
Abstract
Software developers identify two main reasons why soft-

ware systems are not made robust: performance and prac-
ticality. This work demonstrates the effectiveness of
general techniques to improve robustness that are practical
and yield high performance. We present data from treating
three systems to improve robustness by a factor of 5 or
more, with a measured performance penalty of under 5% in
nearly every case, and usually under 2%.

We identify a third possible reason why software sys-
tems are not made robust: developer awareness. A case
study on three professional development groups evaluated
their ability to estimate the robustness of their software.
Two groups were able to estimate their software’s robust-
ness to some extent, while one group had more divergent
results. Although we can overcome the technical chal-
lenges, it appears that even experienced developers can
benefit from tools to locate robustness failures and training
in robustness issues.

1. Introduction

As our society becomes more dependent on the complex
interactions among electronic systems, the ability of these
systems to tolerate defects, errors, and exceptions is critical
to achieving service goals. Every aspect of life is becoming
dependent on computers, and the software that runs on
them. From banking to traffic control, weapons systems to
a trip to the grocery store, the things we take for granted are
now irrevocably tied to the correct functionality of comput-
ing systems.

This is not an entirely unfamiliar problem. Military,
aerospace, medical, and financial systems have always
been built to be as tolerant of faults as practical. Though
they have not always been as robust as their designers may
have hoped [21] [27] [28], the effort to build robust systems
was made.

Unfortunately, it is not unusual for system developers to
pay too little attention to the need for building robust sys-
tems. Operating systems have shown to have at times poor
robustness [24][12]. Commercial distributed computing
frameworks such as CORBA client software tend to exhibit
problems as well [31]. Even complex military distributed

simulation frameworks have a lower, but significant, rate of
robustness problems [9].

The past few years have seen a number of research ef-
forts that measure, to some degree, some aspect of software
fault tolerance or robustness [22][6][16][4]. Although none
of these tools can reasonably be expected to be the ultimate
authority on the measurement of system reliability, each
can provide developers useful insight into some aspects of
the system that arguably contribute to reliability.

Although the availability of these tools might lead one to
expect that system developers would use them to steadily
improve, this does not seem to be the case. While some
groups have pursued using such tools to improve their sys-
tems, many more do not. We found it puzzling that some
developers would not be interested in improving their prod-
ucts, and strove to understand the phenomenon.

In the course of the work done throughout the Ballista
Project, we were afforded the opportunity to interact with a
number of development groups. Some of the systems these
groups were developing fall within the more traditional ar-
eas accustomed to the need for fault tolerance (military),
while others were in areas whose need for fault tolerance
and robust exception handling are only now being realized.
These interactions provided some insight as to why some
groups were reluctant to fix issues unless they could be
traced directly to a total system failure.

Among the developers with whom we interacted, the
primary concerns cited to justify not fixing all robustness
problems found were: performance and practicality. Both
of these issues bear close scrutiny. It is readily apparent
that the need for any approach to address robustness issues
must be easy to implement to reduce development cost.
Additionally, run time performance must be fast on all plat-
forms, and built solely on top of existing hardware without
the need for architectural changes to enhance performance.
This is largely because the majority of systems being built
use commodity hardware and processors, which are usually
manufactured with speed, cost, and quality in mind rather
than supporting software fault tolerance.

To address the developer’s concerns we demonstrate the
effectiveness of general techniques to improve robustness
that are practical and yield high performance. We present
data from treating three systems to remove all detectable ro-
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bustness failures, with a measured performance penalty of
under 5% in nearly every case, and usually under 2%.

Although we can demonstrate solutions to the technical
challenges involved in building robust systems, there re-
mains the issue of familiarity, or awareness first explored
by Maxion in [30]. Maxion concludes that through the ex-
posure to a few simple ideas and concepts, student pro-
gramming groups will produce more robust code. The
obvious observation that can be made is that during their
course work, the students in Maxion’s study had not been
effectively exposed to the types of exceptional conditions
that occur in real world applications, or potential methods
of dealing with them. One might wonder if such a result is
indicative of any developer, or just students. Put another
way, are professional development teams any more capable
of building robust code than the control groups in Maxion’s
study?

To gain insight into this issue we present data from a
case study performed using 3 professional development
teams. The study attempts to determine how well the devel-
opers are able to predict the exception handling characteris-
tics of their code. If their predictions were accurate, one
might conclude that given the proper tools, and time they
could build robust software systems. If they were not accu-
rate, it is uncertain that they would be able to develop a ro-
bust system, even if they were asked to do so.

2. Previous Work

The literature on exceptions and exception handling is
vast. Exception handling has been studied since the incept
of computing, and is important for detecting and dealing
with not only problems and errors, but also expected condi-
tions. The research falls largely into three major categories
with respect to exception handling: how to describe it; how
to perform it; and how to do it quickly.

2.1. Describing Exception Handling

Exception handling code can be difficult to represent in
terms of design and documentation, largely because it gen-
erally falls outside normal program flow, and can occur at
virtually any point in a program. Accordingly, a large body
of work has been created to help develop better methods to
describe, design and document the exception handling fa-
cilities of a software system.

Early work strove to discover multiple ways to handle
exceptional conditions [17] [13]. Over the years two meth-
ods have come to dominate current implementations.
These methods are the termination model and the resump-
tion model [11].

In current systems the two main exception handling
models manifest themselves as error return codes and sig-
nals. It has been argued that the termination model is supe-
rior to the resumption model [5]. Indeed, the
implementation of resumption model semantics via signals
in operating systems provides only large-grain control of
signal handling, typically at the task level resulting in the
termination of the process (e.g. SIGSEGV). This can make

it difficult to diagnose and recover from a problem, and is a
concern in real-time systems that cannot afford large-scale
disruptions in program execution.

Implementations of the termination model typically re-
quire a software module to return an error code (or set an er-
ror flag variable such as in POSIX) in the event of an
exceptional condition. For instance a function that includes
a division operation might return a divide by zero error code
if the divisor were zero. The calling program could then de-
termine that an exception occurred, what it was, and per-
haps determine how to recover from it. POSIX
standardizes ways to use error codes, and thus provides por-
table support for the error return model in building robust
systems [20].

At a higher level of abstraction, several formal frame-
works for representing exception handling and recovery
have been developed [18]. These methods attempt to build
an exception handling framework that is easy to use and un-
derstand around a transactional workflow system.

Highly hierarchical object oriented approaches seek to
build flexible and easy to use frameworks that bridge the
gap between representation and implementation [8]. Yet
another approach is to use computational reflection to
separate the exception handling code from the normal com-
putational code [10].

2.2 Performing Exception Handling

Exception handling mechanisms can often make code
generation and understanding difficult. This is a problem
throughout the development lifecycle. Easing the burden of
developing, testing, and maintaining software with excep-
tion handling constructs through better code representation
is important for not only reducing costs, but improving
product quality. Consequently, there is a large field of re-
lated work.

One common way of easing the burden of writing effec-
tive exception handling code is through code and macro li-
braries. This type of approach has the benefit of being
easily assimilated into existing projects, and allows devel-
opers to use traditional programming languages [26] [19]
[15] [3]. More aggressive approaches go beyond simple
compiler constructs build entire frameworks [14] [33] or
language constructs [29].

The focus of this research is more along the lines of iden-
tifying exceptional conditions before an exception is gener-
ated (in an efficient manner), rather than developing
exception handling mechanisms that are easier to use. As
such, the most closely related work is Xept [36]. The Xept
method is a way in which error checking can be encapsu-
lated in a wrapper, reducing flow-of-control disruption and
improving modularity. It uses a tool set to facilitate inter-
cepting function calls to third party libraries to perform er-
ror checking. Xept is a somewhat automated version of the
relatively common manual “wrapper” technique used in
many high availability military systems.

Xept has influenced the research presented here, and the
work leading up to it. The research presented here uses the
idea of avoiding exception generation in order to harden a



software interface against robustness failures. Further, it
explores the practical limits of such hardening, in terms of
detection capabilities and performance cost. In some cases,
a tool such as Xept might work well as a mechanism for im-
plementing checks discussed in our work. Unfortunately it
does incur the overhead of at least one additional function
call in addition to the tests performed per protected code
segment. Though the Xept check functions can not be
inlined due to the structure of its call-intercept methodol-
ogy, it is not difficult to imagine practical modifications to
the technology that would allow the inlining optimization.

2.3 High Performance Exception Handling

In today’s high performance culture, the desire for fast
exception handling is obvious. Once exceptions are gener-
ated, it can be difficult to recover from them in a robust
fashion. The previous work discussed in this section
largely focuses on generating, propagating, and handling
exceptions as quickly as possible. That is complementary
to the work presented herein. This work is mainly inter-
ested in developing methods of including enhanced error
detection in software systems to detect incipient excep-
tional conditions to the maximum extent possible before
they generate exceptions, and to do so without sacrificing
performance.

Exception delivery cost can be substantial, especially in
heavily layered operating systems where the exception
needs to propagate through many subsystems to reach the
handling program. In [35], the authors present a hard-
ware/software solution that can reduce delivery cost by an
order of magnitude. In [38], the use of multithreading is ex-
plored to handle hardware exceptions such as TLB misses
without squashing the main instruction thread. The work
presented herein may benefit from multithreading technol-
ogies that are beginning to emerge in new commercial pro-
cessor designs by allowing error checking threads to run in
parallel. However, synchronizing checking threads with the
main execution thread may prove to be costly in terms of
execution overhead, and certainly machine resources. This
work performs checks in the main thread, building them
such that processors using enhanced multiple branch pre-
diction hardware[32] and block caches[2] can simply exe-
cute checks in parallel and speculatively bypass them with
little or no performance cost.

In [37] the authors propose a hardware architecture to al-
low the rapid validation of software and hardware memory
accesses. Their proposed architecture imposed only a 2%
speed penalty. Unfortunately, the authors also determined
that without the special hardware, the scheme was too
costly to implement in software alone. Other work pro-
poses a code transformation technique to detect memory
exceptions, resulting in performance overheads of
130%-540% [1].

This work expands on these ideas in some key areas. It
creates a simple, generically applicable construct for excep-
tion detection. It quantifies the performance cost of using
the construct to provide robust exception detection and han-
dling, and it discusses ways in which emerging micropro-

cessor technologies will improve the construct’s perfor-
mance even further.

3. Methodology

One of the problems with simply allowing an exception
to occur and cleaning up after it later is the questionable via-
bility of any post-exception cleanup effort. The POSIX
standard does not guarantee process state after signal deliv-
ery, and it is possible that the function in which the excep-
tion occurred was altering the system state in a way that is
impossible or difficult to undo. Additionally, some proces-
sors on the market do not support precise exceptions.
Given these issues, there is little guarantee that a portable
program can recover from an exceptional condition in a
graceful fashion.

For this reason our approach is to detect all possible ex-
ceptional conditions before any calculations are performed
or actions are taken. This is accomplished through the rig-
orous validation of input data. Once the data has been vali-
dated, processing can continue as normal.

The result of this preemptive detection is that the process
has the opportunity to respond gracefully to exceptional
conditions before process state is altered. Addressing the
issue of providing the mechanisms to handle exceptional
conditions within applications is beyond the scope of this
work, although we note that in many cases a simple retry
can be effective. However, the main point of this work is to
provide the opportunity to handle exceptions without incur-
ring the overhead of a process restart, whereas in the past
there was no portable way to do so in practice.

A generically applicable method for hardening a soft-
ware interface is to harden each element of a function’s in-
coming parameters. This corresponds to creating wrappers
on a per-parameter basis. We have found that linking hard-
ening code to data types is a scalable approach, and mirrors
the abstraction of testing to data types within the software
interface as is done in the Ballista testing service [6].

The main benefit from basing wrapper checks on data
type is enhancing the modularity and reuse of checks.
Checks can be completely encapsulated in a function call,

ReturnType function foo(dataTypeA a)

{

if (!checkDataTypeA(a))

{

return ErrorCondition

}

.

.

.

Perform normal calculations

.

.

.

Return result

}

Figure 1. Pseudocode illustrating entry
checks for exceptional conditions.



and used as needed to harden against robustness fail-
ures. Upon entering any hardened function, a wrap-
per function is invoked for each of the incoming
parameter values (see Figure 1). There are some in-
stances where such an abstraction breaks, for in-
stance when values may hold special context or
exceptional values dependent on the functionality of
the method being protected. Nonetheless, even when
this occurs the function can be hardened with a
slightly customized version of the generic hardening
procedure at small cost. (This is analogous of creat-
ing custom parameter tests for application-specific
data types based on inheritance from generic data
types, as is done in the Ballista test harness.)

One of the problems encountered when fixing robust-
ness issues due to memory problems (e.g. improperly allo-
cated, or uninitialized memory) is lack of information
accessible by user level programs. Although most systems
and memory allocation schemes track the information
needed to determine if a memory block is exceptional or
not, the information is generally not exposed to the user.
This fundamentally limits how well a developer can detect
memory related exceptional conditions.

To remove this fundamental limitation we slightly mod-
ified malloc() and provided function hooks that could read
the data needed to validate dynamically allocated memory
at the user level. Such a technique could be used to store
and retrieve other context dependent information pertain-
ing to the memory block. For our purposes, it was sufficient
to simply allow reading the information.

Making the checks practical is only part of the solution,
since as it stands now, the overhead of our proposed method
would be extremely high. The added cost of several proce-
dure calls, each with several exceptional condition checks,
would only be comparatively small for complex functions
with long running times. But it is more often the case that
the functions which need protection from exceptions are
short and time critical. As such, even a few hundred
nanoseconds for a full exception check might take an unac-
ceptably long time.

To reduce the run-time cost of data validation, we pro-
pose the use of a software-implemented validation check
cache (Figure 2). It is a direct mapped, memory resident,
software managed cache.
The address of the data
structure to be validated
is used to index into the
cache. To repeat the em-
phasis, even though it
looks like a typical hard-
ware implementation
technique, this is a purely
software-implemented
approach.

The cache is used to
exploit the temporal lo-
cality of data accesses by
caching the results (ex-
ceptional/non excep-

tional) of data validation so that in the event of a cache hit,
the checks are completely bypassed. The operation is
straightforward. After a data structure is successfully vali-
dated its address is entered into the cache. Any modifica-
tion to the structure or memory block that would potentially
cause it to become exceptional causes an invalidation of the
cache entry. Although this invalidation is currently in-
serted by hand, one can envision a compile time system by
which invalidations would be inserted automatically. Any
time a block or structure to be validated has a cache entry,
the checks can be bypassed.

Managing the cache in software and having it memory
resident in the user process memory space results in config-
uration benefits. First, it allows the developer to determine
how large to make the cache allowing balancing perfor-
mance vs memory footprint. Additionally, it gives the de-
veloper the opportunity to have multiple caches for
different purposes if desired.

Of course the primary benefit of a completely software
solution is that it requires no hardware to operate, is porta-
ble, and can be implemented on any hardware platform. In
the past, commercial processor vendors have exhibited a re-
sistance to adding hardware features solely for the purpose
of improving software reliability. Previous research in the
area of detection of memory exceptions that require hard-
ware has languished unimplemented by the processor com-
munity.

Verification

Module

Clear

Module

Reference Invalidate

Cache Structure in Memory

Store

Lookup

Result

Figure 2. Software implemented direct mapped robustness
check cache.
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4. Experimental Results

As a result of the feedback from develop-
ers, we choose to look at several software sys-
tems to determine if the robustness failures
could be removed in a practical fashion with-
out excessive sacrifices in performance.

This research occurred over the course of
several years, and thus some of the experi-
ments were carried out on systems which are
currently out of date. However, the fact that
even older systems could be improved with
these techniques indicates that there has been
no sudden reversal of situation that makes this
approach viable, but rather a steady accumula-
tion of hardware capabilities over time. The
important point to be made is that the tech-
niques presented are a general, practical appli-
cability of a methodology to improve
robustness while yielding high performance,
and not simply improvements of any specific
module under treatment.

During our initial investigations with Ballista, we no-
ticed a number of robustness failures in the math libraries in
FreeBSD [24]. As an initial study, we chose to address
these issues and determine how robust the libraries could be
made, and at what
cost. The perfor-
mance of the li-
braries was
measured on a
Pentium-133 with
64 MB of main
memory running
FreeBSD 3.0

Figure 3 shows
the measured ro-
bustness of the
math library before
and after treatment.
Figure 4 shows the

performance of the hardened libraries normalized to that of
the stock libraries. Performance was measured by
iteratively calling each function with valid data 1,000,000

times. The results reported are the average
of 10 complete runs. Because the math li-
braries are largely stateless, the use of a
check cache was forgone, and all checks
were performed for each function invoca-
tion. In a few instances, the robust libraries
performance was better than stock. These
are instances, most notably in cos(), where
the pre-existing tests for exception condi-
tions could be folded into the added checks
and made more efficient.

Our next investigation was the analysis
and hardening of the Safe Fast I/O library
[25]. The library has been retreated with
techniques developed since [7] to remove all
detectable robustness failures. Summary
performance results are shown in Figure 5.
The average failure rate of the methods
within the untreated SFIO library was 4.5%.

The third system we investigated was ele-
ments of the Linux API. Although the LINUX developers
have been systematically removing robustness failures over
the course of the last several releases, a few critical areas
such as memory manipulation and process synchronization
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Function

Average

Overhead

memchr 22.3

memcpy 2.1

memcmp 7.1

memset 4.9

memmove 5.7

sem_init 10.9

sem_destroy 7.3

sem_getvalue 9.8

sem_post 7.4

sem_wait 6.2

sem_trywait 6.4

Table 1. Average
overhead (in ns) for
hardening Linux.



have been left in an
unhardened state. Figure
6 shows the before and
after treatment robust-
ness of the functions se-
lected for hardening.

Table 1 shows the av-
erage actual overhead in-
curred for making the
functions robust in nano-
seconds. Although the
most common case is a
hit in the cache reducing
the checks to an index
lookup and a jump, the
absolute overheads do
vary. This is due to dif-
ferences in how well the
microprocessor can ex-
ploit the instruction level
parallelism in the treated
function. Memchr() is highly optimizable, and makes more
complete use of processor resources. Because of this the
processor has only a few unused resources with which to
execute the exception checking code in parallel with useful
computation, and the paid overhead is slightly higher.

The average performance penalties for iterative calls to
the treated functions are located in Figures 7 and 8. Over-
head for process synchronization is given in Figure 9, as
measured by a synthetic application benchmark that simply
obtained semaphore locks, enqueued an integer value,
dequeued an integer value, and released the locks. No pro-
cessing occurred other than the single enqueue/dequeue op-
eration.

In the worst case, two of the memory functions exhibit
relatively large slowdowns for small buffer operand sizes.
These two functions, memchr() and memset() are highly
optimizable and leave fewer unused processor resources
than typical functions do. Although the overhead is 19%
and 11% respectively, it represents less than 25 nanosec-
onds. Sem_getvalue, which consists of a single load in-
struction suffers the worst penalty of 37%.

Although it may seem untoward to benchmark memory
functions iteratively, it is logical considering that the mem-
ory functions are often used to move data in
isolation from other computation. As such, it
made the most sense to test them in isolation
(iteratively) to obtain the worst case overhead
performance data. Used in combination with
other instructions and algorithms, the cost
will be less as the overhead is amortized over
larger amounts of processing.

In the case of process synchronization
however, the functions are always used
within the scope of some larger computa-
tional module. For this reason we measured
their performance within the context of a triv-
ial synthetic application. Only the most basic
computation occurs inside of the program-
ming structures that obtain and release sema-

phore locks. As with the iterative testing of the memory
functions, this yields an extremely pessimistic value for
overhead. Any application that performs non-trivial com-
putation within a critical section (protected by semaphores)
will experience much less relative overhead. Note that per-
formance does begin to degrade due to conflict misses as
the number of objects contending for cache entries ap-
proaches the cache size.

5. Analysis

All robustness failures detectable by the Ballista testing
harness in the three test systems could be removed. It can-
not be concluded that the systems are now completely ro-
bust, because Ballista does not test every possible
robustness failure. However, the tests used attained broad
coverage by testing combinations of basic data type attrib-
utes, so they attained reasonably good coverage.
Furthermore, if new failures become detectable, they can be
fixed using the standard techniques outlined here at low
performance cost.

While there is some variation in performance penalty,
only the most heavily optimizable functions running on
short data sets exhibit large slowdowns. Absolute overhead
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was measured at 25 nanoseconds or less on a dual pIII 600
system. Nearly all of the hardened functions suffer perfor-
mance penalties of less than 5%, and most were less than
2%.

The overhead that is incurred is reduced to (in the case of
a robustness check cache hit) that of executing a few integer
instructions to calculate the cache index, a load, a compare,
and a branch. This small number of instructions usually
represents only a small fraction of the running time of the
protected code, thus yielding high performance. Even in
the case of short, speed critical functions much of the la-
tency of the cache lookup is hidden through hardware ex-
ploitable parallelism.

In the event of a cache miss, the full suite of checks must
be performed, and as indicated in Figure 9, this cost can be
substantial. Of course, these penalties can be minimized
through optimizing both the size of the cache and the num-
ber of caches on a per-application basis. It is also possible
to use multiple caches, providing a developer the opportu-
nity to finely tune the operation of the system.

It is notable that even functions that consist of only a few
hardware instructions can be hardened with a relatively
small speed penalty. It is at first counterintuitive that dou-
bling (in some cases) the number of instructions results in
only a 20% speed reduction. This result is easily explained
through the realization that although modern processors
can extract a great deal of instruction level parallelism from
some of these functions, there is still a fair amount of un-
used processor resources available for concurrent use by
the exception detection code.

This data shows that a range of speed critical ser-
vices/functions can be enhanced to be extremely robust
with a conservatively attainable speed penalty of <5% for
the synthetic application benchmarks. Iterative
benchmarks show worst case slowdowns in pessimistic
scenarios of 37%, but usually <5%. While it is not clear
what an “average” case is, the synthetic benchmarks show
that even the most lightweight application penalties ap-
proach the lower worst case bound. A software system that
performs any non-trivial computation will likely see a near
zero overhead.

The actual overhead (in nanoseconds) was determined
for the Linux functions treated, and can be found in Table 1.
Overall the average absolute overhead was 9 nanoseconds

for the process synchronization functions and 8
nanoseconds for the memory functions using a small
cache size. Small cache synthetic application over-
head was an average of 20 ns (for a full cache). For a
large cache, the overhead increases to an average of
50 ns for a 1/4 full cache, increasing to 90 ns for a
cache at capacity. The base overhead increase is due
to the necessity of adding a more complex indexing
scheme capable of indexing arbitrarily sized caches.
Note that the measured overhead for the synthetic
benchmark actually includes the overhead of a pair
of calls, one to sem_wait(), and one to sem_post().

This overhead is on the order of about 10-25 cy-
cles per protected call, and is representative of not
only the index calculation and the branch resolution,
but also the wasted fetch bandwidth. The micropro-

cessor used on the test platform is incapable of fetching past
branches, thus even correctly predicting the branch induces
some penalty.

Advances in architecture such as the block cache [2],
multiple branch prediction [32] and branch predication can
be expected to effectively reduce exception checking over-
head to near zero. The robustness checks will be performed
completely in parallel with useful computation, and predi-
cated out. Fetch bandwidth will be preserved by the block
cache and the multiple branch predictors. Thus only code
with the highest degree of parallelism that utilizes 100% of
the hardware resources will likely have any drop off in per-
formance. This level of parallelism is seldom seen, and
usually occurs only in tightly optimized loops of computa-
tional algorithms. Of course code sections such as those
only need robustness checks upon method entry, and per-

haps not even then if the method is guaranteed to receive
known valid data.

6. Case Study

Robustness is not a concept addressed in many program-
ming, or software engineering classes [30]. Too often the
idea of testing software is linked to the idea that a system
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has been successfully tested when you can be reasonably
sure it provides the correct output for normal input. Unfor-
tunately, this philosophy overlooks the entire class of fail-
ures resultanting from exceptional inputs or conditions, and
exception detection and handling code tends to be the least
tested and least well understood part of the entire software
system [5].

While up to two-thirds of all system crashes can be
traced to improperly handled exceptional conditions [5],
the reason such failures occur is uncertain. Several possi-
bilities exist, including the classics of “Too hard” to check
for, “Too slow” to be robust, “That could never happen”,
“That was from a third party application”, and one of any
number of the usual litany of excuses. While some of those
possibilities have been discredited, others are a matter of
opinion and can probably never be resolved. But perhaps
there is another, more fundamental mechanism at work.

Simple human error is yet another possibility. The sys-
tem developer/designer may have intended to handle ex-
ceptions, and simply made a mistake. Almost all errors fall
into one of two categories - errors of commission and errors
of omission [34]. Thus the root cause of a robustness fail-
ure is often just that the exception checking and handling
code is either designed or implemented incorrectly (com-
mission), or simply omitted (omission).

In a thorough treatment of this topic, Maxion posits that
most exception handling failures in his test groups were er-
rors of omission due to simple lack of knowledge
and exposure to exceptions, exceptional condi-
tions, and exception handling [30]. Maxion pro-
vided material to the experimental groups with
information on exceptions, exception conditions,
and a mnemonic to jump-start their thinking on
the topic as well as help them to remember excep-
tion checking. He was able to show significant
improvement in the exception handling charac-
teristics of the treatment group software when
compared to a control group.

Although it clearly demonstrates that ordinary
students do not understand robustness and excep-
tion handling, the obvious question with regard to
Maxion’s work is how well professional devel-
opers understand robustness, and the exception
handling characteristics of their code. This is an

important issue to address, because before we can succeed
in helping developers create robust software systems, we
need a better insight into why robust systems are not being
built today.

This section examines how well experienced developers
understand the exception handling characteristics of their
code, not necessarily how robust the code was. We look at
a series of Java components written by various corporate
development groups within one of Carnegie Mellon’s large
corporate research partners that is historically known for
producing robust software. Data was collected on how the
developers thought their code would respond to exceptional
conditions, and contrasted with the robustness as measured
by Ballista.

In order to allow a development group to report on their
component’s expected response to exceptional conditions,
a taxonomy of failures was first developed. This taxonomy
borrows heavily from that developed by Maxion in [30].
Only minor changes were required, in order to better fit the
object and safety models that are inherent to Java.

Three components comprising 46 discrete methods were
rated by the development teams and tested using Ballista.
The components, labeled A, B and C were written by teams
1, 2 and 3 respectively.

Expected failure rates were calculated from the data pro-
vided by the programming teams. The method used to
compute expected failure rates was a simple correlation be-
tween which types of failures the developers expected to be
handled improperly, and the incidence rate of the failures in
the test cases. For example, let us consider hypothetical de-
veloper group X. Group X predicts that method foo() will
suffer an underflow exception(and none others) under the
right conditions. 10% of the test cases run against foo()
would put it in those conditions. Thus we would report that
Group X estimates a 10% failure rate for function foo().
Such an abstraction is necessary since the groups have no a
priori knowledge of the test cases.

Results for testing components A and B can be found in
Figure 10. Overall average failure rates were 5% and 0%
respectively. Teams 1 & 2 did fairly well in accurately clas-
sifying their code. One method suffers from an abort fail-
ure due to invalid data (memory reference), and some
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conditions marked as semi-robust actually could not occur
due to language constraints placed on the testing system
that made it impossible to create corrupt data for certain
base level data types (both teams anticipated divide by zero
failures that were in fact caught by the language).

Figure 11 contains the test results for component C, with
an overall average failure rate was 24.5%. The methods are
separated into two classifications, those that do calculation,
and those that merely return object data in a specific form or
data type.

Teams 1 and 2 had much better knowledge of how their
system would respond to exceptional conditions. With the
exception of a single failed pointer check instance, their ex-
pected robustness matched the measured robustness of the
systems. This excludes conditions that could not be gener-
ated due to language constraints to check the presence of
failures as a result of invalid base data types.

Team 3 seemed to have more difficulty determining how
robust their code was. As is evident from the test data, com-
ponent C suffered abort failures in roughly 60% of its meth-
ods. Team 3 indicated that the only failures would resultant
from divide by zero, and that all other exceptional condi-
tions would be handled correctly. In fact, they suffered
from several failures common in most software, including
memory reference/data corruption issues, and failing to
handle legal, but degenerate data conditions. The most
prevalent exceptional conditions not handled correctly
were caused by values at the extreme end of their legal
ranges.

7. Conclusions

We have determined that generic robustness hardening
wrappers can be used to handle all detected robustness fail-
ures in several different software interfaces. Moreover, via
the use of a software caching technique for robustness
checks that maps well onto modern processor architectures,
the amortized cost of exception checking can be made quite
low, often only a percent or two of execution time. Thus,
the scalable exception testing approach used by the Ballista
robustness testing system has formed the basis of a scal-
able, generic, low-cost robustness hardening wrapper ap-
proach. Although in most cases we removed all the failures
detectable by our system, this is by no means a claim that
there are no residual failures. Rather it is an argument to-
ward the effectiveness of techniques used to preemptively
detect and correct conditions that would induce a failure
without suffering large performance penalties or program-
matic complexity. Based on this result, there seems to be
little reason for developers to shun building robust systems
based on performance concerns.

Further, we have measured the ability of a set of experi-
enced, professional developers to accurately classify the
exception handling abilities of their software systems. For
this particular case study, Maxion’s hypothesis that devel-
opers without specific training on the topic might not fully
grasp exceptional conditions seems to hold. This suggests
that an effective way to improve robustness is to train de-

velopers in understanding and applying known robustness
improvement techniques.
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