
29th Annual International Symposium on Fault-Tolerant Computing, 15-18 June 1999, Madison, Wisconson

© 1999, John Linwood Griffin

Testing Protocol Implementation Robustness

John Linwood Griffin
Laboratory for Computer Systems

Carnegie Mellon University
Pittsburgh, Pennsylvania

griffin2@ece.cmu.edu

Abstract

We describe preliminary work toward a new robustness
testing tool, PIRANHA, that exercises boundary and ex-
ceptional conditions of network protocol implementations.
This automated tool will provide system developers and
maintainers the ability to repeatably identify and eliminate
robustness failures in protocol subsystems.

1. Introduction

Network protocols are at the heart of our global com-
munications infrastructure. Protocols provide guaranteed
services such as in-order byte delivery and error detection
to network applications. A service failure at any level of
the protocol stack could corrupt data, impact system secu-
rity, or worse. It is therefore essential that protocol imple-
mentations be robust against failure, especially when pro-
cessing invalid or extraordinary information from the
network--whether from software defects, hardware failure,
or intentional attacks. Unfortunately, the increasing com-
plexity of protocols leads us to suspect implementations
may not be as robust as we would like.

1.1. What is protocol robustness?

Although robustness is widely cited throughout com-
puter systems literature, we found no commonly accepted
use or definition of the term. For authority, we consult
two sources: the IEEE to provide a general definition of
robustness and the "Host Requirements" Internet Standard
to apply the concept of robustness to Internet protocols.
The IEEE defines robustness in [1] as "the degree to
which a system or component can function correctly in the
presence of invalid inputs or stressful environmental con-
ditions." From this definition, our focus is on the presence
of invalid and unspecified inputs at the protocol interface.
Specifically, we are interested in invalid packet header
information, as discussed by the Internet Engineering Task
Force in [2]:

[C]onsider a protocol specification that contains an enu-
meration of values for a particular header field -- e.g., a

type field, a port number, or an error code; this enumera-
tion must be assumed to be incomplete. Thus, if a proto-
col specification defines four possible error codes, the
software must not break when a fifth code shows up. An
undefined code... must not cause an error.

We extend this emphasis on handling invalid headers to
exercise possible robustness deficiencies in a protocol
implementation.

1.2. Exceptional network information

Exceptional values in packet headers are a certainty on
most networks. Invalid headers originate from several
sources, including in-transit packet corruption, buggy
hosts, and malicious network users.

1.2.1. In-transit packet corruption. Paxson [3] measures
the Internet data packet corruption rate at 0.02%, or one
corrupted packet per 5,000 transmissions. Because of the
limited 16-bit checksum available in the Transmission
Control Protocol (TCP) header, Paxson postulates that
about one in every 300 million TCP packets are accepted
with corruption. Single-bit or multiple-bit errors could
occur anywhere in network control or data packets.

1.2.2. Buggy hosts and malicious users. It is exceed-
ingly difficult to produce an error-free network application
or protocol implementation. In addition, many modern
systems allow user-level applications to transmit arbitrary
packets onto the network. As a result, developers must
guard against malicious programmers and nonconformant
protocol implementations, even when lower-level proto-
cols guarantee error-free data transmission. (We note the
availability and wide distribution of malicious user-level
protocol routines in forums such as [4].)

Consider a user-level TCP implementation that sets the
TCP urgent pointer beyond the last byte of the current
TCP segment (for background, see [5]). If the receiving
protocol mishandles this pointer, a serious failure could
occur--for example, a receiver that attempts to reference
data located beyond the packet buffer may experience a
segmentation violation and a failure of the protocol pro-
cessing module.

1.3. Protocol complexity

Network protocols are complex, and their implementa-
tions are more so. Systems must conform to rules govern-
ing states and state transitions, flow and congestion con-
trol, fragmentation and reassembly, and many others.
Moreover, the set of requirements placed on implementa-
tions grows with time, as evidenced by the steady stream
of books and Internet Requests For Comments (RFC’s)
discussing protocol issues and behavior (see, for example,
[6] and [7]).

With this increasing complexity comes a trade-off for
the system developer: robustness versus development ef-
fort and code efficiency. Constrained development sched-
ules and performance issues are key concerns for many
developers. Programmers often do not have the time or
resources to exhaustively identify and test all possible
critical conditions. As a result, an engineer modifying a
system for changed requirements or performance optimi-
zations may unintentionally leave a protocol implementa-
tion vulnerable to failure when that protocol encounters
invalid packets.

1.4. Our work

In light of such hazards, the Internet Engineering Task
Force emphasizes the Internet Robustness Principle by
directing systems to be "liberal" in the amount of informa-
tion and misinformation they can accept and handle [2].
The authors note that protocol implementations "should be
written to deal with every conceivable error," as prob-
ability dictates that packets will arrive with invalid combi-
nations of errors and attributes.

Unfortunately, few tools are available to aid developers
in determining a particular implementation’s robustness.
Most protocol testing tools focus on measuring perfor-
mance or behavioral and functional correctness, not ro-
bustness (see, for example, the TCP testing tools identified
in [8]). Developers require a tool to ensure that structural
decisions, optimizations, and functional changes do not
have an adverse effect on system robustness.

We are developing PIRANHA--an automated Protocol
Implementation Robustness And Network Hardness
Analysis tool--for testing remote protocol implementations
for robustness failures. By establishing connections with
remote systems and probing those connections with ex-
traordinary packets during protocol steady-state and state-
transition periods, PIRANHA will identify and reproduce
robustness failures. Furthermore, the automated nature of
PIRANHA will allow developers and system administra-
tors to test any developmental or deployed system. Al-
though our current work specifically targets TCP, we ex-
pect to find our methodology is extensible to general pro-
tocol testing.

2. Protocol robustness testing

In this section we identify related approaches to proto-
col testing and discuss our integration of the Ballista test-
ing methodology into PIRANHA. We conclude with
comments on the implementation of our prototype tool.

2.1. Related work

Much of the recent work in protocol implementation
testing centers around the TCP/IP protocol suite. As a
representative example of these, we note three alternative
approaches to protocol testing.

The active probing approach applies black-box testing
to TCP implementations. By using specially designed
probe procedures to control the packet stream to a remote
system and analyzing packet traces from the remote con-
nection, Comer and Lin identify implementation flaws and
protocol violations on remote systems [9]. Similarly, the
ORCHESTRA tool employs script-driven software fault
injection to test dependability and timing properties of
protocols. ORCHESTRA places a fault injection layer
directly in the protocol stack to introduce new test packets
and perform filtering and manipulation on intercepted
packets [10]. Both approaches observe behavioral charac-
teristics such as time-out and keep-alive behavior, zero
window probing, and message reordering and buffering
response.

Alternatively, Paxson’s tcpanaly tool takes a passive
approach to behavioral analysis: studying packet traces of
snooped connections to compare an implementation’s be-
havior to that of other analyzed implementations [11].
This approach allows tcpanaly to observe behavioral vari-
ance in congestion window and congestion avoidance
threshold maintenance, fast retransmission and fast recov-
ery behavior, reaction to response delays, and other proto-
col characteristics.

PIRANHA compliments these approaches. For ex-
ample, the active probing and ORCHESTRA tools ma-
nipulate high-level packet events to observe a system’s
behavioral response (e.g., delaying and dropping packets,
or inserting zero-window probe packets) whereas PIRA-
NHA performs low-level packet manipulation to observe
robustness failures (e.g., modifying the "header length"
field and updating the header checksum accordingly). PI-
RANHA also actively creates test packets for any purpose,
while other tools have only a limited ability to dispatch
invalid packets. We believe PIRANHA represents an im-
portant and neglected approach to testing protocol imple-
mentations.

2.2. The Ballista methodology

The Ballista project [12,13] provides proven testing
techniques for isolating robustness failures in software
modules. Through the systematic approach of applying

combinations of valid and invalid parameters at a
module’s interface and observing the module’s high-level
response, Ballista tools repeatably and deterministically
identify robustness failure modes of a module under test.
We extend the Ballista approach to network protocol test-
ing: by viewing protocol header fields as analogous to
module interface parameters, we can identify a set of valid
and invalid test values and probe a remote protocol imple-
mentation with these values to determine the robustness of
its response. As with existing Ballista tools, this will af-
ford deterministic results (experiments will be controlled
and repeatable), portability across multiple platforms (all
implementations of a protocol use standard packet for-
mats), extensibility to other protocols (e.g., IP, UDP, or
ICMP), and scalability with the number of parameters un-
der test.

2.3. Implementation status

In order for PIRANHA to effectively control the com-
position of test packets and position the exact protocol
state of a system under test, our testing tool must have ex-
tremely fine-grain control over its local networking activ-
ity. To achieve this, we are implementing PIRANHA un-
der the Linux 2.2 operating system with xio user-level net-
working support. (The xio extensible I/O library is intro-
duced in [14].) Xio allows network applications such as
PIRANHA the option of manipulating packet composition
and dispatch without worrying about low-level protocol
implementation details.

We are addressing several open issues with our ap-
proach to robustness testing. For example, what is the cor-
rect definition of success or failure when probing proto-
cols with valid and invalid packets? We have rejected the
idea of testing the behavioral response of a protocol--e.g.,
checking whether a sender correctly ceases transmissions
when the receive window size reaches zero. Such an ap-
proach is neither portable among different protocols nor
scalable with the number of parameters tested. As an al-
ternative, we hope robustness failures map into classes
similar to those of the CRASH severity scale (described in
[13]). For example, we may discover a failure mode when
an implementation sends a protocol reset packet or an ap-
plication reset signal when processing a PIRANHA test
packet. Another failure mode might involve a remote sys-
tem ceasing all network activity in response to a single
invalid packet. Further research is needed before we ex-
pect to understand how to taxonomize network robustness
failures.

Acknowledgments

This research is sponsored by the Pennsylvania Infra-
structure Technology Alliance, a joint program of
Carnegie Mellon and Lehigh University funded under the
Commonwealth of Pennsylvania’s Department of Com-

munity and Economic Development Contract No. 98-050-
0018. The author thanks Greg Ganger and Laurel Fan for
their work on the prototype PIRANHA tool, Garth Good-
son for his continued developmental work on the xio user-
level networking library, and Phil Koopman for providing
scalability and determinism to our testing approach.

References

[1] IEEE Standard Glossary of Software Engineering Terminol-
ogy, IEEE Std 610.12-1990, Dec. 1990.

[2] R. Braden, ed., "Requirements for Internet Hosts -- Com-
munication Layers", RFC 1122, Oct. 1989, pp. 12-13.

[3] V. Paxson, "End-to-End Internet Packet Dynamics", Com-
puter Communication Review, 27(4), ACM SIGCOMM, Cannes,
France, Sept. 1997, p. 142.

[4] Miff, "Homemade TCP Packets", 2600: The Hacker Quar-
terly, 15(3), Fall 1998, pp. 6-9.

[5] G.R. Wright and W.R. Stevens, TCP/IP Illustrated, Volume
2: The Implementation, Addison-Wesley, Reading, Mas-
sachusetts, 1995, pp. 878-879.

[6] W. Stevens, TCP/IP Illustrated, Volume 1: The Protocols,
Addison-Wesley, Reading, Massachusetts, 1994.

[7] M. Allman, V. Paxson, W. Stevens, "TCP Congestion Con-
trol", RFC 2581, April 1999.

[8] S. Parker and C. Schmechel, "Some Testing Tools for TCP
Implementors", RFC 2398, Aug. 1998.

[9] D. Comer and J. Lin, "Probing TCP Implementations", US-
ENIX Summer 1994 Technical Conf., Boston, USA, June 1994.

[10] S. Dawson et al., "Testing of Fault-Tolerant and Real-Time
Distributed Systems via Protocol Fault Injection", 26th Intl.
Symp. on Fault-Tolerant Computing, Sendai, Japan, 1996.

[11] V. Paxson, "Automated Packet Trace Analysis of TCP
Implementations", Computer Communication Review, 27(4),
ACM SIGCOMM, Cannes, France, Sept. 1997.

[12] N.P. Kropp, P.J. Koopman, and D.P. Siewiorek, "Auto-
mated Robustness Testing of Off-the-Shelf Software Compo-
nents", 28th Intl. Symp. on Fault Tolerant Computing, Munich,
Germany, June 1998.

[13] P. Koopman and J. DeVale, "Comparing the Robustness of
POSIX Operating Systems", 29th Intl. Symp. on Fault-Tolerant
Computing, Madison, USA, June 1999.

[14] F. Kaashoek et al., "Application Performance and Flex-
ibility on Exokernel Systems", Proc. 16th Symp. on Operating
Systems Principles, ACM SIGOPS, Saint-Malo, France, Oct.
1997, pp. 52-65.

