Error Coding

18-849b Dependable Embedded Systems Charles P. Shelton February 9, 1999

Applications of Error-Control Coding; Costello, Daniel J., Jr.;	
Hagenauer, Joachim; Imal Hideki; Wicker, Stephen B.;	
Applied Coding and Information Theory for Engineers;	Ca
Wells, Richard B.	u
Error Control Coding: Fundamentals and Applications;	Me
Lin, Shu; Costello, Daniel J., Jr.;	
	Hagenauer, Joachim; Imal Hideki; Wicker, Stephen B.; <i>Applied Coding and Information Theory for Engineers</i> ; Wells, Richard B. <i>Error Control Coding: Fundamentals and Applications</i> ;

Overview: Error Coding

Introduction

- What error coding is and how it is used
- Applications
- How it works

Key concepts

- Bandwidth versus Error Protection
- Linear Block Codes
- CRC Codes
- Advanced Coding Techniques
- Complexity

Conclusions

YOU ARE HERE

 Error Coding is in the cluster topic of Fault Tolerant Computing:

Error Coding: Introduction

 Subtopic of Information Coding Theory developed from work by Claude Shannon in 1948

- Any transmission of information digitally is susceptible to errors from noise and/or interference
- By encapsulating data from digital communications in "code words" with extra bits in each transmission, we can detect and correct a large portion of these errors

Bits

 $\bullet 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1$

1 0 0 1 0

RedundancyError Code Bits

 Error codes developed mathematically using algebra, geometry and statistics

How Coding Works

 Information sent in a fixed number of k bits over a noisy channel is mapped to a space of "code words" that are strings of n > k bits

- Information is random so there are 2^k possible messages from a space of 2ⁿ possible bit patterns
- Coding scheme is generated mathematically so destination can decode only valid code words and reject other bit strings

Minimum Hamming distance d_{min}

- Minimum number of bits two code words differ by
- Error code can detect d_{min} 1 errors and correct $d_{min}/2$ -1 errors

Simple example: adding a parity check bit to data string

Simple 3-bit Error Detecting Code Space

Boxed words = odd parity; blue words are valid code words; $d_{min} = 2$

Applications of Error Coding

Storage

- Computer Memory (RAM)
- Magnetic and Optical Data Storage (hard disks, CD-ROM's)

Communications

- Satellite and Deep Space Communications
- Network Communications (TCP/IP Protocol Suite)
- Cellular Telephone Networks
- Digital Audio and Video Transmissions

Bandwidth versus Error Protection

- Code Rate Ratio of data bits to total bits transmitted in code
- Shannon's Noisy Channel Coding Theorem
 - Given a code rate R that is less than the communication channel C, a code can be constructed that will have an arbitrarily small decoding error probability.

Tradeoff of bandwidth for data transmission reliability.

- The more bits used for coding and not data, the more errors can be detected and corrected.
- At a constant bit rate, noisier channel means less real data sent (higher error coding overhead)

Linear Block Codes

Data stream is divided into several blocks of fixed length k.

- Each block is encoded into a code word of length n > k
- Very high code rates, usually above 0.95, high information content but limited error-correction capabilities
- Useful for channels with low raw error rate probabilities, less bandwidth

Cyclic Redundancy Check (CRC) codes are a subset

CRC Codes

 One of the most common coding schemes used in digital communications

- Very easy to implement in electronic hardware
- Efficient encoding and decoding schemes
- Only error-detecting must be concatenated with another code for error correcting capabilities

All CRC codes have the cyclic shift property - when any code word is rotated left or right, the resulting bit string is also a code word

• Example Cyclic Code: {[000000], [010101], [101010], [111111]}

Advanced Coding Techniques

Convolutional Codes

- Entire data stream is encoded into one code word
- Code rates usually below 0.90, but very powerful error-correcting capabilities
- Useful for channels with high raw error rate probabilities, need more bandwidth to achieve similar transmission rate
- Viterbi Codes used in satellite communication

Burst-Correcting Codes

- Used for channels where errors occur in bursts and not random bit errors
- Interleaving codes useful technique for burst-correcting codes

Coding Complexity

- More complex coding schemes provide better error protection
 - Higher error detection and recovery
 - But require more time to encode and decode information from source to destination

Real-time systems may not tolerate delay associated with sophisticated coding of data transmissions

- But cannot tolerate corrupted messages either
- So, what are you going to do about it?

Conclusions

Choose coding scheme based on types of errors expected

- Burst errors vs random bit errors
- Ability to retransmit (detect only)
- Expected error rate

Error coding can protect information transmission over an error-prone communication medium

- Must trade bandwidth for error protection
- More complex coding schemes will provide more error protection at the expense of delay encoding/decoding at source/destination
- Real-time systems must balance error protection with tolerable coding delay

No one has ever found a code that satisfies Shannon's theorem of arbitrarily low error rates

Paper:Applications of Error-Control Coding

- Nice summary of several places error coding is used
- Coding schemes becoming more complex with more processor power
 - Faster processors allow for sophisticated coding/decoding techniques to provide higher error protection without sacrificing speed
 - Parallel and serial concatenated coding and iterative coding can be done with faster processors

Error Coding is a mature field but there is still much work to be done

- Coding originally driven by military/government applications but later by commercial interests
- Coding schemes moving away from algebraic codes and towards more probabilistic codes for better error protection