Software ED/FI


SW Defects are inevitable -- what happens then?

Normalized Failure Rate by Operating System

Network Communication Faults

- Communication networks lose bits all the time
 - 10⁻⁵-10⁻⁶ bit error rate for copper in *workstation* networks
 - 10⁻¹²-10⁻¹⁴ bit error rate for fiber (not including xmit/receive)
- What happens when messages are lost or altered?
 - Messages can be lost frequently
 - » ~300 per hour at 10^{-5} ber; worse if there are noise bursts
 - Double bit errors can cause messages to get past CAN CRC
 - » 100M vehicles at 10⁻⁵ ber results in ~130 events/year in US fleet
 - » 100M vehicles at 10⁻⁴ ber results in ~13,000 events/year in US fleet
- Research area: fault injection middleware

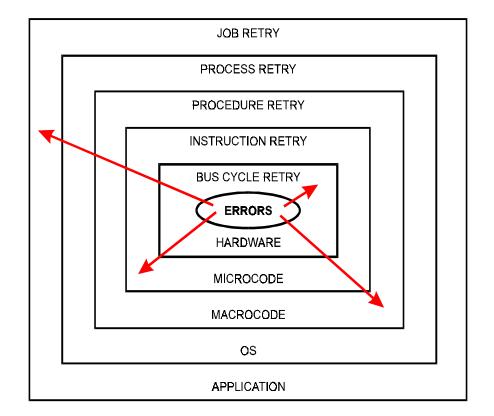

Conclusions

- Design dependability into the system, not on top of the system
 - Take domain constraints into account when choosing approach
- Historically, goals of 100% unattainable for:
 - Fault detection/isolation
 - Availability
 - Design correctness
- The biggest risk items are people & software

Cause-Effect Sequence

- FAULT: deviation of function from design value
 - Hardware
 - Software
 - Electromechanical
- ERROR: manifestation of fault by incorrect value
- FAILURE: deviation of system from specification

MTBF -- MTTD -- MTTR



A Scenario for on-line detection and off-line repair. The measures -- MTBF, MTTD, and MTTR are the average times to failure, to detection, and to repair.

Basic Steps in Fault Handling

- Fault Confinement
- Fault Detection
- Fault Masking
- Retry
- Diagnosis
- Reconfiguration
- Recovery
- Restart
- Repair
- Reintegration

Error Containment Levels

The further out the error propagates, the more state is involved and the more diverse error manifestations becomes, resulting in more complex error recovery.