
Robustness Testing and Hardening of CORBA ORB Implementations

Abstract

Before using CORBA (Common Object Request Broker
Architecture) applications in mission-critical scenarios, it
is important to understand the robustness of the Object
Request Broker (ORB) being used, which forms the
platform for CORBA applications. We have extended the
Ballista software testing technique to test the
exception-handling robustness of C++ ORB client-side
application interfaces, and have tested two major versions
of three ORB implementations on two operating systems,
yielding robustness failure rates ranging from 26% to 42%.
To improve ORB robustness, we also propose a probing
method to harden object and pseudo-object related data
types against exceptional inputs. Using these probes on
omniORB 2.8 has proven to be effective in eliminating some
cases of robustness failures found during testing. These
results suggest that CORBA implementations currently
have significant robustness vulnerabilities, but that some
important classes of problems can be overcome with better
exception-handling approaches.

1. Introduction

The development of CORBA (Common Object Request

Broker Architecture) has advanced the concept of compo-

nent software: diverse software modules implemented in

different programming languages can be integrated as a dis-

tributed system using the CORBA interface, and interact in

a plug-and-play manner. Using this new component soft-

ware model, an application can be built by assembling leg-

acy software modules, third-party software modules, and

custom-made software modules on a common CORBA

platform connected by ORBs (Object Request Brokers), in-

stead of developing a totally custom-made monolithic ap-

plication, saving both development cost and time to market.

Many mission-critical systems, such as aerospace/de-

fense, banking/finance, healthcare/insurance, e-commerce

and telecommunication applications [15], have selected a

distributed architecture based upon CORBA. Enterprises

and government agencies from all over the world, including

NASA, Boeing, Chase Manhattan bank, Motorola,

Ericsson, and Independence Blue-Cross, are using CORBA

in various applications, from Web-based online banking to

cellular phone management, patient care and even applica-

tions for the Hubble Space Telescope. Recently, the Object

Management Group (OMG) initiated a Space Domain Task

Force to encourage the Space and Satellite industry to fos-

ter the emergence of cost effective, timely, commercially

available and interoperable space, satellite, and ground sys-

tem domain software components through CORBA tech-

nology [17]. While cost and development time is a common

consideration for general purpose systems, the robustness

of the software – the degree to which a software component

functions correctly in the presence of invalid inputs or

stressful environmental conditions [5] – is almost always a

major concern for mission-critical applications as the ex-

amples listed above. It is important that these applications

are resistant to failures caused by abnormal inputs.

CORBA applications used in critical scenarios must be

robust. But, the heterogeneous environment; the use and re-

use of commercial off-the-shelf, third-party and legacy

software modules; and their complex interactions will all

be likely to trigger exceptions. Thus, the graceful handling

of expected and unexpected exceptions is critical for the ro-

bustness of CORBA-based systems.

CORBA applications are built upon an Object Request

Broker (ORB) interface. The ORB accepts requests from

CORBA applications, processes the requests, and manages

the communication among different objects, applications

and ORBs. The robustness of the ORB is very important

since the ORB is the operating platform of CORBA appli-

cations and the venue for a CORBA software component to

communicate and interact with the rest of the system and

the outside world. Developers of critical applications will

often need to know the robustness of candidate ORB imple-

mentations prior to deciding which one to use. However,

methods to evaluate CORBA ORB robustness are rare.
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There is an urgent need for a method

to evaluate the robustness of ORB

implementations.

This paper makes three contribu-

tions. First, this paper quantitatively

measures and compares the excep-

tion-handling robustness of CORBA

ORB implementations using the Bal-

lista robustness testing methodology

[9]. Second, some common excep-

tion-handling robustness problems

of the ORB implementations under test are identified.

Third, methods to improve the robustness of ORB excep-

tion-handling robustness are proposed and evaluated. A

version of the Ballista testing tool has been implemented

for testing C++ ORBs and used to study two major versions

of three ORB products on two operating systems. The oper-

ations tested are selected from CORBA 2.1 standard [18].

In the text that follows, Section 2 details the testing meth-

odology, Section 3 discusses the experimental setup, Sec-

tion 4 gives results, analysis and suggestions on improving

ORB robustness, and Section 5 lists related work. Conclu-

sions can be found in Section 6.

2. Methodology

Many factors can contribute to the robustness of a soft-

ware component. Although stressful environmental condi-

tions are important, we focus on measuring how gracefully

a software module under test behaves under exceptional in-

puts. Typically, two methods are used to handle excep-

tional input situations: returning error-return codes and

raising exceptions. Error-return codes are used extensively

in software implemented using the C language, such as

POSIX standard [6] functions and system calls in many op-

erating systems. Raising exceptions is used as the standard

reporting and handling mechanism for exceptional inputs

in the CORBAstandard [18] for C++ and Java mappings. In

this study, we test and measure the exception-handling ro-

bustness of C++ ORB implementations.

2.1 Metric

Previous Ballista work [9] proposed a way to measure

the robustness of software modules. In this work we extend

the same approach to measure CORBA ORB robustness by

testing API calls.

The CORBA standard defines a common API for ORB

vendors to implement. This API defines a collection of op-

erations that a client or server object can request the ORB to

perform on behalf of a user program. The CORBA standard

has no restrictions on how the vendors should implement

the operations specified in the standard. However, it does

have requirements on how an ORB should perform under

abnormal input situations:

“The ORB manages the control transfer and data

transfer to the object implementation and back to the

client. In the event that the ORB cannot complete the

invocation, an exception response is provided.” [18]

“If an abnormal condition occurs during the per-

formance of a request, an exception is returned.” [18]

The above excerpts from the CORBA standard clearly

state that an ORB operation is robust under exceptional in-

puts if the operation can identify the exceptional inputs and

raise exceptions. However, the exceptions should be de-

fined and reflect the actual exceptional situations. We con-

sider raising unknown exceptions to be non-robust, because

no useful information is given for error recovery and there

is no guarantee that the ORB is in a consistent state when an

unknown exception is thrown.

Table 1 lists the possible robust behaviors and

non-robust behaviors that may occur in testing ORB imple-

mentations, and maps them to the existing Ballista CRASH

scale metric [9]. Among the listed robustness failures, com-

puter crashes, thread hangs, thread aborts and unknown ex-

ceptions can be automatically detected by Ballista. False

successes and misleading error returns cannot be discov-

ered in an automated manner using the Ballista harness and

are not measured in this study. More discussion about false

successes (i.e. silent failures) and how to estimate them can

be found in [9]. In summary, the items highlighted in bold-

face in Table 1 are the responses that we expect to find in

testing the robustness of CORBA ORB implementations.

2.2 CORBA ORB robustness testing architecture

We adapted the Ballista software robustness testing

methodology to evaluate ORB implementation robustness.

The Ballista testing framework is designed to test COTS

(Commercial Off-The-Shelf) software modules for excep-

tion-handling robustness problems triggered by invalid in-

puts.

Figure 1 shows the CORBA ORB testing architecture

using Ballista. The Ballista server performs client code

generation and test case generation. The test manager of the

Ballista client iterates through test cases and manages test
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Robust behaviors
Successful return (no exceptions)

Raise CORBA exception

Non-robust behaviors

(Robustness failures)

Computer crash (Catastrophic failure)

Thread hang (Restart failure)

Thread abort (Abort failure)

Raise unknown exception

False success (Silent failure)

Misleading error information (Hindering failure)

Table 1. Classification of robust and non-robust behaviors.



case set-up, response monitoring and test case cleanup. The

module-under-test in the Ballista architecture is in this case

a CORBA client. In testing, the module-under-test commu-

nicates and interacts as necessary with the CORBA server

object via the CORBA ORB interface.

For each test case, the test manager spawns a corre-

sponding module-under-test thread, and monitors the status

of this child thread. Figure 2 shows a generic mod-

ule-under-test in pseudo-code form. The initialization()

part initiates the ORB and creates necessary variables to be

used during the testing process. The parame-

ter_instantiation(parameter_list) procedure creates an in-

stance of each parameter from the values specified in the

test case database. The actual call to the operation under test

appears in ORB_operation_invocation(parameter_list).

Exceptions thrown by the ORB operation

during testing are caught and analyzed by

the exception_handling() section.

The different levels of exception han-

dling are shown in Figure 3. Based on the

CORBA standard, CORBA-defined excep-

tions are caught and categorized into

CORBA::SystemException and

CORBA::Exception. If the ORB opera-

tion under test only raises these

CORBA-defined exceptions, it is consid-

ered robust. The low-level exception catch-

ing makes sure all other unknown

exceptions which are not defined in

CORBA standard are caught, which are

classified as robustness failures.

2.3 Test case inheritance

A test case inheritance scheme is used to maximize the

reuse of test cases. Most ORB operations use CORBA spe-

cific data types as parameters. For C++ mappings, the

CORBA specific data types are eventually mapped to C++

language data structures.CORBA::Flags, for example, is

mapped to unsigned long in the C++ language. We

have designed an inheritance hierarchy to structure

CORBA data types. A child data type inherits test cases de-

fined in its parent data type and expands the parent data

type by providing test cases specific to the child. As a gen-

eral rule, a child data type usually expands its parent data

type in value range or semantics. In the example inheritance

tree shown in Figure 4, data type CORBA::Flags inherits

all test cases (e.g. MAX_UNSIGNED_LONG) defined in the

parent data type unsigned long (which also inherits

test cases from its parent data type unsigned int), and

adds ARG_IN, ARG_OUT, ARG_INOUT, etc., as its spe-

cific test cases. These test cases for CORBA related data

types have been selected based on the CORBA specifica-

tion.
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module-under-test{

initialization();

parameter_instantiation(parameter_list);

ORB_operation_invocation(parameter_list);

...

exception_handling();

}

Figure 2. module-under-test pseudo-code.

//userCatches

catch (const CORBA::SystemException& se)

catch (const CORBA::Exception& e)

//low-level exception catches

catch (...)

Figure 3. Exception catching levels.

Ballista Server

INTERFACE
SPECIFICATION

CAPTURE
TESTING
OBJECT

COMPILER

RESULT
PATTERN

DISCOVERY

TEST
SELECTION
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REPORTING

ballista.ece.cmu.edu

Ballista Client

TEST
MANAGER

HTTP
&

RPC
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Ballista Testing Architecture

Figure 1. CORBA testing architecture using Ballista.

unsigned short

unsigned int CORBA::ServiceType

unsigned long

CORBA::Flags

Figure 4. Sample test case inheritance.



3. Experimental setup

The Ballista CORBA client has been implemented for

two major versions of three ORB implementations for the

C++ language mapping on Solaris and Linux platforms.

3.1 ORB platforms under test

There are many ORB implementations available, form-

ing a potential rich set of candidates to conducting our

study. We chose Orbix, omniORB and VisiBroker as the

candidate platforms based on popularity and availability.

Specifically, the following ORBs were tested:

• Orbix 3.0.1 and Orbix 2000

• omniORB 2.8 and omniORB 3.0

• VisiBroker 3.3 and VisiBroker 4.0

Orbix and VisiBroker are commercial implementations,

while omniORB is freely available under GNU public li-

cense. Orbix 2000 and VisiBroker 4.0 were tested using

evaluation downloads from the vendor web sites, while ear-

lier versions were tested using existing licensed copies. All

ORBs were tested on a Sparc workstation running Solaris

5.6 to facilitate fair comparisons. Orbix 2000, omniORB

3.0 and VisiBroker 4.0 were also tested on a Pentium ma-

chine running RedHat Linux 6.2 (kernel version

2.2.14-5.0smp). The earlier versions of ORBs are not tested

on the Linux platform because VisiBroker 3.3 and Orbix

3.0.1 do not have publicly available Linux releases.

3.2 Test set

A subset of basic ORB operations defined in CORBA

standard 2.1 [18] was chosen as the test set. The test set in-

cludes operations defined in basic interfaces, such as most

operations in interfaces CORBA::Request,

CORBA::NVList, CORBA::Context, CORBA::ORB

and CORBA::Object, which appear in Chapter 4, 5, and

6 of the CORBA standard 2.1. These interfaces are gener-

ally considered important because most CORBA programs

will have to use them directly, or have to inherit from those

interfaces. For example, CORBA::ORB_init has to be

called by both the client side and server side to initialize the

ORB for any CORBA 2.1 programs. All CORBA objects

defined in CORBA 2.1 programs must inherit the base ob-

ject CORBA::Object directly or indirectly.

CORBA::Context captures important information about

the client, environment, or circumstances of a request.

Most of the operations under test are client-ORB inter-

actions, not client-server operations or inter-ORB opera-

tions. No GIOP/IIOP operations have been tested.

However, the test set could be expanded in the future to in-

clude inter-ORB client-server calls and other new opera-

tions defined in later standards, such as POA operations in

CORBA standard 2.3 supported by Orbix 2000, omniORB

3.0 and VisiBroker 4.0.

3.3 Implementation issues

Although Orbix 3.0.1, omniORB 2.8 and VisiBroker 3.3

all claim to support or fully comply with CORBA standard

2.1, and the advanced versions claim to be compatible with

CORBA standard 2.3, not all operations in the CORBA

standard are supported by every ORB. This is partly be-

cause of rapid updates to and ambiguities within the

CORBA 2.1 standard. For example, we have observed that

the same operations may appear under different names on

different ORBs: CORBA::Object operation get_pol-

icy() is defined as CORBA::Object::_get_pol-

icy() in Orbix [8], appears as

CORBA::Object::get_policy() in VisiBroker [7],

and is undefined in omniORB [11].

Some operations, such as get_default_con-

text()and get_service_information() for

Orbix 2000, have prototypes defined but are not imple-

mented. They always raise CORBA system exception

CORBA::NO_IMPLEMENT during testing. Although this

response is valid per the CORBA standard, it is unfair to

compare these operations (which technically would be

100% robust) with implemented versions from other ORBs

(which will likely have failures). Therefore, the operations

without implementations are deleted from Orbix 2000 test

sets.

Due to the above issues, the test operations actually

launched for each ORB are not fully identical. But a

reasonable comparison can still be made by taking averages

of all the operations tested for each ORB, mitigating this ef-

fect.

4. Experimental results and analysis

4.1 Overview

Table 2 summarizes the results for the ORBs under test.

The total number of test cases and the total number of oper-

ations tested are given. For example, for the omniORB 2.8

Solaris build, there are 6999 test cases launched for 22 op-

erations, within which one operation create_list()

exhibits thread hangs, 17 operations trigger thread aborts,

and one operation CORBA::string_alloc() raises

unknown exceptions.

We have observed another failure mode while testing the

ORBs, other than the common robustness failures listed in

Table 1. While testing operation create_list() for

omniORB 2.8 and omniORB 3.0 on Sun Solaris platform,

we have found a libthread panic failure. The failure is de-

noted by a * in Table 2. This failure cannot be isolated to
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one test case because it is related to resource problems;

however, it does happen each time create_list() is

tested. One possible explanation is that when the testing

thread times out and is killed when a thread-hang failure

happens, libthread has a resource leakage that eventually

leads to a panic. This failure may be unrelated to the ORB

under test and is not counted in the final results.

4.2 Average percentage of failures

Results are analyzed using a straight aver-

age across the failure rate for all the operations

as a comparison metric. Figure 5 shows the ro-

bustness testing results for the ORBs we have

tested. Each bar represents an ORB implemen-

tation, with the average percentage of robust-

ness failures (including thread aborts, thread

hangs and unknown exceptions) shown at the

bottom, and the average percentage of robust

behaviors (including CORBA::System-

Exception, CORBA::Exception and

no-exception responses) shown at the top. Fig-

ure 5 shows that all ORB implementations

studied have a high thread-abort percentage

under the current test set, ranging from

25.44% for the omniORB 2.8 Solaris build to

41.02% for the VisiBroker 4.0 Solaris build.

Thread-hang failures are less common and

usually concentrate in only a few operations such as cre-

ate_list(). Orbix 2000 has more unknown exceptions

than other ORB implementations but is free of thread

hangs. No unknown exceptions are found in the VisiBroker

group.

The omniORB group demonstrates a higher percentage

of CORBA exceptions, indicating a better exception-han-
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Orbix 3.0.1 5361 22 6 16 0 N/A N/A N/A

omniORB 2.8* 6999 22 1 17 1 N/A N/A N/A

VisiBroker 3.3 6581 21 1 17 0 N/A N/A N/A

Orbix 2000 3219 17 0 14 1 0 14 1

omniORB 3.0* 6581 21 2 17 1 1 17 1

VisiBroker 4.0 7023 23 7 20 0 1 21 0
* libthread panic observed

Table 2. Overview of ORB robustness testing results.

0%

20%

40%

60%

80%

100%

R
o

b
u

s
tn

e
s

s
T

e
s

ti
n

g
R

e
s

u
lt
s

o
f

C
O

R
B

A
O

R
B

s

CORBA::SystemException% 7.31% 5.67% 5.51% 20.94% 19.81% 19.59% 9.50% 11.63% 11.63%

CORBA::Exception% 4.10% 5.05% 0.33% 4.58% 0.13% 4.23% 4.36% 2.14% 2.27%

No exception% 57.28% 54.73% 53.08% 48.54% 42.26% 47.16% 59.13% 44.73% 49.72%

Unknown exception% 0.00% 2.88% 3.00% 0.21% 0.20% 0.20% 0.00% 0.00% 0.00%

Thread abort% 30.11% 31.66% 38.08% 25.44% 32.93% 28.51% 26.88% 41.02% 36.32%

Thread hang% 1.21% 0.00% 0.00% 0.29% 4.66% 0.30% 0.13% 0.47% 0.06%

Orbix 3.0

Sun

Orbix 2000

Sun

Orbix 2000

Linux
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2.8 Sun
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3.0 Sun

omniORB

3.0 Linux

VisiBroker

3.3 Sun

VisiBroker

4.0 Sun

VisiBroker

4.0 Linux

Figure 5. Robustness testing results for 2 versions of 3 ORB products on 2 operating systems for a

collection of CORBA 2.1 standard operations. Each bar represents the average percentage of different

response categories of approximately 22 functions tested using 3000 to 7000 test cases.



dling scheme. OmniORB 2.8 has the highest robust excep-

tion percentage, at over 25%.

4.3 Discussion

As shown in Figure 5, the results show a noticeable,

sometimes significant, increase in average percentage of

robustness failures from an older version of a product to a

new version. Similar phenomena have also been observed

in previous Ballista testing results on the HLA RTI simula-

tion backplane [3]. In POSIX testing [10], two operating

systems had an increase in robustness failure rate going

from older versions to newer versions, while three operat-

ing systems did the opposite. One possible explanation is

that adding significant amounts of new code to implement

new features in a new software release can create robust-

ness failures until problems are fixed based on field defect

reports. If a version change is more evolutionary, then it is

more likely that robustness will improve with a new re-

lease. In the case of CORBA ORBs, fast evolution and fre-

quent updates to the CORBA standard would seem likely to

force addition of significant amounts of new code into each

release, leading to a likely increase in robustness failure

rates as shown in Figure 5.

The differences in results between operating systems are

not marked enough to make definitive statements about

how much operating systems factor into ORB robustness.

For Orbix 2000, the Solaris build is more robust than the

Linux version, while for omniORB 3.0 and VisiBroker 4.0,

the results are the opposite. However, these differences do

indicate that it is the OS/ORB pair that determine overall

robustness rather than robustness being solely a property of

the ORB selected.

Figure 6 gives a snapshot of the testing results for

omniORB 3.0 on Solaris and Linux platforms, where we

can see that most operations have the same failure profile

across platforms, with only a few exceptions. Other than

the libthread panic failure observed on Solaris, the most

different testing result was found for operation re-

solve_initial_references(), which had a sig-

nificant percentage of thread hangs on Solaris but only a

small percentage of thread-abort failures on Linux. The

cause of this difference is currently unknown.

The operations that have a failure rate higher than 50%

are as follows: _duplicate(), CORBA::is_nil(),

CORBA::release(), _is_equivalent(), ob-

ject_to_string(), send_multiple_requests

_deferred(), and send_multiple_requests

_oneway(). Among these seven operations, the first five

take CORBA::Object as one of the parameters. The last

two take RequestSeq, which is a sequence of object ref-

erences. This indicates that CORBA object and pseudo-ob-

ject data type implementations have more prevalent

robustness vulnerabilities than other data types tested for

omniORB implementations.

An interesting observation is that for both operating sys-

tem platforms, operations _duplicate(),

CORBA::is_nil(), and CORBA::release()have

exactly the same failure profile, and they all take a single

parameter typed CORBA::Object. It appears that the

failure profile is correlated with parameter types if the pa-

rameter types are CORBA object references, or object ref-

erences in general. It is possible that these failures are

caused by methods associated with objects, especially if

one presumes that different CORBA operations employ the

same access patterns for object reference data types: calling

member functions to access private data structures, using

constructors to create object instances, using destructors to

deallocate objects, etc.

The testing results in previous sections have not shown

us a promising picture of ORB implementation robustness,

although the CORBA specification explicitly requires ro-

bust responses. On the other hand, for the ORBs we have

tested, we have observed that some important and obvious

exceptional values, such as NULL value for pointers and

references, are handled by most ORB vendors. In most

cases, a CORBA::BAD_PARAM exception is seen when a

NULL parameter is used improperly. Compared to some

POSIX operating systems where NULL causes a signifi-

cant rate of robustness failures for many functions [10], this

is certainly an advancement. However, for CORBA appli-

cations to achieve the level of robustness desirable for criti-

cal applications, being able to handle simple and obvious

cases, such as NULL as pointer and reference values, or

zero as divisors, is not sufficient. There are large classes of

more subtle but realistic exceptional input values, e.g.,

out-of-range values, uninitialized data structures, errone-

ously released objects, and corrupted data structures. Most

ORB operations we have tested failed to identify these ex-

ceptional test values gracefully by throwing a

CORBA::BAD_PARAM exception.

Exception handling is often skimped upon for two main

reasons. First, comprehensive exception handling is per-

ceived as costing performance. Second, it is labor-inten-

sive to develop individual parameter checks against

exceptional inputs on a case-by-case basis. As a simple so-

lution to the first problem, ORB vendors can provide the

user with an infrastructure that has two different operating

modes, or with standard exceptional-input checking opera-

tions for critical scenarios. For the second problem, instead

of developing individual parameter checks, we can use

more advanced techniques such as program assertions [19]

and data structure signatures [21] to check run-time data

consistency and integrity under a CORBA and object-ori-

ented context. The following section demonstrates that it is

possible to provide the user a means to protect against a
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large class of exceptional input values for object data types

at a reasonable cost, using a simple method combining as-

sertions and data structure signatures.

4.4 Robustness failure protection for object
reference data types

We propose a probe technique that is flexible and can be

easily implemented by ORB vendors to protect against a

large class of robustness failures, especially those failures

caused by invalid and uninitialized object and pseudo-ob-

ject references. A probe function is a function that can be

used to determine the validity of a parameter value. There

are three important characteristics for a probe function:

sensitivity, non-intrusiveness and robustness. The probe

function should be designed to be as sensitive as possible so

that it can discern an invalid object or pseudo-object refer-

ence value from a valid one. It must be non-intrusive so that

the parameter value as well as the state of the program re-

mains unchanged after the check. It must be robust so that

no extra robustness failures are introduced by the probe

function itself. The probe function should also be as light-

weight as possible to minimize performance overhead;

however, there may be a trade-off between sensitivity and

performance.

We have found that omniORB 2.8 and omniORB 3.0 ac-

tually provides the necessary basis for a simple probe tech-

nique. In omniORB 2.8 and 3.0, each object and

pseudo-object data type is assigned an undocumented se-

quence number named PR_magic. This “magic” number
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Figure 6. OmniORB 3.0 robustness testing results for selected CORBA functions on Solaris and

Linux platforms. Each bar represents one CORBA operation whose name is listed in the table.



is unique for each object and pseudo-object data

type and serves as an identity mark. When an in-

stance of an object or pseudo-object data type has

been correctly set up, the constructor initializes a

member variable pd_magic to contain the cor-

rect PR_magic value specific to this data type,

its “identity mark”. This variable is set to “in-

valid” by the destructor when the reference is

freed. Therefore, a valid reference which is prop-

erly initialized will contain a correct magic num-

ber set up in the variable pd_magic during its lifetime. If

pd_magic does not contain the correct value, the refer-

ence must be invalid. Therefore, we can detect invalid and

uninitialized references to objects and pseudo-objects by

checking whether pd_magic contains the right

PR_magic value at run time. An undocumented static

member function PR_is_valid() is defined in

omniORB for each object and pseudo-object data type to do

this checking. It is possible that a valid PR_magic value

could be stored in an uninitialized object by chance, but for

most situations involving uninitialized memory values this

is expected to be unlikely.

Unfortunately, the above functionality provided by

omniORB is not robust enough to serve as a probe function

for our purposes. For many invalid object references that

are in our test set, the PR_is_valid() check triggers a

robustness failure instead of returning false by attempting

to read the PR_magic value from an illegal memory ad-

dress. Also, NULL object references cannot be detected by

PR_is_valid() checking.

We have taken several steps to create a sensitive, robust

and non-intrusive probe functionality by refining the

PR_is_valid() checking method. The sensitivity of

PR_is_valid() is made largely acceptable by adding a

call to CORBA::is_nil(), the specialized NULL ob-

ject reference checking method defined in the CORBA

standard. We have made the checking procedure more ro-

bust by adding necessary signal-handling code. A signal

triggered while either PR_is_valid() or

CORBA::is_nil() is accessing the parameter value

also indicates that an invalid parameter value is detected. A

multi-threaded checking scheme could also be used instead

of the signal-handling method, but would probably have

higher performance cost without significant optimization

efforts.

We have conducted some initial experiments to study

the effectiveness of this method. From our CORBA 2.1 op-

eration test set, we selected a subgroup of eight operations

that take CORBA object references or CORBA

pseudo-object references as parameters. A simple protec-

tion-code generator was implemented to generate protec-

tion code automatically that is suitable for some parameter

types. First, a NULL-checking experiment was conducted.

Second, the PR_is_valid() checking code was gener-

ated and added to the target module. Third, a signal handler

was installed. The result was were tested on omniORB 2.8

using the Linux platform.

The results in Table 3 show that the protection scheme is

effective. For the eight functions tested, all thread aborts,

formerly 37.77% of the test cases, were successfully elimi-

nated. Note that without necessary signal-handling mecha-

nisms, CORBA::is_nil() and PR_is_valid()

checking actually introduced additional robustness failures

because none of the checking methods had a zero robust-

ness failure rate.

The above results, however, do not mean that the prob-

ing method is always effective to detect all possible kinds

of exceptional input values. Sometimes, an invalid object

reference might by chance have a correct pd_magic

value. This could happen when an object reference is cor-

rectly set up through the constructor, but later part of the ob-

ject gets corrupted or overwritten while the pd_magic

value remains intact.

Performance overhead was measured by running the tar-

get operation 5,000,000 times, with the probe functionality

turned on or off, and calculating the difference of the aver-

age execution times. Valid parameter values are used in this

measurement because it is more important to know the per-

formance cost under normal execution situations. Since the

protection code is compact and the test program is also very

short, all instructions are expected to be resident in cache,

giving an optimistic performance assessment.

The measurement results are shown in Figure 7. We can

see that the probe function takes from 4.77 ms to 10.49 ms to

execute, which is as high as 26 times the execution time for

a simple operation CORBA::is_nil() (which contains

only one if statement) and as low as 7% for a complex op-

eration object_to_string(). This can be explained

by the fact that the probe functions for all the object data

types and pseudo-object data types use a uniform structure.

Although probe functions incur overhead, the overhead

is likely to be negligible in real CORBA programs. This is

because probes are static methods declared and run locally,

and the bottleneck on CORBA platforms is usually the mar-

shalling, unmarshalling and communication of data and

methods over the network.
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Thread-abort
percentage

Original failure percentage 37.77%

After CORBA::is_nil() checking (alone) 42.45%

After CORBA::is_nil()+PR_is_valid checking 41.99%

After adding signal handling 0%

Table 3. Effectiveness of probe hardening for 8 sample

operations in the omniORB 2.8 Linux build.



From this experiment we see that a simple probing tech-

nique can protect references to object data types and

pseudo-object data types against a class of exceptional val-

ues. Similar methods might be standardized and generated

as part of stub code by the CORBA idl compiler, so that

users can use it to protect their custom data types selec-

tively. Future work will include extending this method to

protect against non-object data types with minimum or no

compiler support.

5. Related work

Most previous work comparing ORB implementations

has focused on measuring and optimizing ORB perfor-

mance. [4] measures latency and throughput of Orbix and

VisiBroker over high-speed ATM networks and identifies

major overhead sources. The study in [14] provides a per-

formance pattern language and a performance measure-

ment object that can be used to extensively test ORB

performance. The CORBA comparison project [2] com-

pares omniORB, ORBacus, and Orbix using a rich set of

benchmarks, mainly focusing on latency, throughput and

scalability. Robustness of these ORBs is also briefly com-

pared in terms of their maximum message size and the

number of objects they can handle.

Fault injection on Orbix and DCOM applications [1]

studies distributed object behavior under real and simulated

failure scenarios. Failures at thread-level, process-level,

and machine-level are simulated and injected into the

server, and the response of the client is monitored and cate-

gorized, which marks the difference from our work. Our ap-

proach tries to manifest robustness failures in the CORBA

ORB native code using exceptional inputs.

Various efforts have been made to build fault-tolerant

CORBA applications, CORBA services and middleware,

such as [12][13][20]. The Fault-Tolerant CORBA Standard

[16] extends CORBA for applications requiring high de-

pendability, attempting to eliminate sources of single-point

failures. This standard mainly aims at tolerating crash fail-

ures using replication and does not address issues of excep-

tional parameter input handling.

Previous Ballista testing of the High Level Architecture

Run-Time Infrastructure (HLA RTI) [3] provides another

example of applying the Ballista testing methodology to

testing distributed applications. The RTI is a standard dis-

tributed simulation system intended to provide completely

robust exception handling. This effort extended the Ballista

architecture for testing exception-based error reporting

models and object-oriented software structures, which

paves the path for the work presented here.

The general idea of the probe technique falls into the cat-

egory of executable assertions introduced as early as [19].

Executable assertions are executable statements made

about the variables in a program. If these statements do not

hold true, an error has occurred.

The probe technique is also a variant of the data-struc-

ture signature technique [21], which uses a modified com-

piler to embed a signature in front of data structures to

detect data access faults. Performance overhead can be

largely minimized by using a special signature monitor that

can be added to a standard pipeline processor.
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6. Conclusions

In this paper we have introduced a methodology to test

and measure the exception-handling robustness of CORBA

ORB implementations using Ballista. We have ported Bal-

lista testing clients to work with the ORBs, and tested two

major versions of three ORB implementations on two oper-

ating systems for several CORBA 2.1 standard operations.

This approach enables us to evaluate the robustness of spe-

cific ORB implementations, to compare different ORB im-

plementations provided by various vendors, and to enhance

the robustness of a specific ORB implementation.

We have presented results on the average percentage of

failures for up to 23 functions per ORB. Testing for excep-

tional parameter value handling capabilities has revealed

normalized average robustness failure rates ranging from

26% to 42%. These results suggest that users must pay

close attention to ORB robustness issues when building

critical applications on CORBA-based systems.

To improve ORB robustness, we propose a probe tech-

nique that checks for the presence of a special value that is

stored in data structures upon initialization. A prototype

implementation of this technique using capabilities already

built into omniORB demonstrated that this approach can be

effective at eliminating robustness failures for some data

types.

Future work includes expanding robustness testing to in-

clude CORBA servers as well as clients, and creating a

wider variety of techniques for robustness improvement of

CORBA data types.
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