

Dependability Benchmarking: making choices in an n-dimensional problem space

 Henrique Madeira Philip Koopman
 University of Coimbra, Portugal Carnegie Mellon University, USA
 henrique@dei.uc.pt koopman@cmu.edu

Abstract

Dependability benchmarks should provide cost-
effective ways to evaluate the behavior of components and
computer systems in the presence of faults, allowing the
quantification of dependability attributes or the
characterization of the systems into well defined
dependability classes. Beyond existing evaluation
techniques, a dependability benchmark should represent
an agreement accepted by the computer industry or/and
by the user community, and specify the measures, the
methods, and techniques required to perform
measurements. This paper discusses the different
dimensions involved in the dependability benchmarking
problem and presents basic components required to
specify dependability benchmarks. Although several
obstacles still persist and are currently the subject of
research, the definition of all the dimensions of the
problem and the agreement of the community on a basic
set of components that constitute a possible framework for
dependability benchmarking seem to us a first step in the
proposal of actual dependability benchmarks.

1. Introduction

Our society is increasingly dependent on the correct
service of computers. Classical features such as raw
performance and functionality have long driven the
computer industry to improve their products. But now,
dependability and maintainability are becoming seen as
equally important. Unfortunately, while there are
relatively straightforward ways to evaluate and compare
performance and functionality of different systems or
components, the evaluation of dependability features is
much more difficult.

The ascendance of networked information in our
economy and daily lives has increased awareness of the
importance of dependability features. In many cases, such
as in e-commerce systems, computer outages can result in
a huge loss of money or in an unaffordable loss of prestige
for companies. In more personal applications such as
access to news and weather, dependability problems are
not as catastrophic, but are nonetheless undesirable. In
part because it is futile to attempt to make every computer

on the Internet work perfectly all the time, system
designers are increasing emphasis on tradeoffs involving
both functionality and performance, and in particular
designing systems to operate in degraded mode or with
reduced performance in the presence of faults or other
unavoidable upsets. Operating in degraded modes is
usually desirable, but complicates the notion of measuring
dependability.

Another clear trend is the use of Commercial Off-The-
Shelf (COTS) components and COTS-based systems in
application areas requiring high dependability. Using
COTS components is seen as desirable to reduce costs and
speed up time to market. However, successfully creating
dependable systems with COTS components that may not
have been designed to be particularly robust demands
practical ways to evaluate the dependability and the
behavior in the presence of faults within these
components/systems.

Even the validation of fault handling mechanisms,
which are just a piece of the dependability picture, is
traditionally a challenging task. Given the huge
complexity involved in the design of a computer system
(hardware, operating system, application software, user
interface, etc.), there is no single general approach for
dependability evaluation and validation. Instead, several
methods have been used, ranging from pure modeling and
analytical techniques to experimental approaches based on
fault injection and robustness testing [1, 2, 3, 4, 5]. Most
of the techniques used for the evaluation of dependability
and validation of fault handling mechanisms have been
developed for mission-critical systems and applications or
for the high-end business-critical area, and therefore might
make assumptions about design or operating environment
that affect their suitability for more mainstream computing
components.

The goal of dependability benchmarking is to provide
cost-effective ways to evaluate the behavior of
components and computer systems in the presence of
faults, allowing the quantification of dependability
attributes or the characterization of the systems in well
defined dependability classes. Beyond existing
experimental techniques such as fault injection and
robustness testing, we feel that dependability

benchmarking must provide a uniform, repeatable,
comparable way of performing this evaluation.

Dependability benchmarking is subject of a growing
interest today. Both the research community and the in-
dustry are involved in research projects [6, 7] and groups
meant to advance the dependability benchmarking area.
Particularly, the IFIP Working Group 10.4 has created a
Special Interest Group (SIG) to promote the research,
practice, adoption, and dissemination of benchmarks for
computer-related system dependability (the authors of this
paper are the chair and co-chair of this SIG). The
activities of the SIG endeavor to attain a clear under-
standing and articulation of the fundamental reasons for
undependability across multiple disciplines and have thus
far been focused on the identification of all the funda-
mental issues that must be addressed to create depend-
ability benchmarks. A major task for this group has been
the establishment of a framework for dependability
benchmarking. Although this discussion is still ongoing
within the SIG, this paper presents the authors’ vision on
this framework and hopes to enrich the discussion by
soliciting input from a larger diverse community.

In the next section we present a general view of the
benchmarking problem, defining many of the dimensions
of dependability benchmarking. Section 3 presents our
choices for a framework for dependability benchmarking,
followed by some concluding remarks in Section 4.

2. Dependability benchmarking dimensions

Benchmarking is an experimental approach to measure
well-defined features of a system or component according
to an agreed (i.e., accepted as standard) set of methods
and procedures. No matter what a benchmark is intended
to measure (most of the existing benchmarks for computer
systems are intended for performance measurement) it has
a set of properties that makes it different from just a
measuring/evaluating technique.

First of all, a benchmark represents an agreement that

must be accepted by the industry or/and by the user
community. This agreement (i.e., the benchmark) not only
specifies the features that are relevant to be measured but
also describes the methods and techniques required to
perform the measurements. Additionally, a benchmark
must be scalable to address systems of different sizes,
portable to be used across different platforms and
operating systems, repeatable to provide confidence in the
measurements, and easy to use. Most importantly, useful
benchmarks strive to measure a quality that is important to
users and vendors, and often must go beyond things that
simply happen to be convenient to measure.

Benchmarks are normally targeted to well defined ap-
plication areas or to specific types of systems. This is the
only practical way to cope with the huge diversity of ap-
plications and systems in the computer industry. However,
in spite of this inevitable diversity, we hope that all
dependability benchmarks might share a common
framework, at least at an abstract level. The framework
that is proposed in this paper defines all the key compo-
nents of a dependability benchmark and the general ap-
proach of benchmarking for dependability. In this context,
an actual dependability benchmark is just an instantiation
of this general framework to a specific application domain
or to particular kind of computer system.

The definition of a framework for dependability
benchmarking requires first of all the identification and
clear understanding of all the dimensions of the problem.
Then, defining the framework corresponds to making
choices in the different dimensions of the problem. To
simplify this process we divide the problem space in
dimensions of the problem and components of a
dependability benchmark. The distinction between these
two groups is subtle (in general, all of them could be
considered as dimensions of the problem, but we find
making this distinction useful). Basically, we want to
isolate in the first group the dimensions of the problem
that affect the dependability benchmarks in terms of
providing an application area, operating environment, or

Dimensions and Components Comments
Products vs. Processes Identify the target of the benchmarks: product or the manufacturing process.
Life cycle phase Identify the phase in the product life that will be addressed in the benchmark.
Application area Identify the application area with the adequate granularity (specificity).
Operating environment Typical environment for an application area and the way it affects the benchmark components.

D
im

en
sio

ns

User Perspective Different perspectives for the benchmark measures (e.g., end user, developer).

Target Defines the target system expected system behavior in different fault situations.
Measures Defines the measures (results) of the benchmark.
Workload Defines a working profile that should be representative of an application area.
Upsetload Defines the set of upsets, stressful conditions and faults that could affect the system.

C
om

po
ne

nt
s

Procedures and rules Defines the procedures and the rules to perform the benchmarking.

Table 1Table 1Table 1Table 1. . . . Dimensions of the problem and possible components of a dependability benchmark.Dimensions of the problem and possible components of a dependability benchmark.Dimensions of the problem and possible components of a dependability benchmark.Dimensions of the problem and possible components of a dependability benchmark.

constraint set, but cannot be considered as a direct
component of a dependability benchmark. For example,
“Products vs. Processes” is a dimension of the problem
that can deeply affect the form of the benchmark
(benchmarks could be quite different if we decided to
benchmark the product or the manufacturing process to
produce that product) but cannot be considered a
component of a benchmark (it is something that we have
to decide beforehand and include in the process of
defining a dependability benchmark). Table 1 presents a
breakdown of the major dimensions and components.

Dependability benchmarking is an n-dimensional
problem space. The definition of a possible framework for
dependability benchmarking corresponds to making
choices for the different dimensions and/or defining the
way these choices affect the components of the benchmark
framework. In this sense different frameworks for the dif-
ferent flavors of dependability benchmarking can co-exist.

3. A dependability benchmarking framework

In this section we propose and discuss a possible
framework for dependability benchmarking, which
corresponds to making choices for the different
dimensions and/or defining the way these choices affect
the components of a dependability benchmark. There are
of course many details that fit within these general
categories, but we feel that the categories selected serve to
focus attention on the different general types of factors
that are relevant for most cases.

Product vs. process - Although benchmarking the
process of creating a computer system or component
could be conceivable (in fact, the ISO 9000 series of
standards are based on the idea of certifying processes),
the traditional notion of benchmarking is focused on the
products. Products can be benchmarked either directly by
experimentation or indirectly through the inspection of the
product features, as stated in the product documentation.
Our preference concerning this dimension is to benchmark
actual products via direct observation and
experimentation.

Life cycle phase - The main phases of a typical life
cycle of a computer system or component are the re-
quirements, design, implementation/manufacturing, de-
ployment, and operational phases. A dependability
benchmark could be specifically targeted to any of these
phases (e.g., design: evaluate design correctness or design
robustness to component failure; implementa-
tion/manufacturing: evaluate the impact on dependability
of manufacturing defects or coding errors, etc.).

 However, a product-based benchmarking means that
we are mainly interested in benchmarking dependability
features at the operational phase of the target system or
component to the maximum degree possible (which also

encompasses all the other phases). The operational phase
includes normal system operation and maintenance in a
realistic environment.

Application area - The application area is clearly a
key dimension. The division of the application spectrum
into well-defined application areas is necessary to cope
with the diversity of systems and applications and to make
it possible to decide on most of the other dimensions. In
fact, most of the problem dimensions and dependability
benchmark components are very dependent on the
application area. For example, the benchmark measures,
the working profile, the operational environment, or the
typical upsets and faults that may affect the systems can
only be defined if we chose first a specific application
area. The main difficulty with this dimension is clearly the
establishment of the right granularity to divide the
application spectrum. The application areas must be
general as possible but, at the same time, specific enough
to allow the definition of all the aspect directly dependent
on the application area. Obviously, different application
areas will tend to need different dependability
benchmarks.

Operating environment - The operating environment
is traditionally one of the things that affect system de-
pendability. In fact, many computers faults are induced by
external sources, and these are intimately related to the
operating environment. The main problem is to identify a
way to take into account operating environment features in
the benchmarking process. This could be particularly
difficult if we include the human aspects such as the
actions of operators and users. One possible solution
could result from the observation that the operating envi-
ronment is very dependent on the application area, as
mentioned above. Thus, it should be possible to define a
typical operating environment for a given application area
which includes the set of upsets and external faults that
are typical for that application area. In other words, the
operating environment is dependent on the application
area and is one of the things to take into account in the
definition of the upsetload.

User perspective - A dependability benchmark could
have different kinds of users (e.g., end user, system
integrator, developer). These different user perspectives
affect mainly the type of measures expected from the
benchmark and the type of target system. Typically, end
users are interested in general system dependability
attributes (e.g., unconditional system availability) while a
system integrator or a developer could be more interested
in specific measures related to the behavior of the system
or a component in the presence of faults (e.g., error
detection coverage or recovery efficiency). Thus the
different user perspectives potentially create demands for
different types of measurements from a benchmark suite.

So far, we have proposed to focus our framework on
the benchmarking of products in a direct way as they are

used in its operational phase. The framework is applied to
a specific application area, which works as a key
dimension in the definition of other dimensions and
benchmark components. We assume that a typical
operating environment can be characterized for each
application (and depends only on the application area) and
that different user perspectives must be considered in the
same benchmark. In this context, Figure 1 represents the
main components of a dependability benchmark.

Figure 1. Figure 1. Figure 1. Figure 1. MMMMain ain ain ain dependability benchmarkdependability benchmarkdependability benchmarkdependability benchmark componentscomponentscomponentscomponents....

Measures - Dependability benchmarks must include
direct measures related to the behavior of a computer in
the presence of upsets (faults and stressful conditions).
Another form of direct measures is the performance
measures in both normal conditions (baseline) and in the
presence of upsets. These measures express the impact of
upsets in the system performance and functionality and
allow the measurement of graceful degradation conditions,
which includes reduced performance modes and/or
operation in reduced functionality.

It is worth noting that the need for establishing baseline
performance measures must not be confused with
performance benchmarking, as in our case we just need a
baseline performance (i.e., non optimized beyond normal
tuning) to evaluate the relative effect of faults and upsets
on the of performance degradation and on the quality of
results.

The direct measures are dependent on the system under
test and on the application area. This last case is
particularly true for the measures related to impact of
upsets in the system performance and functionality. An-
other important thing is that the direct measures represent
the only system observation points in the proposed
benchmark. The techniques and instrumentation required
to collect these measures are still being researched.

Dependability attributes (e.g., reliability, availability,
safety) cannot be obtained directly from running the
experiments specified in a benchmark. If these attributes
are required (and end users are normally very interested in
attributes such as availability and reliability) we need
modeling and some input from field experience, including
fault distributions and fault probabilities which are very
hard to estimate (the other parameter in the models ellipse
in Figure 1). These are still direct measures, but novel
ones in the context of benchmarking, because
performance benchmarks only rely on direct measures
taken at the time of a specific benchmarking event.

Although not explored in the framework proposed in
this paper, another form of benchmark measures is the
definition of dependability classes. In this approach,
systems are divided in classes according to dependability
criteria. The benchmarking process in this case consists of
identifying an appropriate dependability class for the
system under test. These measures have been proposed by
Don Wilson [8] with additional contributions from other
SIG members, and are making good progress toward a
formal proposal.

Workload - The workload represents a typical
operational profile for the considered application area.
Widely accept performance benchmarks can provide
workloads for many application areas and clearly show
that it is possible to agree on a workload that reasonably
represents a given application area. In the case of
dependability benchmarking the concept of workload
must be expanded to take into account preventive
maintenance actions that are conducted as part of routine
operations for a given application area. For example, in a
database server events such as system backups or log files
management are included in the typical profile and should
be considered in the workload.

System under test - The system under test can be
defined in a simplistic way as a system able to run the
workload. That is, no particular assumptions on the
system architecture or on the existence of specific
techniques in the system should be made. All it ought to
be required is that the system be able to run the workload.
It should be noted that this reflects the actual situation in
the field, as systems using different architectures and
techniques are used to run similar applications. Of course
some documentation of the actual system configuration
employed would be appropriate to enable informed inter-
system comparisons.

The benchmarking of a specific component in a system
must be carried out in the same conditions of system
benchmarking (the component integrated in the system,
the system running the workload, etc.). The primary
difference between system and component benchmarking
is the set of measures produced. However it might be
possible to benchmark components using a synthetic
workload or other workload that is a subset of a complete
system workload depending on the particular component
interface.

Upsetload - The upsetload consist of a set of faults and
stressful conditions that are intended to emulate all the
real exceptional situations the system would experience in
the field. This is clearly dependent on the operating
environment for the external upsets, which dependents in
turn on application area. Internal faults (e.g., software
faults and some hardware faults) are mainly determined by
the target system implementation. Because few
assumptions are made on the actual target system structure
(physical and logical), it is likely that the upsetload must

Workload
System

under test

Upsetload

Measurements

Other parameters

Models

Dependability
Attributes

Direct Dependability
Benchmark Measures

be equivalent on a statistical basis for different target
systems (used in the same application area) rather than
being literally identical.

The definition of representative upsetloads is probably
the most obscure and difficult part of defining a
dependability benchmark. Even for well-defined
application areas, the definition of the relative percentages
of the different classes of upsets and faults is essentially a
best guess process, much less accounting for potential
fine-grain interactions among workload and upsetload.
Additionally, the mechanisms and instrumentation
required introduce this upsetload in the target system are
clearly open research issues.

Procedures and rules - It is well known that any
benchmark can be "gamed" to produce optimistic results.
A dependability benchmark would have to include
standards for conducting measurement and to ensure
uniform conditions for measurement. In addition to the
obvious items such as system configuration disclosures for
performance metrics, dependability metrics might also
include requirements or disclosures involving all factors
that affect dependability. Another important aspect is the
need of scaling rules to adapt the same benchmark to
systems of very different sizes (but used in the same
application area). These scaling rules would define the
way the system load can be changed.

The proposed framework consists of basic components
required to specify a dependability benchmark and the
way these components are related to the dimensions of the
benchmarking problem. Although several obstacles still
persist and are currently subject of research (e.g.,
representativeness of upsetloads, measures, instrumenta-
tions techniques, etc), the definition of all the dimensions
of the problem and the agreement of the community on the
basic set of components that can be fault in all de-
pendability benchmarks seem to us as the first step to the
proposal of actual dependability benchmarks.

4. Conclusion

Dependability benchmarking is an n-dimensional
problem space that is currently a subject of intense
discussion in the dependability community, and
particularly within the IFIP WG 10.4 Special Interest
Group on Dependability Benchmarking. Although there is
a general agreement in the community on the
identification of the key components of possible
dependability benchmarks (measures, workload,
upsetload,…), improved understanding of all the
dimensions involved in this problem is essential to
identify all the components of future dependability
benchmarks and to devise a general approach. Of course
there are many factors that determine the success or
failure of a benchmarking effort beyond the technical

content of the benchmark. Some of the factors that must
be accounted for include the cost of conducting a bench-
mark trial, the accessibility of benchmarking materials,
keeping benchmark implementations fresh in the face of
evolving technology, and of course political issues as well
as the ramifications of benchmarking results in different
marketplaces. While the importance of these factors must
not be underestimated, we believe that it is also important
to advance one or more concrete benchmarking technical
approaches as a step in addressing a wider range of
concerns.

5. References
[1] K. Kanoun, M. Kaâniche and J.-C. Laprie, “Qualitative and
Quantitative Reliability Assessment”, IEEE Software, 14 (2),
pp.77-86, mars 1997.
[2] N. Suri and P. Sinha, “On the Use of Formal Techniques for
Validation”, in Proc. 28th Int. Symp. on Fault-Tolerant
Computing (FTCS-28), (Munich, Germany,1998.), pp.390-399,
IEEE CS Press, June 1998.
[3] P. Folkesson, S. Svensson and J. Karlsson, “A Comparison
of Simulation Based and Scan Chain Implemented Fault
Injection”, in Proc. 28th Int. Symp. on Fault-Tolerant
Computing (FTCS-28), (Munich, Germany), pp.284-293, IEEE
Computer Society Press, June 1998.
[4] D. Costa, T. Rilho, H. Madeira, “Joint Evaluation of
Performance and Robustness of a COTS DBMS through Fault-
Injection”, Proc. of DSN 2000 – Int. Conference on Dependable
Systems and Networks, New York, USA, June 25-28, 2000.
[5] P. Koopman and J. DeVale, “Comparing the robustness of
POSIX Operating Systems”, Proceedings of 29th International
Symposium on Fault-Tolerant Computing, June 15-18,
Madison, Wisconsin, 1999, pp. 22-29
[6] “Dbench – Dependability Benchmarking”, Technical Annex
of the project Dbench, funded by the European Commission.
This project started on January 2001 and involves the following
research centers, universities and enterprises: LAAS, France,
Univ. of Erlangen, Germany, Univ. of Chalmers, Sweden, Univ.
of Valência, Spain, Critical Software Ltd, Portugal, and
Microsoft as a sponsor.
[7] Aaron Brown and David Patterson, "Towards availability
benchmark: a case study of software RAID systems",
Proceedings of 2000 USENIX Annual Technical Conference,
San Diego, California, USA, June 18-23, 2000, pp 263-276.
[8] Don Wilson, “Benchmark availability classes”, working
document of the IFIP WG 10.4 Special Interest Group on
Dependability Benchmarking, 2001.

Acknowledgements
Funding for this paper was provided, in part, by

DARPA under contract DABT 63-96-C-0064, and by the
Portuguese Government/European Union through R&D
Unit 326/94 (CISUC).

