LIFE CYCLE CONCERNS

18-849b Dependable Embedded Systems
Phil Koopman
1/19/99

Required Reading: Goldberg, “The Advent of ‘Green’ Computer Design”
IEEE Computer, Sept. 1998, pp. 16-19

Books: Kirk & Dell'Isola, Life Cycle Costing for Design Professionals
Christopher, Logistics: the strategic issues
Burall, Green design
SYSTEM LIFE CYCLE

- Design Process/
 Market
- VERIFICATION/
 VALIDATION/
 CERTIFICATION
- End-of-Life
 Wearout &
 Retirement
- Shoddy
 Spares &
 Customer
 Circumvention
- PROFIT$ &
 BUSINESS
 MODELS
- Maintenance
 and
 Reliability
- Ultra-Dependability
- Manufacturing/
 Quality
Overview: Life Cycle

◆ Introduction
 • “Dotted Line” relationship to technical areas

◆ Key concepts
 • Green Design
 • Life cycle product/process engineering
 • Life cycle cost optimization
 • Logistics

◆ Tools / techniques / metrics
 • Mostly business metrics available

◆ Conclusions & future work
Optimize considering all phases of product life

- Compare to “development,” which ends when product ships
“Life Cycle Cost”

- **This is the economic/financial view**
 - Optimize total cost of ownership
 - Key factors: purchase cost, energy, maintenance, upgrades, administrative, debt service, staffing (degree of automation), downtime (opportunity cost)
 - Optimize total cost to society
 - Disposal costs, infrastructure costs

- **People’s behavior is a problem**
 - Consumers are impatient, and have cash flow problems
 - Value low purchase price even if life cycle cost is high
 - People are modeled to behave to maximize utility
 - But, may not have up-front money to invest
 - But, may not have any personal incentive to reduce societal costs
Logistics

◆ Keeping supplies flowing
 • By type of item:
 – Manufacturing components
 – Finished goods
 – Spare parts
 • By activity:
 – Delivery
 – Inventory
 • Optimize using linear programming/flow optimization

◆ Problems with support
 • Not perceived to delivery functionality ("overhead" cost)
 • Costs more to play catch-up after product is fielded
“Life Cycle Assessment”

- This is the “Green Design” interpretation
 - Analyze product design with view to ultimate impact of scrapping, disposal, or consumption
 - ISO 14000 series -- ISO 14040 Life Cycle Assessment

- Impact on embedded systems
 - IBM estimates that discarded computers will occupy 2 million tons of US landfill space by 2000. [Goldberg98]
 - Use low power design
 - Reduce energy/resource consumption
 - Reduce battery requirements (disposable & rechargeable)
 - Design for access/separability/longevity
 - Dis-assembly for recycling
 - Ready repairability
 - Better upgradability
Tools / Techniques

- CAD Tools for Green Design
 - Tracking materials through disposal
 - Design for dis-assembly as well as assembly
 - “Spreadsheet” approach to tallying total cost to environment

- Classical logistics optimization
 - Network flow problem/linear programming
Relationship To Other Topic Areas

- Not really “related” to topic areas as much as an overlay concept
 - But, must keep life cycle optimization in mind for each area

- Profits & Business Models
 - Want to optimize business profits over various life cycles
 - Product itself
 - Manufacturing process
 - Support/logistics cost
 - Business issue in terms of maximizing own profit at cost to others
 - Cost of pollution, government subsidy of technologies, resource depletion
 - Usual solution is for government to create taxes (e.g., with freon)
Conclusions & Future Work

✦ “Life Cycle” has many meanings
 • Most mature areas are life cycle cost analysis and logistics
 • Green Design is a sub-area to emphasize ecological costs

✦ This is a big, broad, nebulous area -- it’s not feasible to cover absolutely everything
 • Writeup will discuss general concepts
 • Give a few pointers to a few good starting points; not exhaustive
 • Not a lot of hard-core engineering papers available
 – Mostly management & economics
 – Green Design is an exception -- receiving engineering attention
PAPER: “Green” Computer Design

- Cool idea: “Self-dismantling computer”
- Green design is good; but there are obstacles
 - Reduce resource usage, energy usage, manufacturing waste
 - Cost of recycling can exceed cost of building new
 - Dynamic tension between building a upgradable product and making profit on selling replacement products

- No key technical contribution -- it’s a high-level “popular” discussion