
ModelSim®
A d v a n c e d V e r i f i c a t i o n a n d D e b u g g i n g

SE
Tutorial
V e r s i o n 6 . 0 b

P u b l i s h e d : N o v e m b e r 1 5 , 2 0 0 4

T-2

M

This document is for information and instruction purposes. Mentor Graphics reserves the right to make changes in
specifications and other information contained in this publication without prior notice, and the reader should, in all cases,
consult Mentor Graphics to determine whether any changes have been made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in written agreements
between Mentor Graphics and its customers. No representation or other affirmation of fact contained in this publication
shall be deemed to be a warranty or give rise to any liability of Mentor Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING
OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF MENTOR
GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

R

U
an
G
w
C

C

M

80

Th

C

Te

To

W

Su
odelSim SE Tutorial

ESTRICTED RIGHTS LEGEND 03/97

.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely at private expense
d are commercial computer software provided with restricted rights. Use, duplication or disclosure by the U.S.
overnment or a U.S. Government subcontractor is subject to the restrictions set forth in the license agreement provided
ith the software pursuant to DFARS 227.7202-3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial
omputer Software - Restricted Rights clause at FAR 52.227-19, as applicable.

ontractor/manufacturer is:

entor Graphics Corporation

05 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

is is an unpublished work of Mentor Graphics Corporation.

ontacting ModelSim Support

lephone: 503.685.0820

ll-Free Telephone: 877-744-6699

ebsite: www.model.com

pport: www.model.com/support

ModelSim SE Tutorial

 T-3

Table of Contents

Introduction .T-5

Lesson 1 - ModelSim conceptual overview .T-11

Lesson 2 - Basic simulation .T-19

Lesson 3 - ModelSim projects .T-31

Lesson 4 - Working with multiple libraries .T-41

L

L

L

L

L

L

L

L

L

esson 5 - Simulating designs with SystemC .T-51

esson 6 - Viewing simulations in the Wave windowT-65

esson 7 - Creating stimulus with Waveform Editor T-75

esson 8 - Debugging with the Dataflow windowT-89

esson 9 - Viewing and initializing memories .T-99

esson 10 - Analyzing performance with the ProfilerT-113

esson 11 - Simulating with Code Coverage .T-123

esson 12 - Debugging with PSL assertions .T-135

esson 13 - Waveform Compare .T-147

T-4

Mo

Lesson 14 - Automating ModelSim . T-159

Index . T-175
delSim SE Tutorial

ModelSim SE Tutorial

 T-5

Introduction

Topics

The following topics are covered in this chapter:

Assumptions . T-6

Where to find our documentation T-7

Technical support and updates . T-8

Be
fore you begin . T-9
Example designs . T-9

T-6 Introduction

Mo

Assumptions

We assume that you are familiar with the use of your operating system. You should be familiar with the window management
functions of your graphic interface: either OpenWindows, OSF/Motif, CDE, KDE, GNOME, or Microsoft Windows 98/Me/NT/
2000/XP.

We also assume that you have a working knowledge of VHDL, Verilog, and/or SystemC. Although ModelSim is an excellent tool
to use while learning HDL concepts and practices, this document is not written to support that goal.
delSim SE Tutorial

Where to find our documentation T-7

ModelSim SE Tutorial

Where to find our documentation

ModelSim documentation is available from our website at www.model.com/support or in the following formats and locations:

Document Format How to get it

ModelSim Installation &
Licensing Guide

paper shipped with ModelSim

PDF select Help > Documentation; also available from the Support
page of our web site: www.model.com

ModelSim Quick Guide
(command and feature
q

paper shipped with ModelSim

M

M

M
R

M

F
I

S
M

C

E

T
m

T

uick-reference) PDF select Help > Documentation, also available from the Support
page of our web site: www.model.com

odelSim Tutorial PDF, HTML select Help > Documentation; also available from the Support
page of our web site: www.model.com

odelSim User’s Manual PDF, HTML select Help > Documentation

odelSim Command
eference

PDF, HTML select Help > Documentation

odelSim GUI Reference PDF, HTML select Help > Documentation

oreign Language
nterface Reference

PDF, HTML select Help > Documentation

td_DevelopersKit User’s
anual

PDF www.model.com/support/documentation/BOOK/sdk_um.pdf

The Standard Developer’s Kit is for use with Mentor Graphics
QuickHDL.

ommand Help ASCII type help [command name] at the prompt in the Transcript pane

rror message help ASCII type verror <msgNum> at the Transcript or shell prompt

cl Man Pages (Tcl
anual)

HTML select Help > Tcl Man Pages, or find contents.htm in
\modeltech\docs\tcl_help_html

echnotes HTML select Technotes dropdown on www.model.com/support

http://www.model.com/support
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/support/documentation/BOOK/sdk_um.pdf
http://www.model.com/support

T-8 Introduction

Mo

Technical support and updates

Support

Model Technology online and email technical support options, maintenance renewal, and links to international support
contacts:
www.model.com/support/default.asp

Mentor Graphics support:
www.mentor.com/supportnet

Updates

La
delSim SE Tutorial

Access to the most current version of ModelSim:
www.model.com/downloads/default.asp

test version email

Place your name on our list for email notification of news and updates:
www.model.com/products/informant.asp

http://www.model.com/support/default.asp
http://www.mentor.com/supportnet/
http://www.model.com/downloads/default.asp
http://www.model.com/products/informant.asp

Before you begin T-9

ModelSim SE Tutorial

Before you begin

Preparation for some of the lessons leaves certain details up to you. You will decide the best way to create directories, copy files,
and execute programs within your operating system. (When you are operating the simulator within ModelSim’s GUI, the interface
is consistent for all platforms.)

Examples show Windows path separators - use separators appropriate for your operating system when trying the examples.

Example designs

ModelSim comes with Verilog and VHDL versions of the designs used in these lessons. This allows you to do the tutorial
regardless of which license type you have. Though we have tried to minimize the differences between the Verilog and VHDL
ve e-
sp
rsions, we could not do so in all cases. In cases where the designs differ (e.g., line numbers or syntax), you will find languag
ecific instructions. Follow the instructions that are appropriate for the language that you are using.

T-10 Introduction

Mo
delSim SE Tutorial

ModelSim SE Tutorial

 T-11

Lesson 1 - ModelSim conceptual overview

Topics

The following topics are covered in this chapter:

Introduction . T-12

Basic simulation flow . T-13
Creating the working library T-13
Compiling your design . T-13

Pr

M

De
Running the simulation . T-13
Debugging your results . T-14

oject flow . T-15

ultiple library flow . . T-16

bugging tools . T-17

T-12 Lesson 1 - ModelSim conceptual overview

Mo

Introduction

ModelSim is a simulation and debugging tool for VHDL, Verilog, SystemC, and mixed-language designs.

This lesson provides a brief conceptual overview of the ModelSim simulation environment. It is divided into four topics, which
you will learn more about in subsequent lessons:

Topic Additional information and
practice

Basic simulation flow Lesson 2 - Basic simulation

Project flow Lesson 3 - ModelSim projects

M

D

delSim SE Tutorial

ultiple library flow Lesson 4 - Working with multiple
libraries

ebugging tools Remaining lessons

Basic simulation flow T-13

ModelSim SE Tutorial

Basic simulation flow

The following diagram shows the basic steps for simulating a design in ModelSim.

C

In
typ e
co

C

Af l
su

R

W ir
(V
sim

Create a working library

Compile design files
reating the working library

ModelSim, all designs, be they VHDL, Verilog, SystemC, or some combination thereof, are compiled into a library. You
ically start a new simulation in ModelSim by creating a working library called "work". "Work" is the library name used by th

mpiler as the default destination for compiled design units.

ompiling your design

ter creating the working library, you compile your design units into it. The ModelSim library format is compatible across al
pported platforms. You can simulate your design on any platform without having to recompile your design.

unning the simulation

ith the design compiled, you invoke the simulator on a top-level module (Verilog) or a configuration or entity/architecture pa
HDL). Assuming the design loads successfully, the simulation time is set to zero, and you enter a run command to begin
ulation.

Run simulation

Debug results

T-14 Lesson 1 - ModelSim conceptual overview

Mo

Debugging your results

If you don’t get the results you expect, you can use ModelSim’s robust debugging environment to track down the cause of the
problem.
delSim SE Tutorial

Project flow T-15

ModelSim SE Tutorial

Project flow

A project is a collection mechanism for an HDL design under specification or test. Even though you don’t have to use projects in
ModelSim, they may ease interaction with the tool and are useful for organizing files and specifying simulation settings.

The following diagram shows the basic steps for simulating a design within a ModelSim project.

As

• Y

• P

Create a project
 you can see, the flow is similar to the basic simulation flow. However, there are two important differences:

ou do not have to create a working library in the project flow; it is done for you automatically.

rojects are persistent. In other words, they will open every time you invoke ModelSim unless you specifically close them.

Add files to the project

Run simulation

Debug results

Compile design files

T-16 Lesson 1 - ModelSim conceptual overview

Mo

Multiple library flow

ModelSim uses libraries in two ways: 1) as a local working library that contains the compiled version of your design; 2) as a
resource library. The contents of your working library will change as you update your design and recompile. A resource library
is typically static and serves as a parts source for your design. You can create your own resource libraries, or they may be supplied
by another design team or a third party (e.g., a silicon vendor).

You specify which resource libraries will be used when the design is compiled, and there are rules to specify in which order they
are searched. A common example of using both a working library and a resource library is one where your gate-level design and
testbench are compiled into the working library, and the design references gate-level models in a separate resource library.

The diagram below shows the basic steps for simulating with multiple libraries.

Yo h
the
delSim SE Tutorial

u can also link to resource libraries from within a project. If you are using a project, you would replace the first step above wit
se two steps: create the project and add the testbench to the project.

Create a working library

Compile design files

Run simulation

Debug results

Link to resource libraries

Debugging tools T-17

ModelSim SE Tutorial

Debugging tools

ModelSim offers numerous tools for debugging and analyzing your design. Several of these tools are covered in subsequent
lessons, including:

• Setting breakpoints and stepping through the source code

• Viewing waveforms and measuring time

• Exploring the "physical" connectivity of your design

• Viewing and initializing memories

• Analyzing simulation performance

• T

• C
esting code coverage

omparing waveforms

T-18 Lesson 1 - ModelSim conceptual overview

Mo
delSim SE Tutorial

ModelSim SE Tutorial

 T-19

Lesson 2 - Basic simulation

Topics

The following topics are covered in this lesson:

Introduction . T-20
Design files for this lesson . T-20
Related reading . T-20

Creating the working design library T-21

Compiling the design. . T-23

Lo

Ru

Se

Le
ading the design into the simulator T-24

nning the simulation . T-25

tting breakpoints and stepping in the Source window. T-27

sson wrap-up . T-29

T-

Mo

In

In

D

Th
as

Ve

VH

Th
ha
a m
vic

R

M
Ve

M
vc
delSim SE Tutorial

DL – <install_dir>/modeltech/examples/counter.vhd and tcounter.vhd

is lesson uses the Verilog files counter.v and tcounter.v in the examples. If you
ve a VHDL license, use counter.vhd and tcounter.vhd instead. Or, if you have

ixed license, feel free to use the Verilog testbench with the VHDL counter or
e versa.

elated reading

odelSim User’s Manual – Chapter 3 - Design libraries (UM-57), Chapter 5 -
rilog simulation (UM-111), Chapter 4 - VHDL simulation (UM-71)

odelSim Command Reference (vlib (CR-356), vmap (CR-370), vlog (CR-358),
om (CR-311), vopt (CR-371), view (CR-332), and right (CR-250) commands)
20 Lesson 2 - Basic simulation

troduction

 this lesson you will go step-by-step through the basic simulation flow:

esign files for this lesson

e sample design for this lesson is a simple 8-bit, binary up-counter with an
sociated testbench. The pathnames are as follows:

rilog – <install_dir>/modeltech/examples/counter.v and tcounter.v

Compile design units

Run simulation

Debug results

Create a working library

Creating the working design library T-21

ModelSim SE Tutorial

C

Be
so

1

2

3

This opens a dialog where you specify physical and logical names for the

lSim dialog

rary dialog

3b
library (Figure 2). You can create a new library or map to an existing
library. We’ll be doing the former.

b Type work in the Library Name field if it isn’t entered automatically.
reating the working design library

fore you can simulate a design, you must first create a library and compile the
urce code into that library.

Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be
working with these lessons).

Verilog: Copy counter.v and tcounter.v files from /<install_dir>/examples
to the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from /<install_dir>/
examples to the new directory.

Start ModelSim if necessary.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

Upon opening ModelSim for the first time, you will see the Welcome to
ModelSim dialog (Figure 1). Click Close.

b Select File > Change Directory and change to the directory you created
in step 1.

Create the working library.

a Select File > New > Library.

Figure 1: The Welcome to Mode

Figure 2: The Create a New Lib

T-

Mo

W
wi

Th
inv
thi
M

rk library
delSim SE Tutorial
22 Lesson 2 - Basic simulation

c Click OK.

ModelSim creates a directory called work and writes a specially-
formatted file named _info into that directory. The _info file must remain
in the directory to distinguish it as a ModelSim library. Do not edit the
folder contents from your operating system; all changes should be made
from within ModelSim.

ModelSim also adds the library to the list in the Workspace (Figure 3)
and records the library mapping for future reference in the ModelSim
initialization file (modelsim.ini).

hen you pressed OK in step c above, three lines were printed to the Main
ndow Transcript pane:

vlib work
vmap work work
Modifying modelsim.ini

e first two lines are the command-line equivalent of the menu commands you
oked. Most menu driven functions will echo their command-line equivalents in
s fashion. The third line notifies you that the mapping has been recorded in the
odelSim initialization file.

Figure 3: The newly created wo

Compiling the design T-23

ModelSim SE Tutorial

C

W

Yo
Ve
in

1

2

rce Files dialog

iled into the work library
a On the Library tab, click the ’+’ icon next to the work library and you will
see two design units (Figure 5). You can also see their types (Modules,
Entities, etc.) and the path to the underlying source files if you scroll to
the right.
ompiling the design

ith the working library created, you are ready to compile your source files.

u can compile by using the menus and dialogs of the graphic interface, as in the
rilog example below, or by entering a command at the ModelSim> prompt as
the VHDL example below.

Verilog: Compile counter.v and tcounter.v.

a Select Compile > Compile.

This opens the Compile Source Files dialog (Figure 4).

If the Compile menu option is not available, you probably have a project
open. If so, close the project by selecting File > Close when the
Workspace pane is selected.

b Select counter.v, hold the <Ctrl> key down, and then select tcounter.v.

c With the two files selected, click Compile.

The files are compiled into the work library.

d Click Done.

VHDL: Compile counter.vhd and tcounter.vhd.

a Type vcom counter.vhd tcounter.vhd at the ModelSim> prompt and
press <Enter> on your keyboard.

View the compiled design units.

Figure 4: The Compile HDL Sou

Figure 5: Verilog modules comp

T-

Mo

L

1

th the Start Simulation dialog

ng a Verilog design
delSim SE Tutorial
24 Lesson 2 - Basic simulation

oading the design into the simulator

Load the test_counter module into the simulator.

a Double-click test_counter in the Main window Workspace to load the
design.

You can also load the design by selecting Simulate > Start Simulation
in the menu bar. This opens the Start Simulation dialog. With the Design
tab selected, click the ’+’ sign next to the work library to see the counter
and test_counter modules. Select the test_counter module and click OK
(Figure 6).

When the design is loaded, you will see a new tab named sim that
displays the hierarchical structure of the design (Figure 7). You can
navigate within the hierarchy by clicking on any line with a ’+’ (expand)
or ’-’ (contract) icon. You will also see a tab named Files that displays
all files included in the design.

Figure 6: Loading the design wi

Figure 7: Workspace tab showi

Running the simulation T-25

ModelSim SE Tutorial

R

No

1

2

3

b Type run 500 at the VSIM> prompt in the Main window.

ave window

 the Wave window

2c
The simulation advances another 500 ns for a total of 600 ns (Figure 9).
unning the simulation

w you will run the simulation.

Set the graphic user interface to view all debugging windows.

a Select View > Debug Windows > All Windows.

This opens all ModelSim windows, giving you different views of your
design data and a variety of debugging tools. Most windows will open as
panes within the Main window. The Dataflow, List, and Wave windows
will open as separate windows. You may need to move or resize the
windows to your liking. Panes within the Main window can be undocked
to stand alone.

Add signals to the Wave window.

a In the Workspace pane, select the sim tab.

b Right-click test_counter to open a popup context menu.

c Select Add > Add to Wave (Figure 8).

Three signals are added to the Wave window.

Run the simulation.

a Click the Run icon in the Main or Wave window toolbar.

The simulation runs for 100 ns (the default simulation length)
and waves are drawn in the Wave window.

Figure 8: Adding signals to the W

Figure 9: Waves being drawn in

T-

Mo
delSim SE Tutorial
26 Lesson 2 - Basic simulation

c Click the Run -All icon on the Main or Wave window toolbar.

The simulation continues running until you execute a break
command or it hits a statement in your code (e.g., a Verilog
$stop statement) that halts the simulation.

d Click the Break icon.

The simulation stops running.

 and stepping in the Source window T-27

ModelSim SE Tutorial

S
S

Ne
M
sim
on

1

2

3

Breakpoint 31.

4

ource window
d Click on line number 31 again to re-create the breakpoint.

Restart the simulation.

a Click the Restart icon to reload the design elements and reset
the simulation time to zero.

The Restart dialog that appears gives you options on what to
retain during the restart (Figure 11).

b Click Restart in the Restart dialog.
Setting breakpoints

etting breakpoints and stepping in the
ource window

xt you will take a brief look at one interactive debugging feature of the
odelSim environment. You will set a breakpoint in the Source window, run the

ulation, and then step through the design under test. Breakpoints can be set
ly on lines with red line numbers.

Open counter.v in the Source window.

a Select the Files tab in the Main window Workspace.

b Double-click counter.v to add it to the Source window.

Set a breakpoint on line 31 of counter.v (if you are simulating the VHDL files,
use line 30 instead).

a Scroll to line 31 and click on the line number.

A red ball appears next to the line (Figure 10) indicating that a breakpoint
has been set.

Disable, enable, and delete the breakpoint.

a Click the red ball to disable the breakpoint. It will become a black circle.

b Click the black circle to re-enable the breakpoint. It will become a red
ball.

c Click the red ball with your right mouse button and select Remove

Figure 10: A breakpoint in the S

Figure 11: The Restart dialog

T-

Mo

5

inter on a variable in the Source view

Objects window
delSim SE Tutorial
28 Lesson 2 - Basic simulation

c Click the Run -All icon.

The simulation runs until the breakpoint is hit. When the
simulation hits the breakpoint, it stops running, highlights the
line with a blue arrow in the Source view (Figure 12), and issues a Break
message in the Transcript pane.

When a breakpoint is reached, typically you want to know one or more
signal values. You have several options for checking values:

• look at the values shown in the Objects window (Figure 13).

• set your mouse pointer over the count variable in the Source
window, and a "balloon" will pop up with the value (Figure 12)

• highlight the count variable in the Source window, right-click it, and
select Examine from the pop-up menu

• use the examine command to output the value to the Main window
Transcript (i.e., examine count)

Try out the step commands.

a Click the Step icon on the Main window toolbar.

This single-steps the debugger.

Experiment on your own. Set and clear breakpoints and use the
Step, Step Over, and Continue Run commands until you feel comfortable
with their operation.

Figure 12: Resting the mouse po

Figure 13: Values shown in the

Lesson wrap-up T-29

ModelSim SE Tutorial

L

Th
sim

1

2

esson wrap-up

is concludes this lesson. Before continuing we need to end the current
ulation.

Select Simulate > End Simulation.

Click Yes when prompted to confirm that you wish to quit simulating.

T-

Mo
delSim SE Tutorial
30 Lesson 2 - Basic simulation

ModelSim SE Tutorial

 T-31

Lesson 3 - ModelSim projects

Topics

The following topics are covered in this lesson:

Introduction . T-32
Related reading . T-32

Creating a new project . T-33
Adding objects to the project T-34
Changing compile order (VHDL) T-35

Compiling and loading a design . T-36

Or

Si

Le
ganizing projects with folders T-37
Adding folders . T-37
Moving files to folders . T-38

mulation Configurations . T-39

sson wrap-up . T-40

T-

Mo

In

In
wo
co

Th
ha

R

M

delSim SE Tutorial
32 Lesson 3 - ModelSim projects

troduction

 this lesson you will practice creating a project. At a minimum, projects have a
rk library and a session state that is stored in a .mpf file. A project may also

nsist of:

• HDL source files or references to source files

• other files such as READMEs or other project documentation

• local libraries

• references to global libraries

is lesson uses the Verilog files tcounter.v and counter.v in the examples. If you
ve a VHDL license, use tcounter.vhd and counter.vhd instead.

elated reading

odelSim User’s Manual, Chapter 2 - Projects (UM-37)

Creating a new project T-33

ModelSim SE Tutorial

C

1

2

ialog

2b

2c

2d
reating a new project

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

Create a new project.

a Select Create a Project from the Welcome dialog or File > New >
Project (Main window) from the menu bar.

This opens a dialog where you enter a Project Name, Project Location
(i.e., directory), and Default Library Name (Figure 14). The default
library is where compiled design units will reside.

b Type test in the Project Name field.

c Click Browse to select a directory where the project file will be stored.

d Leave the Default Library Name set to work.

e Click OK.

If you see the Select Initial Ini dialog, asking which modelsim.ini file you
would like the project to be created from, select the Use Default Ini
button.

Figure 14: The Create Project d

T-

Mo

A

On
tab
dia
ad
co

1

 a project

ct dialog

1a

1b
delSim SE Tutorial
34 Lesson 3 - ModelSim projects

dding objects to the project

ce you click OK to accept the new project settings, you will see a blank Project
 in the workspace area of the Main window and the Add items to the Project
log will appear (Figure 15). From this dialog you can create a new design file,

d an existing file, add a folder for organization purposes, or create a simulation
nfiguration (discussed below).

Add two existing files.

a Click Add Existing File.

This opens the Add file to Project dialog (Figure 16). This dialog lets you
browse to find files, specify the file type, specify which folder to add the
file to, and identify whether to leave the file in its current location or to
copy it to the project directory.

b Click Browse.

c Open the examples directory in your ModelSim installation tree.

d Verilog: Select counter.v, hold the <Ctrl> key down, and then select
tcounter.v.
VHDL: Select counter.vhd, hold the <Ctrl> key down, and then select
tcounter.vhd.

e Click Open and then OK.

f Click Close to dismiss the Add items to the Project dialog.

Figure 15: Adding new items to

Figure 16: The Add file to Proje

Creating a new project T-35

ModelSim SE Tutorial

C

Co
co

1

c Click OK to close the Compile Order dialog.

 files display a ’?’ for status

ialog box

move up / down buttons
1b
You should now see two files listed in the Project tab of the Workspace
pane (Figure 17).

Question mark icons (?) in the Status column mean the file hasn’t been
compiled or the source file has changed since the last successful compile.
The other columns identify file type (e.g., Verilog or VHDL),
compilation order, and modified date.

hanging compile order (VHDL)

mpilation order is important in VHDL designs. Follow these steps to change
mpilation order within a project.

Change the compile order.

a Select Compile > Compile Order.

This opens the Compile Order dialog box (Figure 18).

b Click the Auto Generate button.

ModelSim "determines" the compile order by making multiple passes
over the files. It starts compiling from the top; if a file fails to compile
due to dependencies, it moves that file to the bottom and then recompiles
it after compiling the rest of the files. It continues in this manner until all
files compile successfully or until a file(s) can’t be compiled for reasons
other than dependency.

Alternatively, you can select a file and use the Move Up and Move Down
buttons to put the files in the correct order.

Figure 17: Newly added project

Figure 18: The Compile Order d

T-

Mo

C

1

2

3

continue working with the project. However, first you need to end the

4

 an expanded library

 the counter design unit
delSim SE Tutorial

simulation that started when you loaded test_counter.

End the simulation.

a Select Simulate > End Simulation.

b Click Yes.

4a
36 Lesson 3 - ModelSim projects

ompiling and loading a design

Compile the files.

a Right-click anywhere in the Project tab and select Compile > Compile
All from the pop-up menu.

ModelSim compiles both files and changes the symbol in the Status
column to a check mark. A check mark means the compile succeeded. If
the compile had failed, the symbol would be a red ’X’, and you would
see an error message in the Transcript pane.

View the design units.

a Click the Library tab in the workspace.

b Click the "+" icon next to the work library.

You should see two compiled design units, their types (modules in this
case), and the path to the underlying source files (Figure 19).

Load the test_counter design unit.

a Double-click the test_counter design unit.

You should see a new tab named sim that displays the structure of the
test_counter design unit (Figure 20). A fourth tab named Files contains
information about the underlying source files.

At this point you would generally run the simulation and analyze or
debug your design like you did in the previous lesson. For now, you’ll

Figure 19: The Library tab with

Figure 20: The structure tab for

2a 2b 3a

Organizing projects with folders T-37

ModelSim SE Tutorial

O

If
fo
cre
pla
fo

A

As
op
me

1

2

c Click the Folder Location drop-down arrow and select Design Files.

to the project

1b

2c

2b
d Click OK.
Figure 23: Creating a subfolder
rganizing projects with folders

you have a lot of files to add to a project, you may want to organize them in
lders. You can create folders either before or after adding your files. If you
ate a folder before adding files, you can specify in which folder you want a file
ced at the time you add the file (see Folder field in Figure 16). If you create a

lder after adding files, you edit the file properties to move it to that folder.

dding folders

 shown previously in Figure 15, the Add items to the Project dialog has an
tion for adding folders. If you have already closed that dialog, you can use a
nu command to add a folder.

Add a new folder.

a Select File > Add to Project > Folder.

b Type Design Files in the Folder Name field (Figure 21).

c Click OK.

You’ll now see a folder in the Project tab (Figure 22).

Add a sub-folder.

a Right-click anywhere in the Project tab and select Add to Project >
Folder.

b Type HDL in the Folder Name field (Figure 23).

Figure 21: Adding a new folder

Figure 22: A folder in a project

T-

Mo

M

No
on
Un
to

1

older

n via the project settings dialog

1c
delSim SE Tutorial
38 Lesson 3 - ModelSim projects

You’ll now see a ’+’ icon next to the Design Files folder in the Project
tab (Figure 24).

e Click the ’+’ icon to see the HDL sub-folder.

oving files to folders

w that you have folders, you can move the files into them. If you are running
 a Windows platform, you can simply drag-and-drop the files into the folder. On
ix platforms, you either have to place the files in a folder when you add the files
the project, or you have to move them using the properties dialog.

Move tcounter.v and counter.v to the HDL folder.

a Select counter.v, hold the <Ctrl> key down, and then select tcounter.v.

b Right-click either file and select Properties.

This opens the Project Compiler Settings dialog (Figure 25), which lets
you set a variety of options on your design files.

c Click the Place In Folder drop-down arrow and select HDL.

d Click OK.

The two files are moved into the HDL folder. Click the ’+’ icons on the
folders to see the files.

The files are now marked with a ’?’ icon. Because you moved the files,
the project no longer knows if the previous compilation is still valid.

Figure 24: A folder with a sub-f

Figure 25: Changing file locatio

2e

Simulation Configurations T-39

ModelSim SE Tutorial

S

A
Fo
res
yo
Si
"c
the
wi

1

The Project tab now shows a Simulation Configuration named counter

2

iguration dialog

uration in the Project tab

1b

1c

1e

1f

1d
(Figure 27).

Load the Simulation Configuration.

a Double-click the counter Simulation Configuration in the Project tab.

In the Transcript pane of the Main window, the vsim (the ModelSim
simulator) invocation shows the -hazards and -t ps switches (Figure 28).
These are the command-line equivalents of the options you specified in
the Simulate dialog.
imulation Configurations

Simulation Configuration associates a design unit(s) and its simulation options.
r example, say every time you load tcounter.v you want to set the simulator
olution to picoseconds (ps) and enable event order hazard checking. Ordinarily
u would have to specify those options each time you load the design. With a
mulation Configuration, you specify options for a design and then save a
onfiguration" that associates the design and its options. The configuration is
n listed in the Project tab and you can double-click it to load counter.v along
th its options.

Create a new Simulation Configuration.

a Select File > Add to Project > Simulation Configuration.

This opens the Simulate dialog (Figure 26). The tabs in this dialog
present a myriad of simulation options. You may want to explore the tabs
to see what’s available. You can consult the ModelSim User’s Manual to
get a description of each option.

b Type counter in the Simulation Configuration Name field.

c Select HDL from the Place in Folder drop-down.

d Click the ’+’ icon next to the work library and select test_counter.

e Click the Resolution drop-down and select ps.

f For Verilog, click the Verilog tab and check Enable Hazard Checking.

g Click OK.

Figure 26: The Simulation Conf

Figure 27: A Simulation Config

T-

Mo

L

Th
sim

1

2

3

tions used for Simulation Configuration
delSim SE Tutorial
40 Lesson 3 - ModelSim projects

esson wrap-up

is concludes this lesson. Before continuing you need to end the current
ulation and close the current project.

Select Simulate > End Simulation. Click Yes.

Select the Project tab in the Main window Workspace.

Right-click the test project to open a context popup menu and select Close
Project.

If you do not close the project, it will open automatically the next time you
start ModelSim.

Figure 28: Transcript shows op

command-line switches

ModelSim SE Tutorial

 T-41

Lesson 4 - Working with multiple libraries

Topics

The following topics are covered in this lesson:

Introduction . T-42
Related reading . T-42

Creating the resource library . . T-43

Creating the project . T-45

Linking to the resource library . T-46

Pe

Le
rmanently mapping resource libraries T-49

sson wrap-up . T-50

T-

Mo

In

In
Le
or
pa

Yo
de
Fi
sim

D

Th
as

Ve

VH

Th
ha

R

M

delSim SE Tutorial
42 Lesson 4 - Working with multiple libraries

troduction

 this lesson you will practice working with multiple libraries. As discussed in
sson 1 - ModelSim conceptual overview, you might have multiple libraries to
ganize your design, to access IP from a third-party source, or to share common
rts between simulations.

u will start the lesson by creating a resource library that contains the counter
sign unit. Next, you will create a project and compile the testbench into it.
nally, you will link to the library containing the counter and then run the

ulation.

esign files for this lesson

e sample design for this lesson is a simple 8-bit, binary up-counter with an
sociated testbench. The pathnames are as follows:

rilog – <install_dir>/modeltech/examples/counter.v and tcounter.v

DL – <install_dir>/modeltech/examples/counter.vhd and tcounter.vhd

is lesson uses the Verilog files tcounter.v and counter.v in the examples. If you
ve a VHDL license, use tcounter.vhd and counter.vhd instead.

elated reading

odelSim User’s Manual, 3 - Design libraries (UM-57)

Creating the resource library T-43

ModelSim SE Tutorial

C

1

2

3

4 Create the resource library.

ource library

4b
a Select File > New > Library.

b Type parts_lib in the Library Name field (Figure 29).

The Library Physical Name field is filled out automatically.

Once you click OK, ModelSim creates a directory for the library, lists it
in the Library tab of the Workspace, and modifies the modelsim.ini file
to record this new library for the future.
reating the resource library

Create a directory for the resource library.

Create a new directory called resource_library. Copy counter.v from
<install_dir>/modeltech/examples to the new directory.

Create a directory for the testbench.

Create a new directory called testbench that will hold the testbench and
project files. Copy tcounter.v from <install_dir>/modeltech/examples to the
new directory.

You are creating two directories in this lesson to mimic the situation where
you receive a resource library from a third-party. As noted earlier, we will
link to the resource library in the first directory later in the lesson.

Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

If the Welcome to ModelSim dialog appears, click Close.

b Select File > Change Directory and change to the resource_library
directory you created in step 1.

Figure 29: Creating the new res

T-

Mo

5

6

esource library

5b

5c
delSim SE Tutorial
44 Lesson 4 - Working with multiple libraries

Compile the counter into the resource library.

a Click the Compile icon on the Main window toolbar.

b Select the parts_lib library from the Library list (Figure 30).

c Double-click counter.v to compile it.

d Click Done.

You now have a resource library containing a compiled version of the counter
design unit.

Change to the testbench directory.

a Select File > Change Directory and change to the testbench directory
you created in step 2.

Figure 30: Compiling into the r

Creating the project T-45

ModelSim SE Tutorial

C

No

1

2

3

reating the project

w you will create a project that contains tcounter.v, the counter’s testbench.

Create the project.

a Select File > New > Project.

b Type counter in the Project Name field.

c Click OK.

d If a dialog appears asking about which modelsim.ini file to use, click Use
Default Ini.

Add the testbench to the project.

a Click Add Existing File in the Add items to the Project dialog.

b Click the Browse button and select tcounter.v.

c Click Open and then OK.

d Click Close to dismiss the Add items to the Project dialog.

The tcounter.v file is listed in the Project tab of the Main window.

Compile the testbench.

a Right-click tcounter.v and select Compile > Compile Selected.

T-

Mo

L

To
ea
ha

M

Ve

1

VH

1

ror reported in the Main window

rning reported in Main window
delSim SE Tutorial

a In the Library tab, click the ’+’ icon next to the work library and double-
click test_counter.

The Main window Transcript reports a warning(Figure 32). When you
see a message that contains text like "Warning: (vsim-3473)", you can
view more detail by using the verror command.

b Type verror 3473 at the ModelSim> prompt.

The expanded error message tells you that a component (’dut’ in this
case) has not been explicitly bound and no default binding can be found.

c Type quit -sim to quit the simulation.
46 Lesson 4 - Working with multiple libraries

inking to the resource library

 wrap up this part of the lesson, you will link to the parts_lib library you created
rlier. But first, try simulating the testbench without the link and see what
ppens.

odelSim responds differently for Verilog and VHDL in this situation.

rilog

Simulate a Verilog design with a missing resource library.

a In the Library tab, click the ’+’ icon next to the work library and double-
click test_counter.

The Main window Transcript reports an error (Figure 31). When you see
a message that contains text like "Error: (vsim-3033)", you can view
more detail by using the verror command.

b Type verror 3033 at the ModelSim> prompt.

The expanded error message tells you that a design unit could not be
found for instantiation. It also tells you that the original error message
should list which libraries ModelSim searched. In this case, the original
message says ModelSim searched only work.

DL

Simulate a VHDL design with a missing resource library.

Figure 31: Verilog simulation er

Figure 32: VHDL simulation wa

Linking to the resource library T-47

ModelSim SE Tutorial

Th
If
us

Li

Li
the

1

brary in the Simulate dialog
e process for linking to a resource library differs between Verilog and VHDL.
you are using Verilog, follow the steps in "Linking in Verilog" (T-47). If you are
ing VHDL, follow the steps in "Linking in VHDL" (T-48) one page later.

nking in Verilog

nking in Verilog requires that you specify a "search library" when you invoke
 simulator.

Specify a search library during simulation.

a Click the Simulate icon on the Main window toolbar.

b Click the ’+’ icon next to the work library and select
test_counter.

c Click the Libraries tab.

d Click the Add button next to the Search Libraries field and browse to
parts_lib in the first directory you created earlier in the lesson.

e Click OK.

The dialog should have parts_lib listed in the Search Libraries field
(Figure 33).

f Click OK.

The design loads without errors.

Figure 33: Specifying a search li

T-

Mo

Li

To
ph

1

2

3

_lib library

nd USE statements to the testbench
delSim SE Tutorial

The testbench source code should now look similar to that shown in
Figure 33.

d Select File > Save.

Recompile and simulate.

a In the Project tab of the Main window, right-click tcounter. vhd and
select Compile > Compile Selected.

b In the Library tab, double-click test_counter to load the design.

The design loads without errors.
48 Lesson 4 - Working with multiple libraries

nking in VHDL

 link to a resource library in VHDL, you have to create a logical mapping to the
ysical library and then add LIBRARY and USE statements to the source file.

Create a logical mapping to parts_lib.

a Select File > New > Library.

b In the Create a New Library dialog, select a map to an existing library.

c Type parts_lib in the Library Name field.

d Click Browse to open the Select Library dialog and browse to parts_lib
in the resource_library directory you created earlier in the lesson.
Click OK to select the library and close the Select Library dialog.

e The Create a New Library dialog should look similar to the one shown in
Figure 34. Click OK to close the dialog.

Add LIBRARY and USE statements to tcounter.vhd.

a In the Library tab of the Main window, click the ’+’ icon next to the work
library.

b Right-click test_counter in the work library and select Edit.

This opens the file in the Source window.

c Add these two lines to the top of the file:

LIBRARY parts_lib;
USE parts_lib.ALL;

Figure 34: Mapping to the parts

Figure 35: Adding LIBRARY a

manently mapping resource libraries T-49

ModelSim SE Tutorial

P

If
ma
ma
pr

1

2

3

4

5

6

Per

ermanently mapping resource libraries

you reference particular resource libraries in every project or simulation, you
y want to permanently map the libraries. Doing this requires that you edit the
ster modelsim.ini file in the installation directory. Though you won’t actually

actice it in this tutorial, here are the steps for editing the file:

Locate the modelsim.ini file in the ModelSim installation directory
(<install_dir>/modeltech/modelsim.ini).

IMPORTANT - Make a backup copy of the file.

Change the file attributes of modelsim.ini so it is no longer "read-only."

Open the file and enter your library mappings in the [Library] section. For
example:

parts_lib = C:/libraries/parts_lib

Save the file.

Change the file attributes so the file is "read-only" again.

T-

Mo

L

Th
sim

1

2

3

delSim SE Tutorial
50 Lesson 4 - Working with multiple libraries

esson wrap-up

is concludes this lesson. Before continuing we need to end the current
ulation and close the project.

Select Simulate > End Simulation. Click Yes.

Select the Project tab of the Main window Workspace.

Select File > Close. Click OK.

ModelSim SE Tutorial

 T-51

Lesson 5 - Simulating designs with SystemC

Topics

The following topics are covered in this lesson:

Introduction . T-52
Design files for this lesson . T-52
Related reading . T-52

Setting up the environment . T-53

Preparing an OSCI SystemC design T-56

Co

M

Vi

Se

Le
mpiling a SystemC-only design T-56

ixed SystemC and HDL example T-56

ewing SystemC objects in the GUI T-60

tting breakpoints and stepping in the Source window. T-61

sson Wrap-up . T-64

Note: The functionality described in this tutorial requires a systemc license feature in
your ModelSim license file. Please contact your Mentor Graphics sales representative if
you currently do not have such a feature.

T-

Mo

In

M
ex
de

D

Th
"b
the
mo

Th

Sy

Sy

Sy

Th
ex
als
sli

R

M
Ch

M

delSim SE Tutorial

odelSim Command Reference – sccom command (CR-254)
52 Lesson 5 - Simulating designs with SystemC

troduction

odelSim treats SystemC as just another design language. With only a few
ceptions in the current release, you can simulate and debug your SystemC
signs the same way you do HDL designs.

esign files for this lesson

ere are two sample designs for this lesson. The first is a very basic design, called
asic", containing only SystemC code. The second design is a ring buffer where
 testbench and top-level chip are implemented in SystemC and the lower-level
dules are written in HDL.

e pathnames to the files are as follows:

stemC – <install_dir>/modeltech/examples/systemc/sc_basic

stemC/Verilog – <install_dir>/modeltech/examples/systemc/sc_vlog

stemC/VHDL – <install_dir>/modeltech/examples/systemc/sc_vhdl

is lesson uses the SystemC/Verilog version of the ringbuf design in the
amples. If you have a VHDL license, use the VHDL version instead. There is
o a mixed version of the design, but the instructions here do not account for the
ght differences in that version.

elated reading

odelSim User’s Manual – Chapter 6 - SystemC simulation (UM-159),
apter 7 - Mixed-language simulation (UM-187), Chapter 16 - C Debug (UM-399)

Setting up the environment T-53

ModelSim SE Tutorial

S

Sy
M
Gr

Th
co

Se

P

H

R
R

S

W
p

etting up the environment

stemC is a licensed feature. You need the systemc license feature in your
odelSim license file to simulate SystemC designs. Please contact your Mentor
aphics sales representatives if you currently do not have such a feature.

e table below shows the supported operating systems for SystemC and the
rresponding required versions of a C compiler.

e SystemC simulation in the ModelSim User’s Manual for further details.

latform Supported compiler versions

P-UX 11.0 or later aCC 3.45 with associated patches

edHat Linux 7.2 and 7.3
edHat Linux Enterprise version 2.1

gcc 3.2.3

unOS 5.6 or later gcc 3.2

indows NT and other NT-based
latforms (win2K, XP, etc.)

Minimalist GNU for Windows
(MinGW) gcc 3.2.3

T-

Mo

P

W
M
pr
yo

In
rec
M
rec
ap

Fo
ne
(U

1

2

delSim SE Tutorial

<install_dir>/modeltech/examples/systemc/sc_basic into the new directory.

Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

If the Welcome to ModelSim dialog appears, click Close.

b Select File > Change Directory and change to the directory you created
in step 1.
54 Lesson 5 - Simulating designs with SystemC

reparing an OSCI SystemC design

hen you first bring up an OpenSystemC Initiative (OSCI) compliant design in
odelSim, you must make a few minor modifications to the SystemC code to
epare it for running in ModelSim. For a SystemC design to run on ModelSim,
u must first:

• Replace sc_main() with an SC_MODULE, potentially adding a process to
contain any testbench code

• Replace sc_start() by using the run (CR-252) command in the GUI

• Remove calls to sc_initialize()

• Export the top level SystemC design unit(s) using the
SC_MODULE_EXPORT macro

 order to maintain portability between OSCI and ModelSim simulations, we
ommend that you preserve the original code by using #ifdef to add the

odelSim-specific information. When the design is analyzed, sccom (CR-254)
ognizes the MTI_SYSTEMC preprocessing directive and handles the code

propriately.

r more information on the minor modifications to OSCI SystemC files
cessary for simulation in ModelSim, see "Modifying SystemC source code"
M-164).

Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be
working with these lessons). Create the directory, then copy all files from

Preparing an OSCI SystemC design T-55

ModelSim SE Tutorial

3

4

No
co

ts, before and after modifications
Use a text editor to view and edit the basic_orig.cpp file. To use ModelSim’s
editor, from the Main Menu select File > Open. Change the files of type to
C/C++ files then double-click basic_orig.cpp.

The red highlighted code in the _orig files (Figure 36) indicates the section of
the code that needs modification.

a Using the #ifdef MTI_SYSTEMC preprocessor directive, add the
SC_MODULE_EXPORT(top); to the design (see Figure 36). Close the
preprocessing directive with #else.

The original code in the .cpp file follows directly after #else. Of course,
that section the file must end with #endif.

b Save the file as basic.cpp.

View and edit the basic_orig.h header file.

a Add a ModelSim specific SC_MODULE (top) (see Figure 36).

The declarations that were in sc_main are placed here in the header file,
in SC_MODULE (top). This creates a top level module above mod_a,
which allows the tool’s automatic name binding feature to properly
associate the primitive channels with their names.

b Save the file as basic.h.

w, you have made all the edits that are required for preparing the design for
mpilation.

Figure 36: Basic example excerp

T-

Mo

C

No
W
sc
"b
co

1

2

Yo
compilation verifies that all the necessary file modifications have been entered
co

 file)

ount()
called"

<< simcontext()->delta_count()
d called"

ethod);
hread);

//basic.cpp (modified file)
//Existing contents of
//basic_orig.cpp, and adds:

#include "basic.h"

#ifdef MTI_SYSTEMC

SC_MODULE_EXPORT(top);

#else
... // OSCI sc_main code here...

#endif

//basic.h
//Includes everything in
//basic_orig.h and adds the
//following:

... // OSCI SC_MODULE code here

#ifdef MTI_SYSTEMC
SC_MODULE(top)

{
sc_clock clk;
mod_a a;

SC_CTOR(top)
:a("a")

{
a.clk(clk);

}
};
#endif
delSim SE Tutorial

rrectly.
<< " main_action_threa
<< endl;

}
}

SC_CTOR(mod_a)
{
SC_METHOD(main_action_m
SC_THREAD(main_action_t

}
};

#endif
56 Lesson 5 - Simulating designs with SystemC

ompiling a SystemC-only design

w, you are ready to compile the design whose sources you have just edited.
ith designs that contain SystemC objects, you compile SystemC files using the
com compiler, and HDL files using vlog or vcom. Our first example design,
asic", contains only SystemC code. Thus, you only need to run the SystemC
mpiler, sccom (CR-254), to compile the design.

Set the working library.

a Type vlib work in the ModelSim Transcript window to create the
working library.

Compile and link all SystemC files.

a Type sccom -g basic.cpp at the ModelSim> prompt.

The -g argument compiles the design for debug.

Upon successfully compiling the design, the following message is issued
to the screen:

Model Technology ModelSim sccom compiler 2003.05 May 25 2004

Exported modules:
top

b Type sccom -link at the ModelSim> prompt to perform the final link on
the SystemC objects

u have successfully completed the compilation of the design. The successful

// basic_orig.cpp (original
#include "basic.h"

int sc_main(int, char*[])
{
sc_clock clk;
mod_a a("a");
a.clk(clk);

sc_initialize();

return 0;
}

//basic_orig.h

#ifndef INCLUDED_TEST
#define INCLUDED_TEST
#include "systemc.h"

SC_MODULE(mod_a) {
sc_in_clk clk;
void main_action_method()
{
cout
<< simcontext()->delta_c
<< " main_action_method
<< endl;

}

void main_action_thread()
{
while(true) {
cout

Mixed SystemC and HDL example T-57

ModelSim SE Tutorial

M

In
mo
mo
us
Fi

1

2

3

4

a Type vlib work in the ModelSim Transcript window to create the
working library.

Compile the design.

a Verilog:
Type vlog *.v in the ModelSim Transcript window to compile all Verilog
source files.

VHDL:
Type vcom -93 *.vhd in the ModelSim Transcript window to compile all
VHDL source files.
ixed SystemC and HDL example

 this next example, you have a SystemC testbench that instantiates an HDL
dule. In order for the SystemC testbench to interface properly with the HDL
dule, you must create a stub module, a foreign module declaration. You will

e the scgenmod (CR-258) utility to create the foreign module declaration.
nally, you will link the created C object files using sccom -link.

Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be
working with these lessons). Create the directory, then copy all files from
<install_dir>/modeltech/examples/systemc/sc_vlog into the new directory.

If you have a VHDL license, copy the files in <install_dir>/modeltech/
examples/systemc/sc_vhdl instead.

Start ModelSim and change to the exercise directory

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a command shell prompt.

If the Welcome to ModelSim dialog appears, click Close.

b Select File > Change Directory and change to the directory you created
in step 1.

Set the working library.

T-

Mo

5

6

and a a necessary SC_MODULE_EXPORT(top) statement, which
delSim SE Tutorial

informs ModelSim that the top level module is SystemC.

Upon successfully compiling the design, following message appears in
the Transcript window:

Model Technology ModelSim sccom compiler 2003.05 May 25 2004

Exported modules:
test_ringbuf

b Type sccom -link at the ModelSim> prompt to perform the final link on
the SystemC objects.
58 Lesson 5 - Simulating designs with SystemC

Upon successful compilation, the following message (Verilog version
shown) appears in the Transcript window:

#Model Technology ModelSim vlog compiler
#--Compiling module control
#--Compiling module retrieve
#--Compiling module ringbuf
#--Compiling module store
Top level modules:
ringbuf

Create the foreign module declaration (SystemC stub) for the Verilog
module, ringbuf.

a Verilog:
Type scgenmod -bool ringbuf > ringbuf.h at the ModelSim> prompt.

The -bool argument is used to generate boolean scalar port types inside
the foreign module declaration. See scgenmod (CR-258) for more
information.

VHDL:
Type scgenmod ringbuf > ringbuf.h at the ModelSim> prompt.

The output is redirected to a file, ringbuf.h (Figure 37). This file is included
in the test_ringbuf.cpp file (Figure 38).

Compile and link all SystemC files, including the generated ringbuf.h.

a Type sccom -g test_ringbuf.cpp at the ModelSim> prompt.

The test_ringbuf.cpp file contains an include statement for test_ringbuf.h

Mixed SystemC and HDL example T-59

ModelSim SE Tutorial

7

8

c_foreign_module

be;

me nm, const char* hdl_name,
const char** generic_list)
nm, hdl_name, num_generics, generic_list),

be")

ology, a Mentor Graphics
004, - All rights reserved.

"

ngbuf);
// test_ringbuf.cpp
// Copyright Model Techn
// Corporation company 2

#include "test_ringbuf.h
#include <iostream>

SC_MODULE_EXPORT(test_ri
Load the design.

a Click on the Library tab in the Workspace pane of the Main window.

b Click the ’+’ icon next to the work library in the Main window to expand
the work library.

c Double click the test_ringbuf design unit in the Workspace pane.

The equivalent command-line entry is vsim test_ringbuf, entered at the
ModelSim> prompt.

If necessary, you may close the Locals, Profile, and Watch panes of the main
window. Please make sure the Objects and Active Processes windows are
open, as shown in Figure 39.

Figure 37: ringbuf.h

Figure 38: test_ringbuf.cpp file

#include "systemc.h"

class ringbuf : public s
{
public:

sc_in<bool> clock;
sc_in<bool> reset;
sc_in<bool> txda;|
sc_out<bool> rxda;
sc_out<bool> txc;
sc_out<bool> outstro

ringbuf(sc_module_na
 int num_generics,

: sc_foreign_module(
 clock("clock"),
 reset("reset"),
 txda("txda"),
 rxda("rxda"),
 txc("txc"),
 outstrobe("outstro

{}

~ringbuf()
{}

};

T-

Mo

V

Sy
tab
els

1

2

3

n ModelSim
delSim SE Tutorial
60 Lesson 5 - Simulating designs with SystemC

iewing SystemC objects in the GUI

stemC objects are denoted in the ModelSim GUI with a green ’S’ on the Library
, a green ’C’ on the Files tab, and a green square, circle or diamond icon
ewhere.

View Workspace and objects

a Click on the Library tab in the Workspace pane of the Main window.

SystemC objects have a green ’S’ next to their names (Figure 40).

Observe window linkages.

a Click on the Sim tab in the Workspace pane of the Main window.

b Select the clock instance in the sim tab (Figure 41).

The Locals and Objects windows update to show the associated SystemC
or HDL objects.

Add objects to the Wave window.

a Right-click test_ringbuf in the sim tab and select Add > Add to Wave.

Figure 39: test_ringbuf design i

Viewing SystemC objects in the GUI T-61

ModelSim SE Tutorial

Se

As
So
the

1

2

e work library

e Main window Workspace pane’s sim tab
test_ringbuf:compare_data (this=0x842f658) at
test_ringbuf.h:<line_number>

3b
tting breakpoints and stepping in the Source window

 with HDL files, you can set breakpoints and step through SystemC files in the
urce window. In the case of SystemC, ModelSim uses C Debug, an interface to
 open-source gdb debugger. Please see C Debug (UM-399) for complete details.

Set a breakpoint.

a Double-click on test_ringbuf in the Main window workspace to bring up
the Source window.

b In the Source window, scroll to near line 148 of test_ringbuf.h.

c Click on or just to the right of the line number next to the line (shown in
Figure 42) containing:

Verilog: bool var_dataerror_newval = actual.read ...

VHDL: sc_logic var_dataerror_newval = acutal.read ...

ModelSim recognizes that the file contains SystemC code, so it
automatically launches C Debug. Once the debugger is running,
ModelSim places a solid red sphere next to the line number (Figure 42).

Run and step through the code.

a Type run 500 at the VSIM> prompt.

When the simulation hits the breakpoint, it stops running, highlights the
line with an arrow in the Source window (Figure 43), and issues the
following message in the Main window:

C breakpoint c.1

Figure 40: SystemC objects in th

Figure 41: SystemC objects in th

T-

Mo

Ex

To
co

1

2

R

1

t in a SystemC file

t the breakpoint
delSim SE Tutorial

The value returned is "true".

View the value of a SystemC variable.

a Type examine counter at the CDBG > prompt to view the value of this
variable.

The value returned is "-1".

emoving a breakpoint

Right-click the breakpoint on the red sphere and select Remove Breakpoint.
62 Lesson 5 - Simulating designs with SystemC

b Click the Step icon on the Source window toolbar.

This steps the simulation to the next statement. Because the next
statement is a function call, ModelSim steps into the function, which is
in a separate file (Figure 44).

c Click the Continue Run icon on the Source window toolbar.

The breakpoint in test_ringbuf.h is hit again.

amining SystemC objects and variables

 examine the value of a SystemC object or variable, you can use the examine
mmand or view the value in the Objects window.

View the value and type of an sc_signal.

a Type show at the CDBG > prompt to display a list of all the objects in
the design, including their types.

Inspect the list to discover that the type for "dataerror" is boolean
(sc_logic for VHDL) and "counter" is integer (Figure 45).

b Type examine dataerror at the CDBG > prompt.

Figure 42: An active breakpoin

Figure 43: Simulation stopped a

Viewing SystemC objects in the GUI T-63

ModelSim SE Tutorial

2 a function in a separate file

and
Click the Continue Run button again.

The simulation runs for 500 ns and waves are drawn in the Wave window
(Figure 46).

If you are using the VHDL version, you might see warnings in the Main
window transcript. These warnings are related to VHDL value
conversion routines and can be ignored.

Figure 44: ModelSim steps into

Figure 45: Output of show comm

T-

Mo

L

Th
en

1

2

hannels in the Wave window
delSim SE Tutorial
64 Lesson 5 - Simulating designs with SystemC

esson Wrap-up

is concludes the lesson. Before continuing we need to quit the C debugger and
d the current simulation.

Select Tools > C Debug > Quit C Debug.

Select Simulate > End Simulation. Click Yes when prompted to confirm
that you wish to quit simulating.

Figure 46: SystemC primitive c

ModelSim SE Tutorial

 T-65

Lesson 6 - Viewing simulations in the Wave window

Topics

The following topics are covered in this lesson:

Introduction . T-66
Related reading . T-66

Loading a design . . T-67

Adding objects to the Wave window. T-68

Using cursors in the Wave window T-70

Sa

Le
Working with a single cursor T-70
Working with multiple cursors T-71

ving the window format . T-73

sson wrap-up . T-74

T-

Mo

In

Th
wa

Th
wi
ba

R

M

M
22

nd its many panes

waveform

cursore
delSim SE Tutorial
66 Lesson 6 - Viewing simulations in the Wave window

troduction

e Wave window allows you to view the results of your simulation as HDL
veforms and their values.

e Wave window is divided into a number of window panes (Figure 47). All
ndow panes in the Wave window can be resized by clicking and dragging the
r between any two panes.

elated reading

odelSim GUI Reference – "Wave window" (GR-211)

odelSim User’s Manual – Chapter 8 - WLF files (datasets) and virtuals (UM-

5)

Figure 47: The Wave window a

pathname value

cursor name cursor valu

Loading a design T-67

ModelSim SE Tutorial

L

Fo
Ba

1

2

oading a design

r the examples in this lesson, we have used the design simulated in Lesson 2 -
sic simulation.

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

If the Welcome to ModelSim dialog appears, click Close.

Load the design.

a Select File > Change Directory and open the directory you created in
Lesson 2.

The work library should already exist.

b Click the ’+’ icon next to the work library and double-click test_counter.

ModelSim loads the design and adds sim and Files tabs to the
Workspace.

T-

Mo

A

M
ex

1

2

3

window.

4

ked in the Main window

2a
delSim SE Tutorial

ModelSim adds the objects for that instance to the Wave window.

c Drag a signal from the Objects pane to the Wave window.

d In the Wave window, select Edit > Select All and then Edit > Delete.

Add objects using a command.

a Type add wave * at the VSIM> prompt.

ModelSim adds all objects from the current region.

b Run the simulation for awhile so you can see waveforms.
68 Lesson 6 - Viewing simulations in the Wave window

dding objects to the Wave window

odelSim offers several methods for adding objects to the Wave window. In this
ercise, you will try different methods.

Add objects from the Objects pane.

a Select an item in the Objects pane of the Main window, right-click, and
then select Add to Wave > Signals in Region.

ModelSim adds several signals to the Wave window.

Undock the Wave window.

By default ModelSim opens Wave windows as a tab in the MDI frame of the
Main window. You can change the default via the Preferences dialog (Tools
> Edit Preferences). See "ModelSim GUI preferences" (GR-266) in the
ModelSim GUI & Interface Reference for more information.

a Click the undock icon on the Wave pane (Figure 48).

The Wave pane becomes a standalone, un-docked window.

Add objects using drag-and-drop.

You can drag an object to the Wave window from many other windows and
panes (e.g., Workspace, Objects, and Locals).

a In the Wave window, select Edit > Select All and then Edit > Delete.

b Drag an instance from the sim tab of the Main window to the Wave

Figure 48: A Wave window doc

Zooming the waveform display T-69

ModelSim SE Tutorial

Z

Zo
nu

1

f Select View > Zoom > Zoom Full.

mouse pointer

 mouse pointer
1b

1e
ooming the waveform display

oming lets you change the display range in the waveform pane. There are
merous methods for zooming the display.

Zoom the display using various techniques.

a Click the Zoom Mode icon on the Wave window toolbar.

b In the waveform pane, click and drag down and to the right.

You should see blue vertical lines and numbers defining an area to zoom
in (Figure 49).

c Select View > Zoom > Zoom Last.

The waveform pane returns to the previous display range.

d Click the Zoom In 2x icon a few times.

e In the waveform pane, click and drag up and to the right.

You should see a blue line and numbers defining an area to zoom out
(Figure 50).

Figure 49: Zooming in with the

Figure 50: Zooming out with the

T-

Mo

U

Cu
the
wa

Yo
to

W

1

The cursor "snaps" to the transition. Cursors "snap" to a waveform edge

le cursor in the Wave window

1e
delSim SE Tutorial

if you click or drag a cursor to within ten pixels of a waveform edge. You
can set the snap distance in the Window Preferences dialog (select Tools
> Window Preferences).

e In the cursor pane, drag the cursor to the right of a transition (Figure 51).

The cursor doesn’t snap to a transition if you drag in the cursor pane.
70 Lesson 6 - Viewing simulations in the Wave window

sing cursors in the Wave window

rsors mark simulation time in the Wave window. When ModelSim first draws
 Wave window, it places one cursor at time zero. Clicking anywhere in the
veform pane brings that cursor to the mouse location.

u can also add additional cursors; name, lock, and delete cursors; use cursors
measure time intervals; and use cursors to find transitions.

orking with a single cursor

Position the cursor by clicking and dragging.

a Click the Select Mode icon on the Wave window toolbar.

b Click anywhere in the waveform pane.

A cursor is inserted at the time where you clicked (Figure 51).

c Drag the cursor and observe the value pane.

The signal values change as you move the cursor. This is perhaps the
easiest way to examine the value of a signal at a particular time.

d In the waveform pane, drag the cursor to the right of a transition with the
mouse positioned over a waveform.

Figure 51: Working with a sing

Using cursors in the Wave window T-71

ModelSim SE Tutorial

2

3

W

1 Add a second cursor.

t between two cursors

1d
a Click the Add Cursor icon on the Wave window toolbar.

b Right-click the name of the new cursor and delete the text.

c Type B and press Enter.

d Drag cursor B and watch the interval measurement change dynamically
(Figure 53).
Rename the cursor.

a Right-click "Cursor 1" in the cursor name pane, and select and delete the
text (Figure 52).

b Type A and press Enter.

The cursor name changes to "A".

Jump the cursor to the next or previous transition.

a Click signal count in the pathname pane.

a Click the Find Next Transition icon on the Wave window toolbar.

The cursor jumps to the next transition on the currently selected signal.

b Click the Find Previous Transition icon on the Wave window toolbar.

The cursor jumps to the previous transition on the currently selected
signal.

orking with multiple cursors

Figure 52: Renaming a cursor

Figure 53: Interval measuremen

2a

T-

Mo

2

3

e Wave window
delSim SE Tutorial
72 Lesson 6 - Viewing simulations in the Wave window

Lock cursor B.

a Right-click cursor B in the cursor pane and select Lock B.

The cursor color changes to red and you can no longer drag the cursor
(Figure 54).

Delete cursor B.

a Right-click cursor B and select Delete B.

Figure 54: A locked cursor in th

Saving the window format T-73

ModelSim SE Tutorial

S

If
sig
Fo
pr
as

Fo
sim

1

2

aving the window format

you close the Wave window, any configurations you made to the window (e.g.,
nals added, cursors set, etc.) are discarded. However, you can use the Save
rmat command to capture the current Wave window display and signal
eferences to a DO file. You open the DO file later to recreate the Wave window
 it appeared when the file was created.

rmat files are design-specific; use them only with the design you were
ulating when they were created.

Save a format file.

a Select File > Save > Format.

b Leave the file name set to wave.do and click Save.

c Close the Wave window.

Load a format file.

a In the Main window, select View > Debug Windows > Wave.

All signals and cursor(s) that you had set are gone.

b In the Wave window, select File > Open > Format.

c Select wave.do and click Open.

ModelSim restores the window to its previous state.

d Close the Wave window when you are finished by selecting File > Close.

T-

Mo

L

Th
sim

1

delSim SE Tutorial
74 Lesson 6 - Viewing simulations in the Wave window

esson wrap-up

is concludes this lesson. Before continuing we need to end the current
ulation.

Select Simulate > End Simulation. Click Yes.

ModelSim SE Tutorial

 T-75

Lesson 7 - Creating stimulus with Waveform Editor

Topics

The following topics are covered in this lesson:

Introduction . T-76
Related reading . T-76

Loading a design unit . T-77

Creating waves with a wizard . T-78

Editing waveforms in the Wave window T-80

Sa

Ex

Ru

Si

Im

Le
ving and reusing the wave commands. T-83

porting the created waveforms T-84

nning the simulation . T-85

mulating with the testbench file T-86

porting an EVCD file . T-87

sson wrap-up . T-88

T-

Mo

In

Th
ma
wa

In

•

•

•

•

•

•

R

M
22

M

delSim SE Tutorial
76 Lesson 7 - Creating stimulus with Waveform Editor

troduction

e Waveform Editor creates stimulus for your design via interactive
nipulation of waveforms. You can then run the simulation with these edited
veforms or export them to a stimulus file for later use.

 this lesson you will do the following:

Load the counter design unit without a testbench

Create waves via a wizard

Edit waves interactively in the Wave window

Export the waves to an HDL testbench and extended VCD file

Run the simulation

Re-simulate using the exported testbench and VCD file

elated reading

odelSim User’s Manual – 10 - Generating stimulus with Waveform Editor (UM-

5)

odelSim GUI Reference – "Wave window" (GR-211)

Loading a design unit T-77

ModelSim SE Tutorial

L

Fo
2 -

1

2

oading a design unit

r the examples in this lesson, we will use part of the design simulated in Lesson
 Basic simulation.

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

If the Welcome to ModelSim dialog appears, click Close.

Load the counter design unit.

a Select File > Change Directory and open the directory you created in
Lesson 2.

The work library should already exist.

b Click the ’+’ icon next to the work library and double-click counter.

ModelSim loads the counter design unit and adds sim and Files tabs to
the Workspace.

Note: You can also use Waveform Editor prior to loading a design. See "Using
Waveform Editor prior to loading a design" (GR-287) for more information.

T-

Mo

C

W
pr

1

 the Objects pane

izard

1b
delSim SE Tutorial
78 Lesson 7 - Creating stimulus with Waveform Editor

reating waves with a wizard

aveform Editor includes a Create Pattern wizard that walks you through the
ocess of creating editable waveforms.

Use the Create Pattern wizard to create a clock pattern.

a In the Objects pane, right click signal clk and select Create Wave (Figure
55).

This opens the Create Pattern Wizard dialog where you specify the type
of pattern (Clock, Repeater, etc.) and a start and end time.

b The default pattern is Clock, which is what we need, so click Next
(Figure 56).

Figure 55: Creating waves from

Figure 56: The Create Pattern W

1a

Creating waves with a wizard T-79

ModelSim SE Tutorial

2

ern attributes

m

1c
c In the second dialog of the wizard, enter 0 for Initial Value, leave
everything else as is, and click Finish (Figure 57).

A generated waveform appears in the Wave window (Figure 58). Notice
the small red dot on the waveform icon that denotes an editable wave.

Create a second wave using the wizard.

a Right-click signal reset in the Objects pane and select Create Wave.

b Select Constant for the pattern type and click Next.

c Enter 0 for the Value and click Finish.

A second generated waveform appears in the Wave window.

Figure 57: Specifying clock patt

Figure 58: The created wavefor

T-

Mo

E

W
wa
co
Yo

1

og

inserted pulse
delSim SE Tutorial
80 Lesson 7 - Creating stimulus with Waveform Editor

diting waveforms in the Wave window

aveform Editor gives you numerous commands for interactively editing
veforms (e.g., invert, mirror, stretch edge, cut, paste, etc.). You can access these
mmands via the menus, toolbar buttons, or via keyboard and mouse shortcuts.
u will try out several commands in this part of the exercise.

Insert a pulse on signal reset.

a Click the Edit Mode icon on the Wave window toolbar.

b Click signal reset so it is selected.

c In the waveform pane, right click on signal reset and select Edit Wave
> Insert Pulse.

d In the Insert Pulse dialog, enter 100 for duration and 100 for time (Figure
59), and click OK.

Signal reset now goes high from 100 ns to 200 ns (Figure 62).

Figure 59: The Insert Pulse dial

Figure 60: Signal reset with an

iting waveforms in the Wave window T-81

ModelSim SE Tutorial

2 e dialog

 signal clk
Ed

Stretch an edge on signal clk.

a Click signal clk on the transition at 350 ns.

b Select Edit > Edit Wave > Stretch Edge from the menu bar (Figure 61).

c In the Edit Stretch Edge dialog, enter 50 for Duration, make sure the
Time field shows 350, and then click OK (Figure 62).

The wave edge stretches so it’s high until 400 ns. Note the difference
between stretching and moving an edge–the Stretch command moves an
edge by moving other edges on the waveform (either increasing
waveform duration or deleting edges at the beginning of simulation
time); the Move command moves an edge but does not move other edges
on the waveform. If you scroll the Wave window to the right, you will
see that the waveform for signal clk now extends to 1050 ns.

Figure 61: The Edit Stretch Edg

Figure 62: Stretching an edge on

T-

Mo

3

4

ignal clk
delSim SE Tutorial
82 Lesson 7 - Creating stimulus with Waveform Editor

Delete an edge.

a Click signal clk just to the right of the transition at 350 ns.

The cursor should "snap" to 350 ns.

b Click the Delete Edge icon

The edge is deleted and clk now stays high until 400 ns. (Figure 63).

Undo and redo an edit.

a Click the Wave Undo icon.

The deleted edge reappears.

b Click the Wave Redo icon.

The edge is deleted again. You can undo and redo any number of editing
operations except extending all waves and changing drive types. Those
two edits cannot be undone.

Figure 63: Deleting an edge on s

ing and reusing the wave commands T-83

ModelSim SE Tutorial

S

Yo
ca
we
fo

1

2

3

b Double-click wave.do to open the file.
The waves you created earlier in the lesson reappear. If waves do not
appear, you probably did not load the counter design unit.
Sav

aving and reusing the wave commands

u can save the commands that ModelSim used to create the waveforms. You
n load this "format" file at a later time to re-create the waves. In this exercise,
 will save the commands, quit and reload the simulation, and then open the

rmat file.

Save the wave commands to a format file.

a Select File > Close in the Wave window and you will be prompted to
save the wave commands.

b Click Yes.

c Type waveedit.do in the File name field and then click Save.

This saves a DO file named waveedit.do to the current directory.

Quit and then reload the simulation.

a In the Main window, select Simulate > End Simulation, and click Yes
to confirm you want to quit simulating.

b Double-click the counter design unit on the Library tab to reload the
simulation.

Open the format file.

a Select View > Debug Windows > Wave to open the Wave window.

a In the Wave window, select File > Open > Format.

T-

Mo

E

At
to
fir

1

2

m dialog

1b

1c
delSim SE Tutorial
84 Lesson 7 - Creating stimulus with Waveform Editor

xporting the created waveforms

 this point you can run the simulation or you can export the created waveforms
one of four stimulus file formats. You will run the simulation in a minute but
st let’s export the created waveforms so we can use them later in the lesson.

Export the created waveforms in an HDL testbench format.

a In the Wave window, select File > Export Waveform.

b Select Verilog Testbench (or VHDL Testbench if you are using the
VHDL sample files).

c Enter 1000 (Figure 64) for End Time if necessary and click OK.

ModelSim creates a file named export.v (or export.vhd) in the current
directory. Later in the lesson we will compile and simulate the file.

Export the created waveforms in an extended VCD format.

a Select File > Export Waveform.

b Select EVCD File.

c Enter 1000 for End Time if necessary and click OK.

ModelSim creates an extended VCD file named export.vcd. We will
import this file later in the lesson.

Figure 64: The Export Wavefor

Running the simulation T-85

ModelSim SE Tutorial

R

On
aw

1

2

3

m reacts to the created stimulus pattern
unning the simulation

ce you have finished editing the waveforms, you can run the simulation straight
ay.

Add a design signal.

a In the Objects pane, right-click count and select Add to Wave > Selected
Signals.

The signal is added to the Wave window.

Run the simulation.

a Click the Run -All icon

The simulation runs for 1000 ns and the waveform is drawn for
sim:/counter/count (Figure 65).

Look at the signal transitions for count from 300 ns to 500 ns. The
transitions occur when clk goes high, and you can see that count follows
the pattern you created when you edited clk by deleting an edge.

Quit the simulation.

a In the Main window, select Simulate > End Simulation, and click Yes
to confirm you want to quit simulating.

Figure 65: The counter wavefor

T-

Mo

S

Ea
ex

1

2

3

 unit compiled into the work library

ly created testbench
delSim SE Tutorial
86 Lesson 7 - Creating stimulus with Waveform Editor

imulating with the testbench file

rlier in the lesson you exported the created waveforms to a testbench file. In this
ercise you will compile and load the testbench and then run the simulation.

Compile and load the testbench.

a At the ModelSim prompt, enter vlog export.v (or vcom export.vhd if you
are working with VHDL files).

You should see a design unit named EditorTestbench appear in the
Library tab (Figure 66).

b Double-click EditorTestbench on the Library tab to load the design.

Add waves and run the design.

a At the VSIM> prompt, type add wave *.

b Next type run -all.

The waveforms in the Wave window match those you saw in the last
exercise (Figure 67).

Quit the simulation.

a In the Main window, select Simulate > End Simulation, and click Yes
to confirm you want to quit simulating.

Figure 66: The testbench design

Figure 67: Waves from the new

Importing an EVCD file T-87

ModelSim SE Tutorial

Im

Ea
In

1

2

295) for more information.
porting an EVCD file

rlier in the lesson you exported the created waveforms to an extended VCD file.
 this exercise you will use that file to stimulate the counter design unit.

Load the counter design unit and add waves.

a Double-click counter on the Library tab.

b In the Objects pane, right-click count and select Add to Wave > Selected
Signals.

Import the VCD file.

a In the Wave window, select File > Import EVCD.

b Double-click export.vcd.

The created waveforms draw in the Wave window.

c Click the Run -All icon

The simulation runs for 1000 ns and the waveform is drawn for
sim:/counter/count.

When you import an EVCD file, signal mapping happens automatically
if signal names and widths match. If they do not, you have to manually
map the signals. See "Signal mapping and importing EVCD files" (GR-

T-

Mo

L

Th
sim

1

delSim SE Tutorial
88 Lesson 7 - Creating stimulus with Waveform Editor

esson wrap-up

is concludes this lesson. Before continuing we need to end the current
ulation.

Select Simulate > End Simulation. Click Yes.

ModelSim SE Tutorial

 T-89

Lesson 8 - Debugging with the Dataflow window

Topics

The following topics are covered in this lesson:

Introduction . T-90
Related reading . T-90

Compiling and loading the design T-91

Exploring connectivity . T-92

Tracing events . T-93

Tr

Di

Le
acing an ’X’ (unknown) . T-95

splaying hierarchy in the Dataflow window T-96

sson Wrap-up . T-97

Note: The functionality described in this tutorial requires a dataflow license feature in
your ModelSim license file. Please contact your Mentor Graphics sales representative if
you currently do not have such a feature.

T-

Mo

In

Th
de
of
reg

D

Th
ho
wr

Th

Ve

VH

Th
us
Ve

R

M

M

delSim SE Tutorial
90 Lesson 8 - Debugging with the Dataflow window

troduction

e Dataflow window allows you to explore the "physical" connectivity of your
sign; to trace events that propagate through the design; and to identify the cause
 unexpected outputs. The window displays processes; signals, nets, and
isters; and interconnect.

esign files for this lesson

e sample design for this lesson is a testbench that verifies a cache module and
w it works with primary memory. A processor design unit provides read and
ite requests.

e pathnames to the files are as follows:

rilog – <install_dir>/modeltech/examples/dataflow/verilog

DL – <install_dir>/modeltech/examples/dataflow/vhdl

is lesson uses the Verilog version in the examples. If you have a VHDL license,
e the VHDL version instead. When necessary, we distinguish between the
rilog and VHDL versions of the design.

elated reading

odelSim User’s Manual –"Tracing signals with the Dataflow window" (UM-299)

odelSim GUI Reference – "Dataflow window" (GR-128)

Compiling and loading the design T-91

ModelSim SE Tutorial

C

In

1

2

3

• Creates the working library
• Compiles the design files

• Opens the Dataflow and Wave windows

• Adds signals to the Wave window

• Logs all signals in the design

• Runs the simulation

Feel free to open the DO file and look at its contents.
ompiling and loading the design

 this exercise you will use a DO file to compile and load the design.

Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be
working with these lessons). Create the directory and copy all files from
<install_dir>/examples/dataflow/verilog to the new directory.

If you have a VHDL license, copy the files in <install_dir>/examples/
dataflow/vhdl instead.

Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

If the Welcome to ModelSim dialog appears, click Close.

b Select File > Change Directory and change to the directory you created
in step 1.

Execute the lesson DO file.

a Type do run.do at the ModelSim> prompt.

The DO file does the following:

T-

Mo

E

A
yo
all

1

2

Continue exploring if you wish. When you are done, click the

low window

to display connected processes
delSim SE Tutorial

Erase All icon.
92 Lesson 8 - Debugging with the Dataflow window

xploring connectivity

primary use of the Dataflow window is exploring the "physical" connectivity of
ur design. You do this by expanding the view from process to process. This
ows you to see the drivers/receivers of a particular signal, net, or register.

Add a signal to the Dataflow window.

a Make sure instance p is selected in the sim tab of the Workspace pane.

b Drag signal strb from the Objects pane to the Dataflow window (Figure
68).

Explore the design.

a Double-click the net highlighted in red.

The view expands to display the processes that are connected to strb
(Figure 69).

b Select signal test on process #NAND#44 (labeled line_62 in the
VHDL version) and click the Expand net to all drivers icon.

Notice that after the display expands, the signal line for strb is
highlighted in green. This highlighting indicates the path you have
traversed in the design.

c Select signal oen on process #ALWAYS#149(labeled line_75 in
the VHDL version), and click the Expand net to all readers
icon.

Figure 68: A signal in the Dataf

Figure 69: Expanding the view

Tracing events T-93

ModelSim SE Tutorial

T

An
un
yo
un

1

2

viewer pane

wave viewer automatically

2c
racing events

other useful debugging feature is tracing events that contribute to an
expected output value. Using the Dataflow window’s embedded wave viewer,
u can trace backward from a transition to see which process or signal caused the
expected output.

Add an object to the Dataflow window.

a Make sure instance p is selected in the sim tab of the Main window.

b Drag signal t_out from the Objects pane into the Dataflow window.

c Select View > Show Wave in the Dataflow window to open the wave
viewer (Figure 70). You may need to increase the size of the Dataflow
window and scroll the panes to see everything.

Trace the inputs of the nand gate.

a Select process #NAND#44 (labeled line_62 in the VHDL version) in the
dataflow pane.

All input and output signals of the process are displayed automatically in
the wave viewer.

b In the wave view, scroll to time 2785 ns (the last transition of signal
t_out) .

c Click on the last transition of signal t_out to set a cursor (Figure 71).

Figure 70: The embedded wave

Figure 71: Signals added to the

T-

Mo

3

er marking last event
delSim SE Tutorial
94 Lesson 8 - Debugging with the Dataflow window

d Select Trace > Trace next event to trace the first contributing event.

ModelSim adds a cursor marking the last event, the transition of the
strobe to 0 at 2745 ns, which caused the output of 1 on t_out (Figure 72).

e Select Trace > Trace next event two more times.

f Select Trace > Trace event set.

The dataflow pane sprouts to the preceding process and shows the input
driver of signal strb (Figure 73). Notice too that the wave viewer now
shows the input and output signals of the newly selected process.

You can continue tracing events through the design in this manner: select
Trace next event until you get to a transition of interest in the wave
viewer, and then select Trace event set to update the dataflow pane.

Select File > Close to close the Dataflow window.

Figure 72: Cursor in wave view

Figure 73: Tracing the event set

Tracing an ’X’ (unknown) T-95

ModelSim SE Tutorial

T

Th
thr
wi
wi
Da
wi

1

2

3

n values

 cause of the unknown on t_out

1b
Trace the unknown.

a In the Dataflow window, make sure t_out is selected and then select
Trace > ChaseX.

The design expands to show the source of the unknown (Figure 75). In
this case there is a HiZ (U in the VHDL version) on input signal test_in
and a 0 on input signal_rw (bar_rw in the VHDL version), so output
signal test2 resolves to an unknown.

Scroll to the bottom of the Wave window, and you will see that all of the
signals contributing to the unknown value have been added.

Clear the Dataflow window before continuing.
racing an ’X’ (unknown)

e Dataflow window lets you easily track an unknown value (X) as it propagates
ough the design. The Dataflow window is linked to the stand-alone Wave
ndow, so you can view signals in the Wave window and then use the Dataflow
ndow to track the source of a problem. As you traverse your design in the
taflow window, appropriate signals are added automatically to the Wave
ndow.

View t_out in the Wave and Dataflow windows.

a Scroll in the Wave window until you can see /top/p/t_out.

t_out goes to an unknown state at 2065 ns and continues transitioning
between 1 and unknown for the rest of the run (Figure 74). The red color
of the waveform indicates an unknown value.

b Double-click the last transition of signal t_out at 2785 ns.

This automatically opens the Dataflow window and displays t_out, its
associated process, and its waveform. You may need to increase the size
of the Dataflow window and scroll the panes to see everything.

c Move the cursor in the Wave window.

As previously mentioned the Wave and Dataflow windows are designed
to work together. As you move the cursor in the Wave, the value of t_out
changes in the Dataflow window.

d Move the cursor to a time when t_out is unknown (e.g., 2724 ns).

Figure 74: A signal with unknow

Figure 75: ChaseX identifies the

T-

Mo

D
d

Yo
ins
wi

1

2

s dialog

playing with hierarchy

1b
delSim SE Tutorial
96 Lesson 8 - Debugging with the Dataflow window

isplaying hierarchy in the Dataflow win-
ow

u can display connectivity in the Dataflow window using hierarchical
tances. You enable this by modifying the options prior to adding objects to the
ndow.

Change options to display hierarchy.

a Select Tools > Options from the Dataflow window menu bar.

b Check Show Hierarchy and then click OK (Figure 76).

Add signal t_out to the Dataflow window.

a Type add dataflow /top/p/t_out at the VSIM> prompt.

The Dataflow window will display t_out and all hierarchical instances
(Figure 77).

Figure 76: The Dataflow option

Figure 77: Dataflow window dis

Lesson Wrap-up T-97

ModelSim SE Tutorial

L

Th
sim

1

esson Wrap-up

is concludes this lesson. Before continuing we need to end the current
ulation.

Type quit -sim at the VSIM> prompt.

T-

Mo
delSim SE Tutorial
98 Lesson 8 - Debugging with the Dataflow window

ModelSim SE Tutorial

 T-99

Lesson 9 - Viewing and initializing memories

Topics

The following topics are covered in this lesson:

Introduction . . T-100
Related reading . . T-100

Compiling and loading the design T-101

Viewing a memory . T-102
Navigating within the memory T-104

Sa

In

In

Le
ving memory contents to a file T-106

itializing a memory . T-107

teractive debugging commands T-109

sson Wrap-up . . T-111

T-

Mo

In

In
M

D

Th
ex

Ve

VH

Th
lic

R

M

M
m

delSim SE Tutorial
100 Lesson 9 - Viewing and initializing memories

troduction

 this lesson you will learn how to view and initialize memories in ModelSim.
odelSim defines and lists as memories any of the following:

• reg, wire, and std_logic arrays

• Integer arrays

• Single dimensional arrays of VHDL enumerated types other than
std_logic

esign files for this lesson

e ModelSim installation comes with Verilog and VHDL versions of the
ample design. The files are located in the following directories:

rilog – <install_dir>/modeltech/examples/memory/verilog

DL – <install_dir>/modeltech/examples/memory/vhdl

is lesson uses the Verilog version for the exercises. If you have a VHDL
ense, use the VHDL version instead.

elated reading

odelSim GUI Reference – "Memory windows" (GR-169)

odelSim Command Reference – mem display (CR-196), mem load (CR-199),
em save (CR-202), radix (CR-241) commands

Compiling and loading the design T-101

ModelSim SE Tutorial

C

1

2

3

4

VHDL:
Type vcom -93 sp_syn_ram.vhd dp_syn_ram.vhd ram_tb.vhd at the
ModelSim> prompt.

Load the design.

a On the Library tab of the Main window Workspace, click the "+" icon
next to the work library.

b Double-click the ram_tb design unit to load the design.
ompiling and loading the design

Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be
working with these lessons). Create the directory and copy all files from
<install_dir>/examples/memory/verilog to the new directory.

If you have a VHDL license, copy the files in <install_dir>/examples/
memory/vhdl instead.

Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

If the Welcome to ModelSim dialog appears, click Close.

b Select File > Change Directory and change to the directory you created
in step 1.

Create the working library and compile the design.

a Type vlib work at the ModelSim> prompt.

b Verilog:
Type vlog sp_syn_ram.v dp_syn_ram.v ram_tb.v at the ModelSim>
prompt.

T-

Mo

V

M

1

es tab in the Main window workspace

DI pane shows instance
delSim SE Tutorial

instance in the MDI frame.
102 Lesson 9 - Viewing and initializing memories

iewing a memory

emories can be viewed via the ModelSim GUI.

Open a Memory instance.

a Select View > Debug Windows > Memory.

The Memories tab opens in the Workspace pane (Figure 78) and lists the
memories in the current design context (ram_tb) with the range, depth,
and width of each memory.

b VHDL: The radix for enumerated types is Symbolic. To change the radix
to binary for the purposes of this lesson, type the following command at
the vsim prompt:
VSIM> radix bin

c Double-click the /ram_tb/spram1/mem instance in the memories list to
view its contents.

A mem tab is created in the MDI frame to display the memory contents.
The data are all X (0 in VHDL) since you have not yet simulated the
design. The first column (blue hex characters) lists the addresses (Figure
79), and the remaining columns show the data values.

d Double-click instance /ram_tb/spram2/mem in the Memories tab of the
Workspace,

This creates a new tab in the MDI frame called mem(1) that contains the
addresses and data for the spram2 instance. Each time you double-click
a new memory instance in the Workspace, a new tab is created for that

Figure 78: Viewing the memori

Figure 79: The mem tab in the M
/ram_tb/spram1/mem

Viewing a memory T-103

ModelSim SE Tutorial

2

3

ates with simulation

s radix
Simulate the design.

a Click the run -all icon in the Main window.

b Click the mem tab of the MDI frame to bring the
/ram_tb/spram1/mem instance to the foreground (Figure 80).

VHDL:
In the Transcript pane, you will see NUMERIC_STD warnings that can be
ignored and an assertion failure that is functioning to stop the simulation. The
simulation itself has not failed.

Let’s change the address radix and the number of words per line for instance
/ram_tb/spram1/mem.

a Right-click anywhere in the Memory Contents pane and select
Properties.

The Properties dialog box opens (Figure 81).

b For the Address Radix, select Decimal. This changes the radix for the
addresses only.

c Select Words per line and type 1 in the field.

d Click OK.

You can see the results of the settings in Figure 82. If the figure doesn’t match
what you have in your ModelSim session, check to make sure you set the
Address Radix rather than the Data Radix. Data Radix should still be set to
Symbolic, the default.

Figure 80: Memory display upd

Figure 81: Changing the addres

T-

Mo

N

Yo
pa

1

w address radix and line length
delSim SE Tutorial

1a
104 Lesson 9 - Viewing and initializing memories

avigating within the memory

u can navigate to specific memory address locations, or to locations containing
rticular data patterns. First, you will go to a specific address.

Use Goto to find a specific address.

a Right-click anywhere in address column and select Goto (Figure 83).

The Goto dialog box opens in the data pane.

b Type 30 in the dialog box.

c Click OK.

The requested address appears in the top line of the window.

Figure 82: Memory window: ne

Figure 83: The Goto dialog box

Viewing a memory T-105

ModelSim SE Tutorial

2

3

ctly

r data value

2b
Edit the address location directly.

To quickly move to a particular address, do the following:

a Double click any address in the address column.

b Enter any desired address. (Figure 84)

c Press <Enter> on your keyboard.

The pane scrolls to that address.

Now, let’s find a particular data entry.

a Right-click anywhere in the data column and select Find.

The Find in dialog box opens (Figure 85).

b Type 11111010 in the Find data: field and click Find Next.

The data scrolls to the first occurrence of that address. Click Find Next
a few more times to search through the list.

c Click Close to close the dialog box.

Figure 84: Edit the address dire

Figure 85: Find in: searching fo

T-

Mo

S

Yo
sim

1

M
ad
me

2

Properties.

 box
delSim SE Tutorial

c In the Properties dialog, set the Address Radix to Decimal and the Data
Radix to Binary. Click OK to accept the changes and close the dialog.

d Select File > Save to bring up the Save Memory dialog box.

e Specify a Start address of 0 and End address of 250.

f For Address Radix select Decimal, and for Data Radix select Binary.

g Click No addresses to create a memory pattern that you can use to
relocate somewhere else in the memory, or in another memory.

h Enter the file name as reloc.mem, then click OK to save the memory
contents and close the dialog.

1e
106 Lesson 9 - Viewing and initializing memories

aving memory contents to a file

u can save memory contents to a file that can be loaded at some later point in
ulation.

Save a memory pattern from the /ram_tb/spram1/mem instance to a file.

a Make sure /ram_tb/spram1/mem is open and selected in the MDI frame.

b Select File > Save to bring up the Save Memory dialog box (Figure 86).

c For the Address Radix, select Decimal.

d For the Data Radix, select Binary.

e Type data_mem.mem into the Filename field.

f Click OK.

You can view the saved file in any editor.

emory pattern files can be saved as relocatable files, simply by leaving out the
dress information. Relocatable memory files can be loaded anywhere in a
mory because no addresses are specified.

Save a relocatable memory pattern file from the /ram_tb/spram2/mem
instance.

a Select the mem(1) tab in the MDI pane to see the data for the /ram_tb/
spram2/mem instance.

b Right-click on the memory contents to open a popup menu and select

Figure 86: Save Memory dialog

1c 1d

Initializing a memory T-107

ModelSim SE Tutorial

In

In
fro

Fi
pr

1

2

 box

om file and fill pattern

2b
c Click OK.

The addresses in instance /ram_tb/spram3/mem are updated with the data
from data_mem.mem (Figure 88).
You will use this file for initialization in the next section.

itializing a memory

 ModelSim, it is possible to initialize a memory using one of three methods:
m a saved memory file, from a fill pattern, or from both.

rst, let’s initialize a memory from a file only. You will use one you saved
eviously, data_mem.mem.

View instance /ram_tb/spram3/mem.

a Double-click the /ram_tb/spram3/mem instance in the Memories tab.

This will open a new tab – mem(2) – in the MDI frame to display the
contents of /ram_tb/spram3/mem. Scan these contents so you can
identify changes once the initialization is complete.

b Right-click and select Properties to bring up the Properties dialog.

c Change the Address Radix to Decimal and Data Radix to Binary and
click OK.

Initialize spram3 from a file.

a Right-click anywhere in the data column and select Load to bring up the
Load Memory dialog box (Figure 87).

The default Load Type is File Only.

b Type data_mem.mem in the Filename field.

Figure 87: Load Memory dialog

Figure 88: Initialized memory fr

T-

Mo

In
pa
pr
ad

3

Yo
yo

No
vie

4

e memory file

n memory instance

3c

3f

3d

3e
delSim SE Tutorial

w, before you leave this section, go ahead and clear the instances already being
wed.

Right-click somewhere in the mem(2) pane and select Close All.
108 Lesson 9 - Viewing and initializing memories

 this next step, you will experiment with loading from both a file and a fill
ttern. You will initialize spram3 with the 250 addresses of data you saved
eviously into the relocatable file reloc.mem. You will also initialize 50
ditional address entries with a fill pattern.

Load the /ram_tb/spram3/mem instance with a relocatable memory pattern
(reloc.mem) and a fill pattern.

a Right-click in the data column of the mem(2) tab and select Load to
bring up the Load Memory dialog box (Figure 89).

b For Load Type, select Both File and Data.

c For Address Range, select Addresses and enter 0 as the Start address and
300 as the End address.

This means that you will be loading the file from 0 to 300. However, the
reloc.mem file contains only 251 addresses of data. Addresses 251 to 300
will be loaded with the fill data you specify next.

d For File Load, enter reloc.mem in the Filename field.

e For Data Load, select a Fill Type of Increment.

f In the Fill Data field, set the seed value of 0 for the incrementing data.

g Click OK.

h View the data near address 250 by double-clicking on any address in the
Address column and entering 250.

u can see the specified range of addresses overwritten with the new data. Also,
u can see the incrementing data beginning at address 251 (Figure 90).

Figure 89: Loading a relocatabl

Figure 90: Overwritten values i

3b

Interactive debugging commands T-109

ModelSim SE Tutorial

In

Th
pu

1

2

pattern (Figure 93).

tents

ntents for a range of addresses

a range of addresses

2b

2c

2d
Figure 93: Random contents of
teractive debugging commands

e memory panes can also be used interactively for a variety of debugging
rposes. The features described in this section are useful for this purpose.

Open a memory instance and change its display characteristics.

a Double-click instance /ram_tb/dpram1/mem in the Memories tab.

b Right-click in the memory contents pane and select Properties.

c Change the Data Radix to Hexadecimal.

d Select Words per line and enter 2.

e Click OK.

Initialize a range of memory addresses from a fill pattern.

a Right-click in the data column of /ram_tb/dpram1/mem contents pane
and select Change to open the Change Memory dialog (Figure 92).

b Click the Addresses radio button and enter the start address as
0x00000006 and the end address as 0x00000009. The "0x" hex notation
is optional.

c Select Random as the Fill Type.

d Enter 0 as the Fill Data, setting the seed for the Random pattern.

e Click OK.

The data in the specified range are replaced with a generated random fill

Figure 91: Original memory con

Figure 92: Changing memory co

T-

Mo

3

4

y highlighting

nge

r specified addresses

3d

3c
delSim SE Tutorial

Figure 96: Changed contents fo
110 Lesson 9 - Viewing and initializing memories

Change contents by highlighting.

You can also change data by highlighting them in the Address Data pane.

a Highlight the data for the addresses 0x0000000c:0x0000000e, as shown
in Figure 94.

b Right-click the highlighted data and select Change.

This brings up the Change dialog box (Figure 95). Note that the
Addresses field is already populated with the range you highlighted.

c Select Value as the Fill Type.

d Enter the data values into the Fill Data field as follow: 34 35 36

e Click OK.

The data in the address locations change to the values you entered (Figure
96).

Edit data in place.

To edit only one value at a time, do the following:

a Double click any value in the Data column.

b Enter the desired value and press <Enter>.

c When you are finished editing all values, press the <Enter> key on your
keyboard to exit the editing mode.

If you needed to cancel the edit function, press the <Esc> key on your
keyboard.

Figure 94: Changing contents b

Figure 95: Entering data to cha

Lesson Wrap-up T-111

ModelSim SE Tutorial

L

Th
sim

1

esson Wrap-up

is concludes this lesson. Before continuing we need to end the current
ulation.

Select Simulate > End Simulation. Click Yes.

T-

Mo
delSim SE Tutorial
112 Lesson 9 - Viewing and initializing memories

ModelSim SE Tutorial

 T-113

Lesson 10 - Analyzing performance with the Profiler

Topics

The following topics are covered in this lesson:

Introduction . . T-114
Design files for this lesson T-114
Related reading . . T-114

Compiling and loading the design T-115

Running the simulation . . T-116

Vi

Us

Fi

Le
ew Profile Details . . T-118

ing the data to improve performance T-119

ltering and saving the data . . T-120

sson wrap-up . . T-121

Note: The functionality described in this tutorial requires a profile license feature in your
ModelSim license file. Please contact your Mentor Graphics sales representative if you
currently do not have such a feature.

T-

Mo

In

Th
yo
ins
sim
red

Th
co
co

D

Th
co

Th
Th

Ve

VH

Th
lic

R

M
(UM-317), Chapter 20 - Tcl and macros (DO files) (UM-471)
delSim SE Tutorial
114 Lesson 10 - Analyzing performance with the Profiler

troduction

e Profiler identifies the percentage of simulation time spent in each section of
ur code as well as the amount of memory allocated to each function and
tance. With this information, you can identify bottlenecks and reduce
ulation time by optimizing your code. Users have reported up to 75%
uctions in simulation time after using the Profiler.

is lesson introduces the Profiler and shows you how to use the main Profiler
mmands to identify performance bottlenecks. It will guide you through a simple
de change that improves performance in the example design.

esign files for this lesson

e example design for this lesson consists of a finite state machine which
ntrols a behavioral memory. The testbench test_sm provides stimulus.

e ModelSim installation comes with Verilog and VHDL versions of this design.
e files are located in the following directories:

rilog – <install_dir>/modeltech/examples/profiler/verilog

DL – <install_dir>/modeltech/examples/profiler/vhdl

is lesson uses the Verilog version for the exercises. If you have a VHDL
ense, use the VHDL version instead.

elated reading

odelSim User’s Manual – Chapter 12 - Profiling performance and memory use

Compiling and loading the design T-115

ModelSim SE Tutorial

C

1

2

3

4

ModelSim> prompt.

5

VHDL: Type vcom -93 sm.vhd sm_seq.vhd sm_sram.vhd
test_sm.vhd at the ModelSim> prompt.

Load the design unit with memory allocation profiling enabled.

a Type vsim test_sm at the ModelSim> prompt.
ompiling and loading the design

Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be
working with these lessons). Create the directory and copy all files from
<install_dir>/examples/profiler/verilog to the new directory.

If you have a VHDL license, copy the files in <install_dir>/examples/
profiler/vhdl instead.

Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

If the Welcome to ModelSim dialog appears, click Close.

b Select File > Change Directory and change to the directory you created
in step 1.

Create the work library.

a Type vlib work at the ModelSim> prompt.

Compile the design files.

a Verilog: Type vlog test_sm.v sm_seq.v sm.v beh_sram.v at the

T-

Mo

R

Th
ma
fil
fre

1

2

3

a Select View > Profile > View

orted in the Transcript
delSim SE Tutorial

The Profile pane displays three tab-selectable views of the profile data:
Ranked, Call Tree, and Structural (Figure 98). Data in the Ranked view
is sorted (by default) from highest to lowest percentage in the In(%)
column. In the Call Tree and Structural views, data is sorted (by default)
according to the Under(%) column. You can click the heading of any
column to sort data by that column.

Click here to hide or
display columns.
116 Lesson 10 - Analyzing performance with the Profiler

unning the simulation

roughout this lesson you will run the simulation via a DO file. DO files are
cros you create that automatically run several ModelSim commands. The DO

e in this lesson uses the seconds Tcl command to time each simulation run. Feel
e to open the DO file and look at its contents.

Enable the statistical sampling profiler.

a Select Tools > Profile > Performance or simply click the
Performance Profiling icon in the toolbar.

This must be done prior to running the simulation. ModelSim is now
ready to collect performance data and memory allocation data when the
simulation is run.

Run the simulation via the DO file.

a Type do profile_run.do at the VSIM> prompt.

The status bar at the bottom of the Main window reports the number of
Profile Samples collected.

Make note of the run time reported in the Transcript (Figure 97). You
will use it later to compare how much you have increased simulation
speed by tweaking the design. (Your times may differ from those shown
here due to differing system configurations.)

Display the statistical performance data in the Profile pane.

Figure 97: Note the run time rep

Figure 98: The Profile window

Running the simulation T-117

ModelSim SE Tutorial

4

ical function call tree.

 showing a line from the profile data
b Click the Call Tree tab to view the profile data in a hierarchical,
function-call tree display.

The results differ between the Verilog and VHDL versions of the design.
In Verilog, line 105 (test_sm.v:105) is taking the majority of simulation
time. In VHDL, test_sm.vhd:203 and sm.vhd:93 are taking the majority
of the time.

c Verilog: Right-click test_sm.v:105 and select Expand All from the
popup menu. This expands the hierarchy of test_sm.v:105 and allows you
to see the functions that call it (Figure 99).

VHDL: Right-click test_sm.vhd:203 and select Expand All from the
popup menu. This expands the hierarchy of test_sm.vhd:203 and allows
you to see the functions that call it.

View the source code of a line that is using a lot of simulation time.

a Verilog: Double-click test_sm.v:105. The Source window opens in the
MDI frame with line 105 displayed (Figure 100).

VHDL: Double-click test_sm.vhd:203. The Source window opens in the
MDI frame with line 203 displayed.

Note: Your results may look slightly different as a result of the
computer you’re using and different system calls that occur during the
simulation. Also, the line number reported may be one or two lines off
the actual source file. This happens due to how the stacktrace is
decoded on different platforms.

Figure 99: Expand the hierarch

Figure 100: The Source window

T-

Mo

V

Th
me
op
Us
all

1

W
po
se

2

definition as /test_sm/sm_seq0/sm_0 (Figure 102).

nction Tcl_Close.

stance sm_0.
delSim SE Tutorial

VHDL: Right click the dut instance and select Instance Usage from the
popup menu. The Profile Details shows all instances with the same
definition as /test_sm/dut.
118 Lesson 10 - Analyzing performance with the Profiler

iew Profile Details

e Profile Details pane increases visibility into simulation performance and
mory usage. Right-clicking any function in the Ranked or Call Tree views
ens a popup menu that includes a Function Usage selection. When Function
age is selected, the Profile Details pane opens in the Main window and displays
 instances using the selected function.

View the Profile Details of a function in the Call Tree view.

a Right-click the Tcl_Close function and select Function Usage from the
popup menu.

The Profile Details pane displays all instances using function Tcl_Close
(Figure 101). The statistical performance and memory allocation data
shows how much simulation time and memory is used by Tcl_Close in
each instance.

hen you right-click a selected function or instance in the Structural pane, the
pup menu displays either a Function Usage selection or an Instance Usage
lection, depending on the object selected.

View the Profile Details of an instance in the Structural view.

a Select the Structural tab to change to the Structural view.

b Right-click test_sm and select Expand All from the popup menu.

c Verilog: Right click the sm_0 instance and select Instance Usage from
the popup menu. The Profile Details shows all instances with the same

Figure 101: Profile Details of fu

Figure 102: Profile Details of in

ing the data to improve performance T-119

ModelSim SE Tutorial

U
In
the
is
on
blo

1

2

VHDL: Type vcom test_sm.vhd at the VSIM> prompt.

3

4

uced by almost 50%

 the performance bottleneck
Re-start and re-run the design.

a Type restart -f at the VSIM prompt.

b Type do profile_run.do at the VSIM> prompt.

The simulation time is reduced by almost 50% (Figure 103).

Look at the performance data again.

a If necessary select Tools > Profile > View then the Call Tree tab.

The problem with repeated screen printing has been removed (Figure
104).
Us

sing the data to improve performance
formation provided by the statistical sampling profiler can be used to speed up
 simulation. In this example, the repeated printing of data values to the screen

a significant burden to simulation. A more efficient approach would be to print
ly fail messages when they occur and a single pass message at the end of a data
ck or the entire simulation run.

Edit the source code to remove the repeated screen printing.

a Right-click the source code and uncheck the Read Only selection in the
popup menu.

b "Comment out" the repeated screen printing.

Verilog: Change lines 105-106 so they look like this:

//always @ (outof) // any change of outof
// $display ($time,,"outof = %h",outof);

VHDL: Change lines 198-201 so they look like this:

-- write(msg_line,NOW,field=>10);
-- write(msg_line,msg1);
-- hwrite(msg_line,rd_data);
-- writeline(OUTPUT,msg_line);

Save the file and re-compile.

a Select File > Save.

b Verilog: Type vlog test_sm.v at the VSIM> prompt.

Figure 103: Simulation time red

Figure 104: Source edit removes

T-

Mo

F

As
us

1

2

g Click OK.

r.

data

dialog

2d
delSim SE Tutorial

The calltree.rpt report file will open automatically in Notepad (Figure
108).

You can also output this report from the command line using the profile
report command. See the ModelSim Command Reference for details.

2e

2e

2f
120 Lesson 10 - Analyzing performance with the Profiler

iltering and saving the data

 a last step, you will filter out lines that take less than 2% of the simulation time
ing the Profiler toolbar, and then save the report data to a text file.

Filter lines that take less than 2% of the simulation time.

a Make sure the Profile pane is selected.

b Change the Under(%) field to 2 (Figure 105).

c Click the Refresh Profile Data button.

ModelSim filters the list to show only those lines that take 2% or more
of the simulation time (Figure 106).

Save the report.

a Click the save icon in the Profiler toolbar.

b In the Profile Report dialog (Figure 107), select the Call Tree
Type.

c In the Performance/Memory data section select Default (data
collected).

d Specify the Cutoff percent as 2%.

e Select Write to file and type calltree.rpt in the file name field.

f View file is selected by default when you select Write to file. Leave it
selected.

Figure 105: The Profiler toolba

Figure 106: The filtered profile

Figure 107: The Profile Report

1a 1b 2a

2b
2c

Lesson wrap-up T-121

ModelSim SE Tutorial

L

Th
sim

1

rt
esson wrap-up

is concludes this lesson. Before continuing we need to end the current
ulation.

Select Simulate > End Simulation. Click Yes.

Figure 108: The calltree.rpt repo

T-

Mo
delSim SE Tutorial
122 Lesson 10 - Analyzing performance with the Profiler

ModelSim SE Tutorial

 T-123

Lesson 11 - Simulating with Code Coverage

Topics

The following topics are covered in this lesson:

Introduction . . T-124
Design files for this lesson T-124
Related reading . . T-124

Compiling the design. . T-125

Loading and running the design T-126

Vi

Vi

Vi

Ex

Cr

Le
ewing statistics in the Main window T-127

ewing statistics in the Source window. T-129

ewing toggle statistics in the Objects pane T-131

cluding lines and files from coverage statistics T-132

eating Code Coverage reports T-132

sson wrap-up . . T-134

Note: The functionality described in this tutorial requires a coverage license feature in
your ModelSim license file. Please contact your Mentor Graphics sales representative if
you currently do not have such a feature.

T-

Mo

In

M
ex
ha
ex

D

Th
a b

Th
Th

Ve

VH

Th
us
Ve

R

M

delSim SE Tutorial
124 Lesson 11 - Simulating with Code Coverage

troduction

odelSim Code Coverage gives you graphical and report file feedback on which
ecutable statements, branches, conditions, and expressions in your source code
ve been executed. It also measures bits of logic that have been toggled during
ecution.

esign files for this lesson

e sample design for this lesson consists of a finite state machine which controls
ehavioral memory. The testbench test_sm provides stimulus.

e ModelSim installation comes with Verilog and VHDL versions of this design.
e files are located in the following directories:

rilog – <install_dir>/modeltech/examples/coverage/verilog

DL – <install_dir>/modeltech/examples/coverage/vhdl

is lesson uses the Verilog version in the examples. If you have a VHDL license,
e the VHDL version instead. When necessary, we distinguish between the
rilog and VHDL versions of the design.

elated reading

odelSim User’s Manual – Chapter 13 - Measuring code coverage (UM-333)

Compiling the design T-125

ModelSim SE Tutorial

C

En
ide
M

1

2

3

4
 Compile the design files.

a For Verilog – Type vlog -cover bct sm.v sm_seq.v beh_sram.v
test_sm.v at the ModelSim> prompt.

For VHDL – Type vcom -cover bct sm.vhd sm_seq.vhd sm_sram.vhd
test_sm.vhd at the ModelSim> prompt.

The -cover bct argument instructs ModelSim that you want branch,
condition, and toggle coverage statistics (statement coverage is included
by default). See "Enabling code coverage" (UM-337) for more information
on the available coverage types.
ompiling the design

abling Code Coverage is a two step process–first, you compile the files and
ntify which coverage statistics you want; second, you load the design and tell

odelSim to produce those statistics.

Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be
working with these lessons). Create the directory and copy all files from
<install_dir>/modeltech/examples/coverage/verilog to the new directory.

If you have a VHDL license, copy the files in <install_dir>/modeltech/
examples/coverage/vhdl instead.

Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

If the Welcome to ModelSim dialog appears, click Close.

b Select File > Change Directory and change to the directory you created
in step 1.

Create the working library.

a Type vlib work at the ModelSim> prompt.

T-

Mo

L

1

2

W
co
dis

•

•

•

An
Co

•

Lists all files and lines that are excluded from coverage statistics (see

Th
ea
mo
un
cli
pa

W
on

n the Main window Workspace
delSim SE Tutorial

"Excluding lines and files from coverage statistics" (T-132) for more
information).

ese panes can be re-sized, rearranged, and "undocked" to make the data more
sily viewable. To resize a pane, click-and-drag on the top or bottom border. To
ve a pane, click-and-drag on the double-line to the right of the pane name. To

dock a pane you can select it then drag it out of the Main window, or you can
ck the Dock/Undock Pane button in the header bar (top right). To redock the
ne, click the Dock/Undock Pane button again.

e will look at these panes more closely in the next exercise. For complete details
 each pane, see "Code coverage panes" (GR-116).
126 Lesson 11 - Simulating with Code Coverage

oading and running the design

Load the design.

a Type vsim -coverage test_sm at the ModelSim> prompt.

Run the simulation

b Type run 1 ms at the VSIM> prompt.

hen you load a design with Code Coverage enabled, ModelSim adds several
lumns to the Files and sim tabs in the Workspace (Figure 109). ModelSim also
plays three Code Coverage panes in the Main window (Figure 110):

Missed Coverage

Displays the selected file’s un-executed statements, branches, conditions, and
expressions and signals that have not toggled.

Instance Coverage

Displays statement, branch, condition, expression and toggle coverage
statistics for each instance in a flat, non-hierarchical view.

Details

Shows details of missed coverage such as truth tables or toggle details.

other coverage-related pane is the Current Exclusions pane. Select View >
de Coverage > Current Exclusions to display that pane.

Current Exclusions

Figure 109: Coverage columns i

Figure 110: Coverage panes

iewing statistics in the Main window T-127

ModelSim SE Tutorial

V

Le

1

2

 heading to hide or show columns

in the Missed Coverage pane
V

iewing statistics in the Main window

t’s take a look at the data in these various panes.

View statistics in the Workspace pane.

a Select the sim tab in the Workspace and scroll to the right.

Coverage statistics are shown for each object in the design.

b Select the Files tab in the Workspace and scroll to the right.

Each file in the design shows summary statistics for statements,
branches, conditions, and expressions.

c Click the right-mouse button on any column name and select an object
from the list (Figure 111).

Whichever column you selected is hidden. To redisplay the column,
right-click again and select that column name. The status of which
columns are displayed or hidden is persistent between invocations of
ModelSim.

View statistics in the Missed Coverage pane.

a Select different files from the Files tab of the Workspace.

The Missed Coverage pane updates to show statistics for the selected file
(Figure 112).

b Select any entry in the Statement tab to display that line in the Source
window.

Figure 111: Right click a column

Figure 112: Statement statistics

T-

Mo

3

4

g toggle coverage statistics

age pane
delSim SE Tutorial
128 Lesson 11 - Simulating with Code Coverage

View statistics in the Details pane.

a Select the Toggle tab in the Missed Coverage pane.

If the Toggle tab isn’t visible, you can do one of two things: 1) widen the
pane by clicking-and-dragging on the pane border; 2) if your mouse has
a middle button, click-and-drag the tabs with the middle mouse button.

b Select any object in the Toggle tab to see details in the Details pane
(Figure 113).

View instance coverage statistics.

The Instance Coverage pane displays coverage statistics for each instance in
a flat, non-hierarchical view (Figure 114). Select any instance in the Instance
Coverage pane to see its source code displayed in the Source window.

Figure 113: Details pane showin

Figure 114: The Instance Cover

wing statistics in the Source window T-129

ModelSim SE Tutorial

V

In
co
vie
wi

1

red XT or XF indicates that a true or false branch (respectively) of

e Missed Coverage pane

n the Source window

1b
a conditional statement has not been executed
Vie

iewing statistics in the Source window

 the previous section you saw that the Source window and the Main window
verage panes are linked. You can select objects in the Main window panes to
w the underlying source code in the Source window. Furthermore, the Source
ndow contains statistics of its own.

View coverage statistics for test_sm in the Source window.

a Make sure test_sm is selected in the sim tab of the Workspace.

b In the Statement tab of the Missed Coverage pane, expand test_sm.v if
necessary and select any line (Figure 115).

The Source window opens in the MDI frame with the line you selected
highlighted (Figure 116).

c Switch to the Source window.

The table below describes the various icons.

Icon Description

green checkmark indicates a statement that has been executed

red X indicates that a statement in that line has not been
executed (zero hits)

green E indicates a line that has been excluded from code
coverage statistics

Figure 115: Selecting a line in th

Figure 116: Coverage statistics i

T-

Mo

shown by hovering the mouse pointer
delSim SE Tutorial
130 Lesson 11 - Simulating with Code Coverage

d Hover your mouse pointer over a line of code with a green checkmark.

The icons change to numbers that indicate how many times the
statements and branches in that line were executed (Figure 117). In this
case line 24 was executed 1562 times.

e Select Tools > Code Coverage > Show coverage numbers.

The icons are replaced by execution counts on every line. An ellipsis (...)
is displayed whenever there are multiple statements on the line. Hover
the mouse pointer over a statement to see the count for that statement.

f Select Tools > Code Coverage > Hide coverage numbers to return to
icon display.

Figure 117: Coverage numbers

 toggle statistics in the Objects pane T-131

ModelSim SE Tutorial

V
p

To
an
>
co
inf

1

umns in the Source window
Viewing

iewing toggle statistics in the Objects
ane

ggle coverage counts each time a logic node transitions from one state to
other. Earlier in the lesson you enabled two-state toggle coverage (0 -> 1 and 1-
0) with the -cover t argument. Alternatively, you can enable six-state toggle
verage using the -cover x argument. See "Toggle coverage" (UM-343) for more
ormation.

View toggle data in the Objects pane of the Main window.

a Select test_sm in the sim tab of the Main window.

b If the Objects pane isn’t open already, select View > Debug Windows >
Objects.

c Scroll to the right and you will see the various toggle coverage columns
(Figure 118).

The blank columns show data when you have extended toggle coverage
enabled.

Figure 118: Toggle coverage col

T-

Mo

E
s

M
ca
wi
M
fro

1

2

3

 file via the GUI
delSim SE Tutorial
132 Lesson 11 - Simulating with Code Coverage

xcluding lines and files from coverage
tatistics

odelSim allows you to exclude lines and files from code coverage statistics. You
n set exclusions with the GUI, with a text file called an "exclusion filter file", or
th "pragmas" in your source code. Pragmas are statements that instruct
odelSim to not collect statistics for the bracketed code. See "Excluding objects
m coverage" (UM-347) for more details on exclusion filter files and pragmas.

Exclude a line via the Missed Coverage pane.

a Right click a line in the Missed Coverage pane and select Exclude
Selection. (You can also exclude the selection for the current instance
only by selecting Exclude Selection For Instance <inst_name>.)

Exclude an entire file.

a In the Files tab of the Workspace, locate sm.v (or sm.vhd if you are using
the VHDL example).

b Right-click the file name and select Coverage > Exclude Selected File
(Figure 119).

The file is added to the Current Exclusions pane.

Cancel the exclusion of sm.v.

a Right-click sm.v in the Current Exclusions pane and select Cancel
Selected Exclusions.

Figure 119: Excluding an entire

Creating Code Coverage reports T-133

ModelSim SE Tutorial

C

Yo
en
reg

To

•

•

•

1

2

a Type coverage report -file cover.txt at the VSIM> prompt.

rt dialog
b Type notepad cover.txt at the VSIM> prompt to view the report.

c Close Notepad when you are done reviewing the report.
reating Code Coverage reports

u can create reports on the coverage statistics using either the menus or by
tering commands in the Transcript pane. The reports are output to a text file
ardless of which method you use.

 create coverage reports via the menus, do one of the following:

select Tools > Code Coverage > Reports from the Main window menu

right-click any object in the sim or Files tab of the Workspace and select Code
Coverage > Coverage Reports

right-click any object in the Instance Coverage pane and select Code coverage
reports from the context menu

Create a report on all instances.

a Select Tools > Coverage > Reports from the Main window toolbar.

This opens the Coverage Report dialog (Figure 120).

b Make sure Report on all instances and No Filtering are selected and
then click OK.

ModelSim creates a file report.txt in the current directory and displays
the report in Notepad.

c Close Notepad when you are done looking at the report.

Create a summary report on all design files from the Transcript pane.

Figure 120: The Coverage Repo

T-

Mo

L

Th
sim

1

delSim SE Tutorial
134 Lesson 11 - Simulating with Code Coverage

esson wrap-up

is concludes this lesson. Before continuing we need to end the current
ulation.

Type quit -sim at the VSIM> prompt.

ModelSim SE Tutorial

 T-135

Lesson 12 - Debugging with PSL assertions

Topics

The following topics are covered in this lesson:

Introduction . . T-136
Design files for this lesson T-136
Related reading . . T-136

Compile the example design . . T-137

Load and run without assertions T-138

Us

De

Di

Re

Le
ing assertions to speed debugging. T-139

bugging the assertion failure T-141

splay cover directives in count mode T-143

porting functional coverage statistics T-144

sson wrap-up . . T-145

T-

Mo

In

Us
im
La
as
as

Th
wi
mu
as
wi

D

Th
ch
pr
rea
oth

Th
Th

Ve

VH

Th
lic

Yo
ex

R

M
co
delSim SE Tutorial

ense, use the VHDL version instead.

u can embed assertions within your code or supply them in a separate file. This
ample design uses an external file.

elated reading

odelSim User’s Manual – Chapter 14 - PSL Assertions, Chapter 15 - Functional
verage with PSL and ModelSim
136 Lesson 12 - Debugging with PSL assertions

troduction

ing assertions in your HDL code increases visibility into your design and
proves verification productivity. ModelSim supports Property Specification
nguage (PSL) assertions for use in dynamic simulation verification. These
sertions are simple statements of design intent that declare design or interface
sumptions.

is lesson will familiarize you with the use of PSL assertions in ModelSim. You
ll run a simulation with and without assertions enabled so you can see how
ch easier it is to debug with assertions. After running the simulation with

sertions, you will use the ModelSim debugging environment to locate a problem
th the design.

esign files for this lesson

e sample design for this lesson uses a DRAM behavioral model and a self-
ecking testbench. The DRAM controller interfaces between the system
ocessor and the DRAM and must be periodically refreshed in order to provide
d, write, and refresh memory operations. Refresh operations have priority over
er operations, but a refresh will not preempt an in-process operation.

e ModelSim installation comes with Verilog and VHDL versions of this design.
e files are located in the following directories:

rilog – <install_dir>/modeltech/examples/psl/verilog

DL – <install_dir>/modeltech/examples/psl/vhdl

is lesson uses the Verilog version for the exercises. If you have a VHDL

Compile the example design T-137

ModelSim SE Tutorial

C

In

1

2

3

• Creates the working library
• Compiles the design files, assertions and cover directives

Feel free to open the DO file and look at its contents.
ompile the example design

 this exercise you will use a DO file to compile the design.

Create a new directory and copy the lesson files into it.

Start by creating a new directory for this exercise (in case other users will be
working with these lessons). Create the directory and copy all files from
<install_dir>/examples/psl/verilog to the new directory.

If you have a VHDL license, copy the files in <install_dir>/examples/psl/
vhdl instead.

Start ModelSim and change to the exercise directory you created.

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a To start ModelSim, type vsim at a UNIX shell prompt or use the
ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

b Select File > Change Directory and change to the directory you created
in step 1.

Execute the lesson DO file.

a Type do compile.do at the ModelSim> prompt.

The DO file does the following:

T-

Mo

L

1

2

3

nning the simulation without assertions
delSim SE Tutorial

End the simulation.

a Type quit -sim at the VSIM> prompt to end this simulation.
138 Lesson 12 - Debugging with PSL assertions

oad and run without assertions

Load the design without assertions.

a Type vsim tb -nopsl at the VSIM> prompt.

The -nopsl argument instructs the compiler to ignore PSL assertions.

Run the simulation.

a Type run -all at the VSIM> prompt or click the Run -All icon.

Verilog: The simulation reports an error at 267400 ns and stops on line
266 of the dramcon_sim.v module.

VHDL: The simulation reports an error at 246800 ns and stops on line
135 of the dramcon_sim.vhd entity.

The ERROR message indicates that the controller is not working because
a value read from memory does not match the expected value (Figure
121).

To debug the error, you might first examine the simulation waveforms
and look for all writes to the memory location. You might also check the
data on the bus and the actual memory contents at the location after each
write. If that didn’t identify the problem, you might then check all refresh
cycles to determine if a refresh corrupted the memory location.

Quite possibly, all of these debugging activities would be required,
depending on one’s skill (or luck) in determining the most likely cause
of the error. Any way you look at it, it’s a tedious exercise.

Figure 121: Transcript after ru

Using assertions to speed debugging T-139

ModelSim SE Tutorial

U

To
as

1

2

3

ialog
d In the Failures Action section, select Break.

This causes the simulation to break (stop) on any failed assertion.

e Click the OK button to accept your selections and close the dialog.
sing assertions to speed debugging

 show how assertions help with debugging, we’ll reload the design with
sertions.

Reload the design.

a Type vsim tb at the ModelSim > prompt.

Execute the lesson DO file.

a Type do sim.do at the ModelSim> prompt.

The DO file does the following:

• Opens the Assertions pane and displays all assertions

• Opens a Source window

• Adds signals to the Wave window

Feel free to open the DO file and look at its contents.

Set all assertions to Break on Failures.

a Make sure the Assertions pane is selected.

a Select Edit > Advanced > Change (Main window). This opens the
Change assertions dialog (Figure 122).

b In the Change on section, select All assertions.

c In the Failures Assertions section, select Enable if necessary.

Figure 122: Change assertions d

T-

Mo

4

5

dicated in the Wave window

tions pane
delSim SE Tutorial

simulation time required for a failure to be reported with assertions.

The Wave window displays a red triangle at the point of the simulation
break and shows "FAIL" in the values column of the
assert_check_refresh assertion (Figure 123). The blue sections of the
assertion waveforms indicate inactive assertions; green indicates active
assertions.

The Assertions pane also indicates a failure of assert_check_refresh in
the Failure Count column (Figure 124).

You’ll notice in the Functional Coverage window that the cover
directives have not been executed.
140 Lesson 12 - Debugging with PSL assertions

Add assertions and cover directives to the Wave window

a Select the Assertions pane if necessary.

b Select Add > Wave > Assertions in Design.

Scroll to the bottom of the Wave window and you will see the assertions
(denoted by magenta triangles).

c Select View > Debug Windows > Functional Coverage (Main
window) to see cover directives in the Functional Coverage window.

d Select the Functional Coverage pane.

e Select Add > Wave > Functional Coverages in Design.

Scroll to the bottom of the Wave window and you will see the cover
directives (denoted by magenta arrowheads).

Run the simulation.

a Type run -all at the VSIM> prompt.

Verilog: The Main window transcript shows that the
assert_check_refresh assertion in the dram_cntrl.psl file failed at 3100
ns. The simulation is stopped at that time. Note that with no assertions,
the testbench did not report a failure until 267,400 ns, over 80x the
simulation time required for a failure to be reported with assertions.

VHDL: The Main window transcript shows that the
assert_check_refresh assertion in the dram_cntrl.psl file failed at 3800
ns. The simulation is stopped at that time. Note that with no assertions,
the testbench did not report a failure until 246,800 ns, over 60x the

Figure 123: Assertion failure in

Figure 124: Failure in the Asser

Debugging the assertion failure T-141

ModelSim SE Tutorial

D

1

2

section above the assertions (Figure 126).

ed assertion

th respect to mem_state
c Zoom in on the last 600 ns of the simulation using the Zoom in 2x icon
or the View > Zoom menu selections.

It is easy to see that we_n is high only during the REF1 state. It is low
during REF2.

Let’s examine we_n further.
ebugging the assertion failure

View the source code of the failed assertion.

Verilog: The current line arrow points to the failed assertion on line 24
of the dram_cntrl.psl file (Figure 125). This assertion consists of
checking the check_refresh property, which is defined on lines 20-22.
The property states that when the refresh signal is active, then we will
wait until the memory controller state goes to IDLE. The longest a read
or write should take is 14 cycles. If the controller is already IDLE, then
the wait is 0 cycles. Once the controller is in IDLE state, then the refresh
sequence should start in the next cycle.

The refresh_sequence (second line of the property) is defined on line 18.
The key part of the refresh protocol is that we_n must be held high (write
enable not active) for the entire refresh cycle.

VHDL: The current line arrow points to the failed assertion on line 24 of
the dram_cntrl.psl file. The refresh_sequence (second line of the
property) is defined on line 20.

Check the Wave window to see if we_n was held high through both REF1 and
REF2 states.

a Expand assert_check_refresh to reveal all signals referenced by the
assertion.

b Resize and scroll the Wave window so you can see we_n under the
Assertions divider and the mem_state signal in the Memory Controller

Figure 125: Source code for fail

Figure 126: Examining we_n wi

T-

Mo

3

hold we_n high through both states of the refresh cycle.

 Dataflow window

he source code
delSim SE Tutorial

VHDL: Looking at the Source window you can see that the current line
arrow points to line 61 of the dramcon_rtl.vhd file. In this line you can
see that the logic assigning we_n is wrong - it does not account for the
REF2 state.

The code shows that the incorrect assignment is used for the example
with the correct assignment immediately below (line 65) that will hold
we_n high through both states of the refresh cycle.
142 Lesson 12 - Debugging with PSL assertions

Examine we_n in the Dataflow and Source windows.

a Open the Dataflow window by selecting View > Debug Windows >
Dataflow (Main window).

b Drag we_n from the Wave window to the Dataflow window.

Verilog: The Dataflow window shows that we_n is driven by the
#ASSIGN#106 process, with inputs rw and mem_state (Figure 127). The
values shown in yellow are the values for each signal at the point at
which the simulation stopped - 3100 ns. We see that we_n is St0 when
mem_state is REF2. As noted above, we_n should be St1. This is the
reason for the assertion failure.

VHDL: The Dataflow window shows that we_n is driven by the process
at line 61, which has inputs rw and mem_state. The values shown in
yellow are the values for each signal at the point at which the simulation
stopped - 3800 ns. We see that we_n is St0 when mem_state is REF2. As
noted above, we_n should be St1. This is the reason for the assertion
failure.

c Select the process that drives we_n in order to display its source code in
the Source window.

Verilog: Looking at the Source window you’ll see that the current line
arrow points to line 104 of the dramcon_rtl.sv file (Figure 128). In this
line you can see that the logic assigning we_n is wrong - it does not
account for the REF2 state.

The code shows that the incorrect assignment is used for the example
with the correct assignment immediately below (lines 106-107) that will

Figure 127: Viewing we_n in the

Figure 128: Finding the bug in t

Display cover directives in count mode T-143

ModelSim SE Tutorial

D

Yo
int

1

ctive in count mode
isplay cover directives in count mode

u can change the functional coverage waveform so it displays in a decimal
eger format - the count mode.

Right-click a functional coverage waveform and select Cover Directive
View > Count Mode (Figure 129).

The cover directives count mode can be useful for gauging the effectiveness
of stimulus over time. If all cover directive counts are static for a long period
of time, it may be that the stimulus is acting in a wasteful manner and can be
improved.

Figure 129: Display a cover dire

T-

Mo

R

Sa

1

2

3

4

5

6

the functional coverage
delSim SE Tutorial
144 Lesson 12 - Debugging with PSL assertions

eporting functional coverage statistics

ve an ASCII file of the functional coverage statistics.

Select Tools > Functional Coverage > Reports (Main window) to open the
Functional coverage report dialog (Figure 130).

Select the All cover directives radio button.

Select None in the Filtering options.

Select Include aggregated results and Include detailed results from the
Contents options.

Select Write to File from the Other Options. You can use the default
filename fcover_report.txt or rename the file.

Click OK to create the report.

The new report will appear automatically in the Notepad viewer. You can
view the report at any time by entering notepad fcover_report.txt at the
command line.

Figure 130: Create a text file of

Lesson wrap-up T-145

ModelSim SE Tutorial

L

Th
sim

1

esson wrap-up

is concludes this lesson. Before continuing we need to end the current
ulation.

Select Simulate > End Simulation. Click Yes.

T-

Mo
delSim SE Tutorial
146 Lesson 12 - Debugging with PSL assertions

ModelSim SE Tutorial

 T-147

Lesson 13 - Waveform Compare

Topics

The following topics are covered in this lesson:

Introduction . . T-148
Design files for this lesson T-148
Related reading . . T-148

Creating the test dataset . . T-150
Verilog . . T-150
VHDL . T-151

Co

Vi

Sa

Le
mparing the simulation runs T-152

ewing comparison data . T-153
Viewing comparison data in the Main window T-153
Viewing comparison data in the Wave window. T-153
Viewing comparison data in the List window T-154

ving and reloading comparison data T-155

sson wrap-up . . T-157

Note: The functionality described in this tutorial requires a compare license feature in
your ModelSim license file. Please contact your Mentor Graphics sales representative if
you currently do not have such a feature.

T-

Mo

In

W
ref
ste

1

2

3

4

In
the

D

Th
a b

Th
Th

Ve

VH

Th
us
Ve

R

"W
(U
delSim SE Tutorial

e the VHDL version instead. When necessary, we distinguish between the
rilog and VHDL versions of the design.

elated reading

aveform Compare" (UM-270), Chapter 8 - WLF files (datasets) and virtuals
M-225)
148 Lesson 13 - Waveform Compare

troduction

aveform Compare computes timing differences between test signals and
erence signals. The general procedure for comparing waveforms has four main
ps:

Selecting the simulations or datasets to compare

Specifying the signals or regions to compare

Running the comparison

Viewing the comparison results

 this exercise you will run and save a simulation, edit one of the source files, run
 simulation again, and finally compare the two runs.

esign files for this lesson

e sample design for this lesson consists of a finite state machine which controls
ehavioral memory. The testbench test_sm provides stimulus.

e ModelSim installation comes with Verilog and VHDL versions of this design.
e files are located in the following directories:

rilog – <install_dir>/modeltech/examples/compare/verilog

DL – <install_dir>/modeltech/examples/compare/vhdl

is lesson uses the Verilog version in the examples. If you have a VHDL license,

Creating the reference dataset T-149

ModelSim SE Tutorial

C

Th
It
sim

In

1

2

3

a Type do gold_sim.do at the ModelSim> prompt.

The DO file does the following:

• Creates and maps the work library

• Compiles the Verilog and VHDL files

• Runs the simulation and saves the results to a dataset named gold.wlf

• Quits the simulation

Feel free to open the DO file and look at its contents.
reating the reference dataset

e reference dataset is the .wlf file that the test dataset will be compared against.
can be a saved dataset, the current simulation dataset, or any part of the current

ulation dataset.

 this exercise you will use a DO file to create the reference dataset.

Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be
working with these lessons). Create the directory and copy all files from
<install_dir>/modeltech/examples/compare/verilog to the new directory.

If you have a VHDL license, copy the files in <install_dir>/modeltech/
examples/compare/vhdl instead.

Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running.
If not, start ModelSim.

a Type vsim at a UNIX shell prompt or use the ModelSim icon in
Windows.

If the Welcome to ModelSim dialog appears, click Close.

b Select File > Change Directory and change to the directory you created
in step 1.

Execute the lesson DO file.

T-

Mo

C

Th
Li
sim

To
ran
ru

Ve

1

2

delSim SE Tutorial

• Re-compiles the testbench

• Adds waves to the Wave window

• Runs the simulation
150 Lesson 13 - Waveform Compare

reating the test dataset

e test dataset is the .wlf file that will be compared against the reference dataset.
ke the reference dataset, the test dataset can be a saved dataset, the current

ulation dataset, or any part of the current simulation dataset.

 simplify matters, you will create the test dataset from the simulation you just
. However, you will edit the testbench to create differences between the two

ns.

rilog

Edit the testbench.

a Select File > Open and open test_sm.v.

b Scroll to line 122, which looks like this:

@ (posedge clk) wt_wd('h10,'haa);

c Change the data pattern ’aa’ to ’ab’:

@ (posedge clk) wt_wd('h10,'hab);

d Select File > Save to save the file.

Compile the revised file and rerun the simulation.

a Type do sec_sim.do at the ModelSim> prompt.

The DO file does the following:

Creating the test dataset T-151

ModelSim SE Tutorial

VH

1

2

DL

Edit the testbench.

a Select File > Open and open test_sm.vhd.

b Scroll to line 151, which looks like this:

wt_wd (16#10#, 16#aa#, clk, into);

c Change the data pattern ’aa’ to ’ab’:

wt_wd (16#10#, 16#ab#, clk, into);

d Select File > Save to save the file.

Compile the revised file and rerun the simulation.

a Type do sec_sim.do at the ModelSim> prompt.

The DO file does the following:

• Re-compiles the testbench

• Adds waves to the Wave window

• Runs the simulation

T-

Mo

C

M
Yo
co

1

omparison Wizard

 Comparison Wizard

1b

1c

1d
delSim SE Tutorial
152 Lesson 13 - Waveform Compare

omparing the simulation runs

odelSim includes a Comparison Wizard that walks you through the process.
u can also configure the comparison manually with menu or command line

mmands.

Create a comparison using the Comparison Wizard.

a Select Tools > Waveform Compare > Comparison Wizard.

b Click the Browse button and select gold.wlf as the reference dataset
(Figure 131).

Recall that gold.wlf is from the first simulation run.

c Leaving the test dataset set to Use Current Simulation, click Next.

d Select Compare All Signals in the second dialog and click Next (Figure
132).

e In the next three dialogs, click Next, Compute Differences Now, and
Finish, respectively.

ModelSim performs the comparison and displays the compared signals
in the Wave window.

Figure 131: First dialog of the C

Figure 132: Second dialog of the

Viewing comparison data T-153

ModelSim SE Tutorial

V

Co
W

Vi

Co
Co
Tr
da
ob

Vi

In
red
tim
hig

Th
dif
dif
dif
mo

Th
fo

ation in the Main window

 in the Wave window
Figure 135: The compare icons
iewing comparison data

mparison data displays in three places within the ModelSim GUI: the
orkspace pane of the Main window, the Wave window, and the List window.

ewing comparison data in the Main window

mparison information displays in three places in the Main window: the
mpare tab in the Workspace pane shows the region that was compared; the
anscript shows the number of differences found between the reference and test
tasets; and the Objects pane shows comparison differences if you select the
ject on the Compare tab (Figure 133).

ewing comparison data in the Wave window

 the pathnames pane of the Wave window, a timing difference is denoted by a
 X (Figure 134). Red areas in the waveform pane show the location of the
ing differences, as do the red lines in the scrollbars. Annotated differences are
hlighted in blue.

e Wave window includes six compare icons that let you quickly jump between
ferences (Figure 135). From left to right, the icons do the following: find first
ference, find previous annotated difference, find previous difference, find next
ference, find next annotated difference, find last difference. Use these icons to
ve the selected cursor.

e compare icons cycle through differences on all signals. To view differences
r just the selected signal, use <tab> and <shift> - <tab>.

Figure 133: Comparison inform

Figure 134: Comparison objects

T-

Mo

Vi

Yo

1

s in the List window
delSim SE Tutorial
154 Lesson 13 - Waveform Compare

ewing comparison data in the List window

u can also view the results of your waveform comparison in the List window.

Add comparison data to the List window.

a Select View > Debug Windows > List from the Main window menu bar.

b Drag the test_sm comparison object from the compare tab of the Main
window to the List window.

c Scroll down the window.

Differences are noted with yellow highlighting (Figure 136). Differences
that have been annotated have red highlighting.

Figure 136: Compare difference

ving and reloading comparison data T-155

ModelSim SE Tutorial

S

Yo
ca

To
fil
co
mu

1

2

d to a text file
This saved compare.rul to the current directory.

e Select Tools > Waveform Compare > End Comparison.
Sa

aving and reloading comparison data

u can save comparison data for later viewing, either in a text file or in files that
n be reloaded into ModelSim.

 save comparison data so it can be reloaded into ModelSim, you must save two
es. First, you save the computed differences to one file; next, you save the
mparison configuration rules to a separate file. When you reload the data, you
st have the reference dataset open.

Save the comparison data to a text file.

a Select Tools > Waveform Compare > Differences > Write Report.

b Click Save.

This saved compare.txt to the current directory (Figure 137).

c Type notepad compare.txt at the VSIM> prompt.

d Close Notepad when you are done reviewing the report.

Save the comparison data in files that can be reloaded into ModelSim.

a Select Tools > Waveform Compare > Differences > Save.

b Click Save.

This saved compare.dif to the current directory.

c Select Tools > Waveform Compare > Rules > Save.

d Click Save.

Figure 137: Coverage data save

T-

Mo

3 in the Open dialog

mparison data

3b
delSim SE Tutorial
156 Lesson 13 - Waveform Compare

Reload the comparison data.

a Select File > Open and open.

b Change the Files of Type to Log Files (*.wlf).

c Double-click gold.wlf to open the dataset.

d Select Tools > Waveform Compare > Reload.

Since you saved the data using default file names, the dialog should
already have the correct files specified (Figure 139).

e Click OK.

The comparison reloads.

Figure 138: Displaying log files

Figure 139: Reloading saved co

Lesson wrap-up T-157

ModelSim SE Tutorial

L

Th
sim

1

2

esson wrap-up

is concludes this lesson. Before continuing we need to end the current
ulation and close the gold.wlf dataset.

Type quit -sim at the VSIM> prompt.

Type dataset close gold at the ModelSim> prompt.

T-

Mo
delSim SE Tutorial
158 Lesson 13 - Waveform Compare

ModelSim SE Tutorial

 T-159

Lesson 14 - Automating ModelSim

Topics

The following topics are covered in this lesson:

Introduction . . T-160
Related reading . . T-160

Creating a simple DO file . T-161

Running ModelSim in command-line mode T-163

Using Tcl with ModelSim . T-166

Le
sson Wrap-up . . T-168

T-

Mo

In

As
fo
aft
wh
wi

DO
ca
or
so
the

R

M

Pr
delSim SE Tutorial
160 Lesson 14 - Automating ModelSim

troduction

ide from executing a couple of pre-existing DO files, the previous lessons
cused on using ModelSim in interactive mode: executing single commands, one
er another, via the GUI menus or Main window command line. In situations
ere you have repetitive tasks to complete, you can increase your productivity
th DO files.

 files are scripts that allow you to execute many commands at once. The scripts
n be as simple as a series of ModelSim commands with associated arguments,
 they can be full-blown Tcl programs with variables, conditional execution, and
 forth. You can execute DO files from within the GUI or you can run them from
 system command prompt without ever invoking the GUI.

elated reading

odelSim User’s Manual – 20 - Tcl and macros (DO files) (UM-225)

actical Programming in Tcl and Tk, Brent B. Welch, Copyright 1997

Important: This lesson assumes that you have added the
<install_dir>/modeltech/<platform> directory to your PATH. If you did not,
you will need to specify full paths to the tools (i.e., vlib, vmap, vlog, vcom, and
vsim) that are used in the lesson.

Creating a simple DO file T-161

ModelSim SE Tutorial

C

Cr
yo
us
pr

1

2

3

run 400
force reset 0
run 200

Save the file.

a Select File > Save As.

b Type sim.do in the File name: field and save it to the current directory.
reating a simple DO file

eating DO files is as simple as typing the commands in a text file. Alternatively,
u can save the Main window transcript as a DO file. In this exercise, you will
e the transcript to create a DO file that adds signals to the Wave window,
ovides stimulus to those signals, and then advances the simulation.

Load the test_counter design unit.

a If necessary, start ModelSim.

b Change to the directory you created in Lesson 2 - Basic simulation.

c In the Library tab of the Workspace pane, double-click the test_counter
design unit to load it.

Enter commands to add signals to the Wave window, force signals, and run
the simulation.

a Select File > New > Source > Do to create a new DO file.

a Enter the following commands into the source window:

add wave count
add wave clk
add wave reset
force -freeze clk 0 0, 1 {50 ns} -r 100
force reset 1
run 100
force reset 0
run 300
force reset 1

T-

Mo

4

5

delSim SE Tutorial
162 Lesson 14 - Automating ModelSim

Load the simulation again and use the DO file.

a Type quit -sim at the VSIM> prompt.

b Type vsim test_counter at the ModelSim> prompt.

c Type do sim.do at the VSIM> prompt.

ModelSim executes the saved commands and draws the waves in the
Wave window.

When you are done with this exercise, select File > Quit to quit ModelSim.

ng ModelSim in command-line mode T-163

ModelSim SE Tutorial

R

W
DO
(e.
inv
tha
the

1

2

Runni

unning ModelSim in command-line mode

e use the term "command-line mode" to refer to simulations that are run from a
S/ UNIX prompt without invoking the GUI. Several ModelSim commands

g., vsim, vlib, vlog, etc.) are actually stand-alone executables that can be
oked at the system command prompt. Additionally, you can create a DO file
t contains other ModelSim commands and specify that file when you invoke
 simulator.

Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise. Create the directory and
copy these files into it:

• \<install_dir>\modeltech\examples\counter.v

• \<install_dir>\modeltech\examples\stim.do

We have used the Verilog file counter.v in this example. If you have a VHDL
license, use counter.vhd instead.

Create a new design library and compile the source file.

Again, enter these commands at a DOS/ UNIX prompt in the new directory
you created in step 1.

a Type vlib work at the DOS/ UNIX prompt.

b For Verilog, type vlog counter.v at the DOS/ UNIX prompt. For VHDL,
type vcom counter.vhd.

T-

Mo

3

4

5

ns /counter/count
delSim SE Tutorial

 delta /counter/clk
 /counter/reset
 0 +0 x z *
 1 +0 0 z *
 50 +0 0 * *
 100 +0 0 0 *
 100 +1 0 0 0
 150 +0 0 * 0
 151 +0 1 * 0
 200 +0 1 0 0
 250 +0 1 * 0

.

.

.

164 Lesson 14 - Automating ModelSim

Create a DO file.

a Open a text editor.

b Type the following lines into a new file:

list all signals in decimal format
add list -decimal *

read in stimulus
do stim.do

output results
write list counter.lst

quit the simulation
quit -f

c Save the file with the name sim.do and place it in the current directory.

Run the batch-mode simulation.

a Type vsim -c -do sim.do counter -wlf counter.wlf at the DOS/ UNIX
prompt.

The -c argument instructs ModelSim not to invoke the GUI. The -wlf
argument saves the simulation results in a WLF file. This allows you to
view the simulation results in the GUI for debugging purposes.

View the list output.

a Open counter.lst and view the simulation results.

ng ModelSim in command-line mode T-165

ModelSim SE Tutorial

6

7

in window Workspace
Runni

This is the output produced by the Verilog version of the design. It may
appear slightly different if you used the VHDL version.

View the results in the GUI.

Since you saved the simulation results in counter.wlf, you can view them in
the GUI by invoking VSIM with the -view argument.

a Type vsim -view counter.wlf at the DOS/ UNIX prompt.

The GUI opens and a dataset tab named "counter" is displayed in the
Workspace (Figure 140).

b Right-click the counter instance and select Add > Add to Wave.

The waveforms display in the Wave window.

When you finish viewing the results, select File > Quit to close ModelSim.

Figure 140: A dataset in the Ma

T-

Mo

U

Th
Ho
va
fu

In
sig
ex
in
ca

1

delSim SE Tutorial

units.

• Add a button to the Main window that calls the bookmark.

b Now add these lines to the bottom of the script:

add wave -r /*
when {clk'event and clk="1"} {
 echo "Count is [exa count]"
 if {[exa count]== "00100111"} {
 add_wave_zoom $now 1
 } elseif {[exa count]== "01000111"} {
 add_wave_zoom $now 2
 }
}

166 Lesson 14 - Automating ModelSim

sing Tcl with ModelSim

e DO files used in previous exercises contained only ModelSim commands.
wever, DO files are really just Tcl scripts. This means you can include a whole

riety of Tcl constructs such as procedures, conditional operators, math and trig
nctions, regular expressions, and so forth.

 this exercise you’ll create a simple Tcl script that tests for certain values on a
nal and then adds bookmarks that zoom the Wave window when that value
ists. Bookmarks allow you to save a particular zoom range and scroll position
the Wave window. The Tcl script also creates buttons in the Main window that
ll these bookmarks.

Create the script.

a In a text editor, open a new file and enter the following lines:

proc add_wave_zoom {stime num} {
echo "Bookmarking wave $num"
bookmark add wave "bk$num" "[expr $stime - 50] [expr $stime +

100]" 0
add button "$num" [list bookmark goto wave bk$num]

}

These commands do the following:

• Create a new procedure called "add_wave_zoom" that has two
arguments, stime and num.

• Create a bookmark with a zoom range from the current simulation
time minus 50 time units to the current simulation time plus 100 time

Using Tcl with ModelSim T-167

ModelSim SE Tutorial

2

3

time when count is the value specified in the DO file.
These commands do the following:

• Add all signals to the Wave window.

• Use a when statement to identify when clk transitions to 1.

• Examine the value of count at those transitions and add a bookmark
if it is a certain value.

c Save the script with the name "add_bkmrk.do."

Save it into the directory you created in Lesson 2 - Basic simulation.

Load the test_counter design unit.

a Start ModelSim.

b Select File > Change Directory and change to the directory you saved
the DO file to in step 1c above.

c In the Library tab of the Main window, expand the work library and
double-click the test_counter design unit.

Execute the DO file and run the design.

a Type do add_bkmrk.do at the VSIM> prompt.

b Type run 1500 ns at the VSIM> prompt.

The simulation runs and the DO file creates two bookmarks. It also
creates buttons (labeled "1" and "2") on the Main window toolbar that
jump to the bookmarks (Figure 141).

c Click the buttons and watch the Wave window zoom on and scroll to the

T-

Mo

L

Th

1

e Main window toolbar

3c
delSim SE Tutorial
168 Lesson 14 - Automating ModelSim

esson Wrap-up

is concludes this lesson.

Select File > Quit to close ModelSim.

Figure 141: Buttons added to th

ModelSim SE Tutorial

 T-169

End-User License Agreement

IMPORTANT - USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS.
CAREFULLY READ THIS LICENSE AGREEMENT BEFORE USING THE SOFTWARE.

This license is a legal “Agreement” concerning the use of Software between you, the end user, either individually or
as an authorized representative of the company acquiring the license, and Mentor Graphics Corporation and Mentor
Graphics (Ireland) Limited acting directly or through their subsidiaries or authorized distributors (collectively
“Mentor Graphics”). USE OF SOFTWARE INDICATES YOUR COMPLETE AND UNCONDITIONAL
ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree
to these terms and conditions, promptly return, or, if received electronically, certify destruction of Software and all
accompanying items within five days after receipt of Software and receive a full refund of any license fee paid.

END-USER LICENSE AGREEMENT

1.

2.

3.
GRANT OF LICENSE. The software programs you are installing, downloading, or have acquired with this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted,
trade secret and confidential information of Mentor Graphics or its licensors who maintain exclusive title to all Software
and retain all rights not expressly granted by this Agreement. Mentor Graphics grants to you, subject to payment of
appropriate license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-
code form; (b) for your internal business purposes; and (c) on the computer hardware or at the site for which an applicable
license fee is paid, or as authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius. Mentor
Graphics’ standard policies and programs, which vary depending on Software, license fees paid or service plan purchased,
apply to the following and are subject to change: (a) relocation of Software; (b) use of Software, which may be limited, for
example, to execution of a single session by a single user on the authorized hardware or for a restricted period of time
(such limitations may be communicated and technically implemented through the use of authorization codes or similar
devices); (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. Current standard policies and programs are available upon request.

ESD SOFTWARE. If you purchased a license to use embedded software development (“ESD”) Software, Mentor
Graphics grants to you a nontransferable, nonexclusive license to reproduce and distribute executable files created using
ESD compilers, including the ESD run-time libraries distributed with ESD C and C++ compiler Software that are linked
into a composite program as an integral part of your compiled computer program, provided that you distribute these files
only in conjunction with your compiled computer program. Mentor Graphics does NOT grant you any right to duplicate or
incorporate copies of Mentor Graphics' real-time operating systems or other ESD Software, except those explicitly
granted in this section, into your products without first signing a separate agreement with Mentor Graphics for such
purpose.

BETA CODE. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta
Code”), which may not be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization,
Mentor Graphics grants to you a temporary, nontransferable, nonexclusive license for experimental use to test and
evaluate the Beta Code without charge for a limited period of time specified by Mentor Graphics. This grant and your use

T-170 License Agreement

Mo

of the Beta Code shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may
choose not to release commercially in any form. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate
and test the Beta Code under normal conditions as directed by Mentor Graphics. You will contact Mentor Graphics periodically
during your use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of your evaluation
and testing, you will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths, weaknesses and
recommended improvements. You agree that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based partly or
wholly on your feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive rights, title
and interest in all such property. The provisions of this subsection shall survive termination or expiration of this Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to support the authorized use. Each copy
must include all notices and legends embedded in Software and affixed to its medium and container as received from Mentor
Graphics. All copies shall remain the property of Mentor Graphics or its licensors. You shall maintain a record of the number

ecords
r than
ll take
es not
lity as
in any
ent or
ritten
entor

 in the

n your
of this

5.

orm to
re will
0 days
hics in
ject to
OUR
RICE
T OF

WISE
T TO:
T NO
delSim SE Tutorial

and primary location of all copies of Software, including copies merged with other software, and shall make those r
available to Mentor Graphics upon request. You shall not make Software available in any form to any person othe
employees and contractors, excluding Mentor Graphics' competitors, whose job performance requires access. You sha
appropriate action to protect the confidentiality of Software and ensure that any person permitted access to Software do
disclose it or use it except as permitted by this Agreement. Except as otherwise permitted for purposes of interoperabi
specified by applicable and mandatory local law, you shall not reverse-assemble, reverse-compile, reverse-engineer or
way derive from Software any source code. You may not sublicense, assign or otherwise transfer Software, this Agreem
the rights under it, whether by operation of law or otherwise (“attempted transfer”), without Mentor Graphics’ prior w
consent and payment of Mentor Graphics’ then-current applicable transfer charges. Any attempted transfer without M
Graphics' prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics' option, result
immediate termination of the Agreement and licenses granted under this Agreement.

The terms of this Agreement, including without limitation, the licensing and assignment provisions shall be binding upo
heirs, successors in interest and assigns. The provisions of this section 4 shall survive the termination or expiration
Agreement.

LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period Software, when properly installed, will substantially conf
the functional specifications set forth in the applicable user manual. Mentor Graphics does not warrant that Softwa
meet your requirements or that operation of Software will be uninterrupted or error free. The warranty period is 9
starting on the 15th day after delivery or upon installation, whichever first occurs. You must notify Mentor Grap
writing of any nonconformity within the warranty period. This warranty shall not be valid if Software has been sub
misuse, unauthorized modification or installation. MENTOR GRAPHICS' ENTIRE LIABILITY AND Y
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS' OPTION, EITHER (A) REFUND OF THE P
PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMEN
SOFTWARE THAT DOES NOT MEET THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHER
COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPEC
(A) SERVICES; (B) SOFTWARE WHICH IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED A
COST; OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

 T-171

ModelSim SE Tutorial

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH
RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR
GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF
INTELLECTUAL PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY
WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS
OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
(INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS' OR ITS LICENSORS'
LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR

7.

8.

9.
GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER.

LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS SHALL BE
LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE OF SOFTWARE IN
ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY.

INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS
LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH YOUR USE OF SOFTWARE AS
DESCRIBED IN SECTION 7.

INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against you alleging that
Software infringes a patent or copyright or misappropriates a trade secret in the United States, Canada, Japan, or
member state of the European Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. You understand and agree that as conditions to Mentor
Graphics' obligations under this section you must: (a) notify Mentor Graphics promptly in writing of the action;
(b) provide Mentor Graphics all reasonable information and assistance to defend or settle the action; and (c) grant
Mentor Graphics sole authority and control of the defense or settlement of the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a) replace or modify Software so
that it becomes noninfringing; (b) procure for you the right to continue using Software; or (c) require the return of
Software and refund to you any license fee paid, less a reasonable allowance for use.

9.3. Mentor Graphics has no liability to you if infringement is based upon: (a) the combination of Software with any
product not furnished by Mentor Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the

T-172 License Agreement

Mo

use of other than a current unaltered release of Software; (d) the use of Software as part of an infringing process; (e) a
product that you make, use or sell; (f) any Beta Code contained in Software; (g) any Software provided by Mentor Graphics’
licensors who do not provide such indemnification to Mentor Graphics’ customers; or (h) infringement by you that is
deemed willful. In the case of (h) you shall reimburse Mentor Graphics for its attorney fees and other costs related to the
action upon a final judgment.

9.4. THIS SECTION 9 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS AND ITS LICENSORS AND YOUR
SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT
INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION BY ANY SOFTWARE LICENSED UNDER THIS
AGREEMENT.

10. TERM. This Agreement remains effective until expiration or termination. This Agreement will immediately terminate upon
notice if you exceed the scope of license granted or otherwise fail to comply with the provisions of Sections 1, 2, or 4. For any

 if you
d term
gree to
ies, to

11 ort or
certain
ing all

12 ftware
nment
ant to

Rights
 Road,

13 soft or
rce the

14 siness
entor

isclose

15 RUED
RICA,
sputes
delSim SE Tutorial

other material breach under this Agreement, Mentor Graphics may terminate this Agreement upon 30 days written notice
are in material breach and fail to cure such breach within the 30-day notice period. If Software was provided for limite
use, this Agreement will automatically expire at the end of the authorized term. Upon any termination or expiration, you a
cease all use of Software and return it to Mentor Graphics or certify deletion and destruction of Software, including all cop
Mentor Graphics’ reasonable satisfaction.

. EXPORT. Software is subject to regulation by local laws and United States government agencies, which prohibit exp
diversion of certain products, information about the products, and direct products of the products to certain countries and
persons. You agree that you will not export any Software or direct product of Software in any manner without first obtain
necessary approval from appropriate local and United States government agencies.

. RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense and is commercial computer so
provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or a U.S. Gover
subcontractor is subject to the restrictions set forth in the license agreement under which Software was obtained pursu
DFARS 227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted
clause at FAR 52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 SW Boeckman
Wilsonville, Oregon 97070-7777 USA.

. THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by Mentor Graphics from Micro
other licensors, Microsoft or the applicable licensor is a third party beneficiary of this Agreement with the right to enfo
obligations set forth herein.

. AUDIT RIGHTS. With reasonable prior notice, Mentor Graphics shall have the right to audit during your normal bu
hours all records and accounts as may contain information regarding your compliance with the terms of this Agreement. M
Graphics shall keep in confidence all information gained as a result of any audit. Mentor Graphics shall only use or d
such information as necessary to enforce its rights under this Agreement.

. CONTROLLING LAW AND JURISDICTION. THIS AGREEMENT SHALL BE GOVERNED BY AND CONST
UNDER THE LAWS OF THE STATE OF OREGON, USA, IF YOU ARE LOCATED IN NORTH OR SOUTH AME
AND THE LAWS OF IRELAND IF YOU ARE LOCATED OUTSIDE OF NORTH AND SOUTH AMERICA. All di

 T-173

ModelSim SE Tutorial

arising out of or in relation to this Agreement shall be submitted to the exclusive jurisdiction of Dublin, Ireland when the
laws of Ireland apply, or Wilsonville, Oregon when the laws of Oregon apply. This section shall not restrict Mentor
Graphics’ right to bring an action against you in the jurisdiction where your place of business is located. The United
Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

16. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in
full force and effect.

17. PAYMENT TERMS AND MISCELLANEOUS. You will pay amounts invoiced, in the currency specified on the
applicable invoice, within 30 days from the date of such invoice. This Agreement contains the parties' entire
understanding relating to its subject matter and supersedes all prior or contemporaneous agreements, including but not
limited to any purchase order terms and conditions, except valid license agreements related to the subject matter of this
Agreement (which are physically signed by you and an authorized agent of Mentor Graphics) either referenced in the
purchase order or otherwise governing this subject matter. This Agreement may only be modified in writing by authorized

representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse. The prevailing party in any legal action regarding the subject matter of this Agreement shall be
entitled to recover, in addition to other relief, reasonable attorneys' fees and expenses.

Rev. 040401, Part Number 221417

T-174 License Agreement

Mo
delSim SE Tutorial

ModelSim SE Tutorial

Index

A

aCC T-53
add dataflow command T-96
add wave command T-68
Assertions

add to dataflow T-142
debugging failures T-141
ignore as
-nopsl ar
speeding

B

brea
brea

C

C De
Code

com
com
com
com
-cov
-cov

coverage report command T-133
cursors, Wave window T-70, T-85

D

Dataflow window T-89
displaying hierarchy T-96
expanding to drivers/readers T-92
using asser

k icon T-26
kpoints
in SystemC
setting T-2
stepping T-

bug T-61
 Coverage

excluding l
reports T-1
Source win
mand-line m
parisons, W
pile order, c
piling your
er argumen
erage argum
sertions during simulation T-138
gument to vsim T-138
 debugging T-139

tions for debugging T-135

 modules T-61
7
28

ines and files T-132
33
dow T-129
ode T-163

aveform Compare T-147
hanging T-35
design T-13, T-23
t T-125
ent T-126

options T-96
tracing events T-93
tracing unknowns T-95

dataset close command T-157
design library

working type T-16
DO files T-159
documentation T-7
drivers, expanding to T-92

E

error messages, more information T-46
external libraries, linking to T-46

F

folders, in projects T-37
format, saving for Wave window T-73

G

gcc T-53

T-176 Index

Mod

H

hierarchy, displaying in Dataflow window T-96

L

libraries
design library types T-16
linking to external libraries T-46
mapping to permanently T-49
resource libraries T-16
working libraries T-16
working, creating T-21

linki

M

macr
manu
mapp
mem

mem
Mem

N

notep

O

optio

P

Performance Analyzer T-113
filtering data T-120

physical connectivity T-92
Profiler

profile details T-118
view profile data T-119
viewing profile details T-118

projects T-31
adding items to T-34
creating T-33
flow overview T-15
organizing with folders T-37
elSim SE Tutorial

ng to external libraries T-46

os T-159
als T-7
ing libraries permanently T-49
ories
changing values T-109
initializing T-107
viewing T-99
ory contents, saving to a file T-106
ory window T-99

ad command T-155

ns, simulation T-39

simulation configurations T-39

Q

quit command T-46

R

radix command T-102
reference dataset, Waveform Compare T-149
reference signals T-148
run -all T-26
run command T-25

S

saving simulation options T-39
simulation

basic flow overview T-13
comparing runs T-147
restarting T-27
running T-25

simulation configurations T-39

 T-177

ModelSim SE Tutorial

Standard Developer’s Kit User Manual T-7
stepping after a breakpoint T-28
Support T-8
SystemC T-51

setting up the environment T-53
supported platforms T-53
viewing in the GUI T-60

T

Tcl, using in ModelSim T-166
Technical support and updates T-8
test dataset, Waveform Compare T-150
test signals T-148
time,
toggl
tracin
tracin

U

unkn

V

vcom
verro
vlib
vlog
vsim

W

Wav

measuring time with cursors T-70, T-85
saving format T-73
zooming T-69, T-80

Waveform Compare T-147
reference signals T-148
saving and reloading T-155
test signals T-148

working library, creating T-13, T-21

X

X values, tracing T-95
 measuring in Wave window T-70, T-85
e statistics, Signals window T-131
g events T-93
g unknowns T-95

owns, tracing T-95

 command T-101
r command T-46

command T-101
command T-101
 command T-21

e window T-65, T-75
adding items to T-68, T-78
cursors T-70, T-85

Z

zooming, Wave window T-69, T-80

T-178 Index

Mod
elSim SE Tutorial

	Bookcase
	Tutorial
	Table of Contents
	Introduction
	Assumptions
	Where to find our documentation
	Technical support and updates
	Before you begin

	Lesson 1 - ModelSim conceptual overview
	Introduction
	Basic simulation flow
	Project flow
	Multiple library flow
	Debugging tools

	Lesson 2 - Basic simulation
	Introduction
	Creating the working design library
	Compiling the design
	Loading the design into the simulator
	Running the simulation
	Setting breakpoints and stepping in the Source window
	Lesson wrap-up

	Lesson 3 - ModelSim projects
	Introduction
	Creating a new project
	Compiling and loading a design
	Organizing projects with folders
	Simulation Configurations
	Lesson wrap-up

	Lesson 4 - Working with multiple libraries
	Introduction
	Creating the resource library
	Creating the project
	Linking to the resource library
	Permanently mapping resource libraries
	Lesson wrap-up

	Lesson 5 - Simulating designs with SystemC
	Introduction
	Setting up the environment
	Preparing an OSCI SystemC design
	Compiling a SystemC-only design
	Mixed SystemC and HDL example
	Viewing SystemC objects in the GUI
	Lesson Wrap-up

	Lesson 6 - Viewing simulations in the Wave window
	Introduction
	Loading a design
	Adding objects to the Wave window
	Zooming the waveform display
	Using cursors in the Wave window
	Saving the window format
	Lesson wrap-up

	Lesson 7 - Creating stimulus with Waveform Editor
	Introduction
	Loading a design unit
	Creating waves with a wizard
	Editing waveforms in the Wave window
	Saving and reusing the wave commands
	Exporting the created waveforms
	Running the simulation
	Simulating with the testbench file
	Importing an EVCD file
	Lesson wrap-up

	Lesson 8 - Debugging with the Dataflow window
	Introduction
	Compiling and loading the design
	Exploring connectivity
	Tracing events
	Tracing an ’X’ (unknown)
	Displaying hierarchy in the Dataflow window
	Lesson Wrap-up

	Lesson 9 - Viewing and initializing memories
	Introduction
	Compiling and loading the design
	Viewing a memory
	Saving memory contents to a file
	Initializing a memory
	Interactive debugging commands
	Lesson Wrap-up

	Lesson 10 - Analyzing performance with the Profiler
	Introduction
	Compiling and loading the design
	Running the simulation
	View Profile Details
	Using the data to improve performance
	Filtering and saving the data
	Lesson wrap-up

	Lesson 11 - Simulating with Code Coverage
	Introduction
	Compiling the design
	Loading and running the design
	Viewing statistics in the Main window
	Viewing statistics in the Source window
	Viewing toggle statistics in the Objects pane
	Excluding lines and files from coverage statistics
	Creating Code Coverage reports
	Lesson wrap-up

	Lesson 12 - Debugging with PSL assertions
	Introduction
	Compile the example design
	Load and run without assertions
	Using assertions to speed debugging
	Debugging the assertion failure
	Display cover directives in count mode
	Reporting functional coverage statistics
	Lesson wrap-up

	Lesson 13 - Waveform Compare
	Introduction
	Creating the reference dataset
	Creating the test dataset
	Comparing the simulation runs
	Viewing comparison data
	Saving and reloading comparison data
	Lesson wrap-up

	Lesson 14 - Automating ModelSim
	Introduction
	Creating a simple DO file
	Running ModelSim in command-line mode
	Using Tcl with ModelSim
	Lesson Wrap-up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

