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Abstract

We describe preliminary work toward a new robustness 
testing tool, PIRANHA, that exercises boundary and ex-
ceptional conditions of network protocol implementations.  
This automated tool will provide system developers and 
maintainers the ability to repeatably identify and eliminate 
robustness failures in protocol subsystems.

1. Introduction

Network protocols are at the heart of our global com-
munications infrastructure.  Protocols provide guaranteed 
services such as in-order byte delivery and error detection 
to network applications.  A service failure at any level of 
the protocol stack could corrupt data, impact system secu-
rity, or worse.  It is therefore essential that protocol imple-
mentations be robust against failure, especially when pro-
cessing invalid or extraordinary information from the 
network--whether from software defects, hardware failure, 
or intentional attacks.  Unfortunately, the increasing com-
plexity of protocols leads us to suspect implementations 
may not be as robust as we would like.

1.1. What is protocol robustness?

Although robustness is widely cited throughout com-
puter systems literature, we found no commonly accepted 
use or definition of the term.  For authority, we consult 
two sources: the IEEE to provide a general definition of 
robustness and the "Host Requirements" Internet Standard 
to apply the concept of robustness to Internet protocols.  
The IEEE defines robustness in [1] as "the degree to 
which a system or component can function correctly in the 
presence of invalid inputs or stressful environmental con-
ditions."  From this definition, our focus is on the presence 
of invalid and unspecified inputs at the protocol interface.  
Specifically, we are interested in invalid packet header 
information, as discussed by the Internet Engineering Task 
Force in [2]:

[C]onsider a protocol specification that contains an enu-
meration of values for a particular header field -- e.g., a 

type field, a port number, or an error code; this enumera-
tion must be assumed to be incomplete.  Thus, if a proto-
col specification defines four possible error codes, the 
software must not break when a fifth code shows up.  An 
undefined code... must not cause an error.

We extend this emphasis on handling invalid headers to 
exercise possible robustness deficiencies in a protocol 
implementation.

1.2. Exceptional network information

Exceptional values in packet headers are a certainty on 
most networks.  Invalid headers originate from several 
sources, including in-transit packet corruption, buggy 
hosts, and malicious network users.

1.2.1. In-transit packet corruption.  Paxson [3] measures 
the Internet data packet corruption rate at 0.02%, or one 
corrupted packet per 5,000 transmissions.  Because of the 
limited 16-bit checksum available in the Transmission 
Control Protocol (TCP) header, Paxson postulates that 
about one in every 300 million TCP packets are accepted 
with corruption.  Single-bit or multiple-bit errors could 
occur anywhere in network control or data packets.

1.2.2. Buggy hosts and malicious users.  It is exceed-
ingly difficult to produce an error-free network application 
or protocol implementation.  In addition, many modern 
systems allow user-level applications to transmit arbitrary 
packets onto the network.  As a result, developers must 
guard against malicious programmers and nonconformant 
protocol implementations, even when lower-level proto-
cols guarantee error-free data transmission.  (We note the 
availability and wide distribution of malicious user-level 
protocol routines in forums such as [4].)

Consider a user-level TCP implementation that sets the 
TCP urgent pointer beyond the last byte of the current 
TCP segment (for background, see [5]).  If the receiving 
protocol mishandles this pointer, a serious failure could 
occur--for example, a receiver that attempts to reference 
data located beyond the packet buffer may experience a 
segmentation violation and a failure of the protocol pro-
cessing module.



1.3. Protocol complexity

Network protocols are complex, and their implementa-
tions are more so.  Systems must conform to rules govern-
ing states and state transitions, flow and congestion con-
trol, fragmentation and reassembly, and many others.  
Moreover, the set of requirements placed on implementa-
tions grows with time, as evidenced by the steady stream 
of books and Internet Requests For Comments (RFC’s) 
discussing protocol issues and behavior (see, for example, 
[6] and [7]).

With this increasing complexity comes a trade-off for 
the system developer: robustness versus development ef-
fort and code efficiency.  Constrained development sched-
ules and performance issues are key concerns for many 
developers.  Programmers often do not have the time or 
resources to exhaustively identify and test all possible 
critical conditions.  As a result, an engineer modifying a 
system for changed requirements or performance optimi-
zations may unintentionally leave a protocol implementa-
tion vulnerable to failure when that protocol encounters 
invalid packets.

1.4. Our work

In light of such hazards, the Internet Engineering Task 
Force emphasizes the Internet Robustness Principle by 
directing systems to be "liberal" in the amount of informa-
tion and misinformation they can accept and handle [2].  
The authors note that protocol implementations "should be 
written to deal with every conceivable error," as prob-
ability dictates that packets will arrive with invalid combi-
nations of errors and attributes.

Unfortunately, few tools are available to aid developers 
in determining a particular implementation’s robustness.  
Most protocol testing tools focus on measuring perfor-
mance or behavioral and functional correctness, not ro-
bustness (see, for example, the TCP testing tools identified 
in [8]).  Developers require a tool to ensure that structural 
decisions, optimizations, and functional changes do not 
have an adverse effect on system robustness.

We are developing PIRANHA--an automated Protocol 
Implementation Robustness And Network Hardness 
Analysis tool--for testing remote protocol implementations 
for robustness failures.  By establishing connections with 
remote systems and probing those connections with ex-
traordinary packets during protocol steady-state and state-
transition periods, PIRANHA will identify and reproduce 
robustness failures.  Furthermore, the automated nature of 
PIRANHA will allow developers and system administra-
tors to test any developmental or deployed system.  Al-
though our current work specifically targets TCP, we ex-
pect to find our methodology is extensible to general pro-
tocol testing.

2. Protocol robustness testing

In this section we identify related approaches to proto-
col testing and discuss our integration of the Ballista test-
ing methodology into PIRANHA.  We conclude with 
comments on the implementation of our prototype tool.

2.1. Related work

Much of the recent work in protocol implementation 
testing centers around the TCP/IP protocol suite.  As a 
representative example of these, we note three alternative 
approaches to protocol testing.

The active probing approach applies black-box testing 
to TCP implementations.  By using specially designed 
probe procedures to control the packet stream to a remote 
system and analyzing packet traces from the remote con-
nection, Comer and Lin identify implementation flaws and 
protocol violations on remote systems [9].  Similarly, the 
ORCHESTRA tool employs script-driven software fault 
injection to test dependability and timing properties of 
protocols.  ORCHESTRA places a fault injection layer 
directly in the protocol stack to introduce new test packets 
and perform filtering and manipulation on intercepted 
packets [10].  Both approaches observe behavioral charac-
teristics such as time-out and keep-alive behavior, zero 
window probing, and message reordering and buffering 
response.

Alternatively, Paxson’s tcpanaly tool takes a passive 
approach to behavioral analysis: studying packet traces of 
snooped connections to compare an implementation’s be-
havior to that of other analyzed implementations [11].  
This approach allows tcpanaly to observe behavioral vari-
ance in congestion window and congestion avoidance 
threshold maintenance, fast retransmission and fast recov-
ery behavior, reaction to response delays, and other proto-
col characteristics.

PIRANHA compliments these approaches.  For ex-
ample, the active probing and ORCHESTRA tools ma-
nipulate high-level packet events to observe a system’s 
behavioral response (e.g., delaying and dropping packets, 
or inserting zero-window probe packets) whereas PIRA-
NHA performs low-level packet manipulation to observe 
robustness failures (e.g., modifying the "header length" 
field and updating the header checksum accordingly).  PI-
RANHA also actively creates test packets for any purpose, 
while other tools have only a limited ability to dispatch 
invalid packets.  We believe PIRANHA represents an im-
portant and neglected approach to testing protocol imple-
mentations.

2.2. The Ballista methodology

The Ballista project [12,13] provides proven testing 
techniques for isolating robustness failures in software 
modules.  Through the systematic approach of applying 



combinations of valid and invalid parameters at a 
module’s interface and observing the module’s high-level 
response, Ballista tools repeatably and deterministically 
identify robustness failure modes of a module under test.  
We extend the Ballista approach to network protocol test-
ing: by viewing protocol header fields as analogous to 
module interface parameters, we can identify a set of valid 
and invalid test values and probe a remote protocol imple-
mentation with these values to determine the robustness of 
its response.  As with existing Ballista tools, this will af-
ford deterministic results (experiments will be controlled 
and repeatable), portability across multiple platforms (all 
implementations of a protocol use standard packet for-
mats), extensibility to other protocols (e.g., IP, UDP, or 
ICMP), and scalability with the number of parameters un-
der test.

2.3. Implementation status

In order for PIRANHA to effectively control the com-
position of test packets and position the exact protocol 
state of a system under test, our testing tool must have ex-
tremely fine-grain control over its local networking activ-
ity.  To achieve this, we are implementing PIRANHA un-
der the Linux 2.2 operating system with xio user-level net-
working support.  (The xio extensible I/O library is intro-
duced in [14].)  Xio allows network applications such as 
PIRANHA the option of manipulating packet composition 
and dispatch without worrying about low-level protocol 
implementation details.

We are addressing several open issues with our ap-
proach to robustness testing.  For example, what is the cor-
rect definition of success or failure when probing proto-
cols with valid and invalid packets?  We have rejected the 
idea of testing the behavioral response of a protocol--e.g., 
checking whether a sender correctly ceases transmissions 
when the receive window size reaches zero.  Such an ap-
proach is neither portable among different protocols nor 
scalable with the number of parameters tested.  As an al-
ternative, we hope robustness failures map into classes 
similar to those of the CRASH severity scale (described in 
[13]).  For example, we may discover a failure mode when 
an implementation sends a protocol reset packet or an ap-
plication reset signal when processing a PIRANHA test 
packet.  Another failure mode might involve a remote sys-
tem ceasing all network activity in response to a single 
invalid packet.  Further research is needed before we ex-
pect to understand how to taxonomize network robustness 
failures.
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