29th Annual International Symposium on Fault-Tolerant Computing, 15-18 June 1999, Madison, Wisconson

Testing Protocol | mplementation Robustness

John Linwood Griffin
Laboratory for Computer Systems
Carnegie Mellon University
Pittsburgh, Pennsylvania
griffin2@ece.cmu.edu

Abstract

We describepreliminarywork towarda newrobustness
testingtool, PIRANHA, that exercisesboundaryand ex-
ceptionalconditionsof networkprotocolimplementations.
This automatedool will provide systemdevelopersand
maintainerghe ability to repeatablyidentify andeliminate
robustness failures in protocol subsystems.

1. Introduction

Network protocolsare at the heartof our global com-
municationsinfrastructure. Protocolsprovide guaranteed
servicessuchasin-orderbyte delivery anderror detection
to network applications. A servicefailure at any level of
the protocolstackcould corruptdata,impactsystemsecu-
rity, or worse. It is thereforeessentiathat protocolimple-
mentationsbe robustagainstfailure, especiallywhenpro-
cessinginvalid or extraordinary information from the
network--whethefrom softwaredefects hardwarefailure,
or intentionalattacks. Unfortunately the increasingcom-
plexity of protocolsleadsus to suspectimplementations
may not be as robust as we would like.

1.1. What is protocol robustness?

Although robustness is widely cited throughoutcom-
putersystemditerature,we found no commonlyaccepted
use or definition of the term. For authority, we consult
two sourcesthe IEEE to provide a generaldefinition of
robustnessindthe "Host RequirementsTnternetStandard
to apply the conceptof robustnesgo Internetprotocols.
The IEEE defines robustnessin [1] as "the degreeto
which a systemor componentanfunctioncorrectlyin the
presenceof invalid inputsor stressfulenvironmentakon-
ditions." Fromthis definition, our focusis onthe presence
of invalid and unspecified inputs at the protocolinterface.
Specifically, we are interestedin invalid packetheader
information,asdiscussedby the InternetEngineeringrask
Force in [2]:

[Clonsidera protocol specificationthat containsan enu-

merationof valuesfor a particularheaderfield -- e.g.,a

© 1999, John Linwood Griffin

type field, a port number,or an error code;this enumera-
tion mustbe assumedo beincomplete. Thus,if a proto-
col specificationdefines four possibleerror codes,the
softwaremustnot breakwhena fifth codeshowsup. An
undefined code... must not cause an error.
We extendthis emphasison handlinginvalid headersto
exercise possible robustnessdeficienciesin a protocol
implementation.

1.2. Exceptional network information

Exceptionalvaluesin packetheadersarea certaintyon
most networks. Invalid headersoriginate from several
sources, including in-transit packet corruption, buggy
hosts, and malicious network users.

1.2.1. In-transit packet corruption. Paxsor{3] measures
the Internetdatapacketcorruptionrate at 0.02%, or one
corruptedpacketper 5,000transmissions.Becauseof the
limited 16-bit checksumavailable in the Transmission
Control Protocol (TCP) header, Paxsonpostulatesthat
aboutonein every300 million TCP packetsareaccepted
with corruption. Single-bit or multiple-bit errors could
occur anywhere in network control or data packets.

1.2.2. Buggy hosts and malicious users. It is exceed-
ingly difficult to produceanerror-freenetworkapplication
or protocol implementation. In addition, many modern
systemsallow user-levelapplicationsto transmitarbitrary

packetsonto the network. As a result, developersmust

guardagainstmalicious programmersand nonconformant
protocol implementationseven when lower-level proto-

cols guaranteesrror-freedatatransmission.(We notethe

availability and wide distribution of malicious user-level
protocol routines in forums such as [4].)

Considera user-levelTCP implementatiorthat setsthe
TCP urgent pointer beyondthe last byte of the current
TCP segment(for backgroundsee[5]). If the receiving
protocol mishandlesthis pointer, a seriousfailure could
occur--for example,a receiverthat attemptsto reference
datalocatedbeyondthe packetbuffer may experiencea
segmentatiorviolation and a failure of the protocol pro-
cessing module.



1.3. Protocol complexity

Network protocolsare complex,andtheir implementa-
tionsaremoreso. Systemanustconformto rulesgovern-
ing statesand statetransitions,flow and congestioncon-
trol, fragmentationand reassembly,and many others.
Moreover,the setof requirementplacedon implementa-
tions grows with time, asevidencedy the steadystream
of books and Internet Requestsd=or Comments(RFC’s)
discussingprotocolissuesandbehavior(see,for example,
[6] and [7]).

With this increasingcomplexity comesa trade-off for
the systemdeveloper:robustnessersusdevelopmentef-
fort andcodeefficiency. Constrainedlevelopmensched-
ules and performanceissuesare key concernsfor many
developers. Programmersften do not havethe time or
resourcesto exhaustivelyidentify and test all possible
critical conditions. As a result,an engineermodifying a
systemfor changedrequirementor performanceoptimi-
zationsmay unintentionallyleavea protocolimplementa-
tion vulnerableto failure when that protocol encounters
invalid packets.

1.4. Our work

In light of suchhazardsthe InternetEngineeringTask
Force emphasizeghe Internet RobustnessPrinciple by
directingsystemso be"liberal" in theamountof informa-
tion and misinformationthey can acceptand handle[2].
The authorsnotethatprotocolimplementationsshouldbe
written to deal with every conceivableerror,” as prob-
ability dictatesthat packetswill arrive with invalid combi-
nations of errors and attributes.

Unfortunately few tools areavailableto aid developers
in determininga particularimplementation’srobustness.
Most protocol testing tools focus on measuringperfor-
manceor behavioraland functional correctnessnot ro-
bustnesgsee for examplethe TCPtestingtoolsidentified
in [8]). Developergequirea tool to ensurethat structural
decisions,optimizations,and functional changesdo not
have an adverse effect on system robustness.

We are developingPIRANHA--an automatedProtocol
Implementation Robustness And Network Hardness
Analysistool--for testingremoteprotocolimplementations
for robustnesdailures. By establishingconnectionswith
remote systemsand probing those connectionswith ex-
traordinarypacketsduring protocol steady-statand state-
transitionperiods,PIRANHA will identify and reproduce
robustnesdailures. Furthermorethe automatechatureof
PIRANHA will allow developersand systemadministra-
tors to test any developmentabr deployedsystem. Al-
thoughour currentwork specifically targetsTCP, we ex-
pectto find our methodologyis extensibleto generalpro-
tocol testing.

2. Protocol robustnesstesting

In this sectionwe identify relatedapproacheso proto-
col testinganddiscussour integrationof the Ballista test-
ing methodology into PIRANHA. We conclude with
comments on the implementation of our prototype tool.

2.1. Related work

Much of the recentwork in protocol implementation
testing centersaroundthe TCP/IP protocol suite. As a
representativexampleof these,we notethreealternative
approaches to protocol testing.

The active probing approachappliesblack-boxtesting
to TCP implementations. By using specially designed
probeprocedurego control the packetstreamto a remote
systemand analyzingpackettracesfrom the remotecon-
nection,ComerandLin identify implementatiorflaws and
protocol violations on remotesystemg9]. Similarly, the
ORCHESTRA tool employs script-driven software fault
injection to test dependabilityand timing propertiesof
protocols. ORCHESTRA placesa fault injection layer
directly in the protocolstackto introducenewtestpackets
and perform filtering and manipulation on intercepted
packetg10]. Both approachesbservebehavioralcharac-
teristics such as time-out and keep-alivebehavior, zero
window probing, and messagereorderingand buffering
response.

Alternatively, Paxson’stcpanaly tool takesa passive
approachto behavioralanalysis:studyingpackettracesof
snoopedconnectiondo comparean implementation’se-
havior to that of other analyzedimplementations[11].
This approachallows tcpanalyto observebehavioralvari-
ance in congestionwindow and congestionavoidance
thresholdmaintenancefast retransmissiomndfastrecov-
ery behavior reactionto responsalelays,and otherproto-
col characteristics.

PIRANHA complimentsthese approaches.For ex-
ample, the active probing and ORCHESTRA tools ma-
nipulate high-level packeteventsto observea system'’s
behavioralresponsde.g., delayingand dropping packets,
or inserting zero-window probe packets)whereasPIRA-
NHA performslow-level packetmanipulationto observe
robustnesdailures (e.g., modifying the "headerlength"
field andupdatingthe headerchecksumaccordingly). PI-
RANHA alsoactively creategestpacketsor anypurpose,
while other tools haveonly a limited ability to dispatch
invalid packets. We believe PIRANHA representsnim-
portantand neglectedapproachto testingprotocolimple-
mentations.

2.2. The Ballista methodology
The Ballista project [12,13] provides proven testing

techniquesfor isolating robustnessfailures in software
modules. Through the systematicapproachof applying



combinations of valid and invalid parametersat a
module’sinterfaceand observingthe module’shigh-level
response Ballista tools repeatablyand deterministically
identify robustnesdailure modesof a moduleundertest.
We extendthe Ballista approachto networkprotocoltest-
ing: by viewing protocol headerfields as analogousto

moduleinterfaceparametersye canidentify a setof valid

andinvalid testvaluesandprobea remoteprotocolimple-
mentationwith thesevaluesto determinethe robustnessf

its response.As with existing Ballista tools, this will af-

ford deterministicresults(experimentswill be controlled
and repeatable)portability acrossmultiple platforms (all

implementationsof a protocol use standardpacket for-

mats), extensibility to other protocols(e.g., IP, UDP, or

ICMP), andscalabilitywith the numberof parametersin-
der test.

2.3. Implementation status

In orderfor PIRANHA to effectively control the com-
position of test packetsand position the exact protocol
stateof a systemundertest,our testingtool musthaveex-
tremely fine-graincontrol over its local networkingactiv-
ity. To achievethis, we areimplementingPIRANHA un-
dertheLinux 2.2 operatingsystemwith xio user-leveinet-
working support. (The xio extensiblel/O library is intro-
ducedin [14].) Xio allows network applicationssuchas
PIRANHA the option of manipulatingpacketcomposition
and dispatchwithout worrying about low-level protocol
implementation details.

We are addressingseveralopen issueswith our ap-
proachto robustnessesting. For examplewhatis the cor-
rect definition of success or failure when probing proto-
colswith valid andinvalid packets?We haverejectedthe
ideaof testingthe behavioralresponsef a protocol-e.g.,
checkingwhethera sendercorrectly ceasegransmissions
whenthe receivewindow size reachesero. Suchan ap-
proachis neither portableamongdifferent protocolsnor
scalablewith the numberof parametersested. As an al-
ternative we hope robustnesdailures map into classes
similar to thoseof the CRASH severityscale(describedn
[13]). Forexamplewe maydiscovera failure modewhen
an implementatiorsendsa protocolresetpacketor an ap-
plication resetsignal when processinga PIRANHA test
packet. Anotherfailure modemightinvolve aremotesys-
tem ceasingall network activity in responseo a single
invalid packet. Furtherresearchs neededbeforewe ex-
pectto understandow to taxonomizenetworkrobustness
failures.

Acknowledgments

This researchs sponsoredy the Pennsylvanidnfra-
structure Technology Alliance, a joint program of
CarnegieMellon andLehigh University fundedunderthe
Commonwealthof Pennsylvania’sDepartmentof Com-

munity and EconomicDevelopmentContractNo. 98-050-
0018. The authorthanksGregGangerandLaurel Fanfor
their work on the prototypePIRANHA tool, GarthGood-
sonfor his continueddevelopmentalvork on the xio user-
level networkinglibrary, and Phil Koopmanfor providing
scalability and determinism to our testing approach.

References

[1] IEEE Standard Glossary of Software Engineering Terminol-
ogy, IEEE Std 610.12-1990, Dec. 1990.

[2] R. Braden,ed., "Requirementdor InternetHosts-- Com-
munication Layers", RFC 1122, Oct. 1989, pp. 12-13.

[3] V. Paxson,"End-to-End Internet PacketDynamics", Com-
puter Communication Review, 27(4),ACM SIGCOMM, Cannes,
France, Sept. 1997, p. 142.

[4] Miff, "HomemadeTCP Packets",2600: The Hacker Quar-
terly, 15(3), Fall 1998, pp. 6-9.

[5] G.R. Wright and W.R. Stevens,TCP/IP Illustrated, Volume
2: The Implementation, Addison-Wesley, Reading, Mas-
sachusetts, 1995, pp. 878-879.

[6] W. Stevens, TCP/IP Illustrated, Volume 1. The Protocols,
Addison-Wesley, Reading, Massachusetts, 1994.

[7] M. Allman, V. PaxsonW. Stevens, TCP CongestionCon-
trol", RFC 2581, April 1999.

[8] S. ParkerandC. Schmechel;Some TestingTools for TCP
Implementors”, RFC 2398, Aug. 1998.

[9] D. ComerandJ. Lin, "Probing TCP Implementations"US
ENIX Summer 1994 Technical Conf., Boston, USA, June 1994.

[10] S. Dawsonet al., "Testingof Fault-ToleranandReal-Time
Distributed Systemsvia Protocol Fault Injection”, 26th Intl.
Symp. on Fault-Tolerant Computing, Sendai, Japan, 1996.

[11] V. Paxson,"Automated Packet Trace Analysis of TCP
Implementations”, Computer Communication Review, 27(4),
ACM SIGCOMM, Cannes, France, Sept. 1997.

[12] N.P. Kropp, P.J. Koopman,and D.P. Siewiorek, "Auto-
mated RobustnessTesting of Off-the-Shelf Software Compo-
nents",28th Intl. Symp. on Fault Tolerant Computing, Munich,
Germany, June 1998.

[13] P. KoopmanandJ. DeVale,"Comparingthe Robustnessf
POSIX OperatingSystems" 29th Intl. Symp. on Fault-Tolerant
Computing, Madison, USA, June 1999.

[14] F. Kaashoeket al., "Application Performanceand Flex-
ibility on ExokernelSystems",Proc. 16th Symp. on Operating
Systems Principles, ACM SIGOPS, Saint-Malo, France, Oct.
1997, pp. 52-65.



