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AbstractÐOperating systems form a foundation for robust application software, making it important to understand how effective they

are at handling exceptional conditions. The Ballista testing system was used to characterize the handling of exceptional input

parameter values for up to 233 POSIX functions and system calls on each of 15 widely used operating system (OS) implementations.

This identified ways to crash systems with a single call, ways to cause task hangs within OS code, ways to cause abnormal task

termination within OS and library code, failures to implement defined POSIX functionality, and failures to report unsuccessful

operations. Overall, only 55 percent to 76 percent of the exceptional tests performed generated error codes, depending on the

operating system being tested. Approximately 6 percent to 19 percent of tests failed to generate any indication of error despite

exceptional inputs. Approximately 1 percent to 3 percent of tests revealed failures to implement defined POSIX functionality for

unusual, but specified, situations. Between 18 percent and 33 percent of exceptional tests caused the abnormal termination of an OS

system call or library function, and five systems were completely crashed by individual system calls with exceptional parameter values.

The most prevalent sources of these robustness failures were illegal pointer values, numeric overflows, and end-of-file overruns. There

is significant opportunity for improving exception handling within OS calls and especially within C library functions. However, the role of

signals vs. error return codes is both controversial and the source of divergent implementation philosophies, forming a potential barrier

to writing portable, robust applications.

Index TermsÐException handling, POSIX, operating systems, robustness, testing, Ballista, multiversion comparison.
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1 INTRODUCTION

SYSTEM crashes are a way of life in any real-world system,
no matter how carefully designed. Software is increas-

ingly becoming the source of system failures, and the many
software failures seem to be due to problems with exception
handling (e.g., [5]). Thirty years ago, the Apollo 11 space
flight experienced three mission-threatening computer
crashes and reboots during powered descent to lunar
landing, caused by exceptional radar configuration settings
that resulted in the system running out of memory buffers
[17]. Decades later, the maiden flight of the Ariane 5 heavy
lifting rocket was lost due to events arising from a floating
point-to-integer conversion exception [23]. Now that our
society relies upon computer systems for everyday tasks,
exceptional conditions are routinely causing system failures
in more everyday applications such as telecommunication
systems and desktop computing. Since even expensive
systems designed with robustness specifically in mind
suffer such failures, it seems likely that general purpose
systems might be even more vulnerable to incomplete or
nongraceful exception handling.

The robustness of a system can depend in large part on

the quality of exception handling of its operating system

(OS). It is difficult to produce a robust software application,

but the task becomes even more difficult if the underlying

OS upon which the application is built does not provide
extensive exception handling support. This is true not only
of desktop computing systems, but also of embedded
systems such as telecommunications and transportation
applications that are now being built atop commercial
operating systems. A trend in new Application Program-
ming Interfaces (APIs) is to require comprehensive excep-
tion handling (e.g., CORBA [28] and HLA [10]).
Unfortunately, while the POSIX API [16] provides a
mechanism for exception reporting in the form of error
return codes, implementation of this mechanism is largely
optional. This results in uncertainty when adopting a POSIX
operating system for use in a critical system, and leads to
two important questions: 1) Given the lack of a firm
requirement for robustness by the POSIX standard, how
robust are actual Commercial Off-The-Shelf (COTS) POSIX
implementations? 2) What should application programmers
do to minimize the effects of nonrobust OS behavior?

These questions can be answered by creating a direct,
repeatable, quantitative assessment of OS exception hand-
ling abilities. Such an evaluation technique would give the
developers feedback about a new OS version before it is
released, and present the opportunity to measure the
effectiveness of attempts to improve robustness. Addition-
ally, quantitative assessment would enable system de-
signers to make informed comparison shopping decisions
when selecting an OS, and would support an educated
ªmake/buyº decision as to whether a COTS OS might in
fact be more robust than an existing proprietary OS.
Alternately, knowledge about the exception handling weak
spots of an OS would enable application designers to take
extra precautions in known problem spots.
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The Ballista software robustness testing system auto-
matically tests the exception handling capabilities of APIs
[22], [7], [20]. While it can be used for testing APIs beyond
operating systems (e.g., a simulation framework [11]), the
focus here is on describing POSIX OS test results that may
be useful to critical system designers. In brief, the Ballista
testing methodology involves automatically generating sets
of exceptional parameter values to be used in calling
software modules. The results of these calls are examined to
determine whether a software module detected and notified
the calling program of an error, and whether the task or
even system suffered a crash or hang as the result of a call.

POSIX exception handling tests were conducted using
Ballista on fifteen POSIX operating system versions from
ten different vendors across a variety of hardware plat-
forms. More than one million tests were executed in all,
covering up to 233 distinct functions and system calls for
each OS. Many of the tests identified instances in which
exceptional conditions were handled in a nonrobust
manner, ranging in severity from complete system crashes
to false indication of success for system calls. Other tests
managed to uncover exception-related software defects that
apparently were not caught by the POSIX certification
process.

Beyond the robustness failure rates measured, analysis of
test data and discussion with OS vendors reveals a
divergence in approaches to dealing with exceptional
parameter values. Some operating systems attempt to use
the POSIX-documented error codes to provide portable
support for exception reporting at run time. Alternately,
some operating systems emphasize the generation of a
signal (typically resulting in abnormal process termination)
when exceptional parameter values are encountered in
order to facilitate debugging. However, there is no way to
generalize which OSs handle what situations in a particular
manner, and all OSs studied failed to provide either
indication of exceptions in a substantial portion of tests
conducted. While it is indeed true that the POSIX standard
itself does not require comprehensive exception reporting, it
seems likely that a growing number of applications will
need it. Evaluating current operating systems with respect
to exception handling is an important first step in under-
standing whether change is needed, and what directions it
might take.

The following sections describe previous work, the
testing methodology used, robustness testing results, what
these results reveal about current operating systems, and
potential directions for future research.

2 PREVIOUS WORK

While the Ballista robustness testing method described here
is a form of software testing, its heritage traces back not
only to the software testing community, but also to the fault
tolerance community as a form of software-based fault
injection. Ballista builds upon more than fifteen years of
fault injection work at Carnegie Mellon University, includ-
ing [30], [6], [2], [31], [8], and [9], and makes the
contribution of attaining scalability for cost-effective appli-
cation to a reasonably large API. In software testing terms,
Ballista is performing tests for responses to exceptional

input conditions (sometimes called ªdirtyº tests, which
involve exceptional situations, as opposed to ªcleanº tests
of correct functionality in normal situations). The test ideas
used are based on ªblack box,º or functional testing
techniques [3] in which only functionality is of concern,
not the actual structure of the source code. However,
Ballista is concerned with determining how well a software
module handles exceptions rather than with functional
correctness.

Some people only use the term robustness to refer to the
time between operating system crashes under some usage
profile. However, the authoritative definition of robustness is
ªthe degree to which a system or component can function
correctly in the presence of invalid inputs or stressful
environmental conditions [15].º This expands the notion of
robustness to be more than just catastrophic system crashes
and encompasses situations in which small, recoverable
failures might occur. While robustness under stressful
environmental conditions is indeed an important issue, a
desire to attain highly repeatable results has led the Ballista
project to consider only robustness issues dealing with
invalid inputs for a single invocation of a software module
from a single execution thread. It can be conjectured, based
on anecdotal evidence, that improving exception handling
will reduce stress-related system failures, but substantive
results in that area remain a subject of future work.

An early method for automatically testing operating
systems for robustness was the development of the
Crashme program [4]. Crashme operates by writing random
data values to memory, then spawning large numbers of
tasks that attempt to execute those random bytes as
concurrent programs. While many tasks terminate almost
immediately due to illegal instruction exceptions, on
occasion a single task or a confluence of multiple tasks
can cause an operating system to fail. The effectiveness of
the Crashme approach relies upon serendipityÐin other
words, if run long enough Crashme may eventually get
lucky and find some way to crash the system.

Similarly, the Fuzz project at the University of Wisconsin
has used random noise (or ªfuzzº) injection to discover
robustness problems in operating systems. That work
documented the source of several problems [25], and then
discovered that the problems were still present in operating
systems several years later [26]. The Fuzz approach tested
specific OS elements and interfaces (as opposed to the
completely random approach of Crashme), although it still
relied on random data injection.

Other work in the fault injection area has also tested
limited aspects of robustness. The FIAT system [2] uses
probes placed by the programmer to alter the binary
process image in memory during execution. The FERRARI
system [18] is similar in intent to FIAT, but uses software
traps in a manner similar to debugger break-points to
permit emulation of specific system-level hardware faults
(e.g., data address lines, condition codes). The FTAPE
system [33] injects faults into a system being exercised with
a random workload generator by using a platform-specific
device driver to inject the faults. While all of these systems
have produced interesting results, none was intended to
quantify robustness on the scale of an entire OS API.
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While the hardware fault tolerance community has been
investigating robustness mechanisms, the software engi-
neering community has been working on ways to imple-
ment robust interfaces. As early as the 1970s it was known
that there are multiple ways to handle an exception [14],
[13]. More recently, the two methods that have become
widely used are the signal-based model (also known as the
termination model) and the error return code model (also
known as the resumption model).

In an error return code model, function calls return an
out-of-band value to indicate an exceptional situation has
occurred (for example, a NULL pointer might be returned
upon failure to create a data structure in the C program-
ming language). This approach is the supported mechanism
for creating portable, robust systems in the POSIX API [16,
lines 2,368-2,377].

On the other hand, in a signal-based model, the flow of
control for a program does not address exceptional
situations, but instead describes what will happen in the
normal case. Exceptions cause signals to be ªthrownº when
they occur, and redirect the flow of control to separately
written exception handlers. It has been argued that an
signal- based approach is superior to an error return code
approach based, in part, on performance concerns, and
because of ease of programming [12], [5]. However, unlike
CORBA and some other interfaces, the POSIX API does not
standardize a portable way to use this approach to create
robust systems.

The Xept approach [35] provides an generalized frame-
work that illustrates how fine-grain, robust exception
handling can be used in critical systems. Xept uses software
ªwrappersº around procedure calls as a way to encapsulate
error checking and error handling within the context of a
readable program. In fact, the Xept approach could be used
not only to implement graceful recovery from reported
exceptions, but also to provide a layer of protection against
OS robustness problems by filtering out potentially danger-
ous parameter values from being sent to the OS. Ap-
proaches along these lines seem to be commonly used by
industry in designing critical systems, but are typically
done in an ad hoc manner and seldom discussed in the
literature. Given that the fault tolerance community has
found that transient system failures far outnumber perma-
nent system faults/design errors in practice, even as simple
a strategy as retrying failed operations from within a
software wrapper has the potential to significantly improve
system robustness. Thus, there is good reason in many
applications to desire robust exception handling from an OS
rather than abnormal task termination upon every
exception.

3 BALLISTA TESTING METHODOLOGY

The Ballista robustness testing methodology is based on
combinational tests of valid and invalid parameter values
for system calls and functions. In each test case, a single
software Module under Test (or MuT) is called once to
determine whether it provides robust exception handling
when called with a particular set of parameter values. These
parameter values, or test values, are drawn from a pool of
normal and exceptional values based on the data type of

each argument passed to the MuT. A test case therefore
consists of the name of the MuT and a tuple of test values
that are passed as parameters (i.e., a test case would be a
procedure call of the form: MuT_name(test_value1, test_va-
lue2, ..., test_valueN)). Thus, the general Ballista approach is
to test the robustness of a single call to a MuT for a single
tuple of test values, and then iterate this process for
multiple test cases that each have different combinations
of valid and invalid test values.

3.1 Test Cases Based on Data Types

The Ballista approach to robustness testing has been
implemented for a set of 233 POSIX functions and calls
defined in the IEEE 1003.1b standard [16] (ªPOSIX.1bº or
ªPOSIX with real-time extensions with C language bind-
ingº). All standard calls and functions were tested except
for calls that take no arguments, such as getpid(); calls
that do not return, such as exit(); and calls that
intentionally send signals, such as kill().

For each POSIX function tested, an interface description
was created with the function name and type information
for each argument. In some cases, specific information
about argument use was exploited to result in better testing
(for example, a file descriptor might be of type int, but was
described to Ballista as a more specific file descriptor data
type).

As an example, Fig. 1 shows the actual test values used
to test write(int filedes, const void *buffer,

size_t nbytes), which takes parameters specifying a file
descriptor, a memory buffer, and a number of bytes to be
written. Because write() takes three parameters of three
different data types, Ballista draws test values from
separate test objects established for each of the three data
types. In Fig. 1, the arrows indicate that the particular test
case being constructed will test a file descriptor for a file
which has been opened with only read access, a NULL
pointer to the buffer, and a size of 16 bytes. Other
combinations of test values are assembled to create other
test cases. In the usual case, all combinations of test values
are generated to create a combinatorial number of test cases.
For a half-dozen POSIX calls, the number of parameters is
large enough to yield too many test cases for exhaustive
coverage within a reasonable execution time. In these cases
a pseudorandom sampling of 5,000 test cases is used.
(Based on a comparison to a run with exhaustive searching
on one OS, this sampling gives results accurate to within
1 percentage point for each function.)

Each test value (such as FD_OPEN_READ in Fig. 1) refers
to a pair of code fragments that are kept in a simple
database comprised of a specially formatted text file. The
first fragment for each test value is a constructor that is
called before the test case is executed (it is not literally a
C++ constructor, but rather a code fragment identified to
the test harness as constructing the instance of a test value).
The constructor may simply return a value (such as a
NULL), but may also do something more complicated that
initializes system state. For example, the constructor for
FD_OPEN_READ creates a file, puts a predetermined set of
bytes into the file, opens the file for read, then returns a file
descriptor for that file. The second of the pair of the code
fragments for each test value is a destructor that deletes any
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data structures or files created by the corresponding
constructor (for example, the destructor for FD_OPEN_READ
closes and deletes the file created by its matching con-
structor). Tests are executed from within a test harness by
having a parent task fork a fresh child process for every test
case. The child process first calls constructors for all test
values used in a selected test case, then executes a call to the
MuT with those test values, then calls destructors for all the
test values used. Special care is taken to ensure that any
robustness failure is a result of the MuT, and not
attributable to the constructors or destructors themselves.
Functions implemented as macros are tested using the same
technique, and require no special treatment.

The test values used in the experiments were a
combination of values suggested in the testing literature
(e.g., [24]) and values selected based on personal experi-
ence. For example, consider file descriptor test values. File
descriptor test values include descriptors to existing files,
negative one, the maximum integer number (MAXINT),
and zero. Situations that are likely to be exceptional in only
some contexts are tested, including file open only for read
and file open only for write. File descriptors are also tested
for inherently exceptional situations such as file created and
opened for read, but then deleted from the file system
without the program's knowledge.

The guideline for test value selection for all data types
were to include, as appropriate: zero, negative one,
maximum/minimum representable values, pointers to
nonexistent memory, lengths near virtual memory page
size, pointers to heap-allocated memory, files open for
combinations of read/write with and without exceptional
permission settings, and files/data structures that had been
released before the test itself was executed. While creating
generically applicable rules for thorough test value selection
remains a subject of future work, this experience-driven
approach was sufficient to produce useful results.

It is important to note that this testing methodology does
not generate tests based on a description of MuT function-
ality, but rather on the data types of the MuT's arguments.
This approach means that per-MuT ªscaffoldingº code does

not need to be written. As a result, the Ballista testing
method is highly scalable with respect to the amount of
effort required per MuT, needing only 20 data types to test
233 POSIX MuTs. An average data type has 10 test cases,
each having 10 lines of C code, meaning that the entire test
suite required only 2,000 lines of C code for test cases (in
addition, of course, to the general testing harness code used
for all test cases and various analysis scripts).

An important benefit derived from the Ballista testing
implementation is the ability to automatically generate the
source code for any single test case the suite is capable of
running. In many cases, only a dozen lines or fewer of
executable code in size, these short programs contain the
constructors for each parameter, the actual function call,
and destructors. These single test case programs have been
used to reproduce robustness failures in isolation for use by
OS developers and to verify test result data.

3.2 Categorizing Test Results

After each test case is executed, the Ballista test harness
categorizes the test results according to the first three letters
of the ªC.R.A.S.H.º severity scale [22]:

. Catastrophic failures occur when the OS itself
becomes corrupted or the machine crashes and
reboots.

. Restart failures occur when a call to a MuT never
returns control to the caller, meaning that in an
application program a single task would be ªhung,º
requiring intervention to terminate and restart that
task. These failures are identified by a watchdog
timer which times out after several seconds of
waiting for a test case to complete. (Calls that wait
for I/O and other such legitimate ªhangsº are not
tested.)

. Abort failures tend to be the most prevalent, and
result in abnormal termination (a ªcore dump,º the
POSIX SIGSEGV signal, etc.) of a single task.

. Silent failures occur when an OS returns no
indication of error on an exceptional operation
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which clearly cannot be performed (for example,
writing to a read-only file). These failures are not
directly measured, but can be inferred as discussed
in Section 5.2.

. Hindering failures occur when an incorrect error
code is returned from a MuT, which could make it
more difficult to execute appropriate error recovery.
Hindering failures have been observed as fairly
common (forming a substantial fraction of cases
which returned error codes) in previous work [19],
but are not further discussed due to lack of a way to
perform automated identification within large ex-
perimental data sets.

There are two additional possible outcomes of executing

a test case. It is possible that a test case returns with an error

code that is appropriate for invalid parameters forming the

test case. This is a case in which the test case passesÐin

other words, generating an error code is the correct

response. Additionally, in some tests the MuT legitimately

returns no error code and successfully completes the

requested operation. This happens when the parameters

in the test case happen to be all valid, or when it is

unreasonable to expect the OS to detect an exceptional

situation (such as pointing to an address past the end of a

buffer, but not so far past as to go beyond a virtual memory

page or other protection boundary).

4 RESULTS

A total of 1,082,541 test cases were executed during data

collection. Operating systems which supported all of the

233 selected POSIX functions and system calls each had

92,658 total test cases, but those supporting a subset of the

functionality tested had fewer test cases.

4.1 Raw Testing Results

The compilers and libraries used to generate the test suite

were those provided by the OS vendor. In the case of

FreeBSD, NetBSD, Linux, and LynxOS, the GNU C compiler

version 2.7.2.3 and associated C libraries were used to build
the test suite.

Table 1 reports the robustness failure rates as measured
by Ballista. In all, there were five MuTs across the tested
systems that resulted in Catastrophic failures. Restart
failures were relatively scarce, but present in all but two
operating systems. Abort failures were common, indicating
that in all operating systems it is relatively straightforward
to elicit an abnormal task termination from an instruction
within a function or system call (Abort failures do not have
to do with subsequent use of an exceptional value returned
from a system callÐthey happen in response to an
instruction within the vendor-provided software itself).

Any MuT that suffered Catastrophic failures could not
be completely tested due to a lack of time for multiple
reboots on borrowed equipment, and thus is excluded from
failure rate calculations beyond simply reporting the
number of MuTs with such failures. A representative test
case causing a Catastrophic failure on Irix 6.2 is:

munmap�malloc��1 << 30� 1��; MAXINT�;
Similarly, the following call crashes the entire OS on

Digital Unix (OSF 1) version 4.0D:

mprotect�malloc��1 << 29� � 1�; 65537; 0�;
Other calls causing Catastrophic failures were:

munmap() on QNX 4.22, mprotect() on QNX 4.22,
mmap() on HPUX 10, setpgid() on LynxOS, and
mq_receive() on Digital Unix/OSF 3.2. Note that the
tables all report Digital Unix version 4.0B, which did not
have the Catastrophic failure found in 4.0D, but is otherwise
quite similar in behavior.

4.2 Normalized Failure Rate Results

Comparing OS implementations simply on the basis of the
number of tests that fail is problematic because, while
identical tests were attempted on each OS, different OS
implementations supported differing subsets of POSIX
functionality. Furthermore, MuTs having many parameters
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execute a large number of test cases, potentially skewing
results.

Rather than use raw test results, comparisons should be
made based on normalized failure rates. Table 1 shows a
normalized failure rate computed by the following process.
A ratio of robustness failures to total tests is computed for
each MuT within each OS (e.g., a ratio of 0.6 means that
60 percent of the tests failed). Then, the mean ratio across all
MuTs for an OS is computed using a simple arithmetic
average. This definition produces an exposure metric,
which gives the probability that exceptional parameter
values of the types tested will cause a robustness failure for
a particular OS. This metric has the advantage of removing
the effects of differing number of tests per function, and
also permits comparing OS implementations with differing
numbers of functions implemented according to a single
normalized metric.

Overall failure rates considering both Abort and Restart
failures range from the low of 9.99 percent (AIX) to a high of
22.69 percent (QNX 4.24). As shown in Fig. 2, the bulk of the
failures found are Abort failures. OS implementations
having Catastrophic failures are annotated with the number
of MuTs capable of causing a system crash.

The first set of experimental data gathered included
several relatively old OS versions, representing machines
that were in service under a conservative campus-wide
software upgrade policy. At the insistence of vendors that
newer versions would be dramatically better, tests were run
on several borrowed machines configured with the newest
available OS releases. The results showed that even major
version upgrades did not necessarily improve exception
handling capabilities. Failure rates were reduced from
Irix 5.3 to Irix 6.2, from OSF 3.2 to OSF 4.0, and from
SunOS 4 to SunOS 5, although in all cases the improvement
was not overwhelming. However, the failure rates actually
increased from HPUX 9 to HPUX 10 (including addition of
a Catastrophic failure mode), increased from QNX 4.22 to
QNX 4.24 (although with elimination of both Catastrophic

failure modes), and stayed essentially identical from OSF 1
4.0B to OSF 1 4.0D (although 4.0D introduced a new
Catastrophic failure mode).

4.3 Failure Rates Weighted By Operational Profile

The use of a uniformly weighted average gives a convenient
single-number metric for comparison purposes. However, it
is important to dig a little deeper into the data to determine
what functions are driving the failure rates, and whether
they are the functions that are frequently used, or instead
whether they are obscure functions that don't matter most
of the time.

In some situations, it may be desirable to weight
vulnerability to exception handling failures by the relative
frequency of invocation of each possible function. In other
words, rather than using an equal weighting when
averaging the failure rates of each MuT in an OS, the
average could instead be weighted by relative execution
frequency for a ªtypicalº program or set of programs. This
approach corresponds to a simple version of operational
profiles as used in traditional software testing [27].

Collecting profiling information at the OS system call
and function level turned out to be surprisingly difficult for
the POSIX API, because most tools are optimized for
instrumenting user-written calls rather than OS calls.
However, instrumentation of the IBS benchmark suite [34]
and the floating point portions of the SPEC95 benchmark
suite were possible using the Atom tool set [32] running on
Digital Unix to record the number of calls made at run time.
Due to problems with compiler option incompatibility
between Atom and the benchmark programs, only the
IOZone, compress, ftp, and gnuChess programs from IBS
were measured.

The results were that the weighted failure rates vary
dramatically in both magnitude and distribution among
operating systems, depending on the workload being
executed. For example, IBS weighted failure rates varied
from 19 percent to 29 percent depending on the operating
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system. However, for SPEC95 floating point programs, the
weighted failure rate was less than 1 percent for all
operating systems except FreeBSD. Because FreeBSD in-
tentionally uses a SIGFPE floating point exception signal
instead of error return codes in many cases, it happens to
have a high percentage of Abort results on functions heavily
used by SPEC95.

Specific weighted failure rates are not described because
the results of attempting operational profiling point out that
there is no single operational profile that makes sense for an
interface as versatile as an OS API. The only definite point
that can be made is that there are clearly some profiles for
which the robustness failure rates could be significant.
Beyond that, publishing a weighted average would, at best,
be overly simplistic. Instead, readers are invited to obtain
the raw OS failure rate data from the authors and apply
operational profiles appropriate to their particular applica-
tion area.

4.4 Failure Rates By Call/Function Category

A somewhat different way to view the failure rate data is by
breaking up aggregate failure rates into separate failure
rates grouped by the type of call or function [29]. This gives
some general insight into the portions of the implementa-
tions that tend to be robust at handling exceptions without
becoming bogged down in the details of individual call/
function failure rates.

Fig. 3 shows the failure rate of different categories of
calls/functions as grouped within the chapters of the POSIX
specification [16]. In this figure, both a general name for the

category and an example function from that category are
given for convenience. Within each category, failure rates
are normalized and averaged with equal per- function
weighting factors.

Several categories in Fig. 3 have pronounced failure
rates. The clocks and timers category (Section 14 of the
Standard) had a bimodal distribution of failure rates: 30
percent to 69 percent for seven of the OS implementations
(the visible bars in Fig. 3), and low values for the remaining
OSs (the hidden bars are 7 percent for Irix 6.2, 1 percent for
SunOS 5.5, and 0 percent for the rest). This set and the
memory management set (Section 12 of the Standard, which
deals with memory locking/mapping/sharing, but not
ªmallocº-type C-library operations) are representative of
areas in which there is a very noticeable variation among
OS implementations with respect to exception handling.

While in many cases failure rates are comparable across
OS implementations for the different call categories, there
are some bars which show significantly higher failure rates.
HPUX 10 has a 100 percent failure rate for memory
management functions. Worse, it was one of the memory
management calls that produced HPUX 10's Catastrophic
system failure, indicating that this area is indeed a
robustness vulnerability compared to HPUX 9, which had
no such problems. (We have learned that HPUX 10 has a
new implementation of these functions, accounting for a
potentially higher failure rate.) This and other similar
observations indicate that there may be specific areas of
reduced exception handling effectiveness within any
particular OS.
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4.5 C-Library Failure Rates

The general failure rate of the C library calls in Fig. 3 is
uniformly high across all OS implementations tested. Fig. 4
shows the same data as Fig. 2, but shows the portions of
each failure rate that are attributable to the C library
functions. Part of the large contribution of C library
functions to overall failure rates is that they account for
approximately half of the MuTs for each OS (a total of 102
C library functions were tested, out of 175 to 223 total MuTs
per OS). The C library functions had a failure rate about the
same as system calls on QNX, but had failure rates between
1.8 and 3.8 times higher than system calls on all other OS
versions tested. Within the C library, string functions, time
functions, and stream I/O tended to have the highest
robustness failure rates.

5 DATA ANALYSIS VIA N-VERSION SOFTWARE

VOTING

The scalability of the Ballista testing approach hinges on not
needing to know the functional specification of a MuT. In
the general case, this results in having no way to deal with
tests that have no indication of errorÐthey could either be
nonexceptional test cases or Silent failures, depending on
the actual functionality of the MuT. However, the avail-
ability of a number of operating systems that all conform to
a standardized API permits estimating and refining failure
rates using an idea inspired by multiversion software
voting (e.g., [1]). Ballista testing results for multiple
implementations of a single API can be compared to
identify test cases that are either nonexceptional, or that
are likely to be Silent failures. This is, of course, not really
multiversion software voting, but rather a similar sort of
idea that identifies problems by finding areas in which the
various versions disagree as to results for identical tests.

5.1 Elimination of Nonexceptional Tests

The Ballista test cases carefully include some test values
which are not exceptional in any way. This is done
intentionally to prevent the masking of robustness failures.

A correctly handled exceptional condition for one value in a
tuple of those passed into a function may cause the system
to not even look at other values. The concept is similar to
obtaining high branch coverage for nested branches in
traditional testing. For instance, in the test case: write(-
1,NULL,0), some operating systems test the third para-
meter, a length field of zero, and legitimately return with
success on zero length regardless of other parameter values.
Alternately, the file descriptor might be checked and an
error code returned. Thus, having a second parameter value
of a NULL pointer might never generate a robustness
failure caused by a pointer dereference unless the file
descriptor parameter and length fields were tested with
nonexceptional values. In other words, exceptional values
that are correctly handled for one argument might mask
nonrobust handling of exceptional values for some other
argument. If, on the other hand, the test case
write(FD_OPEN_WRITE, NULL, 16) were executed, it
might lead to an Abort failure when the NULL pointer is
dereferenced. Additionally, test cases that are exceptional
for some calls may non-exceptional for others (e.g., using
read permissions for testing read() vs. write()). Thus,
by including nonexceptional test cases we force the module
under test to attempt to handle each value that might be
exceptional. While both uses of nonexceptional test values
are important, they necessarily lead to test cases that are
not, in fact, tests of exceptional conditions (e.g., reading
from a read-only file is not exceptional).

Multiversion software comparisons can prune nonexcep-
tional test cases from the results data set. This is done by
assuming that any test case in which all operating systems
return with no indication of error are in fact nonexceptional
tests (or, are exceptional tests which cannot be detected
within reason on current computer systems). In all, 129,731
nonexceptional tests were removed across all 15 operating
systems. Fig. 5 shows the adjusted abort and restart failure
rates after removing nonexceptional tests. Manual verifica-
tion of 100 randomly selected test cases thus removed
indicated that all of them were indeed nonexceptional, but
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it was impractical to examine a larger sample using this
very labor-intensive process. While it is possible that some
test cases were incorrectly removed, based on this sample
and intuition gained during the sampling process, it seems
unlikely that the number of false removals involved would
materially affect the results.

5.2 An Estimation of Silent Failure Rates

One of the potential problems with leaving out Silent
failures in reporting results is that an OS might conceivably
be designed to avoid generating Abort failures at any cost.
For example, AIX intentionally permits reads (but not
writes) to the memory page mapped to address zero to
support legacy code, meaning that dereferences of a NULL
pointer would not generate Abort failures. And, in fact, AIX
does have a moderately high Silent failure rate because of
this implementation decision.

Once the nonexceptional tests were removed, a multi-
version software comparison technique was again used to
detect Silent Failures. The heuristic used was that if at least
one OS returns an error code, then all other operating
systems should either return an error code or suffer some
form of robustness failure (typically an Abort failure). As an
example, when attempting to compute the logarithm of
zero, AIX, HPUX-10, and both versions of QNX completed
the requested operation without an error code, whereas
other OS implementations did return an error code. This
indicated that AIX, HPUX-10, and QNX had suffered Silent
robustness failures for that test case.

Of course, the heuristic of detection based on a single OS
reporting an error code is not perfect. Manual verification of
100 randomly sampled test cases, with each test case
compared across all the OS implementations, indicates that
approximately 80 percent of cases predicted to be Silent
failures by this technique were actually Silent failures. Of
the approximately 20 percent of test cases that were mis-
classified:

. 28 percent were due to POSIX permitting discretion
in how to handle an exceptional situation. For
example, mprotect() is permitted, but not re-
quired, to return an error if the address of memory
space does not fall on a page boundary.

. 21 percent were due to bugs in C library floating
point routines returning false error codes. For
example, Irix 5.3 returns an error for tan(-1.0)

instead of the correct result of -1.557408. Two
instances were found that are likely due to overflow
of intermediate resultsÐHPUX 9 returns an error
code for fmod(DBL_MAX,PI); and QNX 4.24
returns an error code for ldexp(e,33).

. 9 percent were due to lack of support for required
POSIX features in QNX 4.22, which incorrectly
returned errors for filenames having embedded
spaces.

. The remaining 42 percent were instances in which it
was not obvious whether an error code could
reasonably be required. This was mainly a concern
when passing a pointer to a structure containing
meaningless data, where some operating systems
(such as SunOS 4.13, which returned an error code

for each test case it did not abort on) apparently
checked the data for validity and returned an error
code.

Examining potential Silent failures manually also re-
vealed some software defects (ªbugsº) generated by
unusual, but specified, situations. For instance, POSIX
requires int fdatasynch(int filedes) to return the
EBADF error if filedes is not valid, and the file open is
for write [16]. Yet when tested, only one operating system,
IRIX 6.2, implemented the specified behavior, with the other
OS implementations failing to indicate that an error
occurred. The POSIX standard also specifically permits
writes to files past EOF, requiring the file length be updated
to allow the write [16]; however only FreeBSD, Linux, and
SunOS 4.13 returned successfully after an attempt to write
data to a file past its EOF, while every other implementation
returned EBADF. It is estimated that the failure rates for
these problems is quite low (perhaps 1 percent to 3 percent
overall depending on the OS), but is definitely present, and
is apparently not caught by the process of validating POSIX
compliance.

A second approach was attempted for detecting Silent
failures based on comparing test cases having no error
indication against instances of the same test case suffering
an Abort failures on some other OS. With some surprise,
this turned out to be as good at revealing software defects
as it was at identifying Silent failures. A relatively small
number (37,434 total) of test cases generated an Abort
failure for some operating systems, but completed with no
error indication at all for other operating systems. But,
manual verification 100 randomly sampled test cases
indicated that this detection mechanism had approximately
a 50 percent false alarm rate.

Part of the high false alarm rate for this second approach
was due to differing orders for checking arguments among
the various operating systems (related to the discussion of
fault masking earlier). For example, reading bytes from an
empty file to a NULL pointer memory location might abort
if end-of-file is checked after attempting to move a byte, or
return successfully with zero bytes having been read if end-
of-file is checked before moving a byte. The other part of the
false alarm rate was apparently due to limitations within
floating point libraries. For instance, FreeBSD suffered an
A b o r t f a i l u r e o n b o t h fabs(DBL_MAX) a n d
fabs(-DBL_MAX), whereas it should have returned with-
out an error.

Based on these estimated accuracy rates, results reported
in Fig. 5 reflect only 80 percent of the silent errors measured
and 50 percent of the silent aborts measured, thus
compensating for the estimated false alarm rates. With all
of the manual examination techniques it was impractical to
gather a much larger sample, so these percentages should
be considered gross approximations, but are believed to be
reasonably accurate based on intuition gained during the
sampling process.

5.3 Frequent Sources of Robustness Failure

Given that robustness failures are prevalent, what are the
common sources? Source code to most of the operating
systems tested was not available, and manual examination
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of available source code to search for root causes of
robustness failures was impractical with such a large set
of experimental data. Therefore, the best data available is
based on a correlation of input values to robustness failures
rather than analysis of causality. The test values most
frequently associated with robustness failures are:

. 94.0 percent of invalid file pointers (excluding
NULL) were associated with a robustness failure.

. 82.5 percent of NULL file pointers were associated
with a robustness failure.

. 49.8 percent of invalid buffer pointers (excluding
NULL) were associated with a robustness failure.

. 46.0 percent of NULL buffer pointers were asso-
ciated with a robustness failure.

. 44.3 percent of MININT integer values were asso-
ciated with a robustness failure.

. 36.3 percent of MAXINT integer values were
associated with a robustness failure.

Perhaps surprisingly, system state changes induced by
any particular test did not prove to be a source of
robustness failures for other tests. Apparently, the use of
a separate process per test case provided sufficient intertest
isolation to contain the effects of damage to system state for
all tests except Catastrophic failures. This was verified by
vendors reproducing tests in isolation with single-test
programs, and by verifying that test results remained the
same even if tests were run in a different order within the
test harness. This is not to say that such problems don't
exist, but rather that they are rather more difficult to elicit
on these operating systems than one might think.

6 ISSUES IN ATTAINING IMPROVED ROBUSTNESS

When preliminary testing results were shown to OS
vendors, it became very apparent that some developers
took a dim view of a SIGSEGV or SIGFPE signal being
considered a robustness failure. In fact, in some cases the

developers stated that they specifically and purposefully
generated signals as an error reporting mechanism, in order
to make it more difficult for developers to miss bugs. On the
other hand, other developers provide extensive support for
a wide variety of error return codes and make attempts to
minimize abnormal task terminations from within system
calls and library functions. The importance of such
comprehensive exception handling was underscored by
many conversations with application developers who
develop critical systems. There are two parts to this story:
the relative strengths and weaknesses of each philosophy,
and whether either goal (robust return codes or signaling
for all exceptions) was attained in practice.

6.1 Signals vs. Error Codes

While discussions with OS developers have proven that
exception handling robustness is a controversial, even
ªreligiousº subject, the fact remains that there are signifi-
cant applications in several industries in which developers
have stated very clearly that fine-grain error reporting is
extremely desirable, and that signals accompanied by task
restarts are unacceptable. These applications include tele-
communication switches, railroad train controllers, real-
time simulations, uninterruptible power supplies, factory
automation control, ultra-high availability mainframe com-
puters, and submarine navigation, to name a few real
examples encountered during the course of this project.
While these may not be the intended application areas for
most OS authors, the fact is that COTS OS implementations
will be pressed into service for such critical systems to meet
cost and time-to-market constraints. Thus, evaluating the
robustness of an OS is useful, even though robustness is not
required by the POSIX standard.

That having been said, the results reported here suggest
that there are issues at hand that go beyond a preference for
signals vs. error return codes. One issue is simply that
divergence in implementations hinders writing portable,
robust applications. A second issue is that no operating
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systems examined actually succeeded in attaining a high

degree of robustness, even if signals were considered to be a

desirable exception reporting mechanism.

6.2 Building More Robust Systems

Traditionally, software robustness has been achieved

through a variety of techniques such as checking error

codes, performing range checks on values, and using testing

to flush out problems. However, Ballista robustness testing

results have eliminated any slender hopes that these

approaches were entirely sufficient for critical systems.

Checking error codes might work on one OS, but might not

work when porting to another OS (or even to a minor

version change of the same OS) which generates a SIGSEGV

instead of an error code, or which generates no error code at

all in response to an exceptional situation. Similarly, it is

clear that POSIX functions often do not perform even a

cursory check for NULL pointer values, which could be

accomplished with minimal speed impact. Finally, vendor

testing of OS implementations has been demonstrated to

miss some very simple ways to cause system crashes in both

major and minor version changes.
Thus, a useful additional step in building more robust

systems is to use API-level fault injection such as that

performed by the Ballista testing system. This will, at a

minimum, identify certain classes of Catastrophic failures

so that manual intervention can be performed via software

ªwrappersº to screen out exceptional parameters for

specific system calls, or to permit application developers

to otherwise pay specific attention to eliminating the

possibility of such situations.
For C library functions, it may be possible to use

alternate libraries that are specifically designed for in-

creased robustness. One example is the Safe Fast I/O library

(SFIO) [21] that can replace portions of the C library. For

system calls, one can select an existing OS that tends to have

low failure rates as shown in Fig. 4, if Abort failures are a

primary concern. Or, one might even find it necessary to

add extra parameter-checking wrappers around system

calls to reduce Silent failure rates.
For any application it is important to realize that

abnormal task terminations are to be expected as a matter

of course, and provide for automatic recovery from such

events. In some applications this is sufficient to attain a

reasonable level of robustness. For other applications, this is

merely a way to reduce the damage caused by a system

failure, but is not a viable substitute for more robust error

identification and recovery.
Finally, a potential long-term approach to increasing the

robustness of OS implementations is to modify the POSIX

standard to include a requirement for comprehensive

exception handling, with no exception left undefined.

While this might impose a modest performance penalty, it

might well be viable as an optional (but well-specified)

extended feature set. Further research should be performed

to quantify and reduce any associated performance penal-

ties associated with increased exception handling abilities.

7 CONCLUSIONS

The Ballista testing approach provides repeatable, scalable

measurements for robustness with respect to exceptional

parameter values. Over one million total tests were

automatically generated for up to 233 POSIX function and

system calls spanning fifteen operating systems. The most

significant result was that no operating system displayed a

high level of robustness. The normalized rate for robust

handling of exceptional inputs ranged from a low of

52 percent for FreeBSD version 2.2.5 to a high of 76 percent

for SunOS version 5.5 and Irix version 6.2. The majority of

robustness failures were Abort failures (ranging from

18 percent to 33 percent), in which a signal was sent from

the system call or library function itself, causing an

abnormal task termination. The next most prevalent failures

were Silent failures (ranging from 6 percent to 19 percent),

in which exceptional inputs to a Module under Test

resulted in erroneous indication of successful completion.

Additionally, five operating systems each had at least one

situation that caused a system crash in response to

executing a single system call. The largest vulnerabilities

to robustness failures occurred when processing illegal

memory pointer values, illegal file pointer values, and

extremely large integer and floating point numbers. In

retrospect, it is really no surprise that NULL pointers cause

problems when passed to system calls. Regardless, the

single most effective way to improve robustness for the

operating systems examined would be to add tests for

NULL pointer values for relevant calls.

Application of the Ballista testing approach to measuring

OS robustness has made several contributions. It provides

repeatable, quantified measurements of the effectiveness of

off-the-shelf operating systems at handling exceptional

input parameter values. Such a metric is important to those

application developers designing the growing number of

critical systems which require high levels of robustness.

Beyond this, it documents a divergence of exception

handling strategies between using error return codes and

throwing signals in current operating systems, which may

make it difficult to write portable robust applications.

Finally, all operating systems examined had a large number

of instances in which exceptional input parameter values

resulted in an erroneous indication of success from a system

call or library function, which would seem to further

complicate creating robust applications.
There are many factors which should properly be taken

into account when evaluating an operating system. Excep-

tion handling is only one factor, and may range from

extremely important to irrelevant depending on the

application. However, for those applications where it

matters, there is now a way to quantify and compare OS

exception handling effectiveness.
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