
Robustness Testing of the Microsoft Win32 API

Abstract

Although Microsoft Windows is being deployed in
mission-critical applications, little quantitative data has
been published about its robustness. We present the results
of executing over two million Ballista-generated exception
handling tests across 237 functions and system calls
involving six Windows variants, as well as similar tests
conducted on the Linux operating system. Windows 95,
Windows 98, and Windows CE were found to be vulnerable
to complete system crashes caused by very simple C
programs for several different functions. No system
crashes were observed on Windows NT, Windows 2000,
and Linux. Linux was significantly more graceful at
handling exceptions from system calls in a
program-recoverable manner than Windows NT and
Windows 2000, but those Windows variants were more
robust than Linux (with glibc) at handling C library
exceptions. While the choice of operating systems cannot
be made solely on the basis of one set of tests, it is hoped
that such results will form a starting point for comparing
dependability across heterogeneous platforms.

1. Introduction

Different versions of the Microsoft Windows operating

system (OS) are becoming popular for mission- and

safety-critical applications. The Windows 95/98 OS family

is the dominant OS used in personal computer systems, and

Windows NT 4.0 has become increasingly popular in busi-

ness applications. The United States Navy has adopted

Windows NT as the official OS to be incorporated into

onboard computer systems [15]. Windows CE and Win-

dows NT Embedded are new alternatives for embedded op-

erating systems. Thus, there is considerable market and

economic pressure to adopt Windows systems for critical

applications.

Unfortunately, Windows operating systems have ac-

quired a general reputation of being less dependable than

Unix-based operating systems. In particular, the infamous

"Blue Screen Of Death" that is displayed as a result of Win-

dows system crashes is perceived by many as being far

more prevalent than the equivalent kernel panics of Unix

operating systems. Additionally, it is a common (although

meagerly documented) experience that Windows systems

need to be rebooted more often than Unix systems. How-

ever, there is little if any quantitative data published on the

dependability of Windows, and no objective way to predict

whether the impending move to Windows 2000 will actu-

ally improve dependability over either Windows 98 or Win-

dows NT.

Beyond the dependability of Windows itself, the com-

parative dependability of Windows and Unix-based sys-

tems such as Linux has become a recurring theme of

discussion in the media and Internet forums. While the

most that can usually be quantified is mean time between

reboots (anecdotally, Unix systems are generally said to op-

erate longer between reboots than Windows NT), issues

such as system administration, machine usage, the behavior

of application programs, and even the stability of underly-

ing hardware typically make such comparisons problem-

atic. It would be useful to have a comparison of reliability

between Windows and Unix systems based on direct, re-

producible measurements on a reasonably level playing

field.

The success of many critical systems requires depend-

able operation, and a significant component of system de-

pendability can be a robust operating system. (Robustness

is formally defined as the degree to which a software com-

ponent functions correctly in the presence of exceptional

inputs or stressful environmental conditions [6].) Of partic-

ular concern is the behavior of the system when confronted

with exceptional operating conditions and consequent ex-
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ceptional data values. Because these instances are by defi-

nition not within the scope of designed operation, it is

crucial that the system as a whole, and the OS in particular,

react gracefully to prevent compromising critical operating

requirements. (Some systems, such as clustered web serv-

ers, can be architected to withstand single-node failures;

however there are many critical systems in the embedded

computing world and mission-critical systems on desktops

which cannot afford such redundancy, and which require

highly dependable individual nodes.)

This paper presents a quantitative comparison of the

vulnerability of six different versions of the Windows

Win32 Application Programming Interface (API) to ro-

bustness failures caused by exceptional function or system

call parameter values. These results are compared to the re-

sults of similarly testing Linux for exception handling ro-

bustness.

Exception handling tests are performed using the

Ballista robustness testing harness [1] for both Windows

and Linux. In order to perform a reasonable

Windows-to-Linux comparison, 237 calls were selected for

testing from the Win32 API, and matched with 183 calls of

comparable functionality from the Linux API. Of these

calls, 94 were C library functions that were tested with

identical test cases in both APIs, with the balance of calls

being system calls. Beyond C library functions, the calls

selected for testing were common services used by many

application programs such as memory management, file

and directory system management, input/output (I/O), and

process execution/control. The results are reported in

groups rather than as individual functions to provide a

reasonable basis for comparison in those areas where the

APIs differ in the number and type of calls provided.

2. Background

The Ballista software testing methodology has been de-

scribed in detail elsewhere [3], [9] and is publicly available

as an Internet-based testing service [1] involving a central

testing server and a portable testing client that was ported to

Windows NT and Windows CE for this research. Thus,

only a brief summary of Ballista testing operation will be

given.

The Ballista testing methodology is a combination of

software testing and fault injection approaches. Spe-

cifically selected exceptional values (selected via typical

software testing strategies) are used to inject faults into a

system via an API. For testing an OS, this involves select-

ing a set of functions and system calls to test, with each

such Module under Test (MuT) being exercised in turn until

a desired portion of the API is tested. Parameter test values

are distinct values for a parameter of a certain data type that

are randomly drawn from pools of predefined tests, with a

separate pool defined for each data type being tested.

These pools of values contain exceptional as well as

non-exceptional cases to avoid successful exception han-

dling on one parameter from masking the potential effects

of unsuccessful exception handling on some other parame-

ter value. Each test case (the execution of a single MuT

with a single test value selected for each required parameter

in the call) is executed as a separate task to minimize the oc-

currence of cross-test interference. A single Ballista test

case involves selecting a set of test values, executing con-

structors associated with those test values to initialize es-

sential system state, executing a call to the MuT with the

selected test values in its parameter list, measuring whether

the MuT behaves in a robust manner in that situation, and

cleaning up any lingering system state in preparation for the

next test (including freeing memory and deleting tempo-

rary files).

Ballista testing looks only for non-robust responses

from software, and does not test for correct functionality.

This, combined with a data type-based testing strategy,

rather than a functional testing strategy, results in a highly

scalable testing approach in which the effort spent on test

development tends to grow sub-linearly with the number of

MuTs to be tested. An additional property of Ballista test-

ing results is that in practice they have proven to be highly

repeatable. Virtually all test results reproduce the same ro-

bustness problems every time a brief single-test program

representing a single test case is executed.

Ballista uses the CRASH scale [9] to measure robust or

non-robust responses from MuTs. CRASH is an acronym

for the different robustness failures that can occur. In

Catastrophic failures, the most severe robustness failure

type, the application causes a complete system crash that

requires an OS reboot for recovery. In Restart failures, the

application enters a state where it "hangs" and will not con-

tinue normal operation, requiring an application restart for

recovery. Abort failures are an abnormal termination of an

application task as the result of a signal or thrown exception

that is not specific enough to constitute a recoverable error

condition unless the task elects (or is forced by default) to

terminate and restart. Silent failures occur when a function

or call is performed with invalid parameter values, but the

system reports that it was completed successfully instead of

returning an error indication. Finally, Hindering failures

report an incorrect error indication such as the wrong error

reporting code. Ballista can automatically detect Cata-

strophic, Restart, and Abort failures; Silent failures and

Hindering failures currently can be detected in only some

situations, and require manual analysis.

Earlier Ballista publications (e.g., [3], [8], [9]) describe

the software testing and fault injection heritage of this ap-

proach. Ballista can be thought of as using software testing

principles to perform fault injection at the API level instead
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of the source code or object code level. The most closely

related current research effort is the work done at Reliable

Software Technologies on testing Windows NT [4], [5] in

light of Ballista results on Unix systems. That work fo-

cuses on a broad coverage of functions for a single OS ver-

sion with relatively simple testing values. Nonetheless,

their results found many Abort-type failures in Windows

NT, and a few Catastrophic failures that were caused by

very complex execution sequences that could not be iso-

lated for bug-reporting purposes. Other recent related work

is the Fuzz project at the University of Wisconsin [12],

[13], which has concentrated on Unix systems. There does

not appear to be any previously published work that per-

forms testing-oriented dependability comparisons of multi-

ple Windows versions, nor comparisons of Windows to

Unix robustness.

3. Implementation

The existing Ballista testing system ran only on Unix

systems. Thus, testing Windows required porting the cli-

ent-side testing harness to Windows as well as creating

Windows-specific test values and an inter-API comparison

methodology.

3. 1. Porting to Windows Desktop Systems

Porting the Ballista testing client software to the Win-

dows platform faced many difficulties, chief among them

the fact that Windows has no simple analog to the fork()

system call implemented on POSIX systems (POSIX [7] is

the standard for Unix). Thus it is more difficult to spawn a

child process for each test case being executed. To over-

come this, the Windows version of the Ballista test harness

creates a memory-mapped file for each test case, writes

data for that particular test case's parameters to this file, and

then spawns the testing process. The testing process re-

trieves the data for the current test case from the memory

location created by the calling process, and reports results

for the test to that same memory location.

The Win32 API uses a thrown-exception error reporting

model in addition to the error return code model (using the

POSIX "errno" variable or the Win32 GetLastError() func-

tion) used by the POSIX API. While on POSIX systems

Abort failures can be detected by simply monitoring the

system for the occurrence of signals (most often SIGSEGV

or SIGBUS), in Windows systems there are both legitimate

and non-robust occurrences of thrown error reporting con-

ditions. The Win32 API documentation [11], [14] does not

provide sufficient information to make a per-function list of

permissible and non-permissible thrown exceptions. For

Windows testing, the Ballista test harness intercepted all in-

teger and string exception values, and to be more than fair

in evaluation, assumed that all such exceptions were valid

and recoverable. In normal operation, any unrecoverable

exceptions trigger the Windows top-level exception filter

and display an "Application Error" message window before

terminating the program. We disabled this exception filter

and replaced it with code that would record such an unre-

coverable exception as an Abort failure. (This technique

could in fact be used to improve the robustness of an appli-

cation program, but only by restarting abnormally termi-

nated tasks. That approach might be sufficiently robust for

many users, but is considered to be non-robust at the appli-

cation level by most of the critical-system designers we

have had discussions with.)

There were additional challenges involved in porting the

Ballista testing client to a Windows environment, such as

obtaining a remote procedure call (RPC) package that was

compatible with the Unix-based Ballista testing server's

RPC implementation. Most UNIX systems use ONC RPC,

but Windows only supports DCE RPC, so a third party

ONC RPC Windows client had to be used. Most porting is-

sues were related to differing OS interface architectures,

and were not fundamental to the Ballista approach.

Because many Win32 calls have four or more parame-

ters, a very large number of test cases could be generated

without exhausting all potential combinations of test values

for a single MuT. Therefore, testing was capped at 5000

randomly selected test cases per MuT. 72 Windows MuTs

and 34 POSIX MuTs were capped at 5000 tests each (per

OS) in this manner. All other MuTs performed exhaustive

testing of all combinations with fewer than 5000 tests. In

order to fairly compare the desktop Windows variants, the

same pseudorandom sampling of test cases was performed

in the same order for each system call or C function tested

across the different Windows variants. Previous findings

have indicated that this random sampling gives accurate re-

sults when compared to exhaustive testing of all combina-

tions [9].

The Win32 and POSIX APIs use different data types.

However, most of the Windows data types required were

minor specializations of fairly generic C data types. In

those cases, the same test values used in POSIX were sim-

ply used for testing Windows. The only major data type for

which new test values had to be created for testing Win-

dows was the HANDLE type. The tests for this type were

largely created by inheriting tests from existing types and

adding test cases in the same general vein as existing data

type tests. Overall, the data values used for testing were se-

lected based on experience with previous Ballista testing

and a general background knowledge from the software

testing literature [2].

3



3. 2. Porting to Windows CE

The Ballista client for Windows NT does not work on

the Windows CE platform because Windows CE is de-

signed to be an embedded operating system that runs on

specialized hardware for consumer electronics and mis-

sion-critical systems. These systems have tighter memory

constraints than a normal desktop PC. Also, Windows CE

programs must be compiled and linked for specific hard-

ware using tools that run on Windows NT, and then down-

loaded to the Windows CE device.

To overcome this problem, the Ballista client was split

into two components: the test generation and reporting

functions that run on a Windows NT PC, and the test execu-

tion and control functions that run on the target Windows

CE platform. For each system call or function tested, the

test execution and control portion is compiled on the PC

and downloaded to the Windows CE machine via a serial

port connection. The test generation component running on

the PC initiates each test case by starting the test execution

process on the target and passing the parameter list via the

command line arguments.

Windows CE provides a remote API that allows Win-

dows NT applications to communicate with the Windows

CE target using file I/O and process creation, but does not

provide mechanisms for process synchronization or con-

trol. Therefore, the test execution component running on

the target must create another process that actually runs the

test and records the result in the target's file system. The NT

process must remain idle and wait for this file to appear on

the target to get the results of the current test case and report

them. Unfortunately this means tests are several orders of

magnitude slower than tests run on the other Windows OS

versions, taking five to ten seconds per test case.

Error classification was also a problem on Windows CE.

Windows CE does not support the normal C++

try/catch exception handling scheme, so we had to use

the Win32 structured exception handling constructs,

__try/__except and __try/__finally. We did

not use these on the other Windows platforms because the

Microsoft documentation [11] recommends using C++

try/catchwhenever possible, and states that the two ex-

ception handling methods are mutually exclusive.

The exceptions that we observed on Windows CE ap-

peared to be analogous to the signals thrown in POSIX sys-

tems. For example, the exception

EXCEPTION_ACCESS_VIOLATION thrown in Win-

dows CE is comparable to a SIGSEGV signal thrown in

UNIX. Therefore, we classified these exceptions as abort

failures. The only exceptions observed were

EXCEPTION_ACCESS_VIOLATION,

EXCEPTION_DATATYPE_MISALIGNMENT, and

EXCEPTION_STACK_OVERFLOW.

3. 3. Comparison methodology

Perhaps the greatest challenge in testing Windows sys-

tems and then comparing results to Linux was creating a

reasonable comparison methodology. While C library

functions are identical on both systems, the system calls

have different functionality, different numbers of parame-

ters, and somewhat different data types. However, the Bal-

lista techniques of basing tests on data types and of

normalized failure rate reporting were used to create an ar-

guably fair comparison of exception handling test results.

Basing tests on data types rather than MuT functionality

permits comparing APIs with similar functionality but dif-

ferent interfaces. Because the data type test definitions are

nearly identical for both Windows and Linux, the same

general tests in the same general proportions are being run

regardless of functionality. Of course there is always the

possibility of accidental bias. But, because the tests were

originally developed specifically to find problems with

POSIX systems by students who had no Windows pro-

gramming experience, if anything the tests would be biased

toward finding problems on the previous testing target of

POSIX rather than specifically stressing Windows features.

Normalized failure rate data was used to permit compar-

ison among different interfaces to similar functionality be-

tween Windows and Linux. Normalization is performed by

computing the robustness failure rate on a per-MuT basis

(number of test cases failed divided by number of test cases

executed for each individual MuT). Then, the MuTs are

grouped into comparable classes by functionality, such as

all MuTs that perform memory management. The individ-

ual failure rates within each such group are averaged with

uniform weights to provide a group failure rate, permitting

relative comparisons among groups for all OS implementa-

tions. As an example, the I/O Primitives group consists of

{close dup dup2 fcntl fdatasync fsync

lseek pipe read write} for POSIX and

{AttachThreadInput CloseHandle Dupli-

cateHandle FlushFileBuffers GetStd-

Handle LockFile LockFileEx ReadFile

ReadFileEx SetFilePointer SetStdHandle

UnlockFile UnlockFileEx WriteFile

WriteFileEx} for Win32. Robustness failure rates for

the I/O Primitives group are computed by averaging the 10

individual failure rates for the POSIX calls, and comparing

against the averaged result for the 15 individual Win32 call

failure rates for some particular Windows implementation.

While even this level of comparison obviously is not per-

fect, it has the virtue of encompassing the same set of

higher-level functionality across two different APIs. For

the purposes of achieving generic-level functionality com-

parisons, calls that did not have an obvious grouping coun-

terpart for both POSIX and Windows were discarded.
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In all, 3,430 distinct test values incorporated into 37 data

types were available for testing POSIX, and 1,073 distinct

test values incorporated into 43 data types were available

for testing Windows. Given the cap of 5000 tests per MuT,

a total of over 148,000 tests were run on each implementa-

tion of the C library, plus an additional 380,000 tests on

each implementation

of the Win32 API

compared to 210,000

tests on the Linux

system calls.

We did not test

any functions in the

Graphical Device In-

terface (GDI) or any

Windows device

driver specific code.

Similarly, although

we did not detect any

obvious resource

"leakage" during

testing, we did not

specifically target

that type of failure

mode for testing, nor

did we test the sys-

tems under heavy

loading conditions.

While these are

clearly potential

sources of robustness

problems, we elected to limit testing to comparable situa-

tions between Windows and Linux, and to restrict results to

include only highly repeatable situations to lend confidence

to the accuracy of the conclusions.

4. Experimental Results

Ballista robustness testing was performed on the follow-

ing operating systems on comparable Pentium-class com-

puters with at least 64 megabytes of RAM:

• Windows 95 revision B

• Windows 98 with Service Pack 1 installed

• Windows 98 Second Edition (SE)/Service Pack 1

• Windows NT 4.0 Workstation/Service Pack 5

• Windows 2000 Professional Beta 3 (Build 2031)

• Windows CE 2.11 running on a Hewlett Packard
Jornada 820 Handheld PC

• RedHat Linux 6.0 (Kernel version 2.2.5)

The Microsoft Visual C++ compiler (version 6.0) was

used for all Windows systems, and the GNU C compiler

(version 2.91.66) was used for the Linux system. (Tech-

nically the results for C library testing are the result of the

GNU development team and not Linux developers, but they

are so prevalently used as a pair to implement POSIX func-

tionality with the C binding that this seems a reasonable ap-

proach.)
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Figure 1. Comparative Windows and Linux robustness failure rates by functional category.



In all, 91 POSIX system calls, 143 Win32 system calls,

and 94 C library functions were tested on all desktop oper-

ating systems. (10 Win32 system calls were not supported

by Windows 95, but were tested on the other desktop Win-

dows platforms.) Because it implements a subset of the

Win32 API, only 71 Win32 system calls and 82 C library

functions were tested on Windows CE. Table 1 shows the

results of robustness testing. The percentages of failures

are uniformly weighted averages across all functions tested

for that OS. Functions with Catastrophic failures are ex-

cluded because the system crash interrupts the testing

process, and the set of test cases run for that function is in-

complete.

Windows CE gives preferred support to the UNICODE

16-bit character set as opposed to the ASCII 8-bit character

set that is used on both UNIX and other Windows plat-

forms. There were 26 C functions that had both an ASCII

and a UNICODE implementation. The failure rates for

both versions were comparable with the exception of

strncpy, which had a Catastrophic failure in the UNICODE

version but not in the ASCII version. Since Windows CE

uses the UNICODE character set as a default, we only re-

port the failure rates for the UNICODE versions of these C

functions. The numbers in parentheses in the Windows CE

rows in Table 1 represent the number of functions tested

when counting both ASCII and UNICODE functions sepa-

rately.

In order to compare Windows results to Linux results,

the different calls and functions were divided into twelve

groupings as shown in Table 2 and Figure 1. These group-

ings not only serve to permit comparing failure rates across

different APIs, but also give a summary of failures for dif-

ferent types of functions. Each failure rate is a uniformly

weighted average across all functions tested for that partic-

ular OS; the total failure rates give each group's failure rate

an even weighting to compensate for the effects caused by

different APIs having different numbers of functions to im-

plement each function category. Again, functions with Cat-

astrophic failures are excluded from this calculation.

Functions tested on Windows CE in the C file I/O manage-

ment and the C stream I/O groups had too many functions

with Catastrophic failures to report accurate group failure

rates; 6 out of 10 in the former and 11 out of 14 in the latter.

Windows CE does not support functions in the C time

group, so no results for that group are reported.

Table 2 and Figure 1 show that there are significant dif-

ferences in the robustness failure rates of Linux and Win-

dows, as well as between the Windows 95/98 family and

the Windows NT/2000 family of operating systems. Win-

dows CE was unlike either family of desktop Windows

variants. (It should be noted that the dominant source of ro-

bustness failures is Abort failures, so these results should be

interpreted in light of the degree to which those failures af-

fect any particular application.)

Windows 95, Windows 98, and Windows 98 SE exhib-

ited similar failure rates, including a number of functions

that caused repeatable Catastrophic system crash failures.

Five of the Win32 API system calls: DuplicateHandle(),

GetFileInformationByHandle(), GetThreadContext(),

MsgWaitForMultipleObjects(), and

MsgWaitForMultipleObjectsEx(), plus two C library func-

tions, fwrite() and strncpy(), caused Catastrophic failures

for certain test cases in Windows 98. Listing 1 shows a rep-

resentative test case that has crashed Windows 98 every

time it has been run on two different desktop machines, a

Windows 95 machine, a Windows 98 laptop computer, and

our Windows CE device.

Windows 98 SE had Catastrophic failures in the same

five Win32 API system calls as Windows 98, plus another

in the CreateThread() call, but eliminated the Catastrophic

failure in the C library function fwrite(). Windows 95 had

all the Catastrophic failures of Windows 98 except for

MsgWaitForMultipleObjectsEx(), which was not imple-

mented in Windows 95. Windows 95 also did not exhibit

Catastrophic failures in the C library function strncpy().

Windows 95 did, however, have three additional calls with

Catastrophic failures: FileTimeToSystemTime(),

HeapCreate(), and ReadProcessMemory().

Windows CE had abort failure rates that did not corre-

spond to either the Windows 95/98 family, or the Windows

NT/2000 family, and had significantly more functions with

Catastrophic failures than any other OS tested, especially in

the C library functions. Windows CE had Catastrophic fail-

ures in ten Win32 system calls: CreateThread(),

GetThreadContext(), InterlockedDecrement(),

InterlockedExchange(), InterlockedIncrement(),

MsgWaitForMultipleObjects(), MsgWaitFor-

MultipleObjectsEx(), ReadProcessMemory(), SetThread-

Context(), and VirtualAlloc(). Windows CE also had 18 C

library functions with Catastrophic failures (27 counting

ASCII and UNICODE functions separately), 17 of which

failed due to the same invalid C file pointer as a parameter.

For several of the functions with Catastrophic failures

we could not isolate the system crash to a single test case.

We could repeatedly crash the system by running the entire

test harness for these functions, but could not reproduce it

when running the test cases independently. These system

crashes were probably due to inter-test interference, which

indicates that system state was not properly cleaned be-

7

GetThreadContext(GetCurrentThread(),

NULL);

Listing 1. A line of code that produces Catastrophic

failures on Windows 95, Windows 98 and Windows CE



tween test cases, even though each test is run in a separate

process to minimize this effect. All system calls and func-

tions with Catastrophic failures across all OS's are listed in

Table 3 by function group.

Windows NT, Windows 2000, and Linux exhibited no

Catastrophic failures during this testing. This is certainly

not to say that they cannot be made to crash, but rather that

they have reached a different plateau of overall robustness -

it is, at a minimum, difficult to find a simple C program that

crashes them when run as a single task in user mode. Thus,

one can consider that there is some merit to Microsoft's

claim that Windows NT is more reliable than Windows 98

(as, for example, stated on their Web site [10]).

Restart failures were relatively rare for all the OS imple-

mentations tested. However, they might be a critical prob-

lem for any system that assumes fail-fast semantics,

including clustered servers that otherwise do not require ul-

tra-high dependability hardware nodes. In, general Restart

failures were too infrequent for comparisons to be mean-

ingful.

The classification of Aborts as failures is controversial.

In systems in which task termination is acceptable (systems

requiring fail-fast operation that can withstand the latency

of task restarts), or desirable (debugging scenarios), they

may not be considered a problem. However, in some criti-

cal and embedded systems that either do not have time to

accomplish a task restart or cannot withstand the loss of

state information accompanying a task restart, Abort

failures can be a significant problem. Our experience in

talking with companies that require high levels of field reli-

ability is that Aborts are indeed considered failures for

those applications. For other applications that do not share

the same philosophy, Abort numbers may not have signifi-

cant meaning

Given that Abort failures are relevant for some applica-

tions, Figure 1 shows that there are striking differences in

Abort failure rates across operating systems and functional

groupings. For example, Linux has more than a 30% Abort

failure rate for C character operations, whereas all the Win-

dows systems have zero percent failure rates (this differ-

ence is presumably because Windows does boundary

checking on character table-lookup operations). Linux also

has higher failure rates on C file I/O management, C stream

I/O, and C memory operations. For other groupings Linux

has a much lower Abort failure rate. It is interesting to note

that the similar code bases for the Windows 95/98 pairing

and the Windows NT/2000 pairing show up in relatively

similar Abort failure rates. Windows CE generally has

lower abort failure rates than Windows NT and Windows

2000, but the significant number of functions that can cause

complete system crashes indicates that despite this, Win-

dows CE is less stable than Windows NT/2000.

The issue of Silent failures is a potentially thorny one.

Silent failures cannot be measured directly by Ballista be-
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I/O Primitives

*DuplicateHandle X X X

C file I/O management

clearerr, fclose, fflush

_wfreopen, fseek, ftell

X

X

C I/O stream

*fwrite

*fread

X X X

X

(UNICODE and ASCII) fgetc, *fgets, fprintf,
(UNICODE and ASCII) fputc, fputs, fscanf,

(UNICODE and ASCII) getc, putc, ungetc

X
X

X

C string

*strncpy X X

(UNICODE) *_tcsncpy X

Table 3. Functions that exhibited Catastrophic failures by OS and function group. A "*" indicates that

the failure could not be reproduced outside of the test harness.



cause they involve situations in which there is no observ-

able indication of a failure. (Note: this is not to say they are

non-observable in the usual sense of non-activated injected

faults that do not affect results. The problem is that there is

an exceptional condition that ought to generate observable

results to attain robust operation, but does not. As an exam-

ple, a Silent failure might be a call that reads data from a

non-existent file, but returns seemingly valid data bytes

with no error indication.)

It is impractical to annotate millions of tests to identify

Silent failures. However, we can estimate silent failure

rates by voting results across different versions of the same

API. Based on previous experience with POSIX [8], we

would expect there to be approximately a 10%

pass-with-non-exceptional test rate (but, this is a very gross

approximation), with the rest of the test cases with a pass

with no error reported being Silent failures. If one pre-

sumes that the Win32 API is supposed to be identical in ex-

ception handling as well as functionality across

implementations, if one system reports a pass with no error

reported for one particular test case and another system re-

ports a pass with an error or a failure for that identical test

case, then we can declare the system that reported no error

as having a Silent failure. We wrote a script to automati-

cally vote across identical test cases for each system to gen-

erate estimated Silent failure rates. (Note: this analysis does

not apply to Linux because it is not an identical API.) Win-

dows CE is not included in this analysis because although

the API is similar, it is not identical. Some parameters are

not used in Windows CE, and over half of the functions

tested on the other Win32 platforms were not supported.

Therefore, silent failure rates cannot be reported accurately

for Windows CE.

Based on the estimated Silent failures, it seems that the

Win32 calls for Windows 95/98/98 SE have a significantly

higher Silent failure rate than Windows NT/2000. C library

functions vary, with Windows 95/98/98 SE having both

higher and lower Silent failure rates than Windows

NT/2000 depending on the functional category. Figure 2

shows the overall robustness failure rates for the different

Windows variants tested, including these estimated Silent

failure rates. Based on these results, it appears that Win-

dows NT and Windows 2000 suffer fewer robustness fail-

ures overall than Windows 95/98/98 SE. The only

significant exceptions are for the File and Directory Access

category as well as the C memory management category,

which both suffer from higher Abort failure rates on Win-

dows NT and Windows 2000. (A possible limitation of this

approach is that it cannot find instances in which all ver-

sions of Windows suffer a Silent failure. This hidden Silent
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failure rate may be significant, but quantification is not

practical.)

5. Conclusions and Future Work

This work demonstrates that it is possible to compare the

robustness of different OS APIs on a relatively level play-

ing field. The use of data type-based testing techniques and

normalization of test results by functional groupings en-

ables a detailed comparison of APIs having generally simi-

lar capabilities but different interfaces.

Applying the Ballista testing methodology to several

Microsoft Windows operating systems revealed a variety of

robustness failures. The Windows CE OS and the Win-

dows 95/98/98 SE family of operating systems were clearly

vulnerable to robustness failures induced by exceptional

parameter values, and could be crashed via a variety of

functions. Additionally, the Windows 95/98/98 SE systems

had a significant level of Silent failure rates in which excep-

tional operating situations produced neither abnormal ter-

mination nor any other indication of an exception when

such an indication was demonstrated possible by other

Windows variants. Windows NT and Windows 2000

proved as resistant to system crashes as Linux under these

testing conditions, and in most cases had fewer Silent fail-

ures than the Windows 95/98/98 SE family (although only a

relative comparison was possible; the absolute level of Si-

lent failures is more difficult to determine).

An examination of Abort failures (exceptions too

non-specific to be recoverable) and Restart failures (task

"hangs") showed differences among the Windows variants

and between Windows and Linux. Linux had a signifi-

cantly lower Abort failure rate in eight out of twelve func-

tional groupings, but was significantly higher in the

remaining four. The four groupings for which Linux Abort

failures are higher are entirely within the C library, for

which the POSIX and Win32 APIs are identical.

Windows CE has abort failure rates comparable to Win-

dows NT and Windows 2000, but has several functions that

cause complete system crashes. This makes Windows CE a

less attractive alternative for embedded systems, where de-

pendability and reliability are of much higher importance

than in desktop PC applications. While abort failures may

be recoverable by task restarts, a complete OS crash will

more than likely cause complete system failure. It should

be noted that many of the catastrophic failures found in

Windows CE were traceable to incorrect handling of a sin-

gle bad parameter value, namely an invalid C file pointer

(the actual parameter was a string buffer typecast to a file

pointer). It could be argued that since we can trace problem

to one underlying cause that we should not penalize Win-

dows CE for seventeen functions that happen to take the

same parameter. However, developers who wish to use

Windows CE in their systems would have to generate soft-

ware wrappers for each of the seventeen functions they use

to protect against a system crash because they only have ac-

cess to the interface, not the underlying implementation.

It is also interesting to note that several of the Win32

system calls that crashed on Windows CE also crashed on

Windows 95/98/98 SE (some with the exact same parame-

ter values, as in Listing 1), despite the fact that they were

developed by different teams within Microsoft and have

different code bases. One can speculate that this indicates

the underlying causes of these errors may be in the specifi-

cation rather than the implementation; however the prob-

lem may simply be that different programmers tend to

make the same sorts of mistakes in similar situations.

While it is not appropriate to make sweeping claims

about the dependability of Windows or Linux from these

test results alone, a few observations seem warranted by the

data presented. The marked difference in finding cata-

strophic failures in Windows CE and the Windows

95/98/98 SE family compared to the other OS families

lends credibility to Microsoft's statement that the Windows

NT/2000 systems are more reliable overall. A relative as-

sessment of Linux vs. Windows NT reliability is less

clear-cut. Linux seems more robust on system calls, but

more susceptible to Abort failures on C library calls (which

are actually part of the GNU C compiler suite for Linux)

compared to Windows NT.

Future work on Windows testing will include looking

for dependability problems caused by heavy load condi-

tions, as well as state- and sequence-dependent failures. In

particular, we will attempt to find ways to reproduce the

elusive crashes that we have observed to occur in both Win-

dows and Linux outside of the current robustness testing

framework.
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