Advanced Verification and Debugging

SE
Command Reference

Version 6.0b

Published: 15/Nov/04

e

%‘Wﬁ% wnnmnwmunmgmsalm\;\m;a;

CR-2

This document is for information and instruction purposes. Mentor Graphics reserves the
right to make changes in specifications and other information contained in this publication
without prior notice, and the reader should, in al cases, consult Mentor Graphics to
determine whether any changes have been made.

Thetermsand conditions governing the sale and licensing of Mentor Graphics productsare
set forth in written agreements between Mentor Graphics and its customers. No
representation or other affirmation of fact contained in this publication shall be deemed to
be awarranty or giveriseto any liability of Mentor Graphics whatsoever.

MENTOR GRAPHICSMAKESNOWARRANTY OF ANY KIND WITH REGARD TO
THISMATERIAL INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR
RELATED TO THISPUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

RESTRICTED RIGHTSLEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been
developed entirely at private expense and are commercial computer software provided with
restricted rights. Use, duplication or disclosure by the U.S. Government or aU.S.
Government subcontractor is subject to the restrictions set forth in the license agreement
provided with the software pursuant to DFARS 227.7202-3(a) or as set forth in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights
clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:

Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Thisisan unpublished work of Mentor Graphics Corporation.
Contacting M odelSim Support

Telephone: 503.685.0820

Toll-Free Telephone: 877-744-6699

Website: www.model.com

Support: www.model.com/support

ModelSim SE Command Reference

Technical support and updates CR-3

Technical support and updates

Support

Model Technology online and email technical support options, maintenancerenewal, and
linksto international support contacts:
www.model .com/support/default.asp

Mentor Graphics support:
www.mentor.com/supportnet

Updates

Access to the most current version of Model Sim:
www.model.com/downloads/default.asp

Latest version email

Place your name on our list for email notification of news and updates:
www.model.com/products/informant.asp

ModelSim SE Command Reference

http://www.model.com/support/default.asp
http://www.mentor.com/supportnet/
http://www.model.com/downloads/default.asp
http://www.model.com/products/informant.asp

CR-4

Where to find our documentation

Model Sim documentation is available from our website at www.model.com/support or in
the following formats and locations:

Document Format How to get it

Model Sm Installation & paper shipped with ModelSm

Licensing Guide - -
PDF select Help > Documentation; also available from the Support

page of our web site: www.model.com

Model Sm Quick Guide paper shipped with ModelSm

(command and feature

quick-reference) PDF select Help > Documentation, also available from the Support

page of our web site: www.model.com

ModelSm Tutorial PDF, HTML | select Help > Documentation; also available from the Support
page of our web site: www.model.com

Model Sm User’s Manual PDF, HTML | select Help > Documentation

Model Sm Command PDF, HTML | select Help > Documentation
Reference

ModelSm GUI Reference PDF, HTML | select Help > Documentation

Foreign Language PDF, HTML | select Help > Documentation
Interface Reference
Std_DevelopersKit User's PDF www.model .com/support/documentation/BOOK /sdk_um.pdf
Manual
The Standard Developer’s Kit is for use with Mentor Graphics
QuickHDL.
Command Help ASCII type hel p [conmmand nane] at the prompt in the Transcript pane
Error message help ASCII typeverror <msgNune at the Transcript or shell prompt
Tcl Man Pages (Tcl HTML select Help > Tcl Man Pages, or find contents.htmin
manual) \modeltech\docs\tcl_help_html
Technotes HTML select Technotes dropdown on www.model.com/support

ModelSim SE Command Reference

http://www.model.com/support
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/support/documentation/BOOK/sdk_um.pdf
http://www.model.com/support

Table of Contents

CR-5

Technical support and updates CR-3
Where to find our documentation CR-4

Syntax and conventions (CR-9)

Documentation conventions CR-10
File and directory pathnames CR-11
Design object names CR-12
Wildcard characters CR-17
ModelSim variables CR-17
Simulation time units CR-18
Comments in argument files CR-18
Command shortcuts CR-18
Command history shortcuts CR-19
Numbering conventions CR-20
GUI_expression_format CR-22

Commands (CR-31)

Command reference table CR-32
.main clear CR-43
abort CR-44

add button CR-45

add dataflow CR-47
add list CR-48

add watch CR-51

add wave CR-52
add_menu CR-56
add_menucb CR-58
add_menuitem CR-59
add_separator CR-60
add_submenu CR-61
dias CR-62

assertion fail CR-63
assertion pass CR-65
assertion report CR-67
batch_mode CR-69

bd CR-70

bookmark add wave CR-71
bookmark delete wave CR-72
bookmark goto wave CR-73
bookmark list wave CR-74
bp CR-75

cd CR-78

cdbg CR-79

change CR-81
change_menu_cmd CR-83
check contention add CR-84
check contention config CR-86
check contention off CR-87
check float add CR-88
check float config CR-89
check float off CR-90
check stable off CR-91
check stable on CR-92
checkpoint CR-93

compare add CR-94
compare annotate CR-98
compare clock CR-99
compare configure CR-101
compare continue CR-103
compare delete CR-104
compare end CR-105
compare info CR-106
comparelist CR-107
compare options CR-108
compare reload CR-112
compare reset CR-113
compare run CR-114
compare savediffs CR-115
compare saverules CR-116
compare see CR-117
compare start CR-119
compare stop CR-121
compare update CR-122

ModelSim SE Command Reference

Table of Contents

configure CR-123
context CR-127
coverage clear CR-128
coverage exclude CR-129
coverage reload CR-131
coverage report CR-132
coverage save CR-135
dataset alias CR-136
dataset clear CR-137
dataset close CR-138
dataset info CR-139
dataset list CR-140
dataset open CR-141
dataset rename CR-142
dataset save CR-143
dataset snapshot CR-144
delete CR-146

describe CR-147
disablebp CR-148
disable_menu CR-149
disable_menuitem CR-150
do CR-151

down CR-152

drivers CR-154
dumplog64 CR-155
echo CR-156

edit CR-157

enablebp CR-158
enable_menu CR-159
enable_menuitem CR-160
environment CR-161
examine CR-162

exit CR-166

fcover clear CR-167
fcover comment CR-168
fcover configure CR-169
fcover reload CR-171
fcover report CR-173

ModelSim SE Command Reference

fcover save CR-175
find CR-176

force CR-180

gdb dir CR-183
getactivecursortime CR-184
getactivemarkertime CR-185
help CR-186

history CR-187

lecho CR-188

left CR-189

log CR-191

Ishift CR-193

Isublist CR-194
macro_option CR-195
mem display CR-196
mem list CR-198
mem load CR-199
mem save CR-202
mem search CR-204
modelsim CR-206
next CR-207

noforce CR-208
nolog CR-209
notepad CR-211
noview CR-212
nowhen CR-213
onbreak CR-214
onElabError CR-215
onerror CR-216
pause CR-217

play CR-218

pop CR-219

power add CR-220
power report CR-221
power reset CR-222
precision CR-223
printenv CR-224
profile clear CR-225

profileinterval CR-226
profile off CR-227
profile on CR-228
profile option CR-229
profile reload CR-230
profile report CR-231
project CR-233
property list CR-234
property wave CR-235
push CR-237

pwd CR-238

quietly CR-239

quit CR-240

radix CR-241

readers CR-242
record CR-243

report CR-244

restart CR-246
restore CR-248
resume CR-249

right CR-250

run CR-252

sccom CR-254
scgenmod CR-258
search CR-260
searchlog CR-262
seetime CR-264
setenv CR-265

shift CR-266

show CR-267
simstats CR-268
splitio CR-270

status CR-271

step CR-272

stop CR-273

tb CR-274

tcheck_set CR-275
tcheck_status CR-277

toggle add CR-279
toggle disable CR-281
toggle enable CR-282
toggle report CR-283
toggle reset CR-284
transcribe CR-285
transcript CR-286
transcript file CR-287
tssi2mti CR-288

unsetenv CR-289

up CR-290

ved add CR-292

ved checkpoint CR-293
vcd comment CR-294
ved dumpports CR-295
ved dumpportsall CR-297
ved dumpportsflush CR-298
ved dumpportslimit CR-299
ved dumpportsoff CR-300
ved dumpportson CR-301
vcd file CR-302

vcd files CR-304

vcd flush CR-306

ved limit CR-307

ved off CR-308

vcd on CR-309

ved2wlf CR-310

vcom CR-311

vcover convert CR-319
vcover merge CR-320
vcover report CR-322
vcover stats CR-325

vdel CR-327

vdir CR-328

verror CR-329

vgencomp CR-330

view CR-332

virtual count CR-334

CR-7

ModelSim SE Command Reference

CR-8

Table of Contents

virtual define CR-335
virtual delete CR-336
virtual describe CR-337
virtual expand CR-338
virtual function CR-339
virtual hide CR-342
virtual log CR-343
virtual nohide CR-345
virtual nolog CR-346
virtual region CR-348
virtual save CR-349
virtual show CR-350
virtual signal CR-351
virtual type CR-354
vlib CR-356

vlog CR-358

vmake CR-369

vmap CR-370

vopt CR-371

vsim CR-373
vsim<info> CR-392
vsource CR-393

wave CR-394

ModelSim SE Command Reference

wave create CR-397
wave edit CR-400

wave export CR-403
wave import CR-404
wave modify CR-405
when CR-407

where CR-412

wlf2log CR-413
wlif2ved CR-415
wlfman CR-416
wlfrecover CR-420
write cell_report CR-421
write format CR-422
write list CR-424

write preferences CR-425
write report CR-426
write timing CR-427
write transcript CR-428
write tssi CR-429

write wave CR-431

CR-9

Syntax and conventions

Chapter contents

Documentation conventions CRI10
File and directory pathnramesCR1
Design objectnamesCRI12
Object namesyntaxCRI12
SystemC class/structure/union member specrﬂcatronCR13
Specifying namesCR14
Escaping brackets and spaces in array sIrcesCRI15
Environment variablesand pathnames CR-15
Namecase sensitivityCRI15
Extended identifies CR-16
Wildcard charactersCRIl7
ModelSmvariablesCRI17
Simulationtimeunits CR18
Commentsinargument files CR-18
Command shortcutsCR18
Command history shortcuts CR19
Numbering conventionsCR20
VHDL numbering conventions CR20
Verilog numbering conventions CR21
GUI_expression_formatCR22
Expressiontyping.CR2
Expression syntaxCR2Z
Signal and subelement nammg convent|onsCR2
Grouping and precedence.CR27
Concatenation of signals or subel ements .o . . . CR2Z7
Record field and SystemC clasg/structure/union members . . . CR29
Searching for binary signal valuesintheGUI CR-29

ModelSim SE Command Reference

CR-10 Syntax and conventions

Documentation conventions

This manual uses the following conventions to define Model Sim command syntax.

Syntax notation

Description

< >

angled brackets surrounding a syntax item indicate a user-
defined argument; do not enter the brackets in commands

square brackets generally indicate an optional item; if the
brackets surround several words, all must be entered asagroup;
the brackets are not entered®

{}

braces indicate that the enclosed expression contains one or
more spaces yet should be treated as a single argument, or that
the expression contains square brackets for an index; for either
situation, the braces are entered

an ellipsisindicates items that may appear more than once; the
elipsisitself does not appear in commands

the vertical bar indicates a choice between items on either side
of it; do not include the bar in the command

nmonospaced type

monospaced type is used in command examples

#

commentsincluded with commands are preceded by the number
sign (#); useful for adding comments to DO files (macros)

a. One exception to thisrule iswhen you are using Verilog syntax to designate an array

dice. For example,

add wave {vector1[4:0]}

The sguare bracketsin this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets as a Tcl command.

P Note: Neither the prompt at the beginning of aline nor the <Enter> key that ends aline
is shown in the command examples.

ModelSim SE Command Reference

File and directory pathnames CR-11

File and directory pathnames

Several Model Sim commands have arguments that point to files or directories. For
example, the -y argument to vlog specifiesthe Verilog source library directory to search for
undefined modules. Spaces in file pathnames must be escaped or the entire path must be
enclosed in quotes. For example:

vliog top.v -y C:/Docunents\ and\ Settings/projects/dut

or

vlog top.v -y "C /Docunents and Settings/projects/dut"

ModelSim SE Command Reference

CR-12 Syntax and conventions

Design object names

Design objects are organized hierarchically. Each of the following objects creates a new
level in the hierarchy:

* VHDL
component instantiation statement, block statement, and package

* Verilog
module instantiation, named fork, named begin, task and function

* SystemC
module instantiation

Object name syntax

The syntax for specifying object namesin ModelSim is as follows:

[<dat aset Nane><dat aset Separ at or >] [<pat hSepar at or >] [<hi er ar chi cal Pat h>] <obj e
ct Name>[<el enment Sel ecti on>]

where

dat aset Name
isthelogical name of the WLF filein which the object exists. The currently active
simulation isthe “sim” dataset. Any loaded WLF fileisreferred to by the logical name
specified when the WLF file was loaded. See Chapter 8 - WLF files (datasets) and
virtualsfor more information.

dat aset Separ at or
isthe character used to terminate the dataset name. The defaultis’:’, though a different
character (other than’\") may be specified as the dataset separator viathe
DatasetSeparator (Um-531) variable in the modelsim.ini file. The default is*:'. This
character must be different than the pathSeparator character.

pat hSepar at or
is the character used to separate hierarchical object names. Normally, /' is used for
VHDL and."isused for Verilog, athough other characters (except '\') may be specified
viathe PathSeparator (UM-533) variable in the modelsim.ini file. This character must be
different than the datasetSeparator. Both *." and */* can be used for SystemC.

hi erarchi cal Pat h
isaset of hierarchical instance names separated by a path separator and ending in a path
separator prior to the objectName. For example, /top/proc/clk.

obj ect Nare
isthe name of an object in adesign.

el enent Sel ecti on
indicates some combination of the following:
Array indexing - Single array elements are specified using either parentheses ()" or
square brackets "[]" around a single number.
Array dlicing - Slices (or part-selects) of arraysare specified using either parentheses " ()"
or square brackets "[]" around arange specification. A range is two numbers separated
by oneof thefollowing: " to"," downto", ":". See"Escaping brackets and spacesin array

ModelSim SE Command Reference

Design object names CR-13

slices’ (Cr-15) for important information about using square bracketsin ModelSim
commands.

Record field selection - A record field is specified using aperiod "." followed by the
name of the field.

C++ class, structure, and union member selection - A class, structure, or union member
is specified using the record field specification syntax, described just above.

SystemC class/structure/union member specification

Y ou can specify members of SystemC structuresand classesusing HDL record syntax. The
syntax for specifying members of a base class using Model Sim is different than C++. In
C++, it isnot necessary to specify the base class:

<i nst ance>. <base_nenber >

Whereas, in Model Sim you must include the name of the base class:

<i nst ance>. <base>. <base_nenber >

Example

Let’ s say you have a base class and a descendant class:

cl ass dog

{
private:
int value

3

class beagle : public dog

{ .
private:
int value
dog d;
h
You have an sc_signal<> of type beagle somewhere in your code:

sc_si gnal <beagl e> spot;

Lega namesfor viewing thissignal are:

spot
spot . *
spot . val ue
spot . dog
spot . dog. *
spot . dog. val ue
Now, to examine the member value of the base class dog, you would type:

exa spot.dog. val ue

To examine the member value of member d, you would type:

exa spot.d.val ue

To examine the member value, you would type:

exa spot.val ue

ModelSim SE Command Reference

CR-14 Syntax and conventions

Specifying names

We distinguish between four "types" of object names. simple, relative, fully-rooted, and
absol ute.

A simple name does not contain any hierarchy. It is simply the name of an object (e.g., clk
or data[3:0]) in the current context.

A relative name does not start with a path separator and may or may not include a dataset
name or a hierarchical path (e.g., ul/data or view:clk). A relative nameisrelative to the
current context in the current or specified dataset.

A fully-rooted name starts with a path separator and includes a hierarchical path to an
object (e.g., top/ul/clk).Thereis aspecia case of afully-rooted name where the top-level
design unit name can be unspecified (e.g., /ul/clk). In this case, the first top-level instance
in the design is assumed.

An absolute name is an exactly specified hierarchical name containing a dataset name and
afully rooted name (e.g., sim:/top/ul/clK).

The current dataset is used when accessing objects where a dataset nameis not specified as
part of the name. The current dataset is determined by the dataset currently selected in the
Structure window or by the last dataset specified in an environment command (CR-161).

The current context in the current or specified dataset is used when accessing objects with
relative or ssmple names. The current context is either the current process, if any, or the
current instance if thereis no current process or the current processis not in the current
instance. The situation of the current process not being in the current instance can occur,
for example, by selecting a different instance in the Structure tab or by using the
environment command (CR-161) to set the current context to a different instance.

Here are some examples of object names and what they specify:

Syntax Description

clk specifies the object clk in the current context
ftop/clk specifies the object clk in the top-level design unit.
/top/block1/u2/clk specifies the object clk, two levels down from the

top-level design unit

block1/u2/clk specifies the object clk, two levels down from the
current context

array_sig[4] specifies an index of an array object

{array_sig(1to 10)} specifiesadice of an array object in VHDL or
SystemC; see "Escaping brackets and spacesin
array slices' (CR-15) for more information

{mysignal[31:0]} specifiesadice of an array object in Verilog or
SystemC; see "Escaping brackets and spacesin
array dices' (Cr-15) for more information

record_sig.field specifiesafield of arecord, aC++ classor structure
member, or a C++ base class

ModelSim SE Command Reference

Design object names CR-15

Escaping brackets and spaces in array slices
Because ModelSimisaTcl-based tool, you must use curly braces ('{}’) to "escape" square
brackets and spaces when specifying array dlices. For example:
toggl e add {data[3:0]} or
toggl e add {data(3 to 0)}

For complete details on Tcl syntax, see " Tcl command syntax" (UM-474).

Further details

AsaTcl-based tool, Model Sim commands follow Tcl syntax. One problem people
encounter with Model Sim commands is the use of square brackets ('[]’) or spaces when
specifying array dices. As shown on the previous page, square brackets are used to specify
dices of arrays (e.g., data[3:0]). However, in Tcl, square brackets signify command
substitution. Consider the following example:

set aluinputs [find -in alu/*]
Model Sim evaluates the find command first and then sets variable aluinputs to the result

of the find command. Obviously you don’t want this type of behavior when specifying an
array dice, so you would use curly brace escape characters:

add wave {/s/abc/data_in[10:1]}

Y ou must also use the escape charactersif using VHDL syntax with spaces:
add wave {/s/abc/data_in(10 downto 1)}

Environment variables and pathnames

Y ou can substitute environment variables for pathnames in any argument that requires a
pathname. For example:

vlog -v $lib_path/undl

Assuming you have defined $lib_path on your system, vliog will locate the source library
file undl and search it for undefined modules. See "Environment variables' (um-521) for
more information.

P Note: Environment variable expansion does not occur in filesthat are referenced viathe
-f argument to vcom, vlog, or vsim.

Name case sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL names are not case
sensitive except for extended identifiersin VHDL 1076-1993 or later. In contrast, all
Verilog names are case sensitive.

Names in Model Sim commands are case sensitive when matched against case sensitive
identifiers, otherwise they are not case sensitive. SystemC names are case sensitive.

ModelSim SE Command Reference

CR-16 Syntax and conventions

Extended identifiers

The following are supported formats for extended identifiers for any command that takes

an identifier.
{\ext ident!\ } # Note that trailing space before closing brace is required
\\ext\ ident\!\\ # Al non-al pha characters escaped

ModelSim SE Command Reference

Wildcard characters CR-17

Wildcard characters

Wildcard characters can be used in HDL object names in some simulator commands.
Conventions for wildcards are as follows:

Syntax Description

* matches any sequence of characters

? matches any single character

1 matches any one of the enclosed characters; a

hyphen can be used to specify arange (for
example, a-z, A-Z, 0-9); can be used only with
the find command (CR-176)

Y ou can use the WildcardFilter Tcl preference variable to filter matching objects for the
add wave, add log, add list, and find commands.

P Note: A wildcard character will never match a path separator. For example, /dut/* will
match /dut/siga and /dut/clk. However, /dut* won’'t match either of those.

ModelSim variables

Model Sim variables can be referenced in simulator commands by preceding the name of
the variable with the dollar sign ($) character. Model Sim uses global Tcl variables for
simulator state variables, simulator control variables, simulator preference variables, and
user-defined variables (see "Preference variables located in Tcl files' (UM-540) for more
information).

See Appendix B - Model Sm variables in the User's Manual for more information on
variables.

Thereport command (CR-244) returnsalist of current settingsfor either the simulator state
or simulator control variables.

ModelSim SE Command Reference

CR-18 Syntax and conventions

Simulation time units

Y ou can specify the time unit for delaysin all simulator commands that have time
arguments. For example;

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ns

Note that all the time unitsin a Model Sim command need not be the same.

Unless you specify otherwise as in the examples above, simulation time is always
expressed using the resolution units that are specified by the UserTimeUnit variable. See
UserTimeUnit (UM-534).

By default, the specified time units are assumed to be rel ative to the current time unless the
value is preceded by the character @, which signifies an absol ute time specification.

Comments in argument files

Argument files may be loaded with the -f <filename> argument of the vcom, vlog, sccom
and vsim commands. The -f <filename> argument specifies afile that contains more
command line arguments.

Comments within the argument files follow these rules:
* All text in aline beginning with // to its end is treated as a comment.
* All text bracketed by /* ... */ istreated as a comment.

Also, program arguments can be placed on separate lines in the argument file, with the
newline characters treated as space characters. Thereis no need to put '\' at the end of each
line.

Command shortcuts

* You may abbreviate command syntax, but there’' s a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work. For this reason
Model Sim does not allow command name abbreviations in macro files. This minimizes
your need to update macro files as new commands are added.

» Multiple commands may be entered on onelineif they are separated by semi-colons (;).
For example:

Model Si n» vl og - nodebug=ports level3.v level2.v ; vlog -nodebug top.v
The return value of the last function executed is the only one printed to the transcript.

This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim-c -do "run 20 ; sinmstats ; quit -f" top
Y ou probably expect the simstats results to display in the Transcript window, but they

will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim-do "run 20 ; echo [sinstats]; quit -f" -c top

ModelSim SE Command Reference

Command shortcuts CR-19

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the Model Sim/V SIM prompt:

Shortcut Description

H repeats the last command

I'n repeats command number n; nistheVSIM prompt number (e.g.,
for this prompt: VSIM 12>, n=12)

labc repeats the most recent command starting with "abc"

~xyz~ap”" replaces "xyz" in the last command with "ab"

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt to the active
cursor

his or history shows the last few commands (up to 50 are kept)

ModelSim SE Command Reference

CR-20 Syntax and conventions

Numbering conventions

Numbersin Model Sim can be expressed in either VHDL or Verilog style. Y ou can usetwo
stylesfor VHDL numbers and one for Verilog.

VHDL numbering conventions

VHDL Style 1
Thefirst of two VHDL number stylesis:

[-1 [radix #] value [#]

Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by default,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

isadelimiter between the radix and the value; thefirst # signis

required if aradix is used, the second is always optional

A ‘-’ canalsobeusedtodesignatea"don’t care" element when you search for asignal value
or expression in the List or Wave window. If you want the ‘- to be read asa "don’t care”
element, rather than a negative sign, be sure to enclose the number in double quotes. For
instance, you would type "-0110--" as opposed to -0110--. If you don’t include the double
quotes, Model Sim will read the ‘-’ as a negative sign.

Examples
16#FFca23#
2#11111110
-23749

VHDL Style 2

The second VHDL number styleis:

base "val ue"

Element Description

base specifies the base; binary: B, octal: O, hex: X; required

value specifies digitsin the appropriate base with optional underscore
separators; default is decimal; required

Examples

B"11111110"
X' FFca23"

ModelSim SE Command Reference

Numbering conventions CR-21

Searching for VHDL arrays in the Wave and List windows

Searching for signal valuesin the Wave or List window may not work correctly for VHDL
arraysif thetarget valueisin decimal notation. Y ou may get an error that the value is of
incompatible type. Since VHDL does not have aradix indicator for decimal, the target
value may get misinterpreted asascalar value. Prefixing thevaluewith the Verilog notation
'd should eliminate the problem, even if the signal is VHDL.

Verilog numbering conventions
Verilog numbers are expressed in the style:

[-1 size] [base] value

Element Description

- indicates a negative number; optional

size the number of bitsin the number; optional

base specifies the base; binary: ‘b or ‘B, octa: ‘o or ‘O, decimal: ‘d or ‘D,
hex: *h or ‘H; optional

value specifies digits in the appropriate base with optional underscore
separators; default is decimal; required

A ‘-’ canalso beusedtodesignatea™don’t care" element when you searchfor asignal value
or expression in the List or Wave windows. If you want the ‘-’ to be read asa"don’'t care”
element, rather than a negative sign, be sure to enclose the number in double quotes. For
instance, you would type "-0110--" as opposed to 7'b-0110--. If you don’t include the
double quotes, Model Sim will read the *-" as a negative sign.

Examples
"b11111110 8 b11111110
" Hf f ca23 21’ Hif ca23
- 23749

DOS pathnames require abackslash (\), but Model Sim will accept either abackslash or the
forward slash (/). It does this because by default Model Sim PE uses backd ashes as
pathname separators. Therefore it cannot recognize extended identifiers.

Y ou can change this behavior so that backslashes on comment lines are used for extended
identifiers, but then you can only use forward slashes when you need pathname delimiters.
Todothis, "uncomment” the following linein the modelsim.ini file and set itsvalue to zero.

Backsl ashesAr ePat hnameDelimters = 0

Thiswill allow command linesthat can reference signals, variables, and design unit names
that use extended identifiers; for example:

exam ne \cl ock 2x\

ModelSim SE Command Reference

CR-22 Syntax and conventions

GUI_expression_format

The GUI_expression_format is an option of several simulator commands that operate
within the Model Sim GUI environment. The expressions help you locate and examine
objectswithin the List and Wave windows (expressions may also be used through the Edit
> Sear ch menu in both windows). The commands that use the expression format are:

compare add (CR-94), compar e clock (CR-99), compar e configur e (CR-101), configure
(CR-123), down (CR-152), examine (CR-162), left (CR-189), right (CR-250), sear chlog (CR-
262), Up (CR-290), virtual function (CR-339), and virtual signal (CR-351)

Expression typing

GUI expressions are typed. The supported types consist of the following scalar and array
types.

Scalar types

The scalar types are as follows: boolean, integer, real, time (64-bit integer), enumeration,
and signal state. Signal states are represented by the nine VHDL std logic states: 'U’ ' X’
0’1 'Z'W L 'H and -

Verilog states 0, 1, x, and z are mapped into these states and the Verilog strengths are
ignored. Conversion is done automatically when referencing Verilog nets or registers.

SystemC scalar types supported are: all the C/C++ types except class, structure, union, and
array, aswell as SystemC types sc_logic and sc_hit.

Array types

The supported array types are signed and unsigned arrays of signal states. Thiswould
correspond to the VHDL std_logic_array type. Verilog registers are automatically
converted to these array types. The array type can be treated as either UNSIGNED or
SIGNED, asin the IEEE std_logic_arith package. Normally, referencing asignal array
causesit to be treated as UNSIGNED by the expression evaluator; to cause it to be treated
as SIGNED, use casting as described below. Numeric operations supported on arrays are
performed by the expression evaluator via Model Sim’ s built-in numeric_standard (and
similar) package routines. The expression eval uator sel ectsthe appropriate numeric routine
based on SIGNED or UNSIGNED properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals
may be used in the expression as long as some variable of that enumeration typeis
referenced in the expression. Thisisuseful for sub-expressions of the form:

(/ menory/ state == readi ng)

The supported SystemC aggregate types are the C/C++ array types: union, class, structure,
and array. Also supported are the SystemC array types. sc_bv<w>, sc_lv<w>, sC_int<w>,
etc.

ModelSim SE Command Reference

Expression syntax

GUI_expression_format

GUI expressions generally follow C-language syntax, with both VHDL -specific and

V eril og-specific conventions supported. These expressionsare hot parsed by the Tcl parser,
and so do not support general Tcl; parentheses should be used rather than curly braces.
Procedure calls are not supported.

A GUI expression can include the following elements: Tcl macros, constants, array
congtants, variables, array variables, signal attributes, operators, and casting.

Tcl macros

Macros are useful for pre-defined constants or for entire expressions that have been
previously saved. The substitution is done only once, when the expression is first parsed.

Macro syntax is:

$<nane>

Substitutes the string value of the Tcl global variable <name>.

CR-23

Constants
Type Values
boolean value true false TRUE FALSE
integer [0-9]+
real number <int>|([<int>].<int>[exp]) where the optional [exp] is: (e|E)[+|-][O-
9]+
time integer or real optionally followed by time unit
enumeration VHDL user-defined enumeration literal

single bit constants

expressed as any of the following:
01xXzZUHLW'U'X''0'1’'Z" "W 'L"'H ’-" 1I'b0 1'bl

Array constants, expressed in any of the following formats

Type

Values

VHDL # notation

<int>#<al phanum>[#]
Example: 16#abcl123#

VHDL bitstring

“(UIX[OL|Z|WIL [H[-)**
Example: "11010X 11"

Verilog notation

[-][<int>]’ (b|B]|o]O|d|D|h|H) <alphanum>

(where <alphanum> includes 0-9, a-f, A-F, and’-")

Example: 12" hc91 (Thisisthe preferred notation becauseit removes
the ambiguity about the number of bits.)

Based notation

0x..., 0X..., 0o..., 00..., Ob..., OB...
Model Sim automatically zero fills unspecified upper bits.

ModelSim SE Command Reference

CR-24 Syntax and conventions

Variables

Variable Type

Name of asigna Thenamemay beasimplename, aVHDL or Verilog style extended
identifier, or aVHDL or Verilog style path. The signal must be one
of the following types:

-- VHDL signal of type INTEGER, REAL, or TIME

-- VHDL signal of type std_logic or hit

-- VHDL signal of type user-defined enumeration

-- Verilog net, Verilog register, Verilog integer, or Verilog real

-- SystemC primitive channels of type scalar (e.g. boal, int, etc.)

NOW Returns the value of time at the current location in the WLF file as
the WLF fileis being scanned (not the most recent simulation time).

Array variables

Variable Type
Name of asignal -- VHDL signals of type bit_vector or std_logic_vector
-- Verilog register

-- Verilog net array

-- SystemC primitive channels of type vector (e.g. sc_bv, sc_int,
etc.)

A subrange or index may be specified in either VHDL or Verilog
syntax. Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4),
mysignal [4]

Signal attributes

<name>' event
<name>'rising
<name>'falling
<name>’ delayed()
<name>’ hasX

The’delayed attribute lets you assign adelay to aVHDL signal. To assign adelay to a
signal in Verilog, use “#” notation in a sub-expression (e.g., #-10 /top/signal A).

The hasX attribute lets you search for signals, nets, or registers that contains an X
(unknown) value.

See "Examples’ (CR-26) below for further details on’delayed and 'hasX.

ModelSim SE Command Reference

GUI_expression_format CR-25

Operators

Operator Description Operator Description

&& boolean and slI/SLL shift left logical

I boolean or da/SLA shift left arithmetic

! boolean not srl/SRL shift right logical

== equal sralSRA shift right

arithmetic

I= not equal ror/ROR rotate right

=== exact equal rol/ROL rotate left

== exact not equal + arithmetic add

< less than - arithmetic subtract

<= less than or equal * arithmetic multiply

> greater than / arithmetic divide

>= greater than or equal mod/MOD arithmetic modulus

not/NOT/~ unary bitwise rem/REM arithmetic
inversion remainder

and/AND/& bitwise and [<vector_expr> OR reduction

nand/NAND bitwise nand A<vector_expr> XOR reduction

or/OR/| bitwise or

nor/NOR bitwise nor

xor/XOR bitwise xor

xnor/ XNOR bitwise xnor

P Note: Arithmetic operators use the std_logic_arith package.

ModelSim SE Command Reference

CR-26 Syntax and conventions

Casting
Casting Description
(boal) convert to boolean
(boolean) convert to boolean
(int) convert to integer
(integer) convert to integer
(real) convert to rea
(time) convert to 64-hit integer
(std_logic) convert to 9-state signal value
(signed) convert to signed vector
(unsigned) convert to unsigned vector
(std_logic_vector) convert to unsigned vector

Examples

/top/bus & $bit_mask
This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’ event &% (/top/xyz == 16 hffae)
This expression evaluates to a boolean true when signal clk changes and signal /top/xyz
isequal to hex ffae; otherwiseisfalse.

clk’rising & (nystate == reading) && (/top/u3/addr == 32' habcd1234)
Evaluates to a boolean true when signal clk just changed from low to high and signal
mystateisthe enumeration reading and signal /top/u3/addr isequal to the specified 32-bit
hex constant; otherwise isfalse.

(/top/u3/addr and 32’ hf f 000000) == 32’ hac000000
Evaluates to abool ean true when the upper 8 bits of the 32-hit signal /top/u3/addr equals
hex ac.

/top/ si gnal A' del ayed(10ns)
This expression returns /top/signal A delayed by 10 ns.

/top/ signal A' del ayed(10 ns) && /top/signal B
This expression takes the logical AND of a delayed /top/signal A with /top/signal B.

virtual function { (#-10 /top/signal A) && /top/signal B}
mySi gnal B_AND_Del ayedSi gnal A

Thisevaluates/top/signal A at 10 simul ation time steps before the current time, and takes
thelogical AND of theresult with the current value of /top/signal B. The '# notation uses
positive numbers for looking into the future, and negative numbers for delay. This
notation does not support the use of time units.

ModelSim SE Command Reference

GUI_expression_format CR-27

((NOW > 23 us) &% (NOW< 54 us)) && clk'rising & (nmpde == writing)
Evaluates to a boolean true when WLF file time is between 23 and 54 microseconds, clk
just changed from low to high, and signal mode is enumeration writing.

searchl og -expr {dbus' hasX} {0 ns} dbus
Searchesfor an’ X’ in dbus. Thisis equivalent to the expression: {dbus(0) == X' ||
dbus(1) ==X} Thismakesit possible to search for X valueswithout having to write
atype specific literal.

Signal and subelement naming conventions

M odel Sim supports naming conventions for VHDL and Verilog signal pathnames, VHDL
array indexing, Verilog bit selection, VHDL subrange specification, and Verilog part
selection. All supported naming conventionsfor VHDL and Verilog arevalid for SystemC
designs.

Examplesin Verilog and VHDL syntax:

top. chip.vlogsig
/top/ chip/vhdlsig
vl ogsi g[3]

vhdl si g(9)

vl ogsi g[5: 2]

vhdl si g(5 downto 2)

All of the above examples are valid for SystemC.

Grouping and precedence

Operator precedence generally follows that of the C language, but we recommend liberal
use of parentheses.

Concatenation of signals or subelements

Elementsin the concatenation that are arrays are expanded so that each element inthe array
becomes a top-level element of the concatenation. But for elements in the concatenation
that are records, the entire record becomes one top-level element in the result. To specify
that the records be broken down so that their subelements become top-level elementsinthe
concatenation, use the concat_flatten directive. Currently we do not support leaving full
arrays as elementsin the result. (Please let us know if you need that option.)

If the elements being concatenated are of incompatible base types, a VHDL-style record
will be created. The record object can be expanded in the Objects and Wave windows just
like an array of compatible type elements.

Concatenation syntax for VHDL
<signal Or Sl i ceNanel> & <signal O SliceNane2> & ...

Concatenation syntax for Verilog
&{ <si gnal Or Sl i ceNanmel>, <signal OrSliceName2>, ... }
& <count >{<si gnal Or Sl i ceName1>}, <signal OrSliceName2>, ... }

Note that the concatenation syntax beginswith "&{" rather than just "{". Repetition
multipliersare supported, asillustrated in the second line. Therepetition element itself may
be an arbitrary concatenation subexpression.

ModelSim SE Command Reference

CR-28 Syntax and conventions

Concatenation directives

A concatenation directive (asillustrated below) can be used to constrain the resulting array
range of a concatenation or influence how compound objects are treated. By default, the
concatenation will be created with a descending index range from (n-1) downto O, wheren
isthe number of elementsin the array.

(concat _range 31:0)<concatenati onExpr> # Verilog syntax
(concat _range (31:0))<concatenationExpr> # Al so Verilog syntax
(concat _range (31 downto 0))<concatenati onExpr> # VHDL synt ax

The concat_range directive completely specifies the index range.

(concat _ascendi ng) <concat enati onExpr >
The concat_ascending directive specifies that the index start at zero and increment
upwards.

(concat _flatten) <concatenati onExpr>
The concat_flatten directive flattens the signal structure hierarchy.
(concat _nof | atten) <concatenati onExpr>

The concat_noflatten directive groups signals together without merging them into one
big array. The signal s become elements of arecord and retain their original names. When
expanded, the new signal looks just like a group of signals. The directive can be used
hierarchically with no limits on depth.

(concat _sort_wi | d_ascendi ng) <concat enati onExpr >
Theconcat_sort_wild_ascending directive gathers signals by name in ascending order
(the default is descending).

(concat _reverse) <concatenati onExpr>
The concat_rever se directive reverses the hits of the concatenated signals.

Examples
& "mybusbasenane*" }

Gathers all signalsin the current context whose names begin with "mybusbasename”,
sorts those names in descending order, and creates a bus with index range (n-1) downto
0, wherenisthe number of matching signalsfound. (Notethat it currently does not derive
the index name from the tail of the one-bit signal name.)

(concat _range 13:4) & "nybusbasenanme*" }

Specifies the index range to be 13 downto 4, with the signals gathered by namein
descending order.

(concat _ascendi ng) & "mybusbasenanme*" }

Specifiesan ascending range of 0to n-1, with the signals gathered by namein descending
order.

(concat _ascendi ng) ((concat _sort _wi | d_ascendi ng) & " nybusbasenanme*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by namein ascending
order.

(concat _reverse) (busl & bus2)
Specifies that the bits of busl and bus2 be reversed in the output virtua signal.

ModelSim SE Command Reference

GUI_expression_format CR-29

Record field and SystemC class/structure/union members

Arbitrarily-nested arrays and records are supported, but operators will only operate on one
field at atime. That is, the expression {a == b} where a and b are records with multiple
fields, is not supported. This would have to be expressed as:

{(a.f1 ==b.f1) & (a.f2 == b.f2)...}

Examples:

vhdl sig.fieldl

vhdl sig.fieldl. subfieldl
vhdl sig. (5).field3

vhdl sig.fiel d4(3 downto 0)

Searching for binary signal values in the GUI

When you use the GUI to search for signal values displayed in 4-state binary radix, you
should be aware of how Model Sim maps between binary radix and std_logic. The issue
arises because thereisno “un-initialized” value in binary, while thereisin std_logic. So,
Model Sim relies on mapping tables to determine whether a match occurs between the
displayed binary signal value and the underlying std_logic value.

This matching algorithm applies only to searching viathe GUI. It does not apply to VHDL
or Verilog testbenches.

For comparing VHDL std_logic/std_ulogic objects, M odel Sim usesthetable shown below.
Anentry of “0” inthe tableis“no match”; an entry of “1” isa“match”; an entry of “2” is
amatchonly if you set the Tcl variable STDLOGIC_X_MatchesAnythingto 1. Notethat
Xwill match aU, and - will match anything.

Search Matches asfollows:
Entry U X 0 1 z W L H
U 1 1 0 0 0 0 0 0 1
X 1 1 2 2 2 2 2 2 1
0 0 2 1 0 0 0 1 0 1
1 0 2 0 1 0 0 0 1 1
z 0 2 0 0 1 0 0 0 1
W 0 2 0 0 0 1 0 0 1
L 0 2 1 0 0 0 1 0 1
H 0 2 0 1 0 0 0 1 1
- 1 1 1 1 1 1 1 1 1

ModelSim SE Command Reference

CR-30 Syntax and conventions

For comparing Verilog net values, Model Sim uses the table shown below. An entry of “2”
isamatch only if you set the Tcl variable “VLOG_X_MatchesAnything” to 1.

Search Matches asfollows:
Entry
0 1 Z X
0 1 0 0 2
1 0 1 0 2
Z 0 0 1 2
X 2 2 2 1

Thistable also appliesto SystemC types:. sc_bit, sc_bv, sc_logic, sc_int, sc_uint, sc_bigint,
sc_higuint.

ModelSim SE Command Reference

CR-31

Commands

Chapter contents

Command referencetableCR-32

The commands here are entered either in macro files or on the command line of the Main
window. Some commands are automatically entered on the command line when you use
the Model Sim graphical user interface.

Note that in addition to the simulation commands documented in this section, you can use
the Tcl commands described in the Tcl man pages (use the Main window menu selection:
Help > Tcl Man Pages).

Command syntax

See "Syntax and conventions' (CR-9) for complete command syntax information.

P Note: Model Sim commands are case sensitive. Type them as they are shown in this
reference.

ModelSim SE Command Reference

Command reference table

Command reference table

The following table provides a brief description of each Model Sim command. Command
details, arguments, and examples can be found at the page numbers given in the Command

name column.

Command name

Action

.main clear (CR-43)

clears the Main window transcript

abort (CR-44)

halts the execution of a macro file interrupted by a breakpoint or error

add button (CR-45)

adds a user-defined button to the Main window button bar

add dataflow (CR-47)

adds the specified object to the Dataflow window

add list (CR-48) lists VHDL signals and variables, and Verilog nets and registers, and their
valuesin the List window
add log also known as the log command; seelog (CR-191)

add watch (CR-51)

adds signals or variables to the Monitor window

add wave (CR-52)

adds VHDL signalsand variables, and Verilog nets and registersto the Wave
window

add_menu (CR-56)

adds a menu to the menu bar of the specified window, using the specified
menu name

add_menuchb (CR-58)

creates a checkbox within the specified menu of the specified window

add_menuitem (CR-59)

creates a menu item within the specified menu of the specified window

add_separator (CR-60)

adds a separator as the next item in the specified menu path in the specified
window

add_submenu (CR-61)

creates a cascading submenu within the specified menu path of the specified
window

alias (CR-62)

creates a new Tcl procedure that eval uates the specified commands

assertion fail (CR-63)

configuresfail tracking for PSL assertions

assertion pass (CR-65)

configures pass tracking for PSL assertions

assertion report (CR-67)

produces atextual summary of PSL assertion results

batch_mode (CR-69)

returnsa lif ModelSim is operating in batch mode, otherwise returns a0

bd (CR-70)

deletes a breakpoint

bookmark add wave (CR-71)

adds a bookmark to the specified Wave window

bookmark delete wave (CR-72)

del etes bookmarks from the specified Wave window

bookmark goto wave (CR-73)

ModelSim SE Command Reference

zooms and scrolls aWave window using the specified bookmark

Command reference table CR-33

Command name Action

bookmark list wave (CR-74) displays alist of available bookmarks

bp (CR-75) sets a breakpoint

cd (CR-78) changes the Model Sim local directory to the specified directory

cdbg (CR-79) provides command-line equival ents of the menu optionsthat are availablefor
"C Debug" (UM-399)

change (CR-81) modifies the value of aVHDL variable or Verilog register variable

change_menu_cmd (CR-83) changes the command to be executed for a specified menu item label, in the
specified menu, in the specified window

check contention add (CR-84) enables contention checking for the specified nodes

check contention config (CR-86) writes checking messagesto afile

check contention off (CR-87) disables contention checking for the specified nodes

check float add (CR-88) enables float checking for the specified nodes

check float config (CR-89) writes checking messagesto afile

check float off (CR-90) disables float checking for the specified nodes

check stable off (CR-91) disables stability checking

check stable on (CR-92) enables stahility checking on the entire design

checkpoint (CR-93) saves the state of your simulation

compare add (CR-94) compares signalsin areference design against signalsin atest design

compare annotate (CR-98) marks a compare difference as "ignore” or tagsit with atext message

compare clock (CR-99) defines a clock to be used with clocked-mode comparisons

compare configure (CR-101) modifies options for compare signals or regions

compare continue (CR-103) continues difference computation that had been suspended

compare delete (CR-104) deletes asignal or region from the current comparison

compare end (CR-105) closes the currently open comparison

compare info (CR-106) lists the results of the comparison

compare list (CR-107) lists al the compare add commands currently in effect

compare options (CR-108) sets defaults for options used in other compare commands

compare reload (CR-112) rel oads a comparison previously saved with the compare savediffs command

compare reset (CR-113) clears the current compare differences

compare run (CR-114) runs the comparison on selected signals

ModelSim SE Command Reference

CR-34

Command reference table

Command name

Action

compare savediffs (CR-115)

saves comparison differences to afile that can be reloaded later

compare saverules (CR-116)

saves comparison setup information to afile that can be reloaded later

compare see (CR-117)

displays a comparison difference in the Wave window

compare start (CR-119)

starts a new dataset comparison

compare stop (CR-121)

halts active difference computation

compare update (CR-122)

updates the comparison differences

configure (CR-123)

invokesthe List or Wave widget configure command for the current default
List or Wave window

context (CR-127)

provides several operations on a context’s name

coverage clear (CR-128)

clears al coverage data obtained during previous run commands

coverage exclude (CR-129)

loads an exclusion filter file; or, allows you to exclude specific

coverage reload (CR-131)

seeds the coverage statistics with the output of a previous cover age save
command

coverage report (CR-132)

produces atextual output of the coverage statisticsthat have been gathered up
to this point

coverage save (CR-135)

saves current coverage statisticsto afilethat can be reloaded | ater, preserving
instance-specific information

dataset alias (CR-136)

assigns an additional name to a dataset

dataset clear (CR-137)

clears the current simulation WLF file

dataset close (CR-138)

closes a dataset

dataset info (CR-139)

reports information about the specified dataset

dataset list (CR-140)

lists the open dataset(s)

dataset open (CR-141)

opens a dataset and referencesit by alogical name

dataset rename (CR-142)

changes the logical name of an opened dataset

dataset save (CR-143)

saves data from the current WLF file to a specified file

dataset snapshot (CR-144)

saves data from the current WLF file at a specified interval

delete (CR-146)

removes objects from either the List or Wave window

describe (CR-147)

displays information about the specified HDL object

disablebp (CR-148)

turns off breakpoints and when commands

disable_menu (CR-149)

ModelSim SE Command Reference

disables the specified menu within the specified window

Command reference table CR-35

Command name Action

disable_menuitem (CR-150) disables the specified menu item within the specified menu path of the
specified window

do (CR-151) executes commands contained in a macro file

down (CR-152) searches for signal transitions or values in the specified List window

drivers (CR-154) displaysin the Main window the current value and scheduled future values
for al the drivers of a specified VHDL signal or Verilog net

dumplog64 (CR-155) dumps the contents of the vsim.wif file in a readable format

echo (CR-156) displays a specified message in the Main window

edit (CR-157) invokes the editor specified by the EDITOR environment variable

enablebp (CR-158) turns on breakpoints and when commands turned off by the disablebp
command (CR-148)

enable_menu (CR-159) enables a previoudy-disabled menu

enable_menuitem (CR-160) enables a previoudy-disabled menu item

environment (CR-161) displays or changes the current dataset and region environment

examine (CR-162) examines one or more objects, and displays current values (or the values at a
specified previous time) in the Main window

exit (CR-166) exits the simulator and the Model Sim application

fcover clear (CR-167) clears the active functional coverage database

fcover comment (CR-168) adds comment meta-data to the active functional coverage database

fcover configure (CR-169) enables, disables, and sets coverage targets for PSL coverage directives

fcover reload (CR-171) reloads a previously saved functional coverage database

fcover report (CR-173) reports results of afunctional coverage analysis

fcover save (CR-175) saves the active functional coverage databaseto afile

find (CR-176) displays the full pathnames of all objects in the design whose names match
the name specification you provide

force (CR-180) applies stimulusto VHDL signals and Verilog nets

gdb dir (CR-183) setsthe source directory for FLI/PLI/VPI C source code when using C Debug

getactivecursortime (CR-184) gets the time of the active cursor in the Wave window

getactivemarkertime (CR-185) gets the time of the active marker in the List window

help (CR-186) displaysin the Main window a brief description and syntax for the specified
command

history (CR-187) lists the commands executed during the current session

ModelSim SE Command Reference

Command reference table

Command name

Action

lecho (CR-188)

takes one or more Tcl lists as arguments and pretty-prints them to the Main
window

left (CR-189) searches | eft (previous) for signal transitions or values in the specified Wave
window
log (CR-191) creates awave log format (WLF) file containing simulation data for all

objects whose names match the provided specifications

Ishift (CR-193)

takesa Tcl list as an argument and shifts it in-place one place to the left,
eliminating the left-most element

Isublist (CR-194)

returns a sublist of the specified Tcl list that matches the specified Tcl glob
pattern

macro_option (CR-195)

controls the speed and delay of macro (DO file) playback, plus the level of
debugging feedback

mem display (CR-196)

displays the memory contents of a selected instance to the screen

mem list (CR-198)

displays aflattened list of al memory instancesin the current or specified
context after a design has been elaborated

mem load (CR-199)

updates the simulation memory contents of a specified instance

mem save (CR-202)

saves the contents of amemory instance to afile in any of the supported
formats: Verilog binary, Verilog hex, and MTI memory pattern data

mem search (CR-204)

findsand printsto the screen the first occurring match of a specified memory
pattern in the specified memory instance

modelsim (CR-206)

starts the Model Sim GUI without prompting you to load adesign; valid only
for Windows platforms

next (CR-207)

continues a search; see the sear ch command (CR-260)

noforce (CR-208)

removes the effect of any active for ce (CR-180) commands on the selected
object

nolog (CR-209)

suspends writing of data to the WLF file for the specified signals

notepad (CR-211)

opens asimple text editor

noview (CR-212)

closes awindow in the Model Sim GUI

nowhen (CR-213)

deactivates selected when (CR-407) commands

onbreak (CR-214)

specifies command(s) to be executed when running a macro that encounters
a breakpoint in the source code

onElabError (CR-215)

specifies one or more commandsto be executed when an error isencountered
during elaboration

ONerror (CR-216)

ModelSim SE Command Reference

specifies one or more commands to be executed when a running macro
encounters an error

Command reference table

CR-37

Command name

Action

pause (CR-217)

interrupts the execution of a macro

play (CR-218)

plays a sequence of keyboard and mouse actions that were previously saved
to afile with the record command (CR-243)

pop (CR-219)

moves one level up the C callstack

power add (CR-220)

specifies the signals or nets to track for power information

power report (CR-221)

writes out the power information for the specified signals or nets

power reset (CR-222)

resets power information to zero for the signals or nets specified with the
power add command (CR-220)

precision (CR-223)

determines how real numbers display in the GUI

printenv (CR-224)

echoes to the Main window the current names and values of all environment
variables

profile clear (CR-225)

clears any statistical performance or memory allocation data that has been
gathered during previous run commands

profile interval (CR-226)

selects the frequency with which the profiler collects samples during arun
command

profile off (CR-227)

disables runtime stetistical performance and memory allocation profiling

profile on (CR-228)

enables runtime profiling of where your smulation is spending its time and
where memory is allocated

profile option (CR-229)

allows various profiling options to be changed

profile reload (CR-230)

reads in raw profile datafrom an external file created during memory
alocation profiling

profile report (CR-231)

produces atextua output of the profiling statistics that have been gathered up
to this point

project (CR-233)

performs common operations on new projects

property list (CR-234)

changes one or more properties of the specified signal, net, or register in the
List window (GR-153)

property wave (CR-235)

changes one or more properties of the specified signal, net, or register in the
Wave window (GR-211)

push (CR-237)

moves one level down the C callstack

pwd (CR-238)

displays the current directory path in the Main window

quietly (CR-239)

turns off transcript echoing for the specified command

quit (CR-240)

exits the simulator

radix (CR-241)

specifies the default radix to be used

ModelSim SE Command Reference

CR-38 Command reference table

Command name

Action

readers (CR-242)

displays the names of all readers of the specified object

record (CR-243)

starts recording a replayable trace of all keyboard and mouse actions

report (CR-244)

displays the value of all simulator control variables, or the value of any
simulator state variables relevant to the current simulation

restart (CR-246)

reloads the design elements and resets the simulation time to zero

restore (CR-248)

restores the state of a simulation that was saved with acheckpoint command
(CR-93) during the current invocation of vsim

resume (CR-249)

resumes execution of a macro file after a pause command (CR-217) or a
breakpoint

right (CR-250)

searches right (next) for signal transitions or valuesin the specified Wave
window

run (CR-252)

advances the simulation by the specified number of timesteps

SCCOM (CR-254)

compiles SystemC design units

scgenmod (CR-258)

createsa VHDL entity’s or Verilog modul€e's equivalent SystemC foreign
module declaration, writing it to standard output

search (CR-260)

searchesthe specified window for one or more objects matching the specified
pattern(s)

searchlog (CR-262)

searches one or more of the currently open logfiles for a specified condition

seetime (CR-264)

scrollsthe List or Wave window to make the specified time visible

setenv (CR-265)

sets an environment variable

shift (CR-266)

shifts macro parameter values down one place

show (CR-267)

lists objects and subregions visible from the current environment

simstats (CR-268)

reports performance-related statistics about active simulations

splitio (CR-270)

operateson aVHDL inout or out port to create a new signal having the same

name as the port suffixed with“__o

status (CR-271)

listsal currently interrupted macros

step (CR-272)

stepsto the next HDL statement

stop (CR-273)

stops simulation in batch files; used with the when command (CR-407)

tb (CR-274)

displays a stack trace for the current process in the Transcript pane

tcheck _set (CR-275)

modifies atiming check’s reporting or X generation status

tcheck _status (CR-277)

prints the current status of timing checks to the Transcript pane

toggle add (CR-279)

ModelSim SE Command Reference

enables collection of toggle statistics for the specified nodes

Command reference table CR-39

Command name Action

toggle disable (CR-281) disables collection of toggle statistics for the specified nodes

toggle enable (CR-282) re-enabl es collection of toggle statistics for the specified nodes

toggle report (CR-283) displaysto the Transcript pane alist of all nodes that have not transitioned to
both 0 and 1 at least once

toggle reset (CR-284) resets the toggle counts to zero for the specified nodes

transcribe (CR-285) displays acommand in the Transcript pane, then executes the command

transcript (CR-286) controls echoing of commands executed in a macro file; also works at top
level in batch mode

transcript file (CR-287) sets or queries the pathname for the transcript file

tssi2mti (CR-288) converts avector file in Fluence Technology (formerly TSSI) Standard
Events Format into a sequence of for ce (CR-180) and run (CR-252) commands

unsetenv (CR-289) deletes an environment variable

up (CR-290) searches for signal transitions or values in the specified List window

ved add (CR-292) adds the specified objects to the VCD file

ved checkpoint (CR-293) dumps the current values of all VCD variablesto the VCD file

ved comment (CR-294) inserts the specified comment in the VCD file

ved dumpports (CR-295) creates aVCD file that captures port driver data

ved dumpportsall (CR-297) creates a checkpoint in the VCD file that shows the current values of all
selected ports

ved dumpportsflush (CR-298) flushes the VCD buffer to the VCD file

ved dumpportslimit (CR-299) specifies the maximum size of the VCD file

ved dumpportsoff (CR-300) turns off VCD dumping and records all dumped port values as x

vcd dumpportson (CR-301) turns on VCD dumping and records the current values of all selected ports

vcd file (CR-302) specifies the filename and state mapping for the VCD file created by avcd
add command (CR-292)

vcd files (CR-304) specifies the filename and state mapping for the VVCD file created by avcd
add command (CR-292); supports multiple VCD files

ved flush (CR-306) flushes the contents of the VCD file buffer to the VCD file

ved limit (CR-307) specifies the maximum size of the VCD file

ved off (CR-308) turns off VCD dumping and records all VCD variable values as x

vcd on (CR-309) turns on VCD dumping and records the current values of al VCD variables

ved2wlf (CR-310) translates VCD filesinto WLF files

ModelSim SE Command Reference

CR-40

ModelSim SE Command Reference

Command reference table

Command name

Action

VCom (CR-311)

compiles VHDL design units

vcover convert (CR-319)

convertsab.7 coverage fileto a’5.8 format

vCcover merge (CR-320)

merges multiple code or functional coverage data files offline

VCover report (CR-322)

reports on multiple code or functional coverage datafiles offline

veover stats (CR-325)

produces summary statistics from multiple coverage data files

vdel (CR-327)

deletes a design unit from a specified library

vdir (CR-328)

lists the contents of a design library

VEITor (CR-329)

prints a detailed description of a message number

vgencomp (CR-330)

writes a Verilog modul€e’ s equivalent VHDL component declaration to
standard output

View (CR-332)

opens a Model Sim window and brings it to the front of the display

virtual count (CR-334)

counts the number of currently defined virtuals that were not read in using a
macro file

virtual define (CR-335)

prints the definition of avirtual signal or function in the form of acommand
that can be used to re-create the object

virtual delete (CR-336)

removes the matching virtuals

virtual describe (CR-337)

prints a complete description of the data type of one or more virtual signals

virtual expand (CR-338)

produces alist of all the non-virtual objects contained in the virtual signal(s)

virtual function (CR-339)

createsanew signal that consists of logical operationson existing signalsand
simulation time

virtual hide (CR-342)

causes the specified real or virtual signalsto not be displayed in the Objects
window

virtual log (CR-343)

causes the sim-mode dependent signals of the specified virtual signalsto be
logged by the simulator

virtual nohide (CR-345)

redisplays avirtual previously hidden with virtual hide

virtual nolog (CR-346)

stops the logging of the specified virtua signals

virtual region (CR-348)

creates a new user-defined design hierarchy region

virtual save (CR-349)

saves the definitions of virtualsto afile

virtual show (CR-350)

lists the full path names of al the virtuals explicitly defined

virtual signal (CR-351)

creates a new signal that consists of concatenations of signals and
subelements

virtual type (CR-354)

creates a new enumerated type

Command reference table

CR-41

Command name

Action

vlib (CR-356)

creates adesign library

vlog (CR-358)

compiles Verilog design units

vmake (CR-369)

creates a makefile that can be used to reconstruct the specified library

vmap (CR-370)

defines a mapping between alogical library name and a directory

vopt (CR-371)

produces an optimized version of your design

VvSim (CR-373)

loads a new design into the simulator

vsim<info> (CR-392)

returns information about the current vsim executable

vsource (CR-393)

specifies an aternative file to use for the current source file

wave (CR-394)

commands for manipulating cursors, for zooming, and for adjusting the wave
display view in the Wave window

wave create (CR-397)

creates an editable waveform that can be used to create stimulus and drive
simulation

wave edit (CR-400)

edits a created waveform

wave export (CR-403)

exports created waveforms to a stimulusfile

wave import (CR-404)

imports an EVCD file previously created with a wave export command

wave modify (CR-405)

modifies the parameters of a created waveform

when (CR-407)

instructs Model Sim to perform actions when the specified conditions are met

where (CR-412)

displays information about the system environment

wlf2log (CR-413)

translates aModel Sim WLF file to a QuickSim Il logfile

wlf2ved (CR-415)

translates aModelSim WLF fileto aVCD file

wlfman (CR-416)

outputs information about or a new WLF file from an existing WLF file

wlfrecover (CR-420)

attemptsto repair an incomplete WLF file

write cell_report (CR-421)

creates areport of cell instancesin the design that are optimized

write format (CR-422)

records the names and display optionsin afile of the objects currently being
displayed in the List or Wave window

write list (CR-424)

records the contents of the most recently opened or specified List window in
alist output file

write preferences (CR-425)

saves the current GUI preference settingsto a Tcl preferencefile

write report (CR-426)

prints a summary of the design being simulated

write transcript (CR-428)

writes the contents of the Main window transcript to the specified file

ModelSim SE Command Reference

CR-42 Command reference table

Command name Action

write tssi (CR-429) records the contents of the default or specified List window ina“TSS|
format” file

write wave (CR-431) records the contents of the most currently opened or specified Wave window
in PostScript format

ModelSim SE Command Reference

.main clear CR-43

.main clear
The.main clear command clearsthe Transcript pane. The behavior isthe same as sel ecting
Edit > Clear when the Transcript paneis active.
Syntax
.main clear
Arguments
None.
See also

Main window (GR-14)

ModelSim SE Command Reference

CR-44 abort

abort

Syntax

Arguments

See also

Theabort command haltsthe execution of amacro fileinterrupted by abreakpoint or error.
When macros are nested, you may choose to abort the last macro only, abort a specified
number of nesting levels, or abort all macros. The abort command may be used within a
macro to return early.

abort
[<n>] all]

<n> | al
An integer giving the number of nested macro levelsto abort; all aborts al levels.
Optional. Default is 1.

onbreak (CR-214), onElabError (CR-215), onerror (CR-216)

ModelSim SE Command Reference

add button CR-45

add button
The add button command adds a user-defined button to the Main window button bar. New
buttons are added to the right end of the bar. Y ou can also add buttons via the GUI (see
"Customize Toolbar dialog" (GR-106)).
Returns the path name of the button widget created.
Syntax
add button
<Text> <Cnd> [Di sabl e | NoDi sable] [{<option> <value> ...}]
Arguments
<Text >

The label to appear on the face of the button. Required.

<Cmd>
The command to be executed when the button is clicked with the left mouse button. To
echo the command and display the return valuein the Main window, prefix the command
with the transcribe command (CR-285). Transcribe will also echo the results to the
Transcript pane. Required.

Di sabl e | NoDi sabl e
If Disable, the button will be grayed-out during arun and not active. If NoDisable, the
button will continue to be active during a run. Optional. The default is Disable.

{<option> <value> ...}
A list of option-value pairs that will be applied to the button widget. Optional. Any
properties belonging to Tk button widgets may be set. Useful options are foreground
color (-fg), background color (-bg), width (-width), and relief (-relief).

For acomplete list of available options, use the configure command addressed to the
newly-created widget. For example:

. dockbar. tbf 0. standard. tb. button_51 config

P Note: Because the arguments are positional, a Disable | NoDisable option must be
specified in order to use the options argument.

ModelSim SE Command Reference

CR-46 add button

Examples
add button pwd {transcribe pwd} NoDi sable
Creates a button labeled “pwd” that invokes the transcribe command (CR-285) with the
pwd Tcl command, and echoes the command and its results to the Transcript pane (see
graphic below). The button remains active during a run.
I|_',':=:g"‘_|'MudelSim
File Edit Yiew Format Compile Simolake Add Tools Window Help
J @ E @ J Contains: S
‘Warkspace transcribe
"IName |T_l,l|:ue |F'ath i
[l weork. Library wark
wital2000 Library $MODEL_TECH/. i
ieee Libray $MODEL_TECH/. /i
[l modelsin_lib Library $MODEL_TECH/./m —
std Library $MODEL_TECH/. /st
il std develonerskit Librany $MODEL TECHA /st =]
| ol
C:/modeltech/examplez/memongMverlog
ModelSims |
|<Nc: Design Loaded= | b
add button date {transcribe exec date} Disable {-fg blue -bg yellow\
-activebackground red}
Creates a button labeled “date” that echoes the system date to the Transcript pane. The
button is disabled during arun; its colors are: blue foreground, yellow background, and
red active background.
add button doit {run 1000 ns; echo did it} Disable {-underline 1}
Createsa“doit” button and underlines the second character of the label, the"o" of "doit".
.dockbar.tbf0.standard. tbh. button_13 config -command {run 10000} -bg red
Changes the button command to "run 10000" and changes the button background col or
tored.
See also

transcribe (CR-285), "Customize Toolbar dialog" (GR-106)

ModelSim SE Command Reference

add dataflow CR-47

add dataflow

The add dataflow command adds the specified process, signal, net, or register to the
Dataflow window. Wildcards are allowed.

Syntax
add dat afl ow
<obj ect > [-w ndow <wnane>]
<obj ect >
Specifies aprocess, signal, net, or register that you want to add to the Datafl ow window.
Required. Multiple objects separated by spacesmay be specified. Wildcardsare allowed.
(Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching objects with wildcard patterns.)
-w ndow <wname>
Adds the objects to the specified Dataflow window <wname> (e.g., dataflow?2).
Optional. Used to specify aparticular window when multiple instances of that window
type exist. Selects an existing window; does not create a new window. Use the view
command (CR-332) with the -new option to create a new window.
See also

Dataflow window (GR-128)

ModelSim SE Command Reference

CR-48 add list

add list

Syntax

Arguments

The add list command adds the following objects and their values to the List window:
VHDL signas and variables; Verilog nets and registers; and SystemC primitive channels
(signals). User-defined buses may also be added.

If no port modeis specified, add list will display al objectsin the selected region with
names matching the object name specification.

Limitations: VHDL variables and Verilog memories can be listed using the variable' s full
name only (no wildcards).

add |i st
[-al l owconstants] [-depth <level>] [-in] [-inout] [-internal]
[-1abel <nane>] [-nodelta] [-notrigger | -trigger] [-optcells] [-out]
[-ports] [-<radix>] [-recursive] [-width <n>] [-w ndow <wnane>]
[[<obj ect_nane> | {<object_name> {sigl sig2 sig3 ...}}] ...] ...

-al l onmconst ant s
For use with wildcard searches. Specifiesthat constants matching the wildcard search
should be added to the List window. Optional. By default, constants are ignored because
they do not change.

-depth <l evel >
Restricts arecursive search (specified with the -r ecur sive argument) to acertain level of
hierarchy. <level> isaninteger greater than or equal to zero. For example, if you specify
-depth 1, the command descends only one level in the hierarchy. Optional.

-in
For use with wildcard searches. Specifies that the scope of the search isto include ports
of mode IN if they match the object_name specification. Optional.

-inout
For use with wildcard searches. Specifiesthat the scope of the search isto include ports
of mode INOUT if they match the object_name specification. Optional .

-interna
For use with wildcard searches. Specifies that the scope of the search isto include
internal objects (non-port objects) if they match the object_name specification. VHDL
variables are not selected. Optional.

-l abel <name>
Specifies an alternative signal name to be displayed as a column heading in the listing.
Optional. This aternative nameis not valid in afor ce (CR-180) or examine (CR-162)
command; however, it can be used in a sear ch command (CR-260) with the list option.

-nodel ta
Specifiesthat the delta column not be displayed when adding signalsto the List window.
Optional. Identical to configure list -delta none.

ModelSim SE Command Reference

add list CR-49

-notrigger
Specifies that objects are to be listed, but does not cause the List window to be updated
when the objects change value. Optional.

-optcells
Makes Verilog optimized cell ports visible when using wildcards. Optional. By default
Verilog optimized cell ports are not selected even if they match the specified wildcard
pattern.

-out
For use with wildcard searches. Specifiesthat the scope of the search isto include ports
of mode OUT if they match the object_name specification. Optional.

-ports
For use with wildcard searches. Specifies that the scope of the search isto include al
ports. Optional. Has the same effect as specifying -in, -out, and -inout together.

- <radi x>
Specifiestheradix for the objectsthat follow inthe command. Optional. Valid entries (or
any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symboalic, and
default. If no radix is specified for an enumerated type, the default representation is used.
Y ou can change the default radix for the current simulation using the radix command
(CR-241). Y ou can change the default radix permanently by editing the DefaultRadix (UM-
531) variable in the modelsim.ini file.

If you specify aradix for an array of aVHDL enumerated type, Model Sim converts each
signa valueto 1, 0, Z, or X.

-recursive
For use with wildcard searches. Specifies that the scope of the search isto descend
recursively into subregions. Optional. If omitted, the search is limited to the selected
region. Y ou can use the -depth argument to specify how far down the hierarchy to
descend.

-trigger
Specifiesthat objects areto belisted and causes the List window to be updated when the
objects change value. Optional. Default.

-wi dth <n>
Specifies the column width in characters. Optional.

-w ndow <wname>
Adds objects to the specified List window <wname> (e.g., list2). Optional. Used to
specify a particular window when multiple instances of that window type exist. Selects
an existing window; does not create anew window. Usethe view command (CR-332) with
the -new option to create a new window.

<obj ect _nane>
Specifies the name of the object to be listed. Optional. Wildcard characters are allowed.
(Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching objects with wildcard patterns.) Variables may be added if preceded by the
process name. For example,

add list nyproc/intl

ModelSim SE Command Reference

CR-50 add list

{<obj ect _nanme> {sigl sig2 sig3 ...}}
Creates a user-defined bus with the specified object name. The ‘sigi’ entries are signals
to be concatenated within the user-defined bus. Optional . Specified objects may be either
scalars or various sized arrays as long as they have the same element enumeration type.

Examples

add list -r /*
Lists all objectsin the design.

add list *
Listsall objectsin the region.

add list -in *
Listsall input portsin the region.

add list a -label sig /top/lower/sig {array_sig(9 to 23)}
DisplaysaList window containing three columns headed a, sig, and array_sig(9 to 23).

add list clk -notrigger a b c d

Listsclk, a, b, ¢, and d only when clk changes.
config list -strobeperiod {100 ns} -strobestart {0 ns} -usestrobe 1
add list -notrigger clk a b c d

Listsclk, a, b, ¢, and d every 100 ns.

add list -hex {nybus {nsb {opcode(8 downto 1)} data}}
Creates a user-defined bus named "mybus* consisting of three signals; the busis
displayed in hex.

add list vecl -hex vec2 -dec vec3 vecd
Liststhe abject vecl using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vecd in decimal.

See also

add wave (CR-52), log (CR-191), "Extended identifiers' (CR-16)

ModelSim SE Command Reference

add watch CR-51

add watch

The add watch command adds signals and variables to the Watch pane in the Main
window. SystemC objects and user-defined buses may also be added.

Syntax
add nonitor
<obj ect _nane> ..
Arguments

<obj ect _nane>
Specifies the name of the object to be added. Wildcard characters are allowed. (Note that
the WildcardFilter Tcl preference variable identifies types to ignore when matching
objects with wildcard patterns.) Variables must be preceded by the process name. For
example,

add watch nyproc/intl

See also

"Watch pane" (GR-208)

ModelSim SE Command Reference

CR-52 add wave

add wave

The add wave command adds the following objects to the Wave window: VHDL signals
and variables; Verilog nets and registers; and SystemC primitive channels (signals).
User-defined buses may also be added.

If no port mode is specified, add wave will display all objectsin the selected region with
names matching the object name specification.

Limitations: VHDL variables and V erilog memories can be added using the variable' sfull
name only (no wildcards).

Syntax

add wave
[-al l owconstants] [-col or <standard_col or_nane>] [-depth <l evel >] [-expand
<signal _nane>] [-<format>] [-height <pixels>] [-in] [-inout] [-internal]
[-1abel <name>] [-noupdate] [-offset <offset>] [-optcells] [-out] [-ports]
[-<radix>] [-recursive] [-scale <scal e>] [-w ndow <wnane>]
[[-divider <divider_name>...] | [-label <name> | {<object_nanme> {sigl sig2

sig3 ...}}] ...]

Arguments

-al l owconstants
For use with wildcard searches. Specifies that constants matching the wildcard search
should be added to the Wave window. Optional. By default, constants are ignored
because they do not change.

-col or <standard_col or _nanme>
Specifies the color used to display awaveform. Optional. These are the standard
X Window color names, or rgb value (e.g., #357f77); enclose 2-word names (“light
blue”) in quotes.

-depth <l evel >
Restricts arecursive search (specified with the -recur sive option) to a certain level of
hierarchy. <level> isan integer greater than or equal to zero. For example, if you specify
-depth 1, the command descends only one level in the hierarchy. Optional.

-di vi der <di vi der _nane>
Adds a divider to the Wave window. Optional. When a divider name is specified that
name appearsin the pathnames column. One or more names can be specified. All names
listed after -divider are taken to be divider names. Names that begin with a hyphen (-)
are not allowed; however, names beginning with a space are valid. If adivider nameis
not specified, Model Sim will insert an unnamed divider.

- expand <si gnal _nane>
Causes a compound signal to be expanded immediately, but only one level down.
Optional. The <signal_name> is required, and may include wildcards.

-<format >

Specifies the display format of the objects:

litera
| ogic

ModelSim SE Command Reference

add wave CR-53

anal og- st ep

anal og-i nterpol at ed

anal og- backst ep

Optional. Literal waveforms are displayed as a box containing the object value. Logic
signalsmay beU, X,0,1,Z, W, L,H,or*-".

The way each state is displayed is specified by the logic type display preference (see
"Preference variables located in INI files' (UM-524)). Analog signals are sized by -scale
and by -offset. Analog-step changes to the new time before plotting the new Y.
Analog-interpolated draws a diagonal line. Analog-backstep plotsthe new Y before
moving to the new time. See "Formatting the Wave window" (uUm-255) for more
information.

- hei ght <pi xel s>
Specifies the height (in pixels) of the waveform. Optional.

-in
For use with wildcard searches. Specifiesthat the scope of the search isto include ports
of mode IN if they match the object_name specification. Optional.

- i nout
For use with wildcard searches. Specifiesthat the scope of the search isto include ports
of mode INOUT if they match the object_name specification. Optional.

-interna
For use with wildcard searches. Specifies that the scope of the search isto include
internal objects (non-port objects) if they match the object_name specification. Optional.

-1 abel <name>
Specifies an aternative name for the signal being added to the Wave window. Optional.
For example,

add wave -label c clock
adds the clock signal, labeled as"'c", to the Wave window.

This alternative name is not valid in afor ce (CR-180) or examine (CR-162) command;
however, it can be used in a sear ch command (CR-260) with the wave option.

-noupdat e
Prevents the Wave window from updating when a series of add wave commands are
executed in series. Optional.

<obj ect _nane>
Specifies the names of objects to be included in the Wave window display. Optional.
Wildcard characters are allowed. Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns. Variables may
be added if preceded by the process name. For example,

add wave nyproc/intl

{<obj ect _name> {sigl sig2 sig3 ...}}
Creates a user-defined bus with the specified object name. The ‘sigi’ entries are signals
to be concatenated within the user-defined bus. Optional.

P Note: You can also select Tools> Combine Signals (Wave window) to create a
user-defined bus.

ModelSim SE Command Reference

CR-54 add wave

-of fset <offset>
Modifiesan analog waveform’ s position onthe display. Optional. The offset valueis part
of the wave positioning equation (see -scale below).

-optcells
Makes Verilog optimized cell ports visible when using wildcards. Optional. By default
Verilog optimized cell ports are not selected even if they match the specified wildcard
pattern.

-out
For use with wildcard searches. Specifiesthat the scope of the search isto include ports
of mode OUT if they match the object_name specification. Optional.

-ports
For use with wildcard searches. Specifies that the scope of thelisting is to include ports
of modesIN, OUT, or INOUT. Optional.

- <radi x>
Specifies the radix for the objects that follow in the command. Optional.

Valid entries (or any unique abbreviations) are: binary, ascii character, unsigned decimal,
octal, hex, symbolic, and default. If no radix is specified for an enumerated type, the
default representationisused. Y ou can changethe default radix for the current simulation
using the radix command (CR-241). Y ou can change the default radix permanently by
editing the DefaultRadix (Um-531) variable in the modelsim.ini file.

If you specify aradix for an array of aVHDL enumerated type, M odel Sim convertseach
signal valueto 1, 0, Z, or X.

-recursive
For use with wildcard searches. Specifies that the scope of the search isto descend
recursively into subregions. Optional. If omitted, the search is limited to the selected
region. Y ou can use the -depth argument to specify how far down the hierarchy to
descend.

-scal e <scal e>
Scales analog waveforms. Optional. The scale value is part of the wave positioning
equation shown below.

The position and size of the waveform is given by:
(signal _value + <offset>) * <scal e>

If signal_value + <offset> = 0, thewaveform will bealigned withitsname. The<scale>
value determines the height of the waveform, 0 being aflat line.

-w ndow <wname>
Adds objectsto the specified window <wname> (e.g., wave2). Optional . Used to specify
a particular window when multiple instances of that window type exist. Selects an
existing window; does not create a new window. Use the view command (CR-332) with
the -new option to create a new window.

Examples
add wave -logic -color gold out2

Displays an object named out2. The object is specified as being alogic object presented
in gold.

ModelSim SE Command Reference

add wave CR-55

add wave -hex {address {a_7 a_6 a 5 a 4 a3 a?2ala0}}
Displays a user-defined, hex formatted bus named address.

add wave *
Waves all objectsin the region.

add wave -in *
Waves all input portsin the region.

add wave -hex {nybus {scalarl vectorl scalar2}}
Creates a user-defined bus named "mybus’ consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vectorl isof type std_logic_vector (7 downto 1). The
busisdisplayed in hex.

Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:
add wave {vector3(1)}
add wave {vector3[1]}
add wave {vector3(4 downto 0)}
add wave {vector3[4:0]}
add wave vecl -hex vec2 -dec vec3 vecd

Adds the object vecl to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

add wave -divider " -Example- "
Adds adivider with the name "-Example-". Note that for thisto work, the first hyphen of
the name must be preceded by a space.

add wave -divider
add wave -divider ""
add wave -divider {}

Adds an unnamed divider.

See also

add list (Cr-48), log (CR-191), "Extended identifiers" (CR-16), “"Concatenation directives"
(CR-28)

ModelSim SE Command Reference

CR-56 add_menu

add_menu

The add_menu command adds a menu to the menu bar of the specified window, using the
specified menu name. Use the add_menuitem (CR-59), add_separator (CR-60),
add_menucb (cr-58), and add_submenu (CR-61) commands to complete the menu.

Returns the full Tk pathname of the new menu.

Color and other Tk properties of the menu may be changed, after creating the menu, using
the Tk menu widget configure command.

Syntax

add_nenu
<wi ndow_nane> <menu_nanme> [<shortcut> [-hi de_nenubutton]]

Arguments

<wi ndow_nane>
Tk path of the window to contain the menu. Required.

Note that the path for the Main window must be expressed as"". All other window
pathnames begin with a period (.). Y ou can also use a variable and the view <window
name> command to obtain the window path (see example below).

<nmenu_nane>

Name to be given to the Tk menu widget. Required.

<shortcut >
Number of theletter in the menu namethat isto be used asthe shortcut. Numbering starts
with O (i.e, first letter = 0, second letter = 1, third letter = 2, etc.). Optiona unlessyou
specify -hide_menubutton, inwhich case <shortcut> isrequired. Defaultis"-1", which
indicates no shortcut is to be used.

- hi de_nmenubut t on
Causes the new menu not to be displayed. Optional. Y ou can add the menu later by
calling tk_popup on the menu path widget. Note that you must specify <shortcut> if
you specify -hide_menubutton.

ModelSim SE Command Reference

add_menu CR-57

Examples
The following Tcl code is an example of creating user-customized menus. It adds a menu
containing atop-level item labeled "Do My Own Thing...", which prints
"my_own_thing.signals', and adds a cascading submenu labeled "changeCase" with two
entries, "To Upper" and "To Lower", which echo "my_to_upper" and "my_to_lower"
respectively. A checkbox that controls the value of myglobalvar (.signals:one) isalso
added.
set mygl obal var 0
set wname [view wave]; # Gets the path to the Wave w ndow
proc AddMyMenus {wnanme} {
gl obal mygl obal var
set cnmdl "echo ny_own_t hi ng $wnane"
set cnmd2 "echo ny_to_upper $wnane"
set cnmd3 "echo ny_to_|l ower $wname"
W ndowNarme Menu Menul t em | abel Command
e e e e e eeeeee e
add_nenu $wnane m ne 0;# Oth letter (M is underlined
add_renui tem $wnane mne "Do My Owmn Thing..." $cndl
add_separator $wnane m ne B
add_subnenu $wnane m ne changeCase
add_renuitem $wnane m ne. changeCase "To Upper" $cnd2
add_nenuitem $wnane m ne. changeCase "To Lower" $cnd3
add_subnenu $wnane m ne vars
add_menucb $wnare mine.vars "Feature One" -variable
nygl obal var
-onvalue 1 -offvalue 0 -indicatoron 1
}
AddMyMenus $wnane
This example is available in the following DO file: <install_dir>/modeltech/examples/
addmenu.do. Y ou can runthe DO fileto add the "Mine" menu shown in theillustration, or
modify the file for different results.
To execute the DO file, select Tools > Execute Macro (Main window), or use the do
command (CR-151).
See also

add_menucb (Cr-58), add_menuitem (CR-59), add_separator (CR-60), add_submenu
(CR-61), change_menu_cmd (CR-83)

ModelSim SE Command Reference

CR-58 add_menucb

add_menuchb

Theadd_menuch command creates a checkbox within the specified menu of the specified
window. A checkbox isasmall box with alabel. Clicking on the box will toggle the state,
from on to off or the reverse. When the box is"on", the Tcl global variable <var>is set to
<onval>. When the box is "off", the global variableis set to <offval>. Also, if something
€lse changes the global variable, its current state is reflected in the state of the checkbox.
Returns nothing.

Syntax
add_nenuchb
<wi ndow_nane> <nenu_nanme> <Text> -vari abl e <var> -onval ue <onval >
-of fval ue <offval > [-indicatoron <val >]
Arguments
<wi ndow_nane>
Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as"". All other window pathnames begin with a period (.).
<menu_nane>
Name of the Tk menu widget. Required.
<Text >
Text to be displayed next to the checkbox. Required.
-vari abl e <var>
Global Tcl variable to be reflected and changed. Required.
-onval ue <onval >
Valueto set the global Tcl variable to when the box is"on". Required.
-of fval ue <of fval >
Valueto set the global Tcl variable to when the box is "off". Required.
-indi catoron <val >
Oor 1. If 1, the statusindicator is displayed. Otherwise it is not displayed. Optional. The
defaultis 1.
Examples
add_menucb $wnanme mine.vars "Feature One" -variabl e nygl obal var ($wnane: one) \
-onvalue 1 -offvalue 0 -indicatoron 1
See also

add_menu (CR-56), add_menuitem (CR-59), add_separator (CR-60), add_submenu (CR-
61), change_menu_cmd (CR-83)

The add_menucb command is also used as part of the add_menu (CR-56) example.

ModelSim SE Command Reference

add_menuitem CR-59

add_menuitem

The add_menuitem command creates a menu item within the specified menu of the
specified window. May be used within a submenu. Returns nothing.

Syntax
add_menuitem
<wi ndow_nane> <menu_pat h> <Text> <Cmd> [<short cut >]
Arguments
<wi ndow_nane>
Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as""'. All other window pathnames begin with a period (.).
<menu_pat h>
Name of the Tk menu widget plus submenu path. Required.
<Text >
Text to be displayed. Required.
<Cmd>
The command to be executed when the menu item is sel ected with the | eft mouse button.
To echo the command and display the return value in the Main window, prefix the
command with the transcribe command (CR-285). Transcribe will also echo the results
to the Transcript pane. Required.
<shortcut >
Number of theletter in the menu namethat isto be used as the shortcut. Numbering starts
with O (i.e, first letter = 0, second letter = 1, third letter = 2, etc.). Optional. Default is
"-1", which indicates no shortcut is to be used.
Examples
add_nenui tem $wnane user "Save Results As..." $ny_save_cnmd
See also

add_menu (CR-56), add_menuchb (CR-58), add_separ ator (CR-60), add_submenu (CR-61),
change_menu_cmd (CR-83)

The add_menuitem command is also used as part of the add_menu (CR-56) example.

ModelSim SE Command Reference

CR-60 add_separator

add_separator

The add_separator command adds a separator as the next item in the specified menu path
in the specified window. Returns nothing.

Syntax
add_separ at or
<wi ndow_nane> <nenu_pat h>
Arguments
<wi ndow_nane>
Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as""'. All other window pathnames begin with a period (.).
<menu_pat h>
Name of the Tk menu widget plus submenu path. Required.
Examples
add_separ at or $wnanme user
See also

add_menu (Cr-56), add_menucb (Cr-58), add_menuitem (CR-59), add_submenu (CR-
61), change_menu_cmd (CR-83)

The add_separator command is also used as part of the add_menu (CR-56) example.

ModelSim SE Command Reference

add_submenu CR-61

add_submenu

Theadd_submenu command creates a cascading submenu within the specified menu path
of the specified window. May be used within a submenu.

Returns the full Tk path to the new submenu widget.

Syntax
add_subnenu
<wi ndow_nane> <menu_pat h> <name> [<short cut >]
Arguments
<wi ndow_nane>
Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as""'. All other window pathnames begin with a period (.).
<menu_pat h>
Name of the Tk menu widget plus submenu path. Required.
<nane>
Name to be displayed on the submenu. Required.
<shortcut >
Number of theletter in the menu namethat isto be used as the shortcut. Numbering starts
with O (i.e, first letter = 0, second letter = 1, third letter = 2, etc.). Optional. Default is
"-1", which indicates no shortcut isto be used.
See also

add_menu (CR-56), add_menucb (CR-58), add_menuitem (CR-59), add_separ ator (CR-
60), change_menu_cmd (CR-83)

The add_submenu command is aso used as part of the add_menu (CR-56) example.

ModelSim SE Command Reference

CR-62 alias

alias

Syntax

Arguments

Examples

The alias command displays or creates user-defined aliases. Any arguments passed on
invocation of the aliaswill be passed through to the specified commands. Returns nothing.
Existing Model Sim commands (e.g., run, env, etc.) cannot be aliased.

alias
[<name> ["<cmds>"]]

<nane>
Specifies the new procedure name to be used when invoking the commands.

"<cnds>"
Specifies the command or commands to be evaluated when the diasis invoked.

alias
Listsal aiases currently defined.

al i as <name>
Liststhe adias definition for the specified name if one exists.

alias nmyquit "wite list ./nylist.save; quit -f"
Creates a Tcl procedure, "myquit”, that when executed, writes the contents of the List
window to the file mylist.save by invoking write list (CR-424), and quits Model Sim by
invoking quit (CR-240).

ModelSim SE Command Reference

assertion fail CR-63

assertion fail

The assertion fail command configures simulator behavior in response to an assertion

failure.
Syntax
assertion fai
[-action continue|break|exit] [-disable] [-enable] [-limt <count>|none]
[-1og on]off] [-recursive] <path>..
Arguments

-action continue| break| exit
Specify the action to take when an assertion fails. This option may be specified multiple
times; it appliesto al paths that follow it in the command line. One of the following
valuesisrequired:

continue-No action taken. Thisis not the same as disabling an assertion since logging
may still be enabled for the directive. Thisis the default value.

break—Halt simulation and return to the Model Sim prompt.
exit-Halt smulation and exit ModelSim.

Y ou can change the permanent default by setting the AssertionFail Action (UM-529)
variable in the modelsim.ini file.

-di sabl e
Turnsoff failure tracking for the specified assertions. Optional . Assertion failuretracking
is enabled by default. Y ou can change the permanent default by setting the
AssertionFail Enable (Um-529) variable in the modelsim.ini file.

-enabl e
Turnson failure tracking for the specified assertions. Optional. Default. Y ou can change
the permanent default by setting the AssertionFail Enable (Um-529) variablein the
modelsim.ini file.

-limt <count>| none
Setsalimit on the number of times Model Sim responds to an assertion failing. Optional.
By default the limit is set to 1. One of the following valuesis required:

< count>—Specify awhole number.
none-No limit; failure tracking remains enabled for the duration of the simulation.

Oncethe limit is reached for a particular assertion, Model Sim disables failure tracking
on that assertion. Model Sim continues to respond to others if their limit has not been
reached. Y ou can change the permanent default by setting the AssertionFailLimit (Um-
529) variable in the modelsim.ini file.

ModelSim SE Command Reference

CR-64

assertion fail

Examples

See also

-1 og on|of f
Specify whether to write a transcript message when an assertion fails. This option may
be specified multipletimes; it appliesto al pathsthat follow it in the command line. One
of the following valuesis required:

on—Enable transcript logging. Default.
off-Disable transcript logging.

Y ou can change the permanent default by setting the AssertionFailLog (UM-529) variable
in the modelsim.ini file.

-recursive
For use with wildcard matching. Specifies that the scope of the matching is to descend
recursively into subregions. Optional. If omitted, the search is limited to the selected
region. Appliesto al paths specified in the command.

<pat h>. .
Specifies the assertions to be affected. Required. Multiple paths and wildcards are
allowed. The path specifies assertions or a design region containing multiple assertions.

assertion fail -disable a.b.c.assert__0
Disables assertion a.b.c.assert__ 0.

assertion fail -log off a.b.c.assert__0 a.b.c.assert__1
Disableslogging for assertions a.b.c.assert__ 0 and a.b.c.assert__1. The -log argument

appliesto all paths that follow it on the command line.

assertion fail -log off a.b.c.assert__0 -log on a.b.c.assert__1
Disableslogging for assertion a.b.c.assert__ 0 but enablesit for a.b.c.assert 1.

assertion fail -limt 4
Sets the failure response limit to 4. Each assertion failure will be responded to a
maximum of 4 times during the current simulation.

"Enabling/disabling failure and pass checking” (Um-377), "Setting failure and pass limits"
(UM-379), " Setting failure action™ (UM-380), assertion pass command (CR-65), and assertion
report command (CR-67)

ModelSim SE Command Reference

assertion pass CR-65

assertion pass

The assertion pass command configures simulator behavior in response to an assertion

pass.
Syntax
assertion pass
[-disable] [-enable] [-limt <count>|none] [-log on|off] [-recursive]
<pat h>. .
Arguments
-di sabl e

Turns off pass tracking for the specified assertions. Optional. Default. Y ou can change
the permanent default by setting the AssertionPassEnable (UM-530) variable in the
modelsim.ini file.

-enabl e
Turns on pass tracking for the specified assertions. Optional. Assertion passtracking is
disabled by default. Y ou can change the permanent default by setting the
AssertionPassEnable (UM-530) variable in the modelsim.ini file.

-limt <count>| none
Sets alimit on the number of times Model Sim responds to an assertion pass. Optional.
By default the limit is set to 1. One of the following valuesis required:

<count>—Specify a whole number.
none-No limit; pass tracking remains enabled for the duration of the simulation.

Thislimitisglobal; it is applied to each assertion in the ssimulation. Once the limit is
reached for a particular assertion, Model Sim disables pass tracking on that assertion.
Model Sim continues to respond to othersif their limit has not been reached. Y ou can
change the permanent default by setting the AssertionPassLimit (UM-530) variablein the
modelsim.ini file.

-log on| of f
Specify whether to write a transcript message when an assertion passes. This option may
be specified multipletimes; it appliesto al pathsthat follow it in the command line. One
of the following valuesis required:

on—Enable transcript logging. Default.
off-Disabl e transcript logging.

Y ou can change the permanent default by setting the A ssertionPassL og (UM-530) variable
in the modelsim.ini file.

-recursive
For use with wildcard matching. Specifies that the scope of the matching is to descend
recursively into subregions. Optional. If omitted, the search is limited to the selected
region. Appliesto al paths specified in the command.

<pat h>. .
Specifies the assertions to be affected. Required. Multiple paths and wildcards are
allowed. The path specifies assertions or a design region containing multiple assertions.

ModelSim SE Command Reference

CR-66 assertion pass

Examples
assertion pass -enable -l1og on a.b.c.assert__0 -log off a.b.c.assert_1
Enables assertions a.b.c.assert__0 and a.b.c.assert__1 and turns logging on for
a.b.c.assert_ 0 but not a.b.c.assert__ 1.
See also

"Enabling/disabling failure and pass checking” (Um-377), " Setting failure and pass limits"
(UM-379), assertion fail command (CR-63), and assertion report command (CR-67)

ModelSim SE Command Reference

assertion report CR-67

assertion report

Theassertion report command returns a status report for each assertion matching the path
specification. By default the command prints a concise report containing only assertion
names and their fail and pass counts. Adding the -ver bose argument to the command will
print the following:

» source language (PSL or other)

* assertion name (full path)

* design unit where the assertion is declared

* source language (VHDL)

* filename (line number)

« fail enable status (enabled or disabled)

* pass enable status (enabled or disabled)

» fail count

* pass count

« attempted flag (indicates whether the assertion has ever attempted eva uation)
« fail action

« fail log

* passlog

« fail limit

* passlimit

Normally, the report is formatted for users with one line of the report reserved for each
assertion specified by the path(s).

For amore interactivelook at this data, open the Assertion Browser in the Model Sim GUI.
See "Viewing assertions in the Assertions pane" (UM-376) for details.

Syntax
assertion report
[-nunber] [-output <filenane>] [-recursive] [-tcl_list] [-verbose]
<pat h>. .
Arguments
- nunber

Report the number of assertions that match the path argument(s). This option overrides
the normal report.

-out put <fil ename>
Specifies afile name for the report. The default isto write the report to the Transcript
(GUI mode) or stdout (batch mode). Environment variables may be used in the
pathname. Optional.

ModelSim SE Command Reference

CR-68 assertion report

-recursive
For use with wildcard matching. Specifies that the scope of the matching is to descend
recursively into subregions. Optional; if omitted, the search is limited to the selected
region.

-tel _list

Format the report asa Tcl list.

-verbose
Produces the detailed report as noted in the command description above. Optional.

<pat h>. ..
Specifies the assertions on which to report. Required. Multiple names and wildcards are
alowed. The path specifies assertions or a design region containing multiple assertions.

Example
VSI M 1> assertion report *
H om e mm— ==
Nanme Fi | e(Li ne) Fail ure Pass
Count Count
e
/tb/assert__reset_state dranton_si m vhd(53) 0 0
/tb/assert__test_read_response drancon_simvhd(59) 0 0
/tb/assert__test_wite_response drancon_si mvhd(60) 0 0
/tb/assert__check_as_deasserts drancon_si mvhd(64) 0 0
See also

"Viewing assertions in the Assertions pane" (UM-376)

ModelSim SE Command Reference

batch_mode CR-69

batch_mode

Thebatch_mode command returnsa l if Model Sim is operating in batch mode, otherwise
it returnsa . It istypically used as acondition in an if statement.

Syntax
bat ch_npde
Arguments
None
Examples
Some GUI commands do not exist in batch mode. If you want to write a script that will
work in or out of batch mode, you can use the batch_mode command to determine which
command to use. For example:
if [batch_node] {
log /*
} else {
add wave /*
}
See also

"Model Sim modes of operation” (UM-27)

ModelSim SE Command Reference

CR-70 bd

bd

Syntax

Arguments

Examples

See also

The bd command del etes a breakpoint. Y ou must specify afilename and line number or a
specific breakpoint id#. Y ou may specify multiple filename/line number pairs and id#s.

bd
<filename> <line_nunber> | <id#>

<fil ename>
Specifies the name of the source file in which the breakpoint isto be deleted. Required if
an id# is not specified. The filename must match the one used previously to set the
breakpoint, including whether afull pathname or a relative name was used.

<l'i ne_nunber >
Specifies the line number of the breakpoint to be deleted. Required if an id# is not
specified.

<i d#>
Specifies the id number of the breakpoint to be deleted. Required if afilename and line
number are not specified. If you are deleting a C breakpoint, theid# will havea"c" prefix.

bd al u.vhd 127
Deletes the breakpoint at line 127 in the source file named alu.vhd.

bd 5
Deletes the breakpoint with id# 5.

bd 6 alu.vhd 234
Deletes the breakpoint with id# 6 and the breakpoint at line 234 in the sourcefile named
alu.vhd.

bd c.4
Deletes the C breakpoint with id# c.4.

bp (CR-75), onbreak (CR-214), Chapter 16 - C Debug

ModelSim SE Command Reference

bookmark add wave CR-71

bookmark add wave

The bookmark add wave command creates a named reference to a specific zoom range
and scroll position in the specified Wave window. Bookmarks are saved in the wave format
file and are restored when the format file is read (see write format command (CR-422)).

Syntax

bookmark add wave
<l abel > [<zoonr ange> [<t opi ndex>]] [-w ndow <wi ndow_namne>]

Arguments

<l abel >
Specifies the name for the bookmark. Required.

<zoonr ange>
Specifies alist of two times with optional units. Optional. These two times must be
enclosed in braces ({}) or quotation marks ("*). One number can be specified, which
indicates arange from 0 to <n>.

<t opi ndex>
Specifies the vertical scroll position of the window. Optional. Zoomrange must be
specified if you want to specify topindex. The number identifies which object the
window should be scrolled to. For example, specifying 20 means the Wave window will
be scrolled down to show the 20th object.

-wi ndow <wi ndow_nane>
Specifies the window to which the bookmark will be added. Optional. If thisargument is
omitted, the bookmark is added in the current default Wave window.

Examples

booknmar k add wave foo {{10 ns} {1000 ns}} 20
Adds a bookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th object in the
window.

See also

bookmark delete wave (CR-72), bookmark goto wave (CR-73), bookmark list wave (CR-
74), write format (CR-422)

ModelSim SE Command Reference

CR-72 bookmark delete wave

bookmark delete wave

The bookmark delete wave command del etes bookmarks from the specified Wave

window.
Syntax
bookmar k del ete wave
<l abel > [-all] [-w ndow <wi ndow_nane>]
Arguments
<l abel >
Specifies the name of the bookmark to delete. Required unless the -all switch is used.
-all
Specifies that al bookmarks in the window be deleted. Optional.
-wi ndow <wi ndow_nane>
Specifiesthe window from which bookmark(s) will be deleted. Optional. If thisargument
is omitted, bookmark(s) in the current default Wave window are deleted.
Examples
bookmar k del ete wave foo
Deletes the bookmark named "foo" from the current default Wave window.
bookmark del ete wave -all -w ndow wavel
Deletes all bookmarks from the Wave window named "wavel".
See also

bookmark add wave (CR-71), bookmar k goto wave (CR-73), bookmark list wave (CR-74),
write format (CR-422)

ModelSim SE Command Reference

bookmark goto wave CR-73

bookmark goto wave

The bookmark goto wave command zooms and scrolls a Wave window using the
specified bookmark.
Syntax

bookmar k goto wave
<l abel > [-wi ndow <wi ndow_nane>]

Arguments

<l abel >
Specifies the bookmark to go to. Required.

-wi ndow <wi ndow_nane>
Specifiesthe Wave window to which the bookmark applies. Optional . Bookmarks can be
used only in the windows in which they were originally created.
See also

bookmark add wave (CR-71), bookmark delete wave (CR-72), bookmark list wave (CR-
74), write format (CR-422)

ModelSim SE Command Reference

CR-74 bookmark list wave

bookmark list wave

Thebookmark list wave command displaysalist of available bookmarksin the Transcript

pane.
Syntax
bookmark |ist wave
[-w ndow <wi ndow_nane>]
Arguments
-wi ndow <wi ndow_nane>
Specifies the Wave window for which you want alist of bookmarks. Optional. If this
argument is omitted, Model Sim lists the bookmarks for the current default Wave
window.
See also

bookmark add wave (CR-71), bookmar k delete wave (CR-72), bookmark goto wave (CR-
73), write format (CR-422)

ModelSim SE Command Reference

bp CR-75

Thebp or breakpoint command either setsafile-line breakpoint or returnsalist of currently
set breakpoints. A set breakpoint affects every instance in the design unless the
-inst <region> argument is used.

Syntax
bp
<fil ename> <l ine_nunber>
[-c [<function_nanme> | <file_nane>:<line#> | <line#> | *0x<hex_address>]]
[-id <id#>] [-inst <region>] [-disable] [-cond {<condition_expression>}]
[{<command>...}] | [-query <filenane> [<line_nunber> [<line_nunber>]]]
Arguments

<fil ename>
Specifies the name of the source file in which to set the breakpoint. Required if you are
setting HDL breakpoints.

<l i ne_nunber >
Specifiesthe line number at which the breakpoint isto be set. Required if you are setting
HDL breakpoints.

-c [<function_nane> | <file_name>:<line#> | <line#> | *Ox<hex_address>]
Setsa C breakpoint in SystemC designs, or when you are using " C Debug" (UM-399). The
-c argument is required when setting C breakpoints to distinguish them from HDL
breakpoints. See examples below.

-id <id#>
Attempts to assign thisid number to the breakpoint. Optional. If the id number you
specify isaready used, ModelSim will return an error.

P Note: Idsfor breakpoints are assigned from the same pool as those used for the when
command (CR-407). So, even if you haven’'t used an id number for a breakpoint, it's
possibleit is used for awhen command.

-inst <region>

Sets the breakpoint so it applies only to the specified region. Optional.

-di sabl e
Sets the breakpoint to a disabled state. Optional. Y ou can enabl e the breakpoint later
using the enablebp command (CR-158). By default, breakpoints are enabled when they
are set.

-cond {<condition_expression>}
Specifies condition(s) that determine whether the breakpoint is hit. Optional. If the
condition istrue, the simulation stops at the breakpoint. If false, the simulation bypasses
the breakpoint. A condition cannot refer to aVHDL variable (only asignal).

ModelSim SE Command Reference

CR-76 bp

The condition can be an expression with these operators:

Name Operator
equals ==, =
not equal I=, /=
AND &&, AND
OR I, OR

The operands may be object names, signame’ event, or constants. Subexpressionsin
parentheses are permitted. The command will be executed when the expression is
evaluated as TRUE or 1.

Theforma BNF syntax is:

condition ::= Nane | { expression }

expression ::= expression AND rel ation
| expression OR relation
| relation

relation ::= Nanme = Literal

| Name /= Literal
| Nane ' EVENT
| (expression)

Literal ::= '<char>' | “<bitstring>" | <bitstring>

The"=" operator can occur only between a Name and a Literal. This means that you
cannot compare the value of two signals; i.e., Name = Nameis not possible.

{<command>. ..}
Specifies one or more commands that are to be executed at the breakpoint. Optional.
Multiple commands must be separated by semicolons (;) or placed on multiplelines. The
entire command must be placed in curly braces.

Any commands that follow arun (CR-252) or step (CR-272) command will beignored. A
run or step command terminates the breakpoint sequence. This appliesif macros are
used within the bp command string aswell. A restor e (CR-248) command should not be
used.

If many commands are needed after the breakpoint, they can be placed in amacro file.
-query <filename> [<line_nunber> [<line_nunber>]]
Returns information about the breakpoints set in the specified file. The information

returned varies depending on which arguments you specify. See the examples below for
details.

ModelSim SE Command Reference

bp CR-77

Examples

bp
Listsall existing breakpointsin the design, including the source file names, line numbers,
breakpoint id#s, and any commands that have been assigned to breakpoints.

bp al u.vhd 147
Sets a breakpoint in the source file alu.vhd at line 147.

bp al u.vhd 147 {do nacro. do}
Executes the macro.do macro file when the breakpoint is hit.

bp -disable test.vhd 22 {echo [exa varl]; echo [exa var2]}
Setsabreakpoint on line 22 of test.vhd. When the breakpoint ishit, the values of variables
varl and var2 are examined. This breakpoint isinitially disabled; it can be enabled with
the enablebp command (CR-158).

bp test.vhd 14 {if {$now /= 100} then {cont}}
Sets a breakpoint in every instantiation of the file test.vhd at line 14. When that
breakpoint is executed, the command is run. This command causes the simulator to
continue if the current simulation timeis not 100.

bp -query testadd.vhd
Lists the line number and enabled/disabled status (1 = enabled, 0 = disabled) of all
breakpoints in testadd.vhd.

bp -query testadd.vhd 48
Lists details about the breakpoint on line 48. The output comprises six pieces of
information: the first item (0 or 1) designates whether a breakpoint exists on the
line (1 = exists, 0 = doesn’t exist); the second item is aways 1; the third item is thefile
namein the compiled source; the fourth item isthe breakpoint line number; thefifth item
isthe breakpoint id; and the sixth item (0 or 1) designates whether the breakpoint is
enabled (1) or disabled (0).

bp -query testadd.vhd 2 59
Lists all executable linesin testadd.vhd between lines 2 and 59.

bp -c and_gate_init
Sets a C breakpoint at the entry to C function and_gate init.

bp -c and_gate.c: 46
Sets a C breakpoint at line 46 in the fileand_gate.c.

bp -c 44
Sets a C breakpoint at line 44 in the current C or SystemC file.

bp -c *Oxff130504
Sets a C breakpoint at hexadecimal address 0xff130504.

P Note: Any breakpoints setin VHDL code and called by either resolution functions or
functions that appear in a port map are ignored.

See also

add button (CRr-45), bd (CR-70), disablebp (CR-148), enablebp (CR-158), onbr eak (CR-214),
when (CR-407), Chapter 6 - SystemC simulation, Chapter 16 - C Debug

ModelSim SE Command Reference

CR-78 cd

cd
The cd command changes the Model Sim local directory to the specified directory. This
command cannot be executed while asimulation isin progress. Also, executing a cd
command will close the current project.
Syntax
cd
[<dir>]
Arguments
<dir>

The directory to which to change. Optional. If no directory is specified, ModelSim
changes to your home directory.

ModelSim SE Command Reference

cdbg CR-79

cdbg

The cdbg command provides command-line equivalents of the menu optionsthat are
availablefor "C Debug" (UM-399). For some of the commands thereis arequired argument
"on | off". The value can be either 'on’ or 'of f'. For example:

cdbg enabl e_auto_step on
cdbg stop_on_quit off

Syntax
cdbg

auto_find_bp | debug_on | enable_auto_step on|off | init_node_conplete
init_node_setup | interrupt | keep_user_init_bps on|off | quit |
refresh_source_wi ndow | set_debugger <path>
show_source_bal | oon on|off | stop_on_quit on|off | trace_entry_point
on| of f [<function_name>]

Arguments

aut o_find_bp
Sets breakpoints on all currently known function entry points. See "Finding function
entry points with Auto find bp" (UM-406). Equivalent to selecting Tools> C Debug >
Auto find bp.

debug_on

Enables the C Debugger. Equivalent to selecting Tools > C Debug > Start C Debug.

enabl e_aut o_step on]| of f
Enabl es/disables auto-step mode. See"ldentifying all registered function calls’ (UM-407).
Equivalent to selecting Tools > C Debug > Enable auto step.

init_node_conplete
Continues loading the design without stopping at functions calls. See "Debugging
functions during elaboration" (Um-410). Equivalent to selecting Tools > C Debug >
Complete load.

init_node_setup
Enables initialization mode. See "Debugging functions during elaboration" (UM-410).
Equivalent to selecting Tools > C Debug > I nit mode.

interrupt
Reactivates the C debugger when stopped in HDL code. Equivalent to selecting T ools >
C Debug > C Interrupt or clicking the 'C Interrupt' toolbar button.

keep_user_init_bps on|off
Specifies whether breakpoints set during initialization mode are retained after the design
finishesloading. See "Debugging functions during elaboration” (UM-410). Equivalent to
toggling the 'Keep user init bps button in the C Debug setup dialog.

quit
Quits the C Debugger. Equivalent to selecting Tools > C Debug > Quit C Debug.

refresh_source_w ndow
Re-opens a C sourcefileif you close the Source window inadvertently while stopped in
the C debugger. Equivalent to selecting Tools > C Debug > Refresh.

ModelSim SE Command Reference

CR-80 cdbg

set _debugger <pat h>
Sets the path to your gdb installation. Equivalent to selecting Tools > C Debug > C
Debug Setup and entering a custom path. The argument path is required and is the
compl ete pathname to the gdb executable. For example:

cdbg set_debugger _path /usr/bin/gdb

show_source_bal | oon on| of f
Enables/disables the source balloon popup. See " C Debug setup dialog” (GR-99).
Equivalent to toggling the 'Show balloon' button on the C Debug setup dialog.

stop_on_quit on|off
Enables/disables debugging capability when the simulator is exiting. See "Debugging
functions when quitting simulation" (Um-414). Equivalent to toggling the 'Stop on quit'
button on the C Debug setup dialog.

trace_entry_point on|off [<function_name>]
Helps debug an FLI/PLI application when adesign is loaded with vsim -trace foreign
Model Sim stops at a C breakpoint each time anamed FLI or PLI function iscalled from
your application. Once at the breakpoint, use the tb command (CR-274) and pop
command (CR-219) to investigate the C code at the place the function was called.

ModelSim SE Command Reference

change CR-81

change
The change command modifies the value of aVHDL constant, generic, or variable;
Verilog register or variable; or C variable if running C Debug (UM-399).
Syntax
change
<vari abl e> <val ue>
Arguments

<vari abl e>
Specifies the name of one of the following types of objects:

VHDL
* Scalar variables, constants, and generics of all types except FILE

» Scalar subelements of composite variables, constants, and generics of al types
except FILE

» One-dimensional arrays of enumerated character types (including dices)

 Accesstypes (an accesstype pointer can be set to "null”; the value that an accesstype
points to can be changed as specified above)

Verilog
» Parameters
* Registers and memories
* Integer, real, realtime, and time variables

Subelements of register, integer, real, realtime, and time multi-dimensional arrays
(all dimensions must be specified)

* Bit-selects and part-selects of the above except for objects whose basic type is real
C

» Scalar C variables of typeint, char, double, or float

* Individual fields of a C structure

* SystemC primitive channels are not supported

The name can be afull hierarchical name or arelative name. A relative nameisrelative
to the current environment. Wildcards cannot be used. Required.

<val ue>
Defines avalue for the variable. Required. The specified value must be appropriate for
the type of the variable. Values that contain spaces must be enclosed with quotation
marks or curly braces (see Examples).

Notethat theinitial type of a parameter determines the type of value that it can be given.
For example, if aparameter isinitially equal to 3.14 then only real values can be set on
it. Also notethat changing the val ue of a parameter or generic will not modify any design
elements that depended on the parameter or generic during elaboration (for example,
sizes of arrays).

ModelSim SE Command Reference

CR-82

change

Examples

See also

change count 16#FFFF
Changes the value of the variable count to the hexadecimal value FFFF.

change {rega[16]} O
Changes the value of the element of rega that is specified by theindex (i.e., 16).

change {foo[20:22]} 011
Changes the value of the set of elements of foo that is specified by the slice (i.e., 20:22).

change x 1.5
Sets the value of x (type double) to 1.5.

change al.cl 0
Sets the value of structure member al.cl (typeint) to O.

change val _b my_string
Setsval_b (type char *) to point to the string my_string.

change val _b "nmy string"
Setsval_b (type char *) to point to the string my string. Since thereisaspaceinthevalue,
it must be enclosed by quotation marks or curly braces.

change file_name \"test2. txt\"
Setsthe Verilog register file_name to "test2.txt". Note that the quote marks are escaped
with V',

change nyti megeneric {500 ps}
Sets the time value of the mytimegeneric variable to 500 ps. The time value is enclosed
by curly braces (or quotation marks) because of the space between the value and the
units.

for ce (CR-180)

ModelSim SE Command Reference

change_menu_cmd CR-83

change _menu_cmd

The change_menu_cmd command changes the command to be executed for a specified
menu item label, in the specified menu, in the specified window. The menu path and | abel
must already exist for this command to function. Returns nothing.

Syntax
change_nenu_cnd
<wi ndow_nane> <nenu_pat h> <| abel > <Cnd>
Arguments
<wi ndow_nane>
Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as"". All other window pathnames begin with a period (.).
<menu_pat h>
Name of an existing Tk menu widget plus any submenu path. Required.
<l abel >
Current label on the menu item. Required.
<Cnd>
New Tcl command to be executed when selected. Required.
See also

add_menu (Cr-56), add_menucb (Cr-58), add_menuitem (CR-59), add_separator (CR-
60), add_submenu (CR-61)

ModelSim SE Command Reference

CR-84

check contention add

check contention add

Syntax

Arguments

Description

The check contention add command enabl es contention checking for the specified nodes.
The allowed nodes are Verilog nets and VHDL signals of types std_logic and
std_logic_vector. Any other node types and nodes that don't have multiple drivers are
silently ignored by the command.

check contention add
[-r] [-in] [-out] [-inout] [-internal] [-ports] <node_nane>

-r
Specifies that contention checking is enabled recursively into subregions. Optional. If
omitted, contention check enabling is limited to the current region.

-in
Enables checking on nodes of mode IN. Optional.

-out

Enables checking on nodes of mode OUT. Optional.

-i nout

Enables checking on nodes of mode INOUT. Optional.

-interna
Enables checking on internal (non-port) objects. Optional.

-ports
Enables checking on nodes of modesIN, OUT, or INOUT. Optional.

<node_name>

Enables checking for the named node(s). Required.

Bus contention checking detects bus fights on nodes that have multiple drivers. A busfight
occurs when two or more drivers drive a node with the same strength and that strength is
the strongest of all drivers currently driving the node. The following table provides some
examplesfor two driversdriving a std_logic signal:

driver 1 driver 2 fight
4 4 no
0 0 yes
1 4 no
0 1 yes
L 1 no

ModelSim SE Command Reference

See also

check contention add CR-85

driver 1

driver 2

fight

L

H

yes

Detection of abusfight resultsin an error message specifying the node and its drivers
current driving values. If anode's drivers later change value and the node is still in
contention, amessage is issued giving the new values of the drivers. A messageis also
issued when the contention ends. The bus contention checking commands can be used on
VHDL and Verilog designs.

check contention config command (CR-86), check contention off command (CR-87)

ModelSim SE Command Reference

CR-86

check contention config

check contention config

Syntax

Arguments

See also

The check contention config command allows you to write checking messages to afile
(messages display on your screen by default). Y ou may also configure the contention time
limit.

check contention config
[-file <filename>] [-time <limt>]

-file <fil ename>
Specifiesafileto which to write contention messages. Optional. If thisoption is selected,
the messages are not displayed to the screen.

-time <linmit>
Specifiesatime limit that a node may bein contention. Optional. Contention is detected
if anodeisin contention for as long as or longer than the limit. The default limitisO.

check contention add command (CR-84), check contention off command (CR-87)

ModelSim SE Command Reference

check contention off CR-87

check contention off

The check contention off command disables contention checking for the specified nodes.

Syntax
check contention of f
[-all] [-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>
Arguments

-al
Disables contention checking for all nodes that have checking enabled. Optional.

-r
Specifies that contention checking is disabled recursively into subregions. Optional. If
omitted, contention check disabling is limited to the current region.

-in

Disables checking on nodes of mode IN. Optional.

-out

Disables checking on nodes of mode OUT. Optional.

-i nout

Disables checking on nodes of mode INOUT. Optional.

-interna
Disables checking on internal (non-port) objects. Optional.

-ports
Disables checking on nodes of modesIN, OUT, or INOUT. Optional.

<node_name>

Disables checking for the named node(s). Required.

See also

check contention add command (CR-84), check contention config command (CR-86)

ModelSim SE Command Reference

CR-88

check float add

check float add

Syntax

Arguments

Description

See also

The check float add command enabl esfloat checking for the specified nodes. The allowed
nodes are Verilog nets and VHDL signals of type std logic and std_logic_vector (other
types are silently ignored).

You can set atime limit (the default is zero) for float checking using the -time <limit>
argument to the check float config command (CR-89). If you choose to modify the limit,
you should do so prior to invoking any check float add commands.

check float add
[-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

-r
Specifiesthat float checking is enabled recursively into subregions. Optional. If omitted,
float check enabling is limited to the current region.

-in
Enables checking on nodes of mode IN. Optional.

-out

Enables checking on nodes of mode OUT. Optional.

-i nout

Enables checking on nodes of mode INOUT. Optional.

-interna
Enables checking on internal (non-port) objects. Optional.

-ports
Enables checking on nodes of modesIN, OUT, or INOUT. Optional.

<node_nane>

Enables checking for the named node(s). Required.

Bus float checking detects nodesthat are in the high impedance state for atime equal to or
exceeding a user-defined limit. Thisis an error in some technologies. Detection of afloat
violation resultsin an error message identifying the node. A message is also issued when
the float violation ends. The bus float checking commands can be used on VHDL and
Verilog designs.

check float config command (CR-89), check float off command (CR-90)

ModelSim SE Command Reference

check float config CR-89

check float config

The check float config command alows you to write checking messagesto afile
(messages display on your screen by default). Y ou may also configure the float time limit.
Syntax
check float config
[-file <filename>] [-time <limt>]
Arguments

-file <fil ename>
Specifies afile to which to write float messages. Optional. If this option is selected, the
messages are not displayed to the screen.

-tinme <limt>
Specifiesatimelimit that anode may befloating. Optional. An error is detected if anode
isfloating for as long as or longer than the limit. The default limit is 0. Note that you
should configure the time limit prior to invoking any check float add commands.

See also

check float add command (CRr-88), check float off command (CR-90)

ModelSim SE Command Reference

CR-90

check float off

check float off

Syntax

Arguments

See also

The check float off command disables float checking for the specified nodes.

check float off
[-all] [-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

-all
Disables float checking for al nodes that have checking enabled. Optional.

-r
Specifiesthat float checking isdisabled recursively into subregions. Optional. If omitted,
float check disabling is limited to the current region.

-in
Disables checking on nodes of mode IN. Optional.

-out

Disables checking on nodes of mode OUT. Optional.

-i nout

Disables checking on nodes of mode INOUT. Optional.

-interna
Disables checking on internal (non-port) objects. Optional.

-ports
Disables checking on nodes of modesIN, OUT, or INOUT. Optional.

<node_name>

Disables checking for the named node(s). Required.

check float add command (CR-88), check float config command (CR-89)

ModelSim SE Command Reference

check stable off

Syntax

Arguments

See also

check stable off CR-91

The check stable off command disables stability checking. Y ou may later enable it with
check stable on (CR-92), and meanwhile, the clock cycle numbers and boundaries are still

tracked.

check stable off

None.

check stable on command (CR-92)

ModelSim SE Command Reference

CR-92 check stable on

check stable on

Syntax

Arguments

Description

Examples

See also

The check stable on command enables stability checking on the entire design.

check stable on
[-file <filename>] [-period <tine>] [-strobe <tinme>]

-file <fil ename>
Specifies afile to which to write the error messages. If this option is selected, the
messages are not displayed to the screen. Optional.

-period <time>
Specifies the clock period (which is assumed to begin at the time the check stable on
command isissued). Optional. Thisoptionisrequired thefirst timeyou invoke the check
stable on command. It isnot required if you later enable checking after it was disabled
with the check stable off command (CR-91).

-strobe <time>
Specifies the elapsed time within each clock cycle that the stability check is performed.
Optional. The default strobe timeis the period time. If the strobe time falls on a period
boundary, then the check isactually performed one timestep earlier. Normally the strobe
timeisspecified aslessthan or equal to the period, but if it isgreater than the period, then
the check will skip cycles.

Design stability checking detects when circuit activity has not settled within a period you
define for synchronous designs. Y ou specify the clock period for the design and the strobe
time within the period during which the circuit must be stable. A violation is detected and
an error messageisissued if there are pending driver events at the strobetime. The message
identifies the driver that has a pending event, the node that it drives, and the cycle number.
The design stability checking commands can be used on VHDL and Verilog designs.

check stable on -period "100 ps" -strobe "199 ps"
Performs a stability check 99 psinto each even numbered clock cycle (cycle numbers
start at 1).

check stable off command (CR-91)

ModelSim SE Command Reference

checkpoint CR-93

checkpoint

The checkpoint command saves the state of your simulation. The checkpoint command
saves the simulation kernel state, the vaim.wif file, the list of the design objects shown in
the List and Wave windows, thefile pointer positionsfor files opened under VHDL and the
Verilog $fopen system task, the states of foreign architectures, and VCD output. Changes
you made interactively while running vsim are not saved; for example, macros, virtual
objects, command-line interface additions like user-defined commands, and states of
graphical user interface windows are not saved. Also, toggle statistics (see the toggle
report command (CR-283)) are not saved.

Once saved, a checkpoint file may be used with the r estor e command (CR-248) during the
same simulation to restore the simulation to a previous state. A VSIM session may aso be
started with a checkpoint file by using the vsim -restore command (CR-373).

Compression of the checkpoint file is controlled by the CheckpointCompressM ode
variablein the modelsim.ini file.

If acheckpoint occurswhile Model Sim iswriting aV CD file, theentire VCD fileis copied
into the checkpoint file. Since VCD files can be very large, it is possible that disk space
problems could occur. Consequently, Model Sim issues awarning in this situation.

Checkpoaint files are platform dependent—you cannot checkpoint on one platform and
restore on another.

Syntax
checkpoi nt
<fil ename>
Arguments
<fil ename>
Specifies the name of the checkpoint file. Required.
See also

restore (CR-248), restart (CR-246), vsim (CR-373), "The difference between checkpoint/
restore and restart” (UM-87)

ModelSim SE Command Reference

CR-94 compare add

compare add

The compar eadd command comparessignalsin areference design against signalsin atest
design. Y ou can specify whether to compare two signals, al signalsin the region, or just
portsor asubset of ports. Constant signals such as parametersand genericsareignored. See
"Waveform Compare” (Um-270) for ageneral overview of waveform comparisons.

The table below shows how compares work between specified reference objects and test

objects.

Reference Test object Result

object

signal signa compare the two signals

signal region compare a signal with a name matching the
reference signal in the specified test region

region region compare al matching signals in both regions

glob expression signal legal only if the glob expression selects only one
signal

glob expression region compare all signals matching the glob expression

that match signalsin the test region

The compar e add command supports arguments that specify how each signal state
matches std_logic or Verilog values (e.g., -vhdimatches, see below). Since state matching
can a'so be set on aglobal basiswith the compare options command or PrefCompare() Tcl
variables, Model Sim follows state match settings in this order:

1 Useloca matching values specified when the compare was created using compar e add
or subsequently configured using compar e configure.

2 If no local values were set, use global matching val ues set with the compar e options

command.

3 If no compare options were set, use default matching values specified by PrefCompare

Tcl variables.
Syntax
conpare add
-clock <nane> [-help] [-label <label>] [-list] [-<npde>] [-now n]
[-rebuild] [-recursive] [-separator <string>] [-tol <delay>]
[-tol Lead <delay>] [-tol Trail <delay>] [-verbose]
[-vhdl mat ches {<ref-1ogic-val ue>=<test-1|ogic-value>: ...}]
[-vl ogmat ches {<ref-1ogic-val ue>=<test-1|ogic-value>: ...}]
[-wavepane <n>] [-wave] [-when {<expression>}] [-w n <wnane>]

<ref erencePat h> [<t est Pat h>]

ModelSim SE Command Reference

compare add CR-95

Arguments

-cl ock <name>
Specifiesthe clock definition to use when sampling the specified regions. Required for a
clocked comparison; not used for asynchronous comparisons.

-hel p
Lists the description and syntax for the compare add command in the Transcript pane.
Optional.

-1 abel <l abel >
Specifies aname for the comparison when it is displayed in the Wave window. Optional.

-list
Causes specified comparisons to be displayed in the default List window. Optional.

- <node>
Specifies the mode of signal types that are compared. Optional. The actual valuesthe
option may take are-in, -out, -inout, -internal, -ports, and -all. Y ou can use more than one
mode option in the same command.

-nowi n
Specifies that compare signals shouldn’t be added to any window. Optional. By defaullt,
compare signals are added to the default Wave window. See -wave below.

-rebuild
Rebuilds a fragmented bus in the test design region and compares it with the
corresponding bus in the reference design region. Optional. If asignal isfound having
the same name as the reference signal, the -rebuild option isignored. When rebuilding
the test signal, the name of the reference signal is used as the wildcard prefix.

-recursive
Specifiesthat signals should also be selected in all nested subregions, and subregions of
those, etc. Optional.

-separator <string>
Used with the -rebuild option. When a bus has been broken into bits (bit blasted) by a
synthesis tool, Model Sim expects a separator between the base bus name and the bit
indication. This option identifies that separator. The defaultis"_". For example, the
signal "mybus" might be broken down into "mybus 0", "mybus 1", etc.

-tol <del ay>
Specifies the maximum time atest signal edgeisallowedto lead or trail areference edge
in an asynchronous comparison. Optional. ThedefaultisO. If aunit (e.g., ps) is used with
the time value, the time must be placed in curly braces.

-tol Lead <del ay>
Specifies the maximum time atest signal edgeis allowed to lead areference edge in an
asynchronous comparison. Optional. The default is 0. If aunit (e.g., ps) is used with the
time value, the time must be placed in curly braces.

ModelSim SE Command Reference

CR-96

compare add

-tol Trail <del ay>
Specifies the maximum time atest signal edgeis allowed to trail areference edgein an
asynchronous comparison. Optional. The default is 0. If aunit isused (e.g., ps) with the
time value, the time must be placed in curly braces.

Graphical representation of tolLead and tol Trail

Reference Signal

Test Sonal B

e |

tolLead
tol Trail

-verbose
Printsinformation in the Transcript pane confirming the signal s sel ected for comparison
and any type conversions employed. Optional.

-vhdl mat ches {<ref-1|ogic-val ue>=<test-1|ogic-value>: ...}
Specifieshow VHDL signal statesin the reference dataset should match valuesin thetest
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vhdl mat ches { X=XUD: Z=ZD: 1=1HD}

Default is { U=UWXD:X=UWXD:0=0LD:1=1HD:Z=7ZD:W=UWXD:L=0LD:H=1HD:
D=UX01ZWLHD}. The 'D' character representsthe '-' "don't care" std_logic value.

-vl ogmat ches {<ref-1o0gic-val ue>=<test-1|ogic-value>: ...}
Specifies how Verilog signal states in the reference dataset should match valuesin the
test dataset. Optional. Vaues are specified in a col on-separated list of match values. For
example:

-vl ogmat ches {0=0: 1=1: Z=7}
Default is{0=0:1=1:2=Z:X=X}.

-wavepane <n>
Specifies the pane of the Wave window in which the differences will be viewed.
Optional.

-Wwave
Specifies that compare signals be added automatically to the default Wave window.
Optional. Defaullt.

-when {<expression>}
Specifies a conditional expression that must evaluate to "true" or "1" for differencesto
be reported. Optional. The expression is evaluated at the start of an observed difference.
See "GUI_expression_format" (CR-22) for legal expression syntax.

-wi n <wnanme>
Specifies a particular window to which to add objects. Optional. Used to specify a
particular window when multiple instances of that window type exist.

ModelSim SE Command Reference

compare add CR-97

<r ef erencePat h>
Specifies either an absolute or relative path to the reference signal or region, or aglob
expression. Required. Relative paths are relative to the current context of the reference
dataset. If you specify a glob expression, it will match signals only in the containing
context.

<t est Pat h>
Specifies an absolute or relative path to the test signal or region. Cannot be a glob
expression. Optional. If omitted, the test path defaults to the same path as
<referencePath> except for the dataset name.

Examples

conpare add /*
Selects signalsin the reference and test dataset top region according to the default mode.
Uses asynchronous comparison with the default tol erances. Assumesthat the top regions
of the reference and test datasets have the same name and contain the same signals with
the same names.

conpare add -port -clock nmyclockl0 gold:.test_ringbuf.ring_inst
Selects port signals of instance .test_ringbuf.ring_inst in both datasets to be compared
and sampled on strobe myclock10.

conpare add -r gold:/top/cpu test:/testbench/cpu
Selects all signals in the cpu region to be compared asynchronously using the default
tolerances. Requires that the reference and test relative hierarchies and signal names
within the cpu region be identical, but they need not be the same above the cpu region.

conpare add -clock clockl12 gold:.top.sl
Specifies that signal gold:.top.s1 should be sampled at clock12 and compared with
test:.top.sl, also sampled at clock12.

conpare add -tol Lead {3 ns} -tol Trail {5 ns} gold:/asynch/abc/sl sim/flat/
si gabc

Specifies that signal gold:/asynch/abc/sl should be compared asynchronously with
signal sim:/flat/sigabc using aleading tolerance of 3 nsand atrailing tolerance of 5 ns.

conpare add -rebuild gold:.counterl.count test:.counter2.cnt
Causes signals test:.counter2.cnt_dd to be rebuilt into bus test:.counter2.cnt[...] and
compared against gold:.counter 1.count.

See also

compar e annotate (CR-98), compar e clock (CR-99), compar e configur e (CR-101),
compar e continue (CR-103), compar e delete (CR-104), compar e end (CR-105), compare
info (CR-106), compar elist (CR-107), compar e options(CR-108), compar er eload (CR-112),
compar e reset (CR-113), compar e run (CR-114), compar e savediffs (CR-115), compare
saver ules (CR-116), compar e see (CR-117), compar e start (CR-119), compar e stop (CR-
121), compar e update (CR-122), and "Waveform Compare" (UM-270)

ModelSim SE Command Reference

CR-98

compare annotate

compare an

Syntax

Arguments

Examples

See also

notate

The compar e annotate command either flags a comparison difference as"ignore" or adds
atext string annotation to the difference. The text string appears when the differenceis
viewed in info popups or in the output of a compar e info command (CR-106).

conpare annotate
[-ignore] [-noignore] [-text <message>] <idNuml> [<idNun>...]

-ignore

Flags the specified difference as "ignore." Optional.

- noi gnore
Undoes a previous -ignore command. Optional.

-text <nessage>
Adds atext string annotation to the difference that is shown wherever the differenceis
viewed. Optional.

<i dNuni>
I dentifies the difference number to annotate. Required. Y ou can obtain a difference’s
number using the compar e start command (CR-119) or a popup dialog. Difference
numbers are ordered by time of the difference start, but there may be more than one
difference starting at a given time.

<i dNung>. ..
I dentifies a second, third, etc. difference number to be annotated in the same way as
idNum1. Optional. These areindividual references; ranges of numbers cannot be
specified.

conpare annotate -ignore 1 2 10
Flags difference numbers 1, 2, and 10 as "ignore.”

conpare annotate -text "THIS IS A CRITI CAL PROBLEM' 12
Annotates difference number 12 with the message"THISISA CRITICAL PROBLEM."

compare add (CR-94), compar e info (CR-106), and "Waveform Compare" (UM-270)

ModelSim SE Command Reference

compare clock CR-99

compare clock

The compar e clock command defines a clock that can then be used for clocked-mode
comparisons. In clocked-mode comparisons, signals are sampled and compared only at or
just after an edge on some signal.

Syntax
conpare cl ock
[-delete] [-offset <delay>] [-rising | -falling | -both]
[-when {<expression>}] <clock_nane> <signal _path>
Arguments

-delete
Deletes an existing compare clock. Optional .

-of fset <del ay>
Specifies atime value for delaying the sample time beyond the specified signal edge.
Optional. The default is 0. If aunit (e.g., ps) is used with the time value, the time must
be placed in curly braces.

-rising
Specifiesthat the rising edge of the specified signal should be used. Optional. Thisisthe
default.

-falling
Specifies that the falling edge of the specified signal should be used. Optional. The
default isrising.

-both
Specifiesthat both the rising and the falling edge of the specified signal should be used.
Optional. The default isrising.

-when {<expressi on>}
Specifies a conditional expression that must evaluate to "true" or "1" for that clock edge
to beused asastrobe. Optional. The expressionisevaluated at thetime of the clock edge,
rather than after the delay has been applied. See "GUI_expression_format" (CR-22) for
legal expression syntax.

<cl ock_name>
A namefor thisclock definition. Required. This namewill be used with the compare add
command when doing a clocked-mode comparison.

<si gnal _pat h>

A full path to the signal whose edges are to be used as the strobe trigger. Required.

ModelSim SE Command Reference

CR-100 compare clock

Examples

conpare clock -rising strobe gold:.top.clock
Definesaclocked compare strobe named "strobe™ that samples signals on therising edge
of signal gold:.top.clock.

conpare clock -rising -delay {12 ns} clockl12 gol d:/ nmydesign/cl ka
Defines a clocked compare strobe named "clock12" that samples signals 12 ns after the
rising edge of signa gold:/mydesign/clka.

See also

compare add (CR-94), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

compare configure CR-101

compare configure

The compar e configure command modifies options for compare signals and regions. The
modified options are applied to all objects in the specified compare path.

Syntax
conpare configure
[-clock <name>] [-recursive] [-tol <delay>] [-tol Lead <del ay>] [-tol Trail
<del ay>] [-vhdl matches {<ref-Iogic-val ue>=<test-1ogic-value>: ...}]
[-vl ogmat ches {<ref-1ogic-val ue>=<test-1logic-value>: ...}]
[-when {<expression>}] <conparePat h>
Arguments

-clock <name>
Changes the strobe signal for the comparison. Optional. If the comparison is currently
asynchronous, it will be changed to clocked. This switch may not be used with the -tol,
-tolLead, and -tol Trail options.

-recursive
Specifiesthat signals should also be selected in all nested subregions, and subregions of
those, etc. Optional.

-tol <del ay>
Specifies the default maximum time the test signal edge is allowed to trail or lead the
reference edge in an asynchronous comparison. Optional. The default is 0. If aunitis
used (e.g., ps) with the time value, the time must bein curly braces.

-tol Lead <del ay>
Specifies the maximum time atest signal edgeis allowed to lead areference edge in an
asynchronous comparison. Optional. The default is 0. If aunit (e.g., ps) is used with the
time value, the time must be placed in curly braces.

-tol Trail <del ay>
Specifies the maximum time atest signal edge is allowed to trail areference edgein an
asynchronous comparison. Optional. The default isO. If aunit isused (e.g., ps) with the
time value, the time must be placed in curly braces.

-vhdl mat ches {<ref-1|ogic-val ue>=<test-1|ogic-value>: ...}
Specifieshow VHDL signal statesin the reference dataset should match valuesin thetest
dataset. Optional. Values are specified in a colon-separated list of match values. For
example:

-vhdl mat ches { X=XUD: Z=ZD: 1=1HD}

Default is { U=UWXD:X=UWXD:0=0LD:1=1HD:Z=ZD:W=UWXD:L=0LD:H=1HD:
-=UX01ZWLHD}.

ModelSim SE Command Reference

CR-102 compare configure

-vl ogmat ches {<ref-1o0gic-val ue>=<test-1|ogic-value>: ...}
Specifies how Verilog signal statesin the reference dataset should match valuesin the
test dataset. Optional. Vaues are specified in a colon-separated list of match values. For
example:

-vl ogmat ches {0=0: 1=1: Z=7}
Default is{0=0:1=1:2=Z:X=X}.

-when {<expressi on>}
Specifies aconditional expression that must evaluate to "true" or "1" for differencesto
be reported. Optional. The expressionis evaluated at the start of an observed difference.
See "GUI_expression_format" (CR-22) for legal expression syntax.

<conpar ePat h>
I dentifies the path of a compare signal, region, or glob expression. Required.

See also

compar e add (CR-94), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

compare continue CR-103

compare continue

This command is used to continue with comparison difference computations that were
suspended using the compar e stop button or Control-C. If the comparison was not
suspended, compar e continue has no effect.

Syntax

conpare continue
Arguments

None
See also

compar e stop (CR-121), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

CR-104 compare delete

compare delete

The compar e delete command deletes a comparison object from the currently open
comparison.
Syntax

conpare delete
[-recursive] <objectPath>

Arguments

-recursive

Deletes aregion recursively. Optional.

<obj ect Pat h>
Path to the comparison object to be deleted (e.g., compare:/top\clk<>clk\). Required.
The dataset prefix is not needed.

See also

compar e add (CR-94), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

compare end CR-105

compare end

The compar e end command closes the active comparison without saving any information.

Syntax

conpare end
Arguments

None
See also

compare add (CR-94), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

CR-106 compare info

compare info

Syntax

Arguments

Examples

See also

The compar e info command lists the results of the comparison in the Main window
transcript. To save theinformation to afile, use the -write argument.

conpare info
[-all] [-count] [-primaryonly] [-signals] [-secondaryonly]
[<start Num> [<endNun®]] [-summary] [-wite <fil ename>]

-al
Listsall differences (even those marked as "ignore") in the output. Optional. By defaullt,
ignored differences are not listed in the output of a compare info command.

-count
Returns the total number of primary differences found.

-primaryonly
Listsonly differences on individua bits, ignoring aggregate values such as a bus.
Optional.

-signal s
Returnsa Tcl list of compare signal names that have at least one difference.

-secondaryonly
Lists only aggregate value differences such as a bus, ignoring the individual bits.

<start Num> [<endNun®]
Specifies the difference numbers to start and end the list with. Optional. If omitted,
Model Sim starts the listing with the first difference and ends it with the last. If just
endNum is omitted, Model Sim ends the listing with the last difference.

- sunmary
Lists only summary information. Optional .

-wite <fil ename>
Saves the summary information to <filename> rather than the Main window transcript.
Optional.

conpare info
Listsal errorsin the Main window transcript.

conpare info -sumary
Listsonly an error summary in the Main window transcript.

conpare info -wite nmyerrorfile 20 50
Writes errors 20 through 50 to the file myerrorfile.

compare add (CR-94), compar e annotate (CR-98), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

compare list CR-107

compare list

Displaysin the Transcript pane alist of al the compareadd commands currently in effect.

Syntax
conpare |ist
[- expand]
Arguments
- expand
Expands groups specified by the compare add command to individual signals. Optional.
See also

compar e add (CR-94), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

CR-108 compare options

compare options

Syntax

Arguments

The compar e options command sets defaults for various waveform comparison
commands. Those defaults are used when other compare commands areinvoked during the
current session. To set defaults permanently, edit the appropriate PrefCompare() Tcl
variable in the pref.tcl file (see "Preference variables located in Tcl files' (um-540) for
details).

If no arguments are used, compare options returns the current setting for all options. If one
optionisgiven that requiresavalue, and if that value is not given, compare options returns
the current value of that option.

conpare options

[-addwave] [-hide] [-noaddwave] [-show] [-ignoreVlogStrengths]
[- noi gnoreVl ogStrengt hs] [-naxsignal <n>] [-maxtotal <n>]
[-listwin <nanme>] [-<nbde>] [-separator <string>] [-tol <delay>]
[-tol Lead <delay>] [-tol Trail <delay>] [-track] [-notrack]
[-vhdl mat ches {<ref-1ogic-val ue>=<test-1logic-value>: ...}]
[-vl ogmat ches {<ref-1ogic-val ue>=<test-1logic-value>:...}]
[-wavepane <n>] [-wavew n <nane>]

- addwave

Specifies that new comparison objects are added automatically to the Wave window.
Optional. Default. Y ou can specify that objects aren’t added automatically using the
-noaddwave argument. Related Tcl variable is PrefCompare(defaultAddToWave).

-hi de
Hides all comparisons except those that have at |east one difference. Optional. Related
Tcl variableis PrefCompare(defaultHidel fNoDiffs).

- noaddwave
Specifies that new comparison objects are not added automatically to the Wave window.
Optional. The default isto add comparison objects automatically. Related Tcl variableis
PrefCompare(defaultAddToWave).

-show
Shows all comparisons even if they don’'t have any differences. Optional. Defaullt.
Related Tcl variable is PrefCompare(defaultHidel fNoDiffs).

-ignoreVl ogSt rengt hs
Specifiesthat Verilog net strengths should be ignored when comparing two Verilog nets.
Optional. Default. Related Tcl variable is PrefCompare(defaultlgnoreV erilogStrengths).

- noi gnor eVl ogStrengt hs
Specifiesthat Verilog net strengths should not be ignored when comparing two Verilog
nets. Optional. Related Tcl variable is Pref Compare(defaultignoreV erilogStrengths).

-listwin <nanme>
Causes specified comparisons to be displayed in the specified List window. Optional.
Related Tcl variable is PrefCompare(defaultListWindow).

ModelSim SE Command Reference

compare options CR-109

- maxsi gnal <n>
Specifies an upper limit for the total differences encountered on any one signal. When
that limit isreached, M odel Sim stops computing differences on that signal. Optional. The
default is 100. Related Tcl variable is PrefCompare(defaultMaxSigna Errors).

-maxtotal <n>
Specifies an upper limit for the total differences encountered. When that limit isreached,
Model Sim stops computing differences. Optional. The default is 1000. Related Tcl
variable is PrefCompare(defaultMaxTotal Errors).

- <node>
Specifies the default mode of signal types that are compared with the compare add
command (CR-94). Optional. The actual values the option may take are -in, -out, -inout,
-internal, -ports, and -all. More than one mode option may be used in the same compare
options command.

-separator <string>
Used with the -rebuild option of the compare add command (CR-94). When a bus has
been broken into bits (bit blasted) by a synthesis tool, Model Sim expects a separator
between the base bus name and the bit indication. This option identifies that separator.
Thedefaultis™_". For example, the signal "mybus" might be broken down into
"mybus_0", "mybus_1", etc. Optional. Related Tcl variableis
Pref Compare(defaultRebuil dSeparator).

-tol <del ay>
Specifies the default maximum time the test signal edge is allowed to trail or lead the
reference edge in an asynchronous comparison. Optional. The default is 0. If aunitis
used (e.g., ps) with the time value, the time must be in curly braces.

Y ou can specify different values for the leading and trailing tolerances using -tolL ead
and -tol Trail.

-tol Lead <del ay>
Specifies the default maximum time the test signal edgeis allowed to lead the reference
edgein an asynchronous comparison. Optional. Thedefault isO. If aunit (e.g., ps) isused
with the time value, the time must be in curly braces. Related Tcl variables are
Pref Compare(defaultLeadTolerance) and PrefCompare(defaultL eadUnits).

-tol Trail <del ay>
Specifies the default maximum time the test signal edge is allowed to trail the reference
edge in an asynchronous comparison. Optional. The default is 0. If aunitis used
(e.g., ps) with the time value, the time must be in curly braces. Related Tcl variables are
PrefCompare(defaultTrail Tolerance) and Pref Compare(defaultTrailUnits).

ModelSim SE Command Reference

CR-110 compare options

Graphical representation of tolLead and tolTrail

Reference Signal

Test Signal i
L_T_J
tolLead

tol Trail

-track
Specifies that the waveform comparison should track the current simulation. Optional.
Default. The differences will be updated at the end of each run command, so if you want
to see differences soon after they occur, use many relatively short run commands.
Related Tcl variable is PrefCompare(default TrackLiveSim).

-notrack
Specifies that the waveform comparison should not track the current simulation.
Optional. Related Tcl variable is PrefCompare(defaultTrackLiveSim).

-vhdl mat ches {<ref-1ogic-val ue>=<test-logic-value>: ...}
Specifieshow VHDL signal statesin the reference dataset should match valuesinthetest
dataset. Optional. Vaues are specified in a colon-separated list of match values. For
example:

-vhdl mat ches {X=XUD: Z=ZD: 1=1HD}

Default is { U=UWX-:X=UWXD:0=0LD:1=1HD:Z=7ZD:W=UWXD:L=0LD:H=1HD:
-=UX01ZWLHD}. Related Tcl variable is Pref Compare(defaultVHDL Matches).

-vl ogmat ches {<ref-1|ogic-val ue>=<test-1|ogic-value>: ...}
Specifies how Verilog signal statesin the reference dataset should match valuesin the
test dataset. Optional. Vaues are specified in a colon-separated list of match values. For
example:

-vl ogmat ches {0=0: 1=1: Z=Z7}

Default is{0=0:1=1:Z=Z:X=X}. Related Tcl variableis
PrefCompare(defaultV L OGMatches).

-wavepane <n>
Specifies the default pane of the Wave window in which compare differences will be
viewed. Optional. Related Tcl variable is PrefCompare(defaultWavePane).

-wavew n <name>
Specifies the default name of the Wave window in which compare differences will be
viewed. Optional. Related Tcl variable is PrefCompare(defaultWaveWindow).

ModelSim SE Command Reference

compare options CR-111

Examples

conpare options
Returns the current value of all options.

conpare options -nmaxtotal 2000
Sets the maxtotal option to 2000 differences.

conpare options -nmaxtota
Returns the current value of the maxtotal option.

conpare options -ignoreVlogStrengths
Sets the option to ignore Verilog net strengths.

conpare options -vlogxmatches {0=0: 1=1: Z=Z: X=XZ0}
Verilog X will now match X, Z, or 0.

conpare options -vhdl matches {X=UXWD}
VHDL std_logic X will now match 'U', 'X', 'W', or 'D".

conpare options -tolLead {300 ps}
Sets the leading tolerance for asynchronous comparisons to 300 picoseconds.

conpare options -tol Trail {250 ps}
Sets the trailing tolerance for asynchronous comparisons to 250 picoseconds.

See also

compare add (CR-94), compar e clock (CR-99), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

CR-112 compare reload

compare reload

The compare reload command rel oads comparison differences to alow their viewing
without recomputation. Prior to invoking compare reload, you must open the relevant
datasets with the same names that were used during the original comparison.

Syntax
conpare rel oad
<rul esFi | ename> <di f f sFi | ename>
Arguments
<rul esFi | ename>
Specifies the name of the file that was previously saved using the compar e saver ules
command. Required. Must be the first argument.
<di f f sFi | ename>
Specifies the name of the file that was previously saved using the compar e savediffs
command. Required.
See also

compar e add (CR-94), compar e savediffs (CR-115), compar e saver ules (CR-116),
comparerun (CR-114), compar e start (CR-119), "Waveform Compare" (Um-270)

ModelSim SE Command Reference

compare reset CR-113

compare reset

Clearsthe current compare differences, allowing another compar e run command to be
executed. Does not modify any of the compare options or any of the signals selected for
comparison. This allows you to re-run the comparison with different options or with a
modified signal list.

Syntax

conpare reset
Arguments

None
See also

compare add (CR-94), comparerun (CR-114), and "Waveform Compare" (UM-270)

ModelSim SE Command Reference

CR-114 compare run

compare run

The compar e run command runs the difference computation on the signals selected viaa
compar e add command. Reports in the Transcript pane the total number of errors found.

Syntax
conpare run
[<startTime>] [<endTine>]
Arguments
<startTi me>
Specifies when to start computing differences. Optional. Default is zero. If aunit (e.g.,
ps) is used with the time value, the time must be in curly braces. The default units are
determined by the simulation resolution. (Default simulation resolution is hanoseconds.
Simulation resolution can be changed with the -t argument of the vsim command (CR-
373)).
<endTi me>
Specifies when to end computing differences. Optional. Default is the end of the dataset
simulation run that ends earliest. If aunit (e.g., ps) is used with the time value, the time
must be placed in curly braces.
Examples
conpare run
Computes differences over the entire time range.
conpare run {5.3 ns} {57 ns}
Computes differences from 5.3 nanoseconds to 57 milliseconds.
See also

compare add (CR-94), compar e end (CR-105), compar e start (CR-119), "Waveform
Compare" (UM-270)

ModelSim SE Command Reference

compare savediffs CR-115

compare savediffs

The compar e savediffs command saves the comparison results to afile that can be
reloaded later. To be able to reload the file later, you must also save the comparison setup
using the compar e saver ules command.

Syntax
conpare savediffs
<di f f sFi | ename>
Arguments
<di f f sFi | ename>
Specifies the name of thefile to create. Required. To load thefile at alater time, use the
comparereload command (CR-112).
See also

compareadd (CR-94), compar er eload (CR-112), compar e saver ules(Cr-116), "Waveform
Compare" (UM-270)

ModelSim SE Command Reference

CR-116 compare saverules

compare saverules

The compar e saver ules command saves the comparison setup information (or "rules") to
afilethat can be re-executed later. The command saves compare options, clock definitions,
and region and signal selections.

Syntax
conpare saverul es
[-expand] <rul esFil ename>

Arguments

- expand
Expands groups specified by the compar e add (CR-94) command to individual signals.
Optional. If you added aregion with the compare add command and then deleted signals
from that region, you must use the -expand argument or the rules will not reflect the
signal deletions.

<rul esFi | ename>
Specifies the name of the file to which you want to save the rules. Required. To load the
file at alater time, use the compar e reload command (CR-112).
See also

compar eadd (CR-94), compar ereload (CR-112), compar e savediffs (CR-115), "Waveform
Compare" (UM-270)

ModelSim SE Command Reference

compare see CR-117

compare see

The compar e see command displays the specified comparison difference in the Wave
window using whatever horizontal and vertical scrolling are necessary. The signa
containing the specified difference will be highlighted, and the active cursor will be
positioned at the starting time of the difference.

Syntax
conpare see
[-first] [-last] [-next] [-nextanno] [-previous] [-prevanno]
[-wavepane <n>] [-wavew n <nane>]
Arguments

-first
Shows the first difference, ordered by time. Optional. Performs the same action asthe
Find First Difference button in the Wave window.

- | ast
Shows the last difference, ordered by time. Optional. Performs the same action as the
Find Last Difference button in the Wave window.

- next
Shows the next difference (in time) after the currently selected difference. Optional.
Performs the same action as the Find Next Difference button in the Wave window.

- next anno
Shows the next annotated difference (in time) after the currently selected difference.
Optional. Performsthe same action asthe Next Annotated Difference button in the Wave
window.

- previ ous
Shows the previous difference (in time) before the currently selected difference.
Optional. Performs the same action as the Previous Difference button in the Wave
window.

- prevanno
Shows the previous annotated difference (in time) before the currently selected
difference. Optional. Performs the same action as the Previous Annotated Difference
button in the Wave window.

-wavepane <n>
Specifies the pane of the Wave window in which the difference should be shown.
Optional.

-wavew n <name>
Specifies the name of the Wave window in which the difference should be shown.
Optional.

ModelSim SE Command Reference

CR-118 compare see

Examples
conpare see -first
Shows the earliest difference (in time) in the default Wave window.
conpare see -next
Shows the next difference (in time) in the default Wave window.
See also

compar e add (CR-94), comparerun (CR-114), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

compare start CR-119

compare start

Syntax

Arguments

The compar e start command begins a new dataset comparison. The datasetsthat you'll be
comparing must already be open.

conpare start
[-batch] [-hide] [-show] [-naxsignal <n>] [-maxtotal <n>]
[-refDel ay <del ay>] [-testDel ay <del ay>] <reference_dataset>
[<t est _dat aset >]

- bat ch
Specifies that comparisons will not be automatically inserted into the Wave window.

Optional.

- hi de
Hides all comparisons except those that have at least one difference. Optional. Y ou can
change the default using the compar e options command (CR-108) or by editing the
Pref Compare(defaultHidel fNoDiffs) variable in the pref.tcl file.

-show
Shows all comparisons even if they don’t have any differences. Optional. Default. Y ou
can change the default using the compar e options command (CR-108) or by editing the
Pref Compare(defaultHidel fNoDiffs) variable in the pref.tcl file.

- maxsi gnal <n>
Specifies an upper limit for the total differences encountered on any one signal. When
that limitisreached, M odel Sim stops computing differenceson that signal. Optional. The
default limit is 100. Y ou can change the default using the compar e options command
(CR-108) or by editing the PrefCompare(defaultM axSignal Errors) variablein the pref.tcl
file

-maxtotal <n>
Specifies an upper limit for thetotal differences encountered. When that limit isreached,
ModelSim stops computing differences. Optional. The default limit is 1000. Y ou can
change the default using the compar e options command (CR-108) or by editing the
Pref Compare(defaultMaxTotal Errors) variable in the pref.tcl file.

-refDel ay <del ay>
Delays the reference dataset relative to the test dataset. Optional. If <delay> contains a
unit, it must be enclosed in curly braces. Delays are applied to signals specified with the
compare add command (CR-94). For each signal compared, a delayed virtual signal is
created with"_d" appended to the signal name, and these are the signals viewed in the
Wave window comparison objects. The delay is not applied to signals specified in
compare "when" expressions.

ModelSim SE Command Reference

CR-120 compare start

Examples

See also

-testDel ay <del ay>
Delays the test dataset relative to the reference dataset. Optional. If <delay> contains a
unit, it must be enclosed in curly braces. Delays are applied to signals specified with the
compare add command (CR-94). For each signal compared, a delayed virtual signal is
created with "_d" appended to the signal name, and these are the signals viewed in the
Wave window comparison objects. The delay is not applied to signals specified in
compare "when" expressions.

<ref erence_dat aset >
The dataset to be used as the comparison reference. Required.

<t est _dat aset >
The dataset to be tested against the reference. Optional. If not specified, Model Sim uses
the current simulation. The reference and test datasets may be the same.

conpare start gold
Begins awaveform comparison between a dataset named "gold" and the current
simulation. Assumes the gold dataset was aready opened.

dat aset open gold_typ.wif gold
dat aset open bad_typ.w f test
conpare start -maxtotal 5000 -nmaxsignal 1000 gold test

This command sequence opens two datasets and starts a comparison between the two
using greater than default limits for total differences encountered.

compar e add (CR-94), compar e options (CR-108), compar e stop (CR-121), "Waveform
Compare" (UM-270)

ModelSim SE Command Reference

compare stop CR-121

compare stop

This command is used internally by the compar e stop button to suspend comparison
computations in progress. If acompare run execution has returned to the VSIM prompt,
compar e stop hasno effect. Under Unix, entering aControl-C character in thewindow that
invoked Model Sim has the same effect as compar e stop.

Syntax

conpare stop
Arguments

None
See also

compare run (CR-114), compar e start (CR-119), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

CR-122 compare update

compare update

This command is primarily used internally to update the comparison differences when
comparing alive simulation against a .wif file. The compar e update command is called
automatically at the completion of each simulation run if the "-track™ compare optionisin
effect.

The user can aso call compare update periodically during along simulation run to cause
difference computationsto catch up with the simulation. This command does nothing if the
-track compare option was not in effect when the comparerun command (CR-114) was

executed.
Syntax

conpar e update
Arguments

None
See also

compare run (CR-114), "Waveform Compare" (UM-270)

ModelSim SE Command Reference

configure CR-123

configure
The configure command invokes the List or Wave widget configure command for the
current default List or Wave window. To change the default window, use the view
command (CR-332).
Syntax
configure
I'ist|wave [-wi ndow <wnanme>] [<option> <val ue>]
[-delta [all | collapse | none]] [-gateduration [<duration_open>]]
[-gateexpr [<expression>]] [-usegating [<val ue>]]
[-strobeperiod [<period>]] [-strobestart [<start_tine>]]
[-usesignal triggers [<value>]] [-usestrobe [<value>]]
[-childrownargin [<pixels>]] [-cursorlockcolor [<col or>]]
[-gridcolor [<color>]] [-griddelta [<pixels>]] [-gridoffset [<tine>]]
[-gridperiod [<tinme>]] [-nanecolwi dth [<width>]] [-rowmargin [<pixels>]]
[-signal nanewi dth [<value>]] [-tinecolor [<color>]]
[-tineline [<value>]] [-valuecolwi dth [<wi dth>]] [-vectorcol or [<color>]]
[-wavesel ectcol or [<col or>]] [-wavesel ectenabl e [<val ue>]]
Description
The command works in three modes:
 without options or values it returns alist of al attributes and their current values
* with just an option argument (without avalue) it returnsthe current value of that attribute
* with one or more option-value pairsit changesthe values of the specified attributesto the
new values
The returned information has five fields for each attribute: the command-line switch, the
Tk widget resource name, the Tk class name, the default value, and the current value.
Arguments

l'ist]wave
Specifies either the List or Wave widget to configure. Required.

-w ndow <wname>
Specifies the name of the List or Wave window to target for the configure command.
(Theview command (CR-332) allowsyou to create more than one List or Wave window).
Optional. If no window is specified the default window is used; the default window is
determined by the most recent invocation of the view command (CR-332).

<option> <val ue>

-bg <col or>
Specifies the window background color. Optional.

-fg <col or>
Specifies the window foreground color. Optional.

- sel ect background <col or>
Specifies the window background color when selected. Optional.

ModelSim SE Command Reference

CR-124 configure

-sel ectforeground <col or>
Specifies the window foreground color when selected. Optional.

-font
Specifies the font used in the widget. Optional.

- hei ght <pi xel s>
Specifies the height in pixels of each row. Optional.

Arguments, List window only

-delta [all | collapse | none]
The all option displays anew line for each time step on which objects change; collapse
displaysthe final value for each time step; and none turns off the display of the delta
column. To use -delta, -usesignaltrigger s must be set to 1 (on). Optional.

-gateduration [<duration_open>]
The duration for gating to remain open beyond when -gateexpr (below) becomes false,
expressed in x number of timescale units. Extends gating beyond the back edge (the last
list row inwhich the expression evaluatesto true). Optional . The default valuefor normal
synchronousgatingiszero. If -gatedur ation isset to anon-zero value, asimulation value
will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gatedur ation to zero).

- gat eexpr [<expression>]
Specifies the expression for trigger gating. Optional. (Use the -usegating argument to
enable trigger gating.) The expression is eva uated when the List window would
normally have displayed arow of data. See the "GUI_expression_format" (Cr-22) for
information on expression syntax.

-usegating [<val ue>]
Enables triggers to be gated on (avalue of 1) or off (avalue of 0) by an overriding
expression. Default is off. Optional. (Use the -gatexpr argument to specify the
expression.) See "Using gating expressionsto control triggering” (UM-266) for additional
information on using gating with triggers.

-strobeperiod [<period>]
Specifies the period of the list strobe. When using atime unit, the time value and unit
must be placed in curly braces. Optional.

-strobestart [<start_time>]
Specifiesthe start time of thelist strobe. When using atime unit, the time value and unit
must be placed in curly braces. Optional.

-usesignal triggers [<val ue>]
If 1, uses signals astriggers; if 0, not. Optional .

-usestrobe [<val ue>]
If 1, uses the strobe to trigger; if O, not. Optional.

ModelSim SE Command Reference

configure CR-125

Arguments, Wave window only

-chil drowrar gi n [<pi xel s>]
Specifiesthe distancein pixels between child signals. Optional. Defaultis2. Related Tcl
variable is PrefWave(childRowMargin).

-cursorl ockcol or [<col or>]
Specifies the color of alocked cursor. Default isred. Related Tcl variableis
PrefWave(cursorLockColor).

-gridcol or [<col or>]
Specifiesthe background grid color; the default isgrey50. Optional. Related Tcl variable
is PrefWave(gridColor).

-griddelta [<pixel s>]
Specifiesthe closest (in pixels) two grid lines can be drawn before intermediate lines will
be removed. Optional. Default is 40. Related Tcl variable is PrefWave(gridDel ta).

-gridoffset [<time>]
Specifiesthetime (in user time units) of thefirst grid line. Optional . Default is0. Related
Tcl variable is PrefWave(gridOffset).

-gridperiod [<tine>]
Specifies the time (in user time units) between subsequent grid lines. Optional. Default
is 1. Related Tcl variable is PrefWave(gridPeriod).

-namecol wi dt h [<wi dt h>]
Specifies in pixels the width of the name column. Optional. Default is 150. Related Tcl
variable is PrefWave(nameCol Width).

-rowrar gi n [<pi xel s>]
Specifies the distance in pixels between top-level signals. Default is 4. Related Tcl
variable is PrefWave(rowMargin).

-signal nanewi dt h [<val ue>]
Controls the number of hierarchical regions displayed as part of asignal name shownin
the pathname pane. Optional. Default of 0 displaysthefull path. 1 displays only the leaf
path element, 2 displays the last two path elements, and so on. Related Tcl variable is
PrefWave(Signal NameWidth). Can al so be set with the WaveSignal NameWidth variable
in the modelsim.ini file.

-timecol or [<col or>]
Specifies the time axis color. Default is green. Optional. Related Tcl variable is
PrefWave(timeColor).

-timeline [<val ue>]
Specifies whether the horizontal axis displays simulation time (default) or grid period
count. Default is zero. When set to 1, the grid period count is displayed. Related Tcl
variableis PrefWave(timeline).

-val uecol wi dt h [<wi dt h>]
Specifiesin pixels the width of the value column. Default is 100. Related Tcl variableis
PrefWave(valueCol Width).

-vectorcol or [<col or>]
Specifies the vector waveform color. Default is#b3ffb3. Optional. Related Tcl variable
is PrefWave(vectorColor).

ModelSim SE Command Reference

CR-126 configure

Examples

See also

-wavesel ect col or [<col or >]
Specifies the background highlight color of a selected waveform. Default is grey30.
Related Tcl variable is PrefWave(waveSel ectColor).

-wavesel ect enabl e [<val ue>]
Specifies whether the waveform background highlights when an object is selected. 1
enables highlighting; 0 disables highlighting. Default is 0. Related Tcl variableis
PrefWave(waveSel ectEnabl ed).

To get amore readable listing of al attributes and current values, use the lecho (CR-188)
command, which pretty-printsa Tcl list.

There are more options than are listed here. See the output of a configure list or configure
wave command for al options.

config list -strobeperiod
Displays the current value of the strobeperiod attribute.

config list -strobeperiod {50 ns} -strobestart O -usestrobe 1
Sets the period of the list strobe and turnsit on.

config wave -vectorcol or blue
Sets the wave vector color to blue.

config wave -signal nanewi dth 1

Sets the display in the current Wave window to show only the leaf path of each signal.

view (CR-332), "Preference variables located in Tcl files" (UM-540)

ModelSim SE Command Reference

context

Syntax

Arguments

context CR-127

The context command provides several operations on a context's name. The option you
specify determines the operation.

context dataset | exists | islnst | isNet | isProc | isVar | join | parent
split | tail | type
<nane>

cont ext dataset <nane>
Return the dataset name from the name.

cont ext exists <nanme>
Returns 1 if the nameisvalid, 0 otherwise.

context islnst <name>
Returns 1 if the name is an instance pathname, O otherwise.

context isNet <nane>
Returns 1 if the nameisaSignal or Net pathname, 0 otherwise.

context isProc <name>
Returns 1 if the name is a Process pathname, O otherwise.

context join <nane> <nane> ...
Takes one or more names and combines them, using the correct path separator.

cont ext par ent <nane>
Returns the parent path of the name by removing the tail (see context tail).

context path <nane>
Returns the pathname portion of the name, removing the dataset name.

context split <nane>
Returns alist whose elements are the path componentsin the name. Thefirst element of
the list will be the dataset name if oneis present in the name, including the dataset
separator. For example, context split /foo/ bar/baz returns/ foo bar baz .

context tail <nane>
Returnsall of the charactersin the name after the last path separator. If the name contains
no separators then returns the name. Any trailing path separator is discarded.

context type <nane>
Returns a string giving the acc type of the name.

<nane>
Name of a context object or region. Required. Does not have to be avalid object name
unless the specified option requiresthis (i.e., exists or isInst).

ModelSim SE Command Reference

CR-128 coverage clear

coverage clear

The coverage clear command clears all code coverage statement and branch counts
obtained during previous run commands and unloads the current exclusion filter file.

Syntax

coverage cl ear
[<filename>] [-all | -excluded [-user | -pragna | -instance]]

Arguments

<fil ename>
Specifies the name of the file you wish to clear. Optional.

-al
Clearsall statement and branch counts and all user exclusion flags set with the cover age
exclude command. Optional.

- excl uded
Unloadsacurrently loaded exclusion filter file. Exclusion filter files specify filesand line
numbersthat you wish to exclude from Code Coverage statistics. See " Excluding objects
from coverage” (Um-347) for more details.

-user
Clears only user exclusions.

- pragma
Clears only pragma exclusions.

-instance
Clears only instance-specific exclusions.
Example

coverage clear -excluded -pragna
Clears the statement exclusion flags that have been set by the cover age exclude
command. Only pragma exclusions are cleared.
See also

Chapter 13 - Measuring code coverage, cover age exclude (CR-129), coveragereload (CR-
131), cover age report (CR-132), cover age save (CR-135)

ModelSim SE Command Reference

coverage exclude CR-129

coverage exclude

The cover age exclude command loads an exclusion filter file or allows direct exclusion of
specific linesin a source file or rows within atable. Exclusion filter files specify filesand
line numbers that you wish to exclude from Code Coverage statistics. (See "Excluding
objects from coverage” (UM-347) for more details).

Syntax
coverage excl ude
<fil ename>or
[-add | -renpve] <source> [-inst <path>] [<In> | <In> - <In>] | all]
[(-c) | -e <In> <rn>| (<rn><rn>) | all]
Arguments

<fil ename>
Specifies the file name of the exclusion filter you wish to load. Required if <source> is
not specified. See "Excluding objects from coverage" (um-347) for filter file syntax.

-add
Adds another exclusion. Optional.

-renove
Removes an existing exclusion or part of one. Optional.

<source>
Designates the name of the design source file, not an exclusion file, from which
exclusions will be made. Required if <filename> is not specified.

-inst <path>
Designates the hierarchical path of an instance in the design. Required if you do not
specify <filename> or <source>.

<l n>
Specifies the line number to be excluded from code coverage in the design source file
<source>. Also can use line_numberl —line_number2 (In1-In2). Optional .

al
When used with <source>, specifiesthat all linesin the source file should be excluded.
When used with -inst < path>, specifiesthat all linesin the instance and all instances
contained within the specified instance should be excluded. Required if arange or line
number is not specified.

-C
Implies a condition truth table from which lines or rows will be excluded. Optional.

-e
Implies an expression truth table from which lines or rows will be excluded. Optional.

<rn>
Specifies the row number in the truth table to be excluded. Also rowl —row2 (rn1—n2).
Optional

ModelSim SE Command Reference

CR-130 coverage exclude

See also

Chapter 13 - Measuring code coverage, Excluding objects from coverage (UM-347),
coverage clear (CR-128), coverage reload (CR-131), coverage report (CR-132), cover age
save (CR-135)

ModelSim SE Command Reference

coverage reload CR-131

coverage reload

Syntax

Arguments

See also

The coverage reload command seeds the coverage statistics with the output of aprevious
cover age save command. This alows you to gather statistics from multiple simul ation
runs.

coverage rel oad
-57<filename> [-increnental] [-install <path>] [-root <new_root_nanme>]
[-strip <n>]

-57
Specifiesthat the file being rel oaded was produced in Model Sim version 5.7x. Optional .
The coverage file format changed in version 5.8, so you must flag files that are from the
earlier version.

<fil ename>
Specifiesthefilg(s) containing datato reload. Required. Thisfile should be the output of
a previous cover age save command.

-incrementa
Merges loaded coverage data with current coverage data. Optional. Without this
argument, loading coverage data overwrites existing data.

-install <path>
Adds <path> as additional hierarchy onthe front end of instance and signal namesin the
datafile. Optional. Thisargument allowsyou to merge coverage results from simulations
that have different hierarchies.

-root <new_root_nane>
Specifies the root name of the design for which you have a saved coverage report.
Optional. This argument has been superseded by the -strip and -install arguments. It is
included for backwards compatibility only.

-strip <n>
Removes <n> levels of hierarchy from instance and signal namesin the datafile.
Optional. Thisargument allowsyou to merge coverage resultsfrom simulationsthat have
different hierarchies.

Chapter 13 - Measuring code coverage, cover age clear (CR-128), cover age exclude (CR-
129), cover age report (CR-132), cover age save (CR-135)

ModelSim SE Command Reference

CR-132 coverage report

coverage report

The coveragereport command produces textual output of coverage statistics. You can
choose from a number of report output options using the arguments listed below. To view
this data more interactively, right-click in the Files tab of the Workspace pane and select
Coverage > Cover age Reports from the popup context menu.

If you' d like to produce reportsin an offline manner (i.e., without asimulation | oaded), use
the vcover report command (CR-322).

Syntax
coverage report

[-above <percent> | -bel ow <percent>] [-append]
[-byinstance] [-excluded [[-pragma] [-user]] | -totals | [-lines] [-zeros]]
[-file <filename>] [-instance <pathname>] [-library <libname>] [-package
<pkgnanme>] [-noannotate] [-recursive] [-select bces[t|x]] [-source
<filename>] [-xm]

Arguments

- above <percent>
Specifiesthat only objectswith coverage values above this percentage beincludedin the
output. Optional.

- bel ow <per cent >
Specifiesthat only objectswith coverage values bel ow this percentage beincluded in the
output. Optional.

- append
Appends the current coverage statistics to the named output file (-file <filename>).
Optional. Can be used with the-excluded, -instance, -lines, -total, and -zer osarguments
to append specific reports to the output file.

- byi nst ance
Writes out a coverage summary for all instances and packages. Optional .

- excl uded
Writes out the files and lines that are currently being excluded by the user from the
coverage analysis. Shows both pragma and user-based exclusions unless -pragma or
-user are specified. Optional. Thisisthe sameinformation that is shown in the " Current
Exclusions pane" (GR-121).

- pragma
When used with the -excluded argument, writes out only lines currently being
excluded by pragmas. Optional .

-user
When used with the -excluded argument, writes out files and lines currently being
excluded by the cover age exclude command. Optional.

-file <fil ename>
Specifies afile name for the report. Optional. Default is to write the report to the
Transcript pane. Environment variables may be used in the pathname.

ModelSim SE Command Reference

coverage report CR-133

-instance <pat hnane>
Writes out the source file summary coverage data for the selected instance. Optional.

-library <libname>
Only needs to be used when you have packages of the same name in different libraries.
Optional.

-lines
Writes out the source file summary data and after each file it writes out the details for
each executable line in thefile. Optional.

-noannot at e
Produces the same report as -lines but removes source code from the output report.

Optional.

- package <pkgnanme>
Prints areport on the specified VHDL package body. Optional.

-recursive
Reports on the instance specified with -instance and every included instance, recursively.
Can aso be used with -lines and -totals. Optional.

-sel ect bces[t]x]
Specifies which coverage statistics to include in the report. Optional. By default the
report includes statistics for all categories you enabled at compile time.

The characters are as follows:
b—Include branch statistics.
c—Include condition statistics.
e-Include expression statistics.
s-Include statement statistics.
t—Include toggle statistics.
x—Include extended toggle statistics.

-source <fil ename>
Writes a summary of statement coverage data for a specific source file. Optional.
Environment variables may be used in the pathname.

-totals
Writes out atop-level summary of the number of files, statements, branches, hits, and
signal toggles for both file-based and instance-based views of the current analysis.
Optional. Useful for tracking changes.

- xmi
Outputs report in XML format. Optional. See "Reporting coverage data" (Um-350) for
more information.

-zZeros
Writes out afile-based summary of lines that have not been executed (zero hits),
annotates the source code, and supports the-sour ce and -instance options. Optional. For
adetailed report that includes line numbers, use: coverage report -zer os -lines.

ModelSim SE Command Reference

CR-134 coverage report

Examples

coverage report -totals -file nyreport.txt
Writes atop-level summary of the number of files, statements, branches, hits, and signal
toggles to myreport.txt.

coverage report -lines -noannotate -select bcs
Writes detailed branch, condition, and statement statistics, without associated source
code, to the specified file.

coverage report -byinstance
Writes a summary of code coverage for all instances to the Transcript pane.

coverage report -lines -byinstance -file nyreport.txt
Writes code coverage details of all instances in the design to myreport.txt. The -lines
option reports coverage statistics for each statement and branch. Branch coverage
statisticsfollow statement statistics and are presented in four columns: line, column, true
branch count, and fal se branch count.

coverage report -lines -instance /top/p
Writes code coverage details of one specific instance to the Transcript pane.

coverage report -excluded -file myexclusions.txt
Writes both pragma and user-based exclusions to myexclusions.txt.

coverage report -lines -below 90 -file nyreport.txt
Writes a summary of coverage by source file for coverage less than or equal to 90%.

coverage report -zeros byinstance -file myzerocov.txt
Writes alist of statements with zero coverage to myzerocov.txt.
See also

Chapter 13 - Measuring code coverage, cover age clear (CR-128), cover age exclude (CR-
129), cover age reload (CR-131), cover age save (CR-135), VSim (CR-373) -Coverage option,
vcover report (CR-322).

ModelSim SE Command Reference

coverage save CR-135

coverage save

The cover age save command saves current coverage statisticsto afile that can berel oaded
later, preserving instance-specific information.

Syntax
coverage save
[-instance <path>] <filenane> [-norecursive] [-xm]
Arguments
-instance <path>
Saves coverage data for only the specified instance and any of its children, recursively.
Use the -norecursive argument to exclude data from the instance’ s children. <path> isa
path to the instance. Optional.
<fil ename>
Specifies afile name for the report. Required.
-norecursive
When saving coverage by instance, excludes datafrom children of the specified instance.
Optional.
- xmi
Saves datain XML format. Optional. See "Reporting coverage data' (UM-350) for more
information.
Currently XML-formatted coverage files cannot be reloaded or merged.
See also

Chapter 13 - Measuring code coverage, cover age clear (CR-128), cover age exclude (CR-
129), cover age reload (CR-131), coverage report (CR-132), "$coverage save(<filename>,
[<instancepath>], [<xml_output>])" (UM-152) Verilog system task

ModelSim SE Command Reference

CR-136 dataset alias

dataset alias

Thedataset alias command assigns an additional name (alias) to adataset. The dataset can
then be referenced by that alias. A dataset can have any number of aliases, but all dataset
names and aliases must be unique.

Syntax
dat aset alias
<dat aset _nanme> [<al i as_nane>]
Arguments
<dat aset _nane>
Specifies the name of the dataset to which to assign the alias. Required.
<al i as_name>
Specifies the alias name to assign to the dataset. Optional. If you don't specify an
dias_name, Model Sim lists current aliases for the specified dataset_name.
See also

dataset list (CR-140), dataset open (CR-141), dataset save (CR-143)

ModelSim SE Command Reference

dataset clear CR-137

dataset clear

The dataset clear command removes all event data from the current simulation WLF file
whilekeeping al currently logged signalslogged. Subsequent run commandswill continue
to accumul ate datain the WLF file.

Syntax

dat aset cl ear

Example

add wave *

run 100000ns
dat aset cl ear
run 100000ns

Clears datain the WLF file from time Ons to 100000ns, then logs datainto the WLF file
from time 100000ns to 200000ns.

See also
"WLF files (datasets)" (UM-226), log (CR-191)

ModelSim SE Command Reference

CR-138 dataset close

dataset close

The dataset close command closes an active dataset. To open a dataset, use the dataset
open command.

Syntax
dat aset cl ose
<l ogi cal nane> | [-all]
Arguments
<l ogi cal name>
Specifies the logical name of the dataset or alias you wish to close. Required if -all isn't
used.
-all
Closes al open datasets including the simulation. Optional.
See also

dataset open (CR-141)

ModelSim SE Command Reference

dataset info CR-139

dataset info

The dataset info command reports a variety of information about a dataset.

Syntax
dataset info
<option> <dat aset _nane>
Arguments
<option>
I dentifies what information you want reported. Required. Only one option per command
is allowed. The current options include;
nanme - Returnsthe actual name of the dataset. Useful for identifying the real dataset name
of andias.
fil e - Returnsthe name of the WLF file associated with the dataset.
exi sts - Returns"1" if the dataset exists; "0" if it doesn't.
<dat aset _nane>
Specifies the name of the dataset or alias for which you want information. Optional. If
you do not specify adataset name, M odel Sim uses the dataset of the current environment
(seethe environment command (CR-161)).
See also

dataset alias (CR-136), dataset list (CR-140), dataset open (CR-141)

ModelSim SE Command Reference

CR-140 dataset list

dataset list

The dataset list command lists all active datasets.

Syntax
dat aset |ist
[-1ong]
Arguments
-1 ong
Lists the filename corresponding to each dataset’s logical name. Optional.
See also

dataset alias (CR-136), dataset save (CR-143)

ModelSim SE Command Reference

dataset open CR-141

dataset open

Syntax

Arguments

Examples

See also

Thedataset open command opensa WLF file (representing aprior simulation) and assigns
it the logical name that you specify. To close a dataset, use dataset close.

dat aset open
<fil enane> [<l ogi cal name>]

<fil ename>
Specifies the WLF file to open as a view-mode dataset. Required.

<l ogi cal name>
Specifiesthelogical name for the dataset. Optional. Thisisaprefix that will identify the
dataset in the current session. By default the dataset prefix will be the name of the
specified WLF file.

dat aset open last.wf test
Opens the dataset file last.wlf and assigns it the logical name test.

dataset alias (CR-136), dataset list (CR-140), dataset save (CR-143), vSim (CR-373) -View
option

ModelSim SE Command Reference

CR-142 dataset rename

dataset rename

The dataset rename command changes the logical name of a dataset to the new name you

specify.
Syntax
dat aset renane
<l ogi cal nane> <new ogi cal nane>
Arguments
<l ogi cal name>
Specifies the existing logical name of the dataset. Required.
<new ogi cal name>
Specifies the new logical name for the dataset. Required.
Examples
dat aset renane test test2
Renames the dataset file "test" to "test2".
See also

dataset alias (CR-136), dataset list (CR-140), dataset open (CR-141)

ModelSim SE Command Reference

dataset save CR-143

dataset save

The dataset save command writes data from the current simulation to the specified file.
This lets you save simulation data while the simulation is till in progress.

Syntax
dat aset save
<dat aset nane> <fil ename>
Arguments
<dat aset nanme>
Specifies the name of the dataset you want to save. Required.
<fil ename>
Specifies the name of the file to save. Required.
Examples
dat aset save simgold. wf
Saves all current log datain the sim dataset to the file "gold.wif".
See also

dataset snapshot (CR-144)

ModelSim SE Command Reference

CR-144 dataset snapshot

dataset snapshot

Thedataset snapshot command saves datafrom the current WLF file (vsim.wif by default)
at aspecified interval. Thislets you take sequential or cumulative "snapshots" of your
simulation data.

Syntax
dat aset snapshot
[-dir <directory>] [-disable] [-enable] [-file <filenane>] [-fil enpde
overwrite | increnent] [-node cunulative | sequential] [-report] [-reset]
-size <file size> | -tine <sinulation time>
Arguments

-dir <directory>
Specifiesadirectory into which thefiles should be saved. Optional. Default isto saveinto
the directory where Model Sim is writing the current WLF file.

-di sabl e
Turns snapshotting off. Optional. All other options are ignored if you specify -disable.

-enabl e

Turns snapshotting on. Optional. Default.

-file <filename>
Specifies the name of the file to save. Optional. Default is"vsim_snapshot”. ".wif" will
be appended to the file and possibly an incrementing suffix if -filemodeis set to
"increment".

-filenmode overwite | increnent
Specifies whether to overwrite the snapshot file each time a snapshot occurs. Optional.
Defaultis"overwrite". If you specify "increment”, anew fileis created for each snapshot.
An incrementing suffix (1 to n) is added to each new file (e.g., viim_snapshot_1.wif).

-nmode cunul ative | sequenti al
Specifieswhether to keep all datafromthetimesignalsarefirst logged. Optional. Default
is"cumulative". If you specify "sequential”, the current WLFfileis cleared every timea
snapshot istaken. See the examples for further details.

-report
Lists current snapshot settings in the Transcript pane. Optional. All other options are
ignored if you specify -report.

-reset
Resets values back to defaults. Optional. The behavior is to reset to the default, then
apply the remainder of the arguments on the command line. See examples below. If
specified by itself without any other arguments, -reset disables dataset snapshot.

-size <file size>
Specifiesthat a snapshot occurs based on WLF file size. Y ou must specify either -size or
-time. See examples below.

-time <simulation tinme>
Specifiesthat asnapshot occurs based on simulation time. Y ou must specify either -time
or -size. See examples below.

ModelSim SE Command Reference

Examples

See also

dataset snapshot CR-145

dat aset snapshot -size 10
Creates the file vsim_snapshot.wif that is written to every time the current WLF file
reaches amultiple of 10 MB (i.e,, at 10 MB, 20 MB, 30 MB, €tc.).

dat aset snapshot -size 10 -node sequenti al
Similar to the previous examplebut in this case the current WL fileis cleared every time
it reaches 10 MB.

dat aset snapshot -tinme 1000000 -file gold.wf -node sequential -filenode
i ncrenent

Assuming simulator time units are ps, this command saves afile called gold_n.wif every
1000000 ps. If you ran for 3000000 ps, you'd have threefiles: gold_1.wlf with datafrom
0 to 1000000 ps, gold_2.wif with data from 1000001 to 2000000, and gold_3.wlf with
data from 2000001 to 3000000.

P Note: Because this example uses "sequential” mode, if you ran the simulation for
3500000 ps, the resulting vsimwif (the default log file) file will contain data only from
3000001 to 3500000 ps.

dat aset snapshot -reset -time 10000
Enables snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

dataset save (CR-143)

ModelSim SE Command Reference

CR-146 delete

delete

Syntax

Arguments

Examples

See also

The delete command removes objects from either the List or Wave window.

del ete
l'ist|wave [-w ndow <wnanme>] <object_nane>

list]wave
Specifies the target window for the delete command. Required.

-w ndow <wname>
Specifies the name of the List or Wave window to target for the delete command (the
view command (CR-332) allows you to create more than one List or Wave window).
Optional. If no window is specified the default window is used; the default window is
determined by the most recent invocation of the view command (CR-332).

<obj ect _nane>
Specifies the name of an object. Required. Must match an object name used in an add
list (CR-48) or add wave (CR-52) command. Multiple object names may be specified.
Wildcard characters are allowed.

delete list -window list2 vec2
Removes the object vec2 from the list2 window.

add list (CR-48), add wave (CR-52), and "Wildcard characters' (CR-17)

ModelSim SE Command Reference

describe

Syntax

Arguments

Examples

describe CR-147

The describe command displays information about the specified HDL object, C variable,
or design region. The description is displayed in the Transcript pane. The following kinds
of objects can be described:

Design region

VHDL

signals, variables, and constants
Verilog

nets and registers

C
variables

SystemC
signals, ports, FIFOs, and member variables of modules

VHDL signals, Verilog nets and registers, and SystemC signals and ports may be specified
as hierarchical names.

C variables can be described if you are running "C Debug” (UM-399), and the variables are
local to the active call frame for the line in the function in the C source file where you are
stopped.

For specific information related to viewing SystemC objects see " SystemC object and type
display in ModelSim" (UM-180).

descri be

<nane>

<nane>

The name of an HDL object, SystemC signal, or C variable for which you want a
description. HDL object names can be full hierarchical names or relative names.

descri be x

Prints the type of C variable x.

describe *p

Prints the type of what p points to.

describe clk prw prdy

Prints the types of the three specified signals.

ModelSim SE Command Reference

CR-148 disablebp

disablebp

The disablebp command turns off breakpoints and when commands. To turn the
breakpoints or when statements back on again, use the enablebp command.

Syntax
di sabl ebp
[<i d#>]
Arguments
<i d#>
Specifies abreakpoint or when command id to disable. Optional. If you don’t specify an
id#, al breakpoints are disabled. Note that C breakpoint id#s (see "C Debug" (UM-399))
are prefixed with "c.".
See also

bd (CR-70), bp (CR-75), enablebp command (CR-158), onbreak (CR-214), resume (CR-249),
when (CR-407)

ModelSim SE Command Reference

disable_menu CR-149

disable_menu

The disable_menu command disables the specified menu within the specified window.
The disabled menu will become grayed-out and nonresponsive. Returns nothing.
Syntax

di sabl e_nenu
<wi ndow_nane> <nenu_pat h>

Arguments

<wi ndow_nane>
Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as""'. All other window pathnames begin with a period (.) as shown
in the example below.

<menu_pat h>

Name of the Tk menu-widget path. Required.

Examples

di sable_nenu "" File
Disables the file menu of the Main window.

di sabl e_menu . nywi ndow Fil e
Disables the file menu of the mywindow window.

See also

add_menu (CR-56), enable_menu (CR-159)

ModelSim SE Command Reference

CR-150 disable_menuitem

disable_menuitem

The disable_menuitem command disables a specified menu item within the specified
menu path of the specified window. The menu item will become grayed-out and
nonresponsive. Returns nothing.

Syntax
di sabl e_nmenui t em
<wi ndow_nane> <nenu_pat h> <l abel >
Arguments
<wi ndow_nane>
Tk path of the window contai ning the menu. Required.
Note that the path for the Main window must be expressed as""'. All other window
pathnames begin with a period (.) as shown in the example below.
<menu_pat h>
Name of the Tk menu-widget path. The path may include a submenu as shown in the
example below. Required.
<l abel >
Menu item text. Required.
Examples
di sabl e_nenuitem . mywi ndow fil e.save "Save Results As..."
Thiscommand locates the mywindow window, and disablesthe Save Results As... menu
item in the save submenu of the file menu.
See also

add_menuitem (CR-59), enable_menuitem (CR-160)

ModelSim SE Command Reference

do

Syntax

Arguments

Examples

See also

do CR-151

The do command executes commands contained in amacro file. A macro file can have any
name and extension. An error encountered during the execution of a macro file causesits
execution to be interrupted, unless an onerror command (CR-216), onbreak command (CR-
214), or the OnErrorDefaultAction Tcl variable has specified the resume command (CR-
249).

do
<fil enane> [<paraneter_val ue>]

<fil ename>
Specifies the name of the macro file to be executed. Required. The name can be a
pathname or arelative file name.

Pathnames are rel ative to the current working directory if the do command is executed
from the command line. If the do command is executed from another macro file,
pathnames are relative to the directory of the calling macro file. This alows groups of
macro files to be moved to another directory and still work.

<par anet er _val ue>
Specifies values that are to be passed to the corresponding parameters $1 through $9 in
the macro file. Optional. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (i.e., specify fewer parameter values than
the number of parameters actually used in the macro), you must use the argc (UM-542)
simulator state variablein the macro. See"Making macro parameters optional” (UM-488).

Note that there is no limit on the number of parameters that can be passed to macros, but
only nine values are visible at one time. Y ou can use the shift command (CR-266) to see
the other parameters.

do macros/stimulus 100
This command executes the file macros/stimulus, passing the parameter value 100 to $1
in the macro file.

do testfile design.vhd 127
If the macro file testfile contains the line bp $1 $2, this command would place a
breakpoint in the source file named design.vhd at line 127.

Chapter 20 - Tcl and macros (DO files), "Model Sim modes of operation” (uM-27), "Using
astartup file" (um-538), DOPATH (UM-521)

ModelSim SE Command Reference

CR-152 down

down

Syntax

Arguments

The down command searches for object transitions or valuesin the specified List window.
It executes the search on objects currently selected in the window, starting at the time of the
active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which an object
takes on a particular value, or an expression of multiple objects evaluates to true. See the
up command (CR-290) for related functionality.

The procedure for using down includesthree steps: click on the desired object; click onthe
desired starting location; issue the down command. (The seetime command (CR-264) can
initially position the cursor from the command line, if desired.)

Returns. <number_found> <new_time> <new_delta>

down
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-val ue <sig_value>] [-w ndow <wnane>] [<n>]

-expr {<expression>}
The List window will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one object, but islimited to
objectsthat have been logged in the referenced List window. An object may be specified
either by itsfull path or by the shortcut label displayed in the List window.

See "GUI_expression_format" (Cr-22) for the format of the expression. The expression
must be placed within curly braces.

-falling
Searches for afalling edge on the specified object if that object isa scalar object. If itis
not ascalar object, the option will be ignored. Optional.

-noglitch
Specifies that delta-width glitches are to be ignored. Optional.

-rising
Searches for arising edge on the specified object if that object is a scalar object. If itis
not ascalar object, the option will be ignored. Optional.

-val ue <sig_val ue>
Specifies avalue of the object to match. Optional. Must be specified in the same radix
that the selected object is displayed. Case isignored, but otherwise the value must be an
exact string match -- don't-care bits are not yet implemented.

-w ndow <wnane>
Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-332) to change the default
window.

ModelSim SE Command Reference

down CR-153

<n>
Specifies to find the nth match. Optional. If less than n are found, the number found is
returned with awarning message, and the marker is positioned at the last match.

Examples

down -noglitch -value FF23
Finds the next time at which the selected vector transitions to FF23, ignoring glitches.

down
Goesto the next transition on the sel ected object.

Thefollowing examplesillustrate search expressionsthat use avariety of object attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-22).
down -expr {clk’'rising & (nmystate == reading) && (/top/u3/addr ==
32’ habcd1234)}
Searches down for an expression that evaluates to a boolean 1 when object clk just
changed from low to high and object mystate is the enumeration reading and object
/top/u3/addr is equal to the specified 32-bit hex constant.

down -expr {(/top/u3/addr and 32’ hff000000) == 32’ hac000000}
Searches down for an expression that evaluates to a boolean 1 when the upper 8 bits of
the 32-bit object /top/u3/addr equals hex ac.
down -expr {((NOW> 23 us) && (NOW< 54 us)) && clk'rising & (nmode ==
witing)}
Searches down for an expression that evaluates to a boolean 1 when logfiletimeis
between 23 and 54 microseconds, clock just changed from low to high, and object mode
is enumeration writing.

See also

"GUI_expression_format" (CR-22), view (CR-332), seetime (CR-264), Up (CR-290)

ModelSim SE Command Reference

CR-154 drivers

drivers

Syntax

Arguments

See also

The drivers command displays the names of al drivers of the specified object. The driver
listisexpressed relative to the top-most design signal/net connected to the specified object.
If the object isarecord or array, each subelement is displayed individually.

drivers
<obj ect _nane>

<obj ect _nane>
Specifies the name of the signal or net whose drivers are to be shown. Required. All
signal or net types are valid. Multiple names and wildcards are accepted.

reader s (CR-242) command

ModelSim SE Command Reference

dumplog64 CR-155

dumplog64

The dumplog64 command dumps the contents of the specified WLF filein areadable
format to stdout. The WLF file cannot be opened for writing in asimulation when you use
this command.

The dumplog64 command cannot be used in aDO file.

Syntax

dunpl og64
<fil enane>

Arguments

<fil ename>

The name of the WLF file to be read. Required.

ModelSim SE Command Reference

CR-156 echo

echo

Syntax

Arguments

Examples

The echo command displays a specified message in the Transcript pane.

echo
[<text_string>]

<text_string>
Specifies the message text to be displayed. Optional. If the text string is surrounded by
quotes, blank spaces are displayed asentered. If quotes are omitted, two or more adjacent
blank spaces are compressed into one space.

echo “The tine is $now ns.”
If the current time is 1000 ns, this command produces the message:

The time is 1000 ns.

If the quotes are omitted, al blank spaces of two or more are compressed into one space.
echo The tine is $now ns

If the current time is 1000ns, this command produces the message:

The time is 1000 ns
echo can aso use command substitution, such as:
echo The hex value of counter is [exam ne -hex counter].

If the current value of counter is 21 (15 hex), this command produces:

The hex value of counter is 15

ModelSim SE Command Reference

edit CR-157

edit
The edit command invokes the editor specified by the EDITOR environment variable. By
default the specified filename will open in Model Sim Source editor.
Syntax
edit
[<fil enanme>]
Arguments
<fil ename>
Specifies the name of the fileto edit. Optional. If the <filename> is omitted, the editor
opens the current source file. If you specify a non-existent filename, it will open anew
file
See also

notepad (CR-211), EDITOR (UM-521) environment variable

ModelSim SE Command Reference

CR-158 enablebp

enablebp

Syntax

Arguments

See also

The enablebp command turns on breakpoints and when commands that were previously
disabled.

enabl ebp
[<i d#>]

<i d#>
Specifies a breakpoint or when statement id to enable. Optional. If you don’t specify an
id#, all breakpoints are enabled. Note that C breakpoint id#s (see "C Debug" (UM-399))
are prefixed with "c.".

bd (CRrR-70), bp (CR-75), disablebp command (CR-148), onbreak (CR-214), resume (CR-249),
when (CR-407), Chapter 16 - C Debug (UM-399)

ModelSim SE Command Reference

enable_menu CR-159

enable_menu

The enable_menu command enables a previously-disabled menu. The menu will be
changed from grayed-out to normal and will become responsive. Returns nothing.
Syntax

enabl e_nenu
<wi ndow_nane> <nenu_pat h>

Arguments

<wi ndow_nane>
Tk path of the window contai ning the menu. Required.

Note that the path for the Main window must be expressed as""'. All other window
pathnames begin with a period (.) as shown in the example below.

<menu_pat h>

Name of the Tk menu-widget path. Required.

Examples

enable_nenu "" File
Enables the previously-disabled File menu of the Main window.

enabl e_menu . mywi ndow Fil e
Enables the previoudy-disabled File menu of the mywindow window.

See also

add_menu (CR-56), disable_menu (CR-149)

ModelSim SE Command Reference

CR-160 enable_menuitem

enable_menuitem

The enable_menuitem command enables a previously-disabled menu item. The menu
item will be changed from grayed-out to normal, and will become responsive. Returns

nothing.
Syntax
enabl e_menui t em
<wi ndow_nane> <nenu_pat h> <l abel >
Arguments
<wi ndow_nane>
Tk path of the window contai ning the menu. Required.
Note that the path for the Main window must be expressed as""'. All other window
pathnames begin with a period (.) as shown in the example below.
<menu_pat h>
Name of the Tk menu-widget path. The path may include a submenu as shown in the
example below. Required.
<l abel >
Menu item text. Required.
Examples
enabl e_menui tem . nywi ndow fil e.save "Save Results As..."
This command | ocates the mywindow window and enablesthe previousy-disabled Save
Results As... menu item in the save submenu of the file menu.
See also

add_menuitem (CR-59), disable_menuitem (CR-150)

ModelSim SE Command Reference

environment CR-161

environment

The environment, or env command, allows you to display or change the current dataset
and region/signal environment.

Syntax
envi ronment
[-dataset] [-nodataset] [<pathnanme>]
Arguments
- dat aset
Displays the specified environment pathname with a dataset prefix. Optional. Dataset
prefixes are displayed by default if more than one dataset is open during a simulation
session.
- nodat aset
Displays the specified environment pathname without a dataset prefix. Optional.
<pat hname>
Specifies the pathname to which the current region/signal environment isto be changed.
See "Object name syntax" (CR-12) for information on specifying pathnames. Optional.
If omitted the command causes the pathname of the current region/signal environment to
be displayed.
Examples

env
Displays the pathname of the current region/signal environment.

env-dat aset test
Changes all unlocked windows to the context of the "test" dataset.

env test:/top/foo
Changes all unlocked windows to the context "test: /top/foo".

env bl k1/u2
Moves down two levelsin the design hierarchy.

env /
Movesto thetop level of the design hierarchy.

ModelSim SE Command Reference

CR-162 examine

examine

The examine command examines one or more objects and displays current values (or the
values at a specified previous time) in the Transcript pane. It optionally can compute the
value of an expression of one or more objects. If you are using C Debug (UM-399), examine
can display the value of a C variable as well.

The following objects can be examined:

* VHDL

signals, shared variables, process variables, constants, and generics
* Verilog

nets, registers, and variables
« C

variables

e SystemC
signals, FIFOs, ports, and member variables of modules

When stopped in C code, examine (with no arguments) displays the values of the local
variables and arguments of the current C function. For specific information related to
viewing SystemC objects see " SystemC object and type display in Model Sim" (UM-180).
To display a previous value, specify the desired time using the -time option. To compute
an expression, use the -expr option. The-expr and the -time options may be used together.

Virtual signals and functions may also be examined within the GUI (actual signals are
examined in the kernel).

The following rules are used by the examine command to locate an HDL object:
« |If the name does not include a dataset name, then the current dataset is used.
« |f the name does not start with a path separator, then the current context is used.

« If the nameis a path separator followed by a name that is not the name of atop-level
design unit, then the first top-level design unit in the design is used.

* For arelative name containing ahierarchical path, if thefirst object name cannot befound
in the current context, then an upward search is done up to the top of the design hierarchy
to look for a matching object name.

* If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

» Thewildcards ™' and '? can be used at any level of aname except in the dataset name and
inside of a slice specification.

» A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

See "Design object names" (CR-12) for more information on specifying names.

ModelSim SE Command Reference

examine CR-163

Syntax
exani ne
[-delta <delta>] [-env <path>] [-in] [-out] [-inout] [-internal] [-ports]
[-expr <expression>] [-nane] [-<radix>] [-tinme <time>] [-value] <nane>..
Arguments

-delta <del ta>
Specifiesasimulation cycle at the specified time from which to fetch the value. Optional.
The default isto use the last delta of the time step. The objects to be examined must be
logged viathe add list, add wave, or log command in order for the examine command to
be ableto return avalue for arequested delta. This option can be used only with objects
that have been logged viathe add list, add wave, or log command.

-env <path>
Specifies apath in which to ook for an object name. Optional.

- expr <expression>
Specifies an expression to be evaluated. Optional. The objects to be examined must be
logged viathe add list, add wave, or log command in order for the examine command to
be able to evaluate the specified expression. If the -time argument is present, the
expression will be evaluated at the specified time, otherwise it will be evaluated at the
current simulation time. See "GUI_expression_format" (CrR-22) for the format of the
expression. The expression must be placed within curly braces.

-in
Specifies that <name> include ports of mode IN. Optional.

-out
Specifies that <name> include ports of mode OUT. Optional .

- i nout
Specifies that <name> include ports of mode INOUT. Optional .

-interna
Specifies that <name> include internal (non-port) signals. Optional.

-ports
Specifies that <name> include all ports. Optional. Has the same effect as specifying -in,
-inout, and -out together.

- hane
Displays object name(s) along with the value(s). Optional. Default is -value behavior
(see below).

The lecho command (CR-188) will return the output of an examine command in
"pretty-print" format. For example,

| echo [exami ne -nane clk prw pstrb]

- <radi x>
Specifies the radix for the objects that follow in the command. Valid entries (or any
unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, symbolic, and
default. If no radix is specified for an enumerated type, the default representation is used.
Y ou can change the default radix for the current simulation using the radix command

ModelSim SE Command Reference

CR-164 examine

(CR-241). Y ou can change the default radix permanently by editing the DefaultRadix (UM-
531) variable in the modelsim.ini file.

-tinme <tine>
Specifiesthetime value between 0 and $now for which to examine the objects. Optional.
If an expression is specified it will be evaluated at that time. The objects to be examined
must be logged via the add list, add wave, or log command in order for the examine
command to be able to return avalue for a requested time. This option can be used only
with objects that have been logged via the add list, add wave, or log command.

If the <time> field uses a unit, the value and unit must be placed in curly braces. For
example, the following are equivalent for ps resol ution:

exa -time {3.6 ns} signal _a
exa -time 3600 signal _a

-val ue
Returnsvalue(s) asacurly-braces separated Tcl list. Default. Useto toggle off aprevious
use of -name.

<nane>. ..
Specifies the name of any HDL or SystemC object. Required (except when the -expr
optionisused). All object typesareallowed, except those of thetypefile. Multiple names
and wildcards are accepted. Spaces, square brackets, and extended identifiers require
curly braces; see examples below for more details. To examineaVHDL variableyou can
add a process label to the name. For example (make certain to use two underscore
characters):

exa line__36/i

Examples

exam ne /top/busl
Returns the value of /top/busl.

exam ne {rega[16]}
Returnsthe value of the subelement of rega that is specified by theindex (i.e., 16). Note
that you must use curly braces when examining subelements.

exam ne {foo[20:22]}
Returnsthe value of the contiguous subelements of foo specified by thedlice(i.e., 20:22).
Note the curly braces.

exam ne {/top/\My extended id\ }
Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing \' and before the closing '} ".

exam ne -tinme {3450 us} -expr {/top/bus and $bit_mask}
In this example the -expr option specifies asignal path and user-defined Tcl variable.
The expression will be evaluated at 3450us.

examne -time $t -name $fifo "${fifo}(1 to 3)" ${fifo}(1)
Using the ${fifo} syntax limits the variable to the simple name fifo, instead of
interpreting the parenthesis as part of the variable. Quotes are needed when spaces are
involved; and by using quotes (") instead of braces, the Tcl interpreter will expand
variables before calling the command.

ModelSim SE Command Reference

See also

examine CR-165

exam ne -expr {clk’ event && (/top/xyz == 16 hffae)}
Because-timeisnot specified, thisexpression will be evaluated at the current simulation
time. Note the signal attribute and array constant specified in the expression.

Commands likefind (CrR-176) and examine return their resultsasa Tcl list (just a blank-
separated list of strings). Y ou can do things like:

foreach sig [find ABC*] {echo "Signal $sig is [exa $sig]" ...}
if {[exam ne -bin signal _12] == “11101111XXXZ"} {...}
exam ne -hex [find *]

The Tcl variable array, $examine (), can also be used to return values. For example,
$exani ne (/cl k). You canalso examine an object in the " Source window" (GR-199) by
selecting it with the right mouse button.

exam ne x
Prints the value of C variable x.

exam ne *p
Prints the value *p (de-references p).

exam ne ip->inl
Prints the structure member in1 pointed to by ip.

"Design object names' (CR-12), "Wildcard characters' (CR-17), "GUI_expression_format"
(CR-22), Chapter 16 - C Debug (UM-399)

ModelSim SE Command Reference

CR-166 exit

exit
The exit command exits the simulator and the M odel Sim application.
If you want to stop the simulation using a when command (CR-407), you must use a stop
command (CR-273) within your when statement. DO NOT use an exit command or a quit
command (CR-240). The stop command acts like a breakpoint at the time it is evaluated.
Syntax
exit
[-force]
Argument
-force

Quits without asking for confirmation. Optional; if this argument is omitted, Model Sim
asks you for confirmation before exiting.

ModelSim SE Command Reference

fcover clear CR-167

fcover clear

The fcover clear command removes all functional coverage count data and comment
meta-data from the current simulation. It doesn’t affect the configuration of coverage
directives.

Syntax
fcover clear

See also

Chapter 15 - Functional coveragewith PSL and Model Sm, " Clearing functional coverage
data' (Um-397), fcover configure command (CR-169)

ModelSim SE Command Reference

CR-168 fcover comment

fcover comment

The fcover comment command adds comment meta-data to the current functional
coverage database.

Use the command to encode the characteristics (arguments, randomization seed, etc.) of the
set of teststhat produced the current functiona coverage so that there is some traceability
from coverage to tests.

When coverage databases are merged, comment meta-dataisaccumul ated, so that amerged
database has a set of multiple comments associated with it.
Syntax

fcover comment
[-append "<text_string>"] [-clear]

Arguments

-append "<text_string>"
Adds the specified <text_string> to the current functional coverage database. Optional.

-clear
Clears all comments from the current functional coverage database. Optional.
Examples

fcover coment -append "Testl +2 +seed=1023 +op=add"
Adds the test description to the current comments.

fcover comrent
Displays al commentsin the current database.

fcover coment -clear
Clears all comments from the current database.

See also
Chapter 15 - Functional coverage with PSL and ModelSm

ModelSim SE Command Reference

fcover configure CR-169

fcover configure

The fcover configure command enables, disables, and sets coverage targets for PSL
functional coverage directives.

If you invoke it without any optional arguments, the command reports the current settings
for the specified directive(s).

Syntax
fcover configure
[-at _I east <count>] <coverage_directive> [-disable] [-enable]
[-exclude] [-include] [-include] [-l1og on]off] [-recursive] [-weight
<i nt eger >]
Arguments

-at_| east <count>
Specifies atarget count for the selected coverage point(s). The <count> value must be a
positive integer value. A directive is considered 100% covered when the AtLeast count
isreached. Optional. The default value is 1. Y ou can change the permanent default by
editing the CoverAtL east (UM-531) variable in the modelsim.ini file.

<coverage_directive>
Identifies the functional coverage directive(s) to which the configuration parameters
should be applied. Multiple directives may be specified. Wildcards are allowed.
Required.

-di sabl e
Disables incrementing on the specified directive(s). Optional. Disabled directives till
count toward overall coverage if they had coverage events prior to being disabled. You
can change the permanent default by editing the CoverEnable (UM-531) variable in the
modelsim.ini file.

-enabl e
Enables incrementing on the specified directive(s). Optional. Default. Y ou can change
the permanent default by editing the CoverEnable (Um-531) variable in the modelsim.ini
file.

-excl ude
Removes the specified directive(s) from the current functional coverage database.
Excluded directives will still show up in the Functional Coverage pane but they do not
count toward coverage totals nor do they show up in reports. Optional.

-include
Adds the specified directive(s) to the current functional coverage database. Optional.

Default.

-limt <count>
Specifies the number of cover directive hits before the directiveis "auto disabled.”
Optional. The default valueis 1. Y ou can change the permanent default by editing the
CoverLimit (umM-531) variable in the modelsim.ini file.

Thisargument is useful if you have a directive that is already covered but is evaluated
frequently. Disabling such directives improves simulation performance.

ModelSim SE Command Reference

CR-170

fcover configure

Examples

See also

-log on|of f
Specifies whether to log directive counts to the transcript. Even with logging off,
coverage counts are incremented in the underlying database. This option appliesto all
directives that follow it in the command line.

One of the following valuesis required:
on—Enable logging. Defaullt.
off-Disable logging.

Y ou can change the permanent default by setting the CoverL og (UM-531) variable in the
modelsim.ini file.

-recursive
For use with wildcard matching. Specifies that the scope of the matching is to descend
recursively into subregions. If omitted, the search is limited to the selected region.
Optional.

-wei ght <integer>
Specifies arelative weighting for the specified coverage directive. A directive with a
weight of 2 will have twice the impact on the aggregated coverage numbers aswill a
directive with aweight of 1. The weight must be anatural integer (>= 0). If itsweight is
set to O but a directive is otherwise enabled, its coverage will not count toward the
aggregated coverage statistics. The default valueis 1. Optional.

fcover configure *
Reports the current configuration settings for the functional coverage directivesin the
current scope.

fcover configure -enable -at_|l east 20 /top/reset_trigger
Enables coverage counting for /top/reset_trigger with an AtLeast count of 20.

fcover configure -r -disable /top/*
Disables all functional coverage directivesin the region /top and al regions below /top.

Chapter 15 - Functional coverage with PSL and Model Sm, " Configuring functional
coverage directives' (UM-386)

ModelSim SE Command Reference

fcover reload CR-171

fcover reload

The fcover reload command seeds functional coverage statistics with results from a
previous coverage analysis. This allows you to gather statistics from multiple simulation
runs and aggregate them into asingle set of statistics.

Note that this command must be run on an elaborated simulation database. To merge
coverage databases in offline mode, use the vcover mer ge command (CR-320).

Syntax

fcover rel oad
<filename> [-install <path>] [-nmerge] [-strip <n>]

Arguments

<fil ename>
Specifies the functional coverage database to reload. Required. Thisfile should be the
output of a previousfcover save command (CR-175).

-install <path>
Adds <path> as additional hierarchy on the front end of instance and signal namesin the
datafile. Optional. Thisargument allowsyou to merge coverage resultsfrom simul ations
that have different hierarchies.

- mer ge
Merges loaded coverage data with current coverage data. Optional. Without this
argument, loading coverage data overwrites existing data.

-strip <n>
Removes <n> levels of hierarchy from instance and signal namesin the datafile.
Optional. Thisargument allowsyou to merge coverage resultsfrom simulationsthat have
different hierarchies.

Examples

fcover reload run2
Replaces functional coverage results from the current simulation with results loaded
from run2.

fcover reload -nerge -install /top/dut/nmac ./nmacl28_test_stats.fcdb
Merges the current coverage results with those in mac128 test stats.fcdb. The signals
and instances in the database are given the new path /top/dut/mac. This methodology can
be useful for merging statistics derived from a block simulation into the statistics of an
overall chip simulation.

fcover reload -nerge -strip 2 ./systemtest_stats.fcdb
Mergesthe current coverage resultswith thosein system test stats.fcdb. Thesignalsand
instances in the database have the top 2 levels of hierarchy removed from their names
(e.g., /systop/unitl). This methodology can be useful for merging statistics derived from
asystem simulation into the statistics of an individual chip simulation.

ModelSim SE Command Reference

CR-172 fcover reload

See also

Chapter 15 - Functional coveragewith PSL and Model S m, " Rel oading/merging functional
coverage data" (Um-396), fcover save command (CR-175)

ModelSim SE Command Reference

fcover report CR-173

fcover report

Syntax

Arguments

The fcover report command produces an ASCII report of the current functional coverage
results.

For each directive instance, the report includes by default the full instance path, the
coverage count or percentage, the design unit, the source file name, and the source line
number. The report is sorted by design unit. For each design unit, the report includes a
coverage percentage computed from each coverage directive in that design unit.

Notethat areport response of "No match" indicates that the report wasempty. For example,
"fcover report -du foo -r *" where there is no design unit "foo" will result in "No match."

fcover report
[-above <percent>] [-aggregated] [-append] [-bel ow <percent>] [-comment]
[-config] <coverage_directive> [-details] [-du <name>]
[-noaggregated] [-nocomrent] [-nodetails] [-output <filenane>]
[-recursive] [-xm] [-zero]

-above <percent>
Specifiesthat only objectswith coverage values above this percentage be included in the
report. Optional.

-aggregat ed
Includes aggregated statistics in the output. Optional. Defaullt.

- append
Appends this report to the named report file. Optional.

- bel ow <percent >
Specifiesthat only objectswith coverage values bel ow this percentage beincluded in the
report. Optional.

- comrent
Specifies that comments should be included with the report. Comments are excluded by
default. Optional.

-config
Specifies that the current configuration of each directive be included in the report. Has
no effect unless you also specify the -details argument. Optional.

<coverage_directive>
I dentifiesthe functional coveragedirective(s) toincludein thereport. Multipledirectives
may be specified. Wildcards are allowed. Reguired if -du <name> isn't specified.

-details
Includes detail s associated with each cover directive (e.g., count) in the output. Optional.
Default.

-du <name>
Specifies that only objects belonging to the given design unit be included in the report.
Optional.

ModelSim SE Command Reference

CR-174

fcover report

Examples

See also

- noaggr egat ed
Excludes aggregated statistics from the output. The statistics are included by default.
Optional.

- nhocoment
Specifies that comments should be excluded from the report. Optional. Default.

-nodetails
Excludes detail s associated with each cover directive (e.g., count) from the output.
Details are included by default. Optional.

-out put <fil ename>
Specifies afile name for the report. The default isto write the report to the Transcript
(GUI mode) or stdout (batch mode). Environment variables may be used in the
pathname. Optional.

-recursive
For use with wildcard matching and reporting aggregated statistics by design unit.
Specifies that the scope of the matching isto descend recursively into subregions. If
omitted, the search is limited to the selected region.

- xmi
Formats the report datain XML. Optional.

-zero
Specifiesthat only objectswith coverage counts of exactly zero beincluded in the report.
Takes precedence over the -above and -below values. Thisisauseful option for locating
coverage "holes’ (i.e., coverage eventsthat never happened during simulation). Optional.

fcover report -r /*
Reports al cover directives to the Transcript pane.

fcover report -r /* -du nmenory -file report.txt -xnl
Saves an XML report to file report.txt for design unit memory only.

fcover report -aggregated -r /top/nodul el/*
Reports on directivesin and beneath /top/modulel including aggregated statistics.

Chapter 15 - Functional coveragewith PS. and Model S m, " Reporting functional coverage
statistics" (UM-391), vcover report command (CR-322)

ModelSim SE Command Reference

fcover save CR-175

fcover save

The fcover save command saves the current functional coverage database to are-loadable

file.
Syntax
fcover save
<fil ename>
Arguments
<fil ename>
Specifiesthe file to be created. If the file already exists, it is replaced. Required.
See also

Chapter 15 - Functional coverage with PSL and ModelSm, " Saving functional coverage
data' (Um-395), fcover reload command (CR-171)

ModelSim SE Command Reference

CR-176

find

find

Syntax

Thefind command | ocates objectsin the design whose names match the name specification
you provide. Y ou must specify the type of object you want to find. When searching for nets
and signals, the find command returns the full pathname of all nets, signals, registers,
variables, and named events that match the name specification.

When searching for nets and signal's, the order in which arguments are specified is
unimportant. When searching for virtuals, however, all optiona arguments must be
specified before any object names.

The following rules are used by the find command to locate an object:

If the name does not include a dataset name, then the current dataset is used.
« If the name does not start with a path separator, then the current context is used.

« If the nameis a path separator followed by a name that is not the name of atop-level
design unit, then the first top-level design unit in the design is used.

* For arelative name containing ahierarchical path, if thefirst object name cannot befound
in the current context, then an upward search is done up to the top of the design hierarchy
to look for a matching object name.

« If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

» Thewildcards ™' and '? can be used at any level of aname except in the dataset name and
inside of a slice specification. Square bracket '[]’ wildcards can also be used.

» A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* won’t match either of those.

* Because square brackets are wildcardsin the find command, only parentheses’ ()’ can be
used to index or dlice arrays.

» The WildcardFilter Tcl preference variable is used by the find command to exclude the
specified types of objects when performing the search.

See "Design object names" (CR-12) for more information on specifying names.

find nets | signals
[-in] [-inout] [-internal] <object_name> ... [-nofilter] [-out] [-ports]
[-recursive]

find instances
[-recursive] <object_name> ..

find virtuals
[-kind <kind>] [-unsaved] <object_name> ..

find classes
[<cl ass_nane>]

ModelSim SE Command Reference

find CR-177

find objects
[-class <class_nane>] [-isa <class_name>] [<object_nane>]

Arguments for nets and signals
-in
Specifies that the scope of the search is to include ports of mode IN. Optional.

- i nout
Specifies that the scope of the search is to include ports of mode INOUT. Optional.

-interna
Specifies that the scope of the search isto include interna (non-port) objects. Optional.

<obj ect _nane> ..
Specifies the net or signal for which you want to search. Required. Multiple nets and
signals and wildcard characters are allowed. Wildcards cannot be used inside of adlice
specification. Spaces, square brackets, and extended identifiers require special syntax;
see the examples below for more details.

-nofilter
Specifiesthat the WildcardFilter Tcl preferencevariable beignored when finding signals
or nets. Optional.

-out
Specifies that the scope of the search is to include ports of mode OUT. Optional.

-ports
Specifiesthat the scope of the searchistoincludeall ports. Optional. Has the same effect
as specifying -in, -out, and -inout together.

-recursive
Specifiesthat the scope of the search isto descend recursively into subregions. Optional.
If omitted, the search islimited to the selected region.

Arguments for instances

-recursive
Specifiesthat the scope of the search isto descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

<obj ect _nane> ..
Specifies the instance for which you want to search. Required. Multiple instances and
wildcard characters are allowed.

Arguments for virtuals

-kind <ki nd>
Specifies the kind of virtual object for which you want to search. Optional. <kind> can
be one of designs, explicits, functions, implicits, or signals.

-unsaved
Specifies that Model Sim find only virtuals that have not been saved to aformat file.

<obj ect _nane> ..
Specifiesthe virtual object for which you want to search. Reguired. Multiple virtuals and
wildcard characters are allowed.

ModelSim SE Command Reference

CR-178 find

Arguments for classes

<cl ass_name>
Specifiesthe incrTcl class for which you want to search. Optional. Wildcard characters
areallowed. Theoptionsfor class_nameinclude nets, objects, signals, and virtuals. If you
do not specify a class name, the command returns all classesin the current namespace
context. See"incrTcl commands' in the Tcl Man Pages for more information.

Arguments for objects

Examples

-class <cl ass_nane>
Restricts the search to objects whose most-specific classis class_name. Optional.

-isa <cl ass_nane>
Restricts the search to those objects that have class name anywhere in their heritage.
Optional.

<obj ect _nane>
SpecifiestheincrTcl object for which you want to search. Optional. Wildcard characters
are alowed. If you do not specify an object name, the command returnsall objectsin the
current namespace context. See "incrTcl commands' in the Tcl Man Pages for more
information.

find signals -r /*
Finds al signalsin the entire design.

find nets -in /top/xy*
Findsall input signalsin region /top that begin with the letters "xy".

find signals -r ul/u2/cl*
Findsall signalsin the design hierarchy at or below the region <current_context>/ul/u2
whose names begin with "cl".

find signals {s[1]}
Finds asignal named s1. Note that you must enclose the object in curly braces because
of the square bracket wildcard characters.

find signals {s[123]}
Finds signals sl, s2, or s3.

find signals s(1)
Finds the element of signal sthat isindexed by the value 1. Note that the find command
uses parentheses, not square brackets, to specify a subelement index.

find signals {/top/data(3 downto 0)}
Finds a4-bit array named data. Note that you must use curly braces due to the spacesin
the array dlice specification.

find signals {/top/\My extended id\ }
Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing '\' and before the closing '}

ModelSim SE Command Reference

find CR-179

if {[find signals /dut/core/pclk] !'=""} {
echo "pcl k does exist”

If /dut/core/pclk exists, prints the message "pclk does exist" in the transcript. Thiswould
typically beruninaTcl script.
Additional search options
To search for HDL objects within a specific display window, use the sear ch command (CR-
260) or select Edit > Find.
See also

"Design object names' (CR-12), "Wildcard characters' (CR-17)

ModelSim SE Command Reference

CR-180 force

force

The force command allows you to apply stimulusinteractively to VHDL signals and
Verilog nets. Since for ce commands (like all commands) can be included in a macro file,
it is possible to create complex sequences of stimuli.

Y ou canforce Virtual signals(um-233) if the number of bits correspondsto the signal value.
Y ou cannot forcevirtual functions. In VHDL and mixed models, you cannot force an input
port that is mapped at a higher level or that has a conversion function on the input.

Y ou cannot force bits or slices of aregister; you can force only the entire register. Y ou
cannot force VHDL or Verilog variables (reg, integer, time, real (or reatime)); these must
be changed. See the change command (CR-81).

Y ou cannot forceaVHDL dias of aVHDL signal.

Y ou cannot force any objects within SystemC modules.

Syntax

force
[-freeze | -drive | -deposit] [-cancel <time>] [-repeat <tine>]
<obj ect _nane> <val ue> [<tinme>] [, <value> <tinme> ...]

Arguments

-freeze
Freezesthe object at the specified value until it isforced again or until it isunforced with
anofor ce command (CR-208). Optional.

-drive
Attaches a driver to the object and drives the specified value until the object is forced
again or until it is unforced with a nofor ce command (CR-208). Optional.

Thisoptionisillegal for unresolved signals.

- deposi t
Setsthe object to the specified value. The valueremains until thereis asubsequent driver
transaction, or until the object is forced again, or until it is unforced with anoforce
command (CR-208). Optional.

If one of the -freeze, -drive, or -deposit optionsis not used, then -freeze is the default
for unresolved objects and -drive is the default for resolved objects.

If you prefer -fr eeze as the default for resolved and unresolved VHDL signals, change
the default force kind in the DefaultForceKind (Um-531) preference variable.

-cancel <time>
Cancels the for ce command at the specified <time>. Thetime is relative to the current
time unless an absol ute time is specified by preceding the value with the character @.
Cancellation occurs at the last simulation delta cycle of atime unit. A value of zero
cancelsthe force at the end of the current time period. Optional.

ModelSim SE Command Reference

force CR-181

-repeat <time>
Repeats the for ce command, where <time> is the time at which to start repeating the
cycle. Thetimeisrelative to the current time. A repeating for ce command will force a
value before other non-repeating for ce commands that occur in the same time step.
Optional.

<obj ect _nane>
Specifies the name of the HDL object to be forced. Required. A wildcard is permitted
only if it matches one object. See "Design object names' (CR-12) for the full syntax of an
object name. The object name must specify a scalar type or a one-dimensional array of
character enumeration. Y ou may also specify arecord subelement, an indexed array, or
asliced array, aslong as the typeis one of the above. Required.

<val ue>
Specifies the value to which the object isto be forced. The specified value must be
appropriate for the type. Required.

A VHDL one-dimensional array of character enumeration can be forced as a sequence of
character literals or as a based number with aradix of 2, 8, 10 or 16. For example, the
following values are equivalent for asignal of type bit_vector (0 to 3):

Value Description

1111 character literal sequence
2#1111 binary radix

10#15 decimal radix

16#F hexadecimal radix

P Note: For based numbersin VHDL, Model Sim translates each 1 or 0 to the appropriate
value for the number’ s enumerated type. The trandation is controlled by the translation
table in the pref.tcl file. If Model Sim cannot find atranslation for 0 or 1, it uses the left
bound of the signal type (type’left) for that value.

<time>
Specifies the time to which the value is to be applied. The time is relative to the current
time unless an absolute time is specified by preceding the value with the character @. If
the time units are not specified, then the default is the resolution units selected at
simulation start-up. Optional.

A zero-delay force command causes the change to occur in the current (rather than the
next) simulation delta cycle.

ModelSim SE Command Reference

CR-182 force

Examples

See also

force inputl O
Forcesinputl to O at the current simulator time.

force busl 01XZ 100 ns
Forces busl to 01X Z at 100 nanoseconds after the current simulator time.

force busl 16#f @00
Forces busl to 16#F at the absol ute time 200 measured in the resol ution units selected at
simulation start-up.

force inputl 1 10, 0 20 -r 100
Forcesinputl to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current simulation time. This cycle repeats starting at 100 time units after
the current simulation time, so the next transitionisto 1 at 100 time units after the current
simulation time.

force inputl 1 10 ns, 0 {20 ns} -r 100ns
Similar to the previous exampl e, but al so specifies the time units. Time unit expressions
preceding the "-r" must be placed in curly braces.

force s 1 0, 0 100 -repeat 200 -cancel 1000
Forces signal sto alternate between values 1 and 0 every 100 time units until time 1000.
Cancellation occurs at the last simulation delta cycle of atime unit. So,

force s 1 0 -cancel 0

will force signal sto 1 for the duration of the current time period.

when {/nydut/siga = 10#1} {
force -deposit /nydut/siga 10#85

Forces siga to decimal value 85 whenever the value on the signal is 1.

nofor ce (CR-208), change (CR-81)

P Note: You can configure defaults for the force command by setting the
DefaultFor ceKind variableinthe modelsim.ini file. See " Force command defaults' (um-
539).

ModelSim SE Command Reference

gdb dir

Syntax

Argument

Examples

See also

gdb dir CR-183

The gdb dir command sets the source directory search path for the C debugger. See
"Setting up C Debug" (UM-402) for more information.

Invoking this command starts the C debugger if it is not already running.

gdb dir
[<src_directory_path_1>[:<src_directory_path_2>[:<...>]]]

<src_directory_path_1>[:<src_directory_path_2>[:<...>]]
Specifiesone or more directoriesfor C source code. Optional. If no directory is specified,
the source directory search path is set to the gdb default—$cdir: $cwd.

gdb dir /al/b/c:~/foo
Sets the source directory search path to /a/b/c:~/foo: $cdir: $ewd

Chapter 16 - C Debug (UM-399)

ModelSim SE Command Reference

CR-184 getactivecursortime

getactivecursortime

The getactivecur sortime command getsthe time of the active cursor in the Wave window.
Returns the time value.

Syntax

getactivecursortime
[-w ndow <wnane>]

Arguments

-w ndow <wname>
Specifies an instance of the Wave window that is not the default. Otherwise, the default
Wave window is used. Optional. Use the view command (CR-332) to change the default
window.
Examples

getactivecursortime
Returns:

980 ns

See also

left (CR-189), right (CR-250)

ModelSim SE Command Reference

getactivemarkertime CR-185

getactivemarkertime

The getactivemar kertime command gets the time of the active marker in the List window.
Returnsthe time value. If -deltais specified, returnstime and delta.

Syntax
getacti vemarkerti me
[-w ndow <wnanme>] [-delta]
Arguments
-w ndow <wname>
Specifiesaninstance of the List window that isnot the default. Otherwise, thedefault List
window is used. Optional. Use the view command (CR-332) to change the default
window.
-delta
Returns the delta value. Optional. Default isto return only the time.
Examples
getactivemarkertinme -delta
Returns:
980 ns, delta O
See also

down (CR-152), Up (CR-290)

ModelSim SE Command Reference

CR-186 help

help

The help command displaysin the Transcript pane a brief description and syntax for the
specified command.

Syntax

hel p
[<command> | <t opi c>]

Arguments

<conmand>
Specifies the command for which you want help. The entry is case and space sensitive.
Optional.

<t opi c>
Specifiesatopic for which you want help. Theentry iscase and space sensitive. Optional.
Specify one of the following six topics:

Topic Description

commands Lists al available commands and topics
debugging Lists debugging commands

execution Lists commands that control execution of

your simulation.

Tdl Lists all available Tcl commands.
Tk Lists all available Tk commands
incrTCL Listsall available incrTCL commands

ModelSim SE Command Reference

history CR-187

history
The history command lists the commands you have executed during the current session.
History isaTcl command. For more information, consult the Tcl Man Pages.
Syntax
hi story
[clear] [keep <val ue>]
Arguments

cl ear
Clearsthe history buffer. Optional.

keep <val ue>
Specifies the number of executed commands to keep in the history buffer. Optional. The
default is 50.

ModelSim SE Command Reference

CR-188 lecho

lecho
The lecho command takes one or more Tcl lists as arguments and pretty-prints them to the
Transcript pane. Returns nothing.
Syntax
I echo
<args> ...
Arguments
<args> ...
Any Tcl list created by acommand or user procedure.
Examples

I echo [configure wave]
Prints the Wave window configuration list to the Transcript pane.

ModelSim SE Command Reference

left

Syntax

Arguments

left CR-189

The left command searches left (previous) for signal transitions or valuesin the specified
Wave window. It executes the search on signals currently selected in the window, starting
at the time of the active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a
waveform takes on a particular value, or an expression of multiple signalsevaluatesto true.
See the right command (CR-250) for related functionality.

The procedure for using left entail sthree steps: click on the desired waveform; click onthe
desired starting location; issue the left command. (The seetime command (CR-264) can
initially position the cursor from the command line, if desired.)

Returns. <number_found> <new_time> <new_delta>

left
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-val ue <sig_value>] [-w ndow <wnane>] [<n>]

-expr {<expression>}
The waveform display will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signalsthat have been logged in the referenced Wavewindow. A signal may be specified
either by itsfull path or by the shortcut label displayed in the Wave window.

See "GUI_expression_format" (Cr-22) for the format of the expression. The expression
must be placed within curly braces.

-falling
Searches for afalling edge on the specified signal if that signal isascalar signal. If itis
not ascalar signal, the option will be ignored. Optional.

-noglitch
Looksat signal values only on the last delta of atime step. For use with the -value option
only. Optional.

-rising
Searches for arising edge on the specified signal if that signal isascalar signal. If itis
not ascalar signal, the option will be ignored. Optional.

-val ue <sig_val ue>
Specifiesavalue of the signal to match. Must be specified in the sameradix inwhich the
selected waveformisdisplayed. Caseisignored, but otherwisethe value must be an exact
string match — don't-care bits are not yet implemented. Only one signal may be selected,
but that signal may be an array. Optional.

-w ndow <wnane>
Specifies an instance of the Wave window that is not the default. Optional. Otherwise,
the default Wave window is used. Use the view command (CR-332) to change the default
window.

ModelSim SE Command Reference

CR-190

left

Examples

See also

<n>
Specifiesto find the nth match. If lessthan n arefound, the number found isreturned with
awarning message, and the cursor is positioned at the last match. Optional. The default
isl

left -noglitch -value FF23 2
Findsthe second timeto theleft at which the selected vector transitionsto FF23, ignoring
glitches.

left
Goesto the previous transition on the selected signal .

Thefollowing examplesillustrate search expressions that use avariety of signal attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-22).
left -expr {clk’'rising & (mystate == reading) && (/top/u3/addr ==
32’ habcd1234)}
Searches|eft for an expression that evaluatesto aboolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal /top/u3/addr
isequal to the specified 32-bit hex constant; otherwiseis 0.

left -expr {(/top/u3/addr and 32’ hf f 000000) == 32’ hac000000}
Searches | eft for an expression that eval uates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/addr equals hex ac.
left -expr {((NOW> 23 us) &% (NOW< 54 us)) && clk’'rising & (nobde ==
witing)}
Searches|eft for an expression that evaluatesto aboolean 1 when logfile timeis between
23 and 54 microseconds, clock just changed from low to high, and signal mode is
enumeration writing.

P Note: "Wave window mouse and keyboard shortcuts' (UM-609) are also available for
next and previous edge searches. Tab searches right (next) and shift-tab searches left
(previous).

"GUI_expression_format" (CR-22), right (CR-250), Seetime (CR-264), View (CR-332)

ModelSim SE Command Reference

Syntax

Arguments

log CR-191

The log command creates awave log format (WLF) file containing simulation datafor all
HDL objects whose names match the provided specifications. Objects that are displayed
using the add list (CR-48) and add wave (CR-52) commands are automatically recorded in
the WLF file. Thelog is stored in aWLF file in the working directory. By default the file
isnamed vsim.wif. Y ou can change the default name using the -wlf option of the vsim (Cr-
373) command.

If no port mode is specified, the WLF file contains datafor all objectsin the selected region
whose names match the object name specification.

The WLF fileisthe source of datafor the List and Wave windows. An object that has been
logged and is subsequently added to the List or Wave window will have its complete
history back to the start of logging available for listing and waving.

Limitations: Verilog memoriesand VHDL variables can belogged using the variable' sfull
name only.

| og
[-depth <level >] [-flush] [-howrany] [-in] [-inout] [-internal]
[-optcells] [-out] [-ports] [-recursive] <object_name> ...

-depth <l evel >
Restrictsarecursive search (specified with the -r ecur sive argument) to acertain level of
hierarchy. <level> isan integer greater than or equal to zero. For example, if you specify
-depth 1, the command descends only one level in the hierarchy. Optional.

-flush
Adds region datato the WLF file after each individual log command. Optional. Default
isto add region datato thelog file only when acommand that advances simulation time
is executed (e.g., run, step, etc.) or when you quit the simulation.

- howmany
Returns an integer indicating the number of signals found. Optional.

-in
Specifies that the WLF fileisto include data for ports of mode IN whose names match
the specification. Optional.

- i nout
Specifies that the WLF fileisto include data for ports of mode INOUT whose names
match the specification. Optional.

-interna
Specifiesthat the WLF fileisto include datafor internal (non-port) objects whose names
match the specification. Optional.

-optcells
Makes Verilog optimized cell ports visible when using wildcards. Optional. By default
Verilog optimized cell ports are not selected even if they match the specified wildcard
pattern.

ModelSim SE Command Reference

CR-192 log

-out
Specifiesthat the WLFfileisto include datafor ports of mode OUT whose names match
the specification. Optional.

-ports
Specifies that the scope of the search isto include all ports. Optional.

-recursive
Specifiesthat the scope of the search isto descend recursively into subregions. Optional.
If omitted, the search islimited to the selected region. Y ou can use the -depth argument
to specify how far down the hierarchy to descend.

<obj ect _nane>
Specifies the object name which you want to log. Required. Multiple object names may
be specified. Wildcard characters are allowed. (Note that the WildcardFilter Tcl
preference variable identifies types to ignore when matching objects with wildcard

patterns.)
Examples
log -r /*
Logsall objectsin the design.
log -out *
Logsall output portsin the current design unit.
See also

add list (cr-48), add wave (CR-52), holog (CR-209), Chapter 8 - WLF files (datasets) and
virtuals (UM-225), and "Wildcard characters" (CR-17)

P Note: Thelog command is also known as the "add log" command.

ModelSim SE Command Reference

Ishift

Syntax

Arguments

Examples

See also

Ishift CR-193

The Ishift command takesa Tcl list as an argument and shifts it in-place, one place to the
left, eliminating the left-most element. The number of shift places may a so be specified.
Returns nothing.

I'shift
<l'i st> [<anount >]

<list>

Specifiesthe Tcl list to target with Ishift. Required.

<anmount >
Specifies the number of places to shift. Optional. Default is 1.

proc nyfunc args {
throws away the first two argunents

Ishift args 2

See the Tcl man pages (Help > Tcl Man Pages) for details.

ModelSim SE Command Reference

CR-194 Isublist

Isublist

Syntax

Arguments

Examples

See also

The Isublist command returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern.

I subli st
<list> <pattern>

<list>

Specifiesthe Tcl list to target with Isublist. Required.

<pattern>
Specifies the pattern to match within the <list> using Tcl glob-style matching. Required.

In the example below, variable ‘t’ returns "structure signals source”.
set wi ndow _names "structure signals variables process source wave |ist
dat af | ow'

set t [lsublist $w ndow _nanmes s*]

The set command isa Tcl command. See the Tcl man pages (Help > Tcl Man Pages) for
details.

ModelSim SE Command Reference

macro_option CR-195

macro_option

Syntax

Arguments

See also

This command isavailable for UNI X only (excluding Linux).

The macro_option command controls the speed and delay of macro (DO file) playback,
plusthe level of debugging feedback. If invoked without any options, macro_option
returns all current settings; returns a specific setting if invoked with an option and no
argument; returns the previous setting if invoked with both an option and an argument.

macr o_option
[speed fast | dermp] | [delay <delay_tine>] | [debug <l|evel >]

speed fast | denp
Set the macro playback speed to fast or demo. Optional.

del ay <del ay_tine>
Set the delay time in milliseconds; delay is the time between events in demo maode.
Optional.

debug <l evel >
Set the debug level from 1 to 9; 9 giving the most feedback. Optional.

play (CR-218), run (CR-252)

ModelSim SE Command Reference

CR-196 mem display

mem display

Syntax

Arguments

The mem display command prints to the Transcript pane the memory contents of the
specified instance. As a shorthand, if the given instance path contains only asingle array
signal or variable, the signal or variable name need not be specified.

Addressradix, dataradix, and address range for the output can also be specified, aswell as
special output formats.

Y ou can redirect the output of the mem display command into afile for later use with the
mem load command. The output file can also be read by the Verilog $readmem system
tasksif the memory module is aVerilog module and Verilog memory format (hex or
binary) is specified. The format settings are stored at the top of thisfile as a pseudo
comment so that subsequent mem load commands can correctly interpret the data. Do not
edit this data when manipulating a saved file.

By default, identical data lines are printed. To replace identical lineswith asingleline
containing the asterisk character, you can enable compression with the -compress
argument.

mem di spl ay

[-format [bin | hex | nti]] [-addressradi x <radix>] [-dataradi x <radi x>]
[-wordsperline <Nwords>] [-startaddress <st>] [-endaddress <end>]
[-noaddress] [-conpress] [<path>]

-format [bin | hex | nti]
Specifies the output format of the contents. Optional. The default format is mti. For
details on mti format, see the description contained in mem load (CR-199).

-addressradi x <radi x>
Specifies the address radix for the default (mti) formatted files. The <radix> can be
specified as: d (decimal) or h (hex). Optional. If the output format is mti, the default is d.

-dataradi x <radi x>
Specifies the dataradix for the default (mti) formatted files. Optional. If unspecified, the
global default radix isused. Valid entries (or any unique abbreviations) are: binary,
decimal, unsigned, octal, hex, symbolic, and default. If no radix is specified for an
enumerated type, the symbolic representation is used. You can change the default radix
for the current simulation using ther adix command (CR-241). You can change the default
radix permanently by editing the DefaultRadix (UM-531) variablein the modelsim.ini file.

-wor dsperline <Nwords>
Specifies how many words are to be printed on each line, with the default assuming an
80 column display width. <Nwords> is an unsigned integer. Optional.

-startaddress <st>
Specifies the start address for arange of addresses to be displayed. The <st> can be
specified as any valid address in the memory. Optional. If unspecified, the default isthe
start of the memory.

ModelSim SE Command Reference

Examples

See Also

mem display CR-197

- endaddr ess <end>
Specifies the end address for arange of addresses to be displayed. The <end> can be
specified as any valid address in the memory. Optional. If unspecified, the default isthe
end of the memory.

-noaddr ess
Specifies that addresses not be printed. Optional.

-conpress
Specifies that identical lines not be printed. Optional. Reduces the file size by replacing
exact matches with asingle line containing an asterisk. These compressed files are
automatically expanded during amem load operation.

<pat h>
Specifies the full path to the memory instance. Optional. The default is the current
context, as shown in the Structure tab of the Workspace. Indexes can be specified.

mem di spl ay -startaddress 5 -endaddress 10/top/c/ mu_nmem
This command displays the memory contents of instance /top/mymru_mem, addresses 5
to 10 to the screen as follows:

5: 110 110 110 110 110 000

mem di splay -format hex -startaddress 5 -endaddress 10 /top/c/nru_nem
Displays the memory contents of the same instance to the screen in hex format, as
follows:

#5. 666660

mem load (CR-199)

ModelSim SE Command Reference

CR-198 mem list

mem list

Syntax

Arguments

Examples

The mem list command displays a flattened list of all memory instances in the current or
specified context after a design has been elaborated. Each instance line is prefixed by
"VHDL:" or "Verilog:", depending on the type of model.

Returns the signal/variable name, address range, and depth and width of the memory.

mem | i st
[-recursive] [<path>]

-recursive
Recursively descends into sub-modules when listing memories. Optional .

<pat h>
The hierarchical path to the location the search should start. Optional. The default isthe
current context, as shown in the Structure tab of the Workspace pane.

memlist -r /
Recursively lists all memories at the top level of the design. Returns:

Verilog: /top/ m men{0: 255] (256d x 16w)
#

mem list /top2/uut -r
Recursively lists all memories in /top2/uut. Returns:

Verilog: /top2/uut/nmeni0:255] x 16w

ModelSim SE Command Reference

mem load CR-199

mem load

The mem load command updates the simulation memory contents of a specified instance.
Y ou can upl oad contents either from amemory datafile, amemory pattern, or both. If both
are specified, the pattern is applied only to memory locations not contained in the file.

A relocatable memory fileisonethat has been saved without addressinformation. Y ou can
load arel ocatable memory fileinto theinstance of amemory core by specifying an address
range on the mem load command line. If no address range (starting and ending address) is
specified, the memory is loaded starting at the first location.

The order in which the datais placed into the memory depends on the format specified by
the-format option. If you choose bin or hex format, the memory isfilled low to high, to be
compatible with $readmem commands. Thisisin contrast to the default mti format, which
fills the memory according to the memory declaration, from left index to right index.

For Verilog objects and VHDL integers and std_logic types: if the word widthin afileis
wider than the word width of the memory, the leftmost bits (msb’s) in the datawords are
ignored. To allow wide words use the -tr uncate option which will ignore the msb bits that
exceed the memory word size. If the word width in the file is less than the width of the
memory, and the left-most digit of the file datais not *X’, then the left-most bits are zero
filled. Otherwise, they are X-filled.

The type of datarequired for the -filldata argument is dependent on the -filltype specified:
afixed value, or one that governs an incrementing, decrementing, or random sequence.

* For fixed pattern values, thefill pattern isrepeatedly tiled to initialize the memory block
specified. The pattern can contain multiple word values for this option.

* For incrementing or decrementing patterns, each memory word istreated as an unsigned
quantity, and each successive memory location isfilled in with avalue one higher or
lower than the previous value. Theinitial value must be specified.

 For arandom pattern, a random data sequence will be generated to fill in the memory
values. The datatype in the sequence will match the type stored in the memory. For
std_logic and associated types, unsigned integer sequences are generated. A seed value
may be specified on the command line. For any given seed, the generated sequenceis
identical.

Theinterpretation of the pattern data is performed according to the default system radix
setting. However, this can be overridden with a standard Verilog-style
‘<radix_char><data> specification.

Syntax

mem | oad
[-infile <infile> -format [bin | hex | nti]]
[-filltype <filltype>] [-filldata <patterndata>] [-fillradix <radix>]
[-skip <Nwords>] [-truncate] [-startaddress <st>] [-endaddress <end>]
[<pat h>]

ModelSim SE Command Reference

CR-200 mem load

Arguments

-infile <infile>
Updates memory data from the specified file. Required unless the -filltype argument is
used.

- endaddress <end>
Specifies the end address for arange of addresses to be loaded. The <end> can be
specified as any valid address in the memory. Optional.

-format [bin | hex | nti]
Specifies the format of the file to be loaded. The <formtype> can be specified as: bin,
hex, or mti. bin and hex are the standard Verilog hex and binary memory pattern file
formats. These can be used with V erilog memories, and with VHDL memories composed
of std_logic types. mti isthe"MTI memory datafile format" (GR-178).

In the MTI memory datafile format, internal file address and data radix settings are
stored within the file itself. Thus, there is no need to specify these settings on the mem
load command line. If aformat specified on the command line and the format signature
stored internally within the file do not agree, the file cannot be loaded.

-filltype <filltype>
Fillsin memory data patterns algorithmically. The <filltype> can be specified as. value,
inc, dec, or rand. Required unlessthe -infile argument is used, in which caseitisoptional.
Default isvaue.

-filldata <patterndata>
Specifiesthe pattern parameters, valuefor fixed-val uefill operations, and seed or starting
point for random, increment, or decrement fill operations. Required if -filltype is used.

A fill pattern covers any of the selected address range that is not populated from file
values. If afill pattern is used without a file option, the entire memory or specified
address range isinitialized with the fill pattern.

-fillradix <radi x>
Specifies radix of the data specified by "-filldata' option. Valid entries (or any unique
abbreviations) are: binary, decimal, unsigned, octal, hex, symboalic, and default.

-skip <Nwor ds>
Specifies the number of words to be skipped between each fill pattern value. <Nwords>
is specified as an unsigned integer. Optional. Used with -filltype and -filldata.

-truncate
Ignores any most significant bits (msb) in a memory word which exceed the memory
word size. By default, when memory word size is exceeded, an error results.

-startaddress <st>
Specifiesthe start addressfor arange of addressesto beloaded. The <st> can be specified
as any valid address in the memory. Optional.

ModelSim SE Command Reference

Examples

See also

mem load CR-201

<pat h>
The hierarchical path to the memory instance. If the memory instance name is unique,
shorthand instance names can be used. Optional. The default is the current context, as
shown in the Structure tab of the Workspace pane.

Memory address indexes can be specified in the instance name also. If addresses are
specified both in the instance name and thefile, only the intersection of the two address
ranges is populated with memory data.

mem load -infile vals.mem-format bin -filltype value -filldata 1'b0
/top/ m nem

L oads the memory pattern from the file vals.mem to the memory instance /top/m/mem,
filling the rest of the memory with the fixed-value 1°b0. When you enter the mem
display command on memory addresses 0 through 12, you see the following:

mem di spl ay -startaddress O -endaddress 12 /top/ m mem

0: 0000000000000000 0000000000000001 0000000000000010 0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110 0000000000000111
8: 0000000000001000 0000000000001001 0000000000000000 0000000000000000
12: 0000000000000000

memload -infile vals.nem-format hex -st 0 -end 12 -filltype value -filldata
16’ Hbeef /top/ m nru_nmem

L oads the memory pattern from the file vals.mem to the memory instance
ltop/mymru_mem, filling the rest of the memory with the fixed-value 16’ Hbeef.

mem | oad -filltype value -filldata "16' hab 16’ hcd" /top/men2 -skip 3
Loads memory instance /top/mem2 with two words of memory data using the Verilog
Hex format, skipping 3 words after each fill pattern sequence.

mem | oad -format h -truncate -infile data_files/data.out /top/ mreg_inc/nmem
Truncates the msb bits that exceed the maximum word size (specified in HDL code).

mem save (CR-202)

ModelSim SE Command Reference

CR-202 mem save

mem save

Syntax

Arguments

The mem save command saves the contents of a memory instanceto afilein any of the
supported formats: Verilog binary, Verilog hex, and MTI memory pattern data.

This command works identically to the mem display command, except that its output is
written to afile rather than a display.

The order in which the datais placed into the saved file depends on the format specified by
the -format argument. If you choose bin or hex format, the file is populated from low to
high, to be compatible with $readmem commands. Thisisin contrast to the default mti
format, which popul ates the file according to the memory declaration, from left index to
right index.

Y ou can use the mem save command to generate rel ocatable memory data files. The
-noaddr ess option omits the address information from the memory datafile. Y ou can later
load the generated memory data file using the memory load command.

nmem save
[-format bin | hex | nti] [-addressradi x <radi x>] [-dataradix <radix>]
[-wordsperline <Nwords>] [-startaddress <st> -endaddress <end>]
[-noaddress] [-conpress] [<path>] -outfile <filename>

-format bin | hex | nti
Specifies the output format. The <format_spec> can be specified as bin, hex, or mti.
Optional. Thedefault format ismti. The MTI memory pattern dataformat isdescribed in
mem load (CR-199).

-addressradi x <radi x>
Specifiesthe addressradix for the default mti formatted files. Optional. The <radix> can
be specified as: dec or hex. The default is the decimal representation.

-dataradi x <radi x>
Specifiesthe dataradix for the default mti formatted files. Optional. The <radix> can be
specified as symbolic, binary, octal, decimal, unsigned, or hex. You can change the
default radix for the current simulation using the radix command (CR-241). You can
change the default radix permanently by editing the DefaultRadix (Um-531) variablein
the modelsim.ini file.

-wor dsperline <Nwords>
Specifies how many memory values are to be printed on each line. Optional. The default
assumes an 80 character display width. The <Nwords> is specified as an unsigned
integer.

-startaddress <st>
Specifiesthe start addressfor arange of addressesto be saved. The <st> can be specified
as any valid address in the memory. Optional.

- endaddress <end>
Specifiesthe end addressfor arange of addressesto be saved. The <end> can be specified
as any valid address in the memory. Optional.

ModelSim SE Command Reference

mem save CR-203

-noaddr ess
Prevents addresses from being printed. Optional. Mutually exclusive with the
-compress option.

-conpress
Specifies that only unique lines are printed, identical lines are not printed. Optional.

Mutually exclusive with the -noaddr ess option.

-outfile <fil ename>
Specifies that the memory contents be stored in <filename>. Required.

<pat h>
The hierarchical path to the location of the memory instance. Optional. The default isthe
current context, as shown in the Structure tab of the Workspace pane.

Examples
mem save -format nti -outfile menfile -start 0 -end 10 /top/ m mem
Saves the memory contents of the instance /top/m/mem(0: 10) to mentfile, written in the
mti radix. The contents of memfile are asfollows:
/1 menory data file (do not edit the following line - required for neml oad
use)
/1 format=nti addressradi x=d dataradi x=s version = 1.0
0: 0000000000000000 0000000000000001 0000000000000010 0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110 0000000000000111
8: 0000000000001000 0000000000001001 XXXXXXXXXXXXXXXX
See also

mem display (CR-196), mem load (CR-199)

ModelSim SE Command Reference

CR-204 mem search

mem search

The mem search command finds and prints to the screen the first occurring match of a
specified memory pattern in the specified memory instance. Shorthand instance names are
accepted. Optionally, you can instruct the command to print all occurrences. The search
pattern can be one word or a sequence of words.

Syntax
mem sear ch
[-addressradi x <radi x>] [-dataradix <radix>] [-all]
[-replace <word>][<word>...]] [-startaddress <address>]
[-endaddress <address>] [<path>] -pattern <word>[<word>...]
Arguments

-addressradi x <radi x>
Specifies the radix for the address being displayed. The <radix> can be specified as
decimal or hexadecimal. Default is decimal. Optional.

- dat aradi x <radi x>
Specifiestheradix for the memory data being displayed. The <radix> can be specified as
symbolic, binary, octal, decimal, unsigned, or hex. Optional. By default the radix
displayed isthe system default.

-al
Searches the specified memory range and prints out all matching occurrences to the
screen. Optional. By default only the first matching occurrence is printed.

-replace <word>[<word>...]
Replaces the found patterns with a designated pattern. Optional. If this option is used,
each pattern specified by the -patter n argument must have a corresponding pattern
specified by the -replace argument. Multiple word patterns are accepted, separated by a
single white space. No wildcards are allowed in the replaced pattern.

-startaddress <address>
Specifies the start address for arange of addresses to search. The <address> can be
specified as any valid address in the memory. Optional.

- endaddr ess <address>
Specifies the end address for arange of addresses to search. The <address> can be
specified as any valid address in the memory. Optional.

<pat h>
Specifies the hierarchical path to the location of the memory instance. Optional. The
default isthe current context value, as shown in the Structure tab of the Workspace pane.

-pattern <word>[<word>...]
Specifies the value of the pattern for the search. Required. Multiple word patterns are
accepted, separated by a single white space. Wildcards are accepted in the pattern.

ModelSim SE Command Reference

Examples

mem search CR-205

mem search -pattern 16' Hbeef -dataradix hex /uut/u0/ nmenB
Searches for and prints to the screen all occurrences of the pattern 16' Hbeef in /uut/u0/

mem3. Returns:
#7845: beef

#7846: beef
#100223: beef

mem search -p 16' Hbeef -d hex -replace 16'Hcafe -st 7846 -end 150000 /uut/
ul/ menB
Searches for and prints only the first occurrence of 16'Hbeef in the address range

7845:150000, replacing it with 16' Hcafe in /Juut/ul/mem3. Returns:
#7846: cafe

mem search -p 16' Hbeef -r 16' Habe -addressadi x hex -all /[uut/ul/nenB
Replaces all occurrences of 16'Hbeef with 16'Habe in /uut/ul/mem3. Returns:

#leab: 2750
#lea6: 2750
#1877f: 2750

mem search -p "*f"
Searches for and prints the first occurrence any pattern endingin f.

mem search -p "abe cafe" /uut/ul/ mens
Searches for and prints the first occurrence of this multiple word pattern.

ModelSim SE Command Reference

CR-206 modelsim

modelsim

Syntax

Arguments

See also

The modelsim command startsthe Model Sim GUI without prompting you to load adesign.
This command is valid only for Windows platforms, and may be invoked in one of three
ways:

from the DOS prompt
from a Model Sim shortcut
from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the shortcut’s
properties. (Arguments work on the DOS command line too, of course.)

The simulator may be invoked from either the MODEL SIM prompt after the GUI starts or
from aDO file called by modelsim.

nodel sim
[-do <macrofile>] [-project <project file>]

-do <macrofil e>
Specifiesthe DO file to execute when modelsim isinvoked. Optional.

P Note: In addition to the macro called by this argument, if aDO fileis specified by the
STARTUP variable in modelsim.ini, it will be called when the vsim command (CR-373)
isinvoked.

-project <project file>
Specifies the .mpf file to load for this session. Optional.

vsim (CR-373), do (CR-151), and "Using a startup file" (UM-538)

ModelSim SE Command Reference

next CR-207

next
The next command continues a search after you have invoked the sear ch command. See
the sear ch command (CR-260) for more information.
Syntax
next
<wi ndow_nane> [-w ndow <wnane>]
Arguments

<wi ndow_nane>
Specifies the window in which to continue searching. Can be one of Signals, Objects,
Variables, Locals, Source, List, Wave, Process, Structure, or a unique abbreviation
thereof. Required.

-wi ndow <wname>
Specifies an instance of the window that is not the default. Optional. Otherwise, the
default window is used. Use the view command (CR-332) to change the default window.

ModelSim SE Command Reference

CR-208 noforce

noforce

Syntax

Arguments

See also

The nofor ce command removes the effect of any active for ce (CR-180) commands on the
selected HDL objects. The nofor ce command al so causes the object’s value to be re-
evaluated.

nof orce
<obj ect _nane> ..

<obj ect _nane>
Specifiesthe name of an object. Required. Must match an object name used in aprevious
for ce command (CR-180). Multiple object names may be specified. Wildcard characters
are alowed.

for ce (CrR-180) and "Wildcard characters' (CR-17)

ModelSim SE Command Reference

nolog CR-209

nolog

The nolog command suspends writing of datato the wave log format (WLF) filefor the
specified signals. A flag iswritteninto the WLF filefor each signal turned off, and the GUI
displays "-No Data-" for the signal(s) until logging (for the signal(s)) is turned back on.
Logging can be turned back on by issuing another log command (CR-191) or by doing a
nolog -reset.

Because use of the nolog command adds new information to the WLF file, WLF files
created when using the nolog command cannot be read by older versions of the simulator.
If you are using dumplog64.c, you will need to get an updated version.

Syntax

nol og
[-all] [-depth <level>] [-howrany] [-in] [-inout] [-internal] [-out]
[-ports] [-recursive] [-reset] [<object_name>...]

Arguments

-al

Turns off logging for all signals currently logged. Optional.

-depth <l evel >
Restricts arecursive search (specified with the -r ecur sive argument) to acertain level of
hierarchy. <level> isaninteger greater than or equal to zero. For example, if you specify
-depth 1, the command descends only one level in the hierarchy. Optional.

- howmany
Returns an integer indicating the number of signals found. Optional.

-in
Turns off logging only for ports of mode IN whose names match the specification.
Optional.

- i nout
Turns off logging only for ports of mode INOUT whose names match the specification.
Optional.

-interna
Turns off logging only for internal (non-port) objects whose names match the
specification. Optional.

-out
Turns off logging only for ports of mode OUT whose hames match the specification.
Optional.

-ports
Specifies that the scope of the search isto include al ports. Optional.

-recursive
Specifiesthat the scope of the search isto descend recursively into subregions. Optional.
If omitted, the search islimited to the selected region. Y ou can use the -depth argument
to specify how far down the hierarchy to descend.

ModelSim SE Command Reference

CR-210 nolog

-reset
Turns logging back on for all unlogged signals. Optional.

<obj ect _nane>. .
Specifiesthe object name which you want to unlog. Optional . Multiple object names may
be specified. Wildcard characters are allowed.

Examples
nolog -r /*
Unlogs all objectsin the design.
nol og -reset
Turnslogging back on for al unlogged signals.
See also

add list (Cr-48), add wave (CR-52), log (CR-191)

ModelSim SE Command Reference

notepad CR-211

notepad
The notepad command opens a simple text editor. It may be used to view and edit ASCII
files or create new files. This mode can be changed from the Notepad Edit menu.
Returns nothing.
Syntax
not epad
[<filename>] [-r | -edit]
Arguments

<fil ename>

Name of the file to be displayed. Optional.

-r | -edit
Selectsthe notepad editing mode: -r for read-only, and -edit for edit mode. Optional. Edit
mode is the default.

ModelSim SE Command Reference

CR-212 noview

noview

Syntax

Arguments

Examples

See also

The noview command closes a window/pane in the Model Sim GUI. To open a window/
pane, use the view command.

novi ew
<wi ndow_nane>. . .

<wi ndow_nane>. . .
Specifies the window/pane to close. Wildcards and multiple window/pane types may be
used. At least one type (or wildcard) is required. Available window types are:

assertions, dataflow, fcovers, list, locals, memory, objects, process, profile,
profile_details, signals, structure, variables, wave, watch, and workspace

novi ew wavel
Closes the Wave window named "wavel".

novi ew | *
Closes all List windows.

view (CR-332)

ModelSim SE Command Reference

nowhen CR-213

nowhen
The nowhen command deactivates selected when (CR-407) commands.
Syntax
nowhen
[<l abel >]
Arguments
<l abel >
Specifies an individual when command. Optional. Wildcards may be used to select more
than one when command.
Examples

when -l abel 99 b {echo “b changed”}

Hbmhen 99
This nowhen command deactivates the when (CR-407) command labeled 99.

nowhen *
This nowhen command deactivates all when (CR-407) commands.

ModelSim SE Command Reference

CR-214 onbreak

onbreak

Syntax

Arguments

Examples

See also

The onbreak command is used within amacro, placed before arun command. It specifies
one or more commands to be executed when running amacro that encounters a breakpoint
in the source code. Using the onbr eak command without argumentswill return the current
onbreak command string. Use an empty string to change the onbreak command back to
its default behavior (i.e., onbreak ""). In that case, the macro will be interrupted after a
breakpoint occurs (after any associated bp command (CR-75) string is executed).

onbreak commands can contain macro calls.

onbr eak
{[<command> [; <command>] ...]}

<conmand>
Any command can be used as an argument to onbreak. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. Y ou must use the onbreak
command beforearun (CR-252), run -continue, or step (CR-272) command. Itisan error
to execute any commands within an onbreak command string following any of the run
commands. Thisrestriction appliesto any macrosor Tcl procedures used in the onbr eak
command string. Optional.

onbreak {exa data ; cont}
Examine the value of the HDL object data when a breakpoint is encountered. Then

continue the run command (CR-252).

onbreak {resune}
Resume execution of the macro file on encountering a breakpoint.

set broken O
onbreak {
set broken 1
resune

run -al
if { $broken } {
puts "failure"
} else {
puts "success"

}
This set of commands test for assertions. Assertions are treated as breakpointsif the

severity level is greater than or equal to the current BreakOnA ssertion variable setting
(see"[vsim] simulator control variables' (UM-529)). By default a severity level of failure
or above causes a breakpoint; a severity level of error or below does not.

abort (CR-44), bd (CR-70), bp (CR-75), dO (CR-151), Onerror (CR-216), r esume (CR-249),
status (CR-271)

ModelSim SE Command Reference

onElabError CR-215

onElabError

Syntax

Arguments

See also

TheonElabError command specifies one or more commandsto be executed when an error
is encountered during elaboration. The command is used by placing it within the
modelsim.tcl file or amacro. During initial designload onElabError may beinvoked from
within themodelsim.tcl file; during asimulation restart onElabError may beinvoked from
amacro.

Use the onElabError command without arguments to return to a prompt.

onEl abError
{[<command> [; <command>] ...]}

<conmand>
Any command can be used as an argument to onElabError. If you want to use more than
one command, use a semicolon to separate the commands, or place them on multiple
lines. The entire command string must be placed in curly braces. Optional.

do (CR-151)

ModelSim SE Command Reference

CR-216 onerror

onerror

Syntax

Arguments

Example

See also

Theonerror command is used within amacro, placed before arun command; it specifies
one or more commands to be executed when a running macro encounters an error. Using
theonerror command without argumentswill return the current onerror command string.
Use an empty string to change the onerror command back to its default behavior (i.e.,
onerror ""). Use onerror with aresume command (CR-249) to alow an error message to be
printed without halting the execution of the macro file.

onerror
{[<command> [; <command>] ...]}

<conmand>
Any command can be used as an argument to onerror. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. Optional.

onerror {quit -f}
Forces the simulator to quit if an error is encountered while the macro is running.

abort (CR-44), do (CR-151), onbreak (CR-214), resume (CR-249), status (CR-271)

P Note: You canalsosettheglobal OnError DefaultAction Tcl variablein thepref.tcl file
to dictate what action Model Sim takes when an error occurs. The onerror command is
invoked only when an error occursin the macro file that contains the onerror command.
Conversely, OnError DefaultAction will run even if the macro does not contain alocal
onerror command. This can be useful when you run a series of macros from one script,
and you want the same behavior across all macros.

ModelSim SE Command Reference

pause

Syntax

Arguments

Description

See also

pause CR-217

The pause command placed within a macro interrupts the execution of that macro.

pause

None.

When you execute a macro and that macro getsinterrupted, the prompt will change to:
VS| M paused) >
This“pause” prompt reminds you that a macro has been interrupted.

When amacro is paused, you may invoke another macro, and if that one gets interrupted,
you may even invoke another — up to a nesting level of 50 macros.

If the status of nested macros gets confusing, use the statuscommand (CR-271). It will show
you which macros are interrupted, at what line number, and show you the interrupted
command.

To resume the execution of the macro, use the resume command (CR-249). To abort the
execution of amacro use the abort command (CR-44).

abort (CR-44), do (CR-151), resume (CR-249), run (CR-252)

ModelSim SE Command Reference

CR-218 play

play
This command is available for UNI X only (excluding Linux).

The play command replays asequence of keyboard and mouse actionsthat were previously
saved to afile with the record command (CR-243). Returns nothing.

Play returnsimmediately; the playback proceedsin the background. Caution must be used
when putting play commands in do (macro) files.

Syntax

pl ay
<fil ename>

Arguments
<fil ename>
Specifies the recorded file to replay. Required.
Playback controls

The following Tcl set commands control the playback type and speed by setting the
play_macro() global variables. The commands are invoked from the M odel Sim command
line.

set play_nacro(speed)
Specify the playback speed: either demo (with the delay specified below), or fast (no
delays).

set play_nacro(del ay)
Specifies the delay time in milliseconds. Controls the speed of playback in demo mode.

See also

macro_option (CR-195), record (CR-243)

ModelSim SE Command Reference

pop

Syntax

Arguments

Examples

See also

pop CR-219

This command is used with C Debug. See Chapter 16 - C Debug (UM-399) for more

information.

The pop command moves the specified number of call frames up the C callstack.

pop
<#_of | evel s>

<#_of _| evel s>

Specifies the number of call framesto move up the C callstack. Optional. If unspecified,

1 level is assumed.

pop
Movesup 1 call frame.

pop 4
Movesup 4 call frames.

push (CR-237), Chapter 16 - C Debug (Um-399)

ModelSim SE Command Reference

CR-220

power add
The power add command specifiesthe signals or netsto track for power information. Data
produced by these commands can be translated (by a Synopsys utility) to drive the
Synopsys power analysis tools.
The power add command isintended to be used as follows:
1 Add the objects of interest with the power add command.
2 Run the simulation with therun command (CRr-252).
3 Produce areport with the power report command (CR-221).
Syntax
power add
[-in] [-inout] [-internal] [-out] [-ports] [-r] <signal sOrNets> ...
Arguments
-in
Specifies only inputs. Optional.
- i nout
Specifies only inouts. Optional.
-internal
Specifies only design internal signals or nets. Optional.
-out
Specifies only outputs. Optional.
-ports
Specifies only design ports. Optional.
-r
Searches recursively on awildcard specified for the signal or net. Optional.
<signal sOrNets> ...
Specifiesthe signal or net to track. Required. Multiple names or wildcards may be used.
Must refer to VHDL signals of typebit, std_logic, or std_logic_vector, or to Verilog nets.
When using wildcards, the -in, -inout, -internal, -out, and -ports arguments filter the
qualifying signals. If you specify more than one of these arguments, thelogical OR of the
arguments is performed.
See also

power report (CR-221), power reset (CR-222)
See the Synopsys Power documentation for more information.

ModelSim SE Command Reference

power report CR-221

power report
The power report command reports power information for the specified signals or nets.
The report can be written to afile or to the Transcript pane. Data produced by these

commands can be translated (by a Synopsys utility) to drive the Synopsys power analysis
tools.

The power report command isintended to be used as follows:
1 Add the objects of interest with the power add command (CR-220).
2 Run the simulation with therun command (CRr-252).

3 Produce the report with the power report command.

Syntax
power report
[-all] [-noheader] [-file <filenanme>]
Arguments
-all
Writes information on all objects logged. Optional.
- noheader
Suppresses the header to aid in post processing. Optional.
-file <fil ename>
Specifies afilename for the power report. Optional. Default is to write the report to the
Transcript pane.
Description
The report format for each lineis:
signal path, toggle count, hazard count, tinme at a1, tine at a0, tine at an X
» toggle count is the number of 0->1 and 1->0 transitions
* hazard count is the number of 0/1->X, and X->0/1 transitions
Notethat if asignal isinitialized at X, and later transitionsto 0 or 1, it is not counted as
a hazard.
* times are the times spent at each of the three respective states
You will also need to know the total simulation time.
See also

power add (CR-220), power reset (CR-222)

See the Synopsys Power documentation for more information.

ModelSim SE Command Reference

CR-222 power reset

power reset

The power reset command selectively resets power information to zero for the signals or
nets specified with the power add command (CR-220). Returns nothing.

Syntax
power reset
[-all] [-in] [-inout] [-out] [-internal] [-ports] [-r]
<signal sONets> ...

Arguments

-all
Resets all signals/nets. Optional.

-in

Resets only inputs. Optional.

-inout
Resets only inouts. Optional.

-out
Resets only outputs. Optional.

-internal
Resets only design internal signals or nets. Optional.

-ports
Resets only design ports. Optional .

-r

Searches recursively on awildcard specified for the signal or net. Optional.

<signal sOrNets> ...
Specifiesthe signal or net to reset. Required. Multiple names or wildcards may be used.

See also

power add (CR-220), power report (CR-221)
See the Synopsys Power documentation for more information.

ModelSim SE Command Reference

precision

Syntax

Arguments

Examples

precision CR-223

The precision command determines how real numbers display in the graphic interface
(e.g., Objects, Wave, Locals, and List windows). It does not affect the internal
representation of areal number and therefore precision values over 17 are not allowed.

Using the precision command without any arguments displays the current precision
Setting.

preci si on
[<digits>][#]]

<di gi t s>[#]
Specifies the number of digitsto display. Optional. Default is 6. Trailing zeros are not
displayed unless you append the '# sign. See examples for more details.

precision 4
Resultsin 4 digits of precision. For example:

1.234 or 6543

preci sion 8#
Resultsin 8 digits of precision including trailing zeros. For example:

1. 2345600 or 6543.2100

precision 8
Resultsin 8 digits of precision but doesn't print trailing zeros. For example:

1.23456 or 6543.21

ModelSim SE Command Reference

CR-224 printenv

printenv
The printenv command prints to the Transcript pane the current names and values of al
environment variables. If variable names are given asarguments, printsonly the namesand
values of the specified variables.
Syntax
printenv
[<var>...]
Arguments
<var>. ..
Specifies the name(s) of the environment variable(s) to print. Optional.
Examples

printenv
Prints al environment variable names and their current values. For example,

CC = gcc
DI SPLAY = srl:0.0

printenv USER HOVE
Prints the specified environment variables:

USER = vince
HOVE = /scratch/srl/vince

ModelSim SE Command Reference

profile clear CR-225

profile clear

The profile clear command clears any performance data that has been gathered during
previous run commands. After this command is executed, all profiling datawill be reset.

This command has no effect on the current profiling session. Thelast profile on or profile
off command will still be in effect.

Syntax

profile clear
Arguments

None
See also

Chapter 12 - Profiling performance and memory use (UM-317), profileinterval (CR-226),
profile off (CR-227), profile on (CR-228), profile option (CR-229), profile reload (CR-230),
profilereport (CR-231)

P Note: Profiling must be active when this command isinvoked. Use the profile on
command (CR-228) to begin profiling.

ModelSim SE Command Reference

CR-226 profile interval

profile interval

The profileinterval command selects the frequency with which the profiler collects
samples during arun command. To use this command, first enable profiling with the
profile on command.

Syntax
profile interval

[<sanpl e_frequency>]

Arguments

<sanpl e_frequency>
Aninteger value from 1 to 999 that represents how many milliseconds to wait between
each sample collected during a profiled simulation run. Default is 10 ms.

If the sample-frequency isnot supplied, the profileinter val command returnsthe current
sample frequency.

See also

Chapter 12 - Profiling performance and memory use (UM-317), profile clear (CR-225),
profile off (CR-227), profile on (CR-228), profile option (CR-229), profile reload (CR-230),
profilereport (CR-231)

ModelSim SE Command Reference

profile off CR-227

profile off
The profile off command disables runtime memory allocation and statistical performance
profiling.
Syntax
profile off
(- [-p]
Arguments
-m
Disables memory allocation profiling only. Optional.
-p
Disables statistical performance profiling only. Optional.
See also

Chapter 12 - Profiling performance and memory use (UM-317), profile clear (CR-225),
profileinterval (CR-226), profile on (CR-228), pr ofile option (CR-229), profilereload (CR-
230), profilereport (CR-231)

ModelSim SE Command Reference

CR-228 profile on

profile on

Syntax

Arguments

See also

Example

The profile on command enables runtime memory allocation and statistical performance
profiling. After this command is executed, every subsequent run command will be
profiled.

profile on
[-m [-p] [-file <filename> | -fileonly <fil ename>]]

-m
Enables memory allocation profiling only. Optional.

-p
Enables statistical performance profiling only. Optional.

-file <fil ename>
Allowscreation of araw profile datafile that can be post-processed later. Saves memory
profile datainto both an external file and internal data structures. Optional

-fileonly <fil ename>
Allowscreation of araw profile datafile that can be post-processed later. Saves memory
profile datainto an external file only, not to internal data structures. Optional

Chapter 12 - Profiling performance and memory use (UM-317), profile clear (CR-225),
profileinterval (CR-226), profile off (CR-227), profile option (CR-229), profilereload (CR-
230), profilereport (CR-231)

profile on
run 1000 ns
profile report -hier -file perf.rpt

Thisset of commands enabl esthe profiler, runsthe simulation for 1000 nanoseconds, and
outputs the profiling data to perf.rpt.

ModelSim SE Command Reference

profile option CR-229

profile option

Syntax

Arguments

See also

The profile option command changes how profiling data are reported. The command acts
likeatoggle: invoking it onceturns on the option; invoking it asecond timeturnsthe option
back off. To use this command, first enable profiling with the profile on command (CR-
228).

profile option
col apse_sections [on | off | status]

col | apse_sections
Groups profiling data by section. A section consists of regions of code such as VHDL
processes, functions, or Verilog always blocks. By default al profiling data are reported
on aper line basis.

on | off | status
Specifies whether to enable, disable, or report the status of the profile options. Optional.
If omitted, the profile option command acts as a toggle.

Chapter 12 - Profiling performance and memory use (UM-317), profile clear (CR-225),
profileinterval (CR-226), profile off (CR-227), profile on (CR-228), profiler eload (CR-230),
profilereport (CR-231)

ModelSim SE Command Reference

CR-230 profile reload

profile reload

Syntax

Arguments

See also

The profilereload command reads in raw profile datafrom an external file created during
memory allocation profiling. The profile report command (CR-231) and the Profile and
Profile Details panes of the user interface can be used to view the data. The intent of the
raw profilefilesisto alow analysis of memory profile datain cases where the memory
required for the design plus the memory required for internal profiling data exceeds the
memory capacity of the machine. To use this command, you must first use the -m -file
<filename> or the -m -fileonly <filename> arguments with the profile on command (CRr-
228).

The profile reload command will clear al performance and memory profiling data
collected to that point (implicit profile clear). Any currently loaded design will be
unloaded (implicit quit -sim), and run-time profiling will be turned off (implicit profile off
-m -p). If anew design isloaded after you have read the raw profile data, then all internal
profile datais cleared (implicit profile clear), but run-time profiling is not turned back on.

profile rel oad
<fil ename>

<fil ename>
Designates the name of the external file where raw profile datawill be saved. Required.

Chapter 12 - Profiling performance and memory use (UM-317), profile clear (CR-225),
profileinterval (CR-226), profile off (CR-227), profileon (CR-228), pr ofile option (CR-229),
profilereport (CR-231)

ModelSim SE Command Reference

profile report CR-231

profile report

The profilereport command outputs profiling data that have been gathered up to the point
that you execute the command. To use this command, first enable profiling using the
profile on command (CR-228).

Syntax
profile report
[-cutoff <percentage>] [-file <filename>] [-m [-p]
[-ranked | -calltree | -structural [-level <positive_integer>]
[<rootname>] [-showcal ls] | -functoinst <func>]
Arguments
-calltree

Reports a hierarchical callstack list of statistical performance and memory allocation
data. Optional. Defaullt.

-cutof f <percentage>
Filters out entries in the report that had less than <percentage> of time spent in them.
Optional. Default is to report al entries (i.e., 0%).

-file <fil ename>
Specifies afile name for the report. Optional. Default is to write the report to the
Transcript pane.

-functoi nst <func>
Creates aranked profile report of all uses of the specified function, where <func>
indicates a function name (for PLI, FLI, or SystemC) or a <.v/.vhd-filename>:<line#>.
Optional.

-instofdef <inst>
Createsaranked report of all instances with the same definition asthe specified instance,
showing profile results for each. <inst> isthe hierarchical pathname of the desired
instance. Optional.

-l evel <positive_integer>
Determines how far to expand instance hierarchy in a structural report. If omitted, the
report includes al levels. Optional.

-m
Displays memory alocation datain thereport. Optional. If -misnot specified, the profile
report will include memory alocation dataif the memory profiler was previously
enabled.

-p
Displaysstatistical performance samplesin thereport. Optional. If -pisnot specified, the
profile report will include performance statisticsif the performance profiler was
previously enabled.

-ranked
Reports aranked list of statistical performance and memory allocation data. Optional.

ModelSim SE Command Reference

CR-232 profile report

See also

Example

<r oot nane>
Causesastructural report to berooted at the specified instance. If not specified, the report
contains al roots and any orphan samples. Optional.

-showcal | s
Shows function call stacks beneath instances in a structural report. If omitted, functional
callstacks are not shown in the report. Optional.

-structural
Reports a structural list of statistical performance and memory allocation data. Optional.

Chapter 12 - Profiling performance and memory use (UM-317), profile clear (CR-225),
profileinterval (CR-226), profile off (CR-227), profileon (CR-228), pr ofile option (CR-229),
profilereload (CR-230)

profile on
run 1000 ns
profile report -c -file perf.rpt

This set of commands enables the statistical sampling profiler, runs the simulation for
1000 nanoseconds, and outputs the call-tree profiling datato afile named perf.rpt.

ModelSim SE Command Reference

project

Syntax

Arguments

Examples

project CR-233

The project commands are used to perform common operations on projects. Some of the
project commands must be used outside of a simulation session.

pr oj ect
[addfile <filename>] | [close] | [conpileall] | [delete <project>] | [env]
| [history] | [new <hone_dir> <proj_nane> [<defaul tlibrary>]
[<use_current>]] | [open <project>] | [renmpvefile <fil ename>]

addfile <fil ename>

Adds the specified file to the current open project. Optional.

cl ose
Closes the current project. Optional. Must be used outside of a simulation session.

conpi | eal
Compiles all filesin the current project. Optional.

del ete <project>

Deletes a specified project file. Optional.

env
Returns the current project file. Optional.

hi story
Lists a history of manipulated projects. Optional. Must be used outside of asimulation
Session.

new <hone_dir> <proj_name> [<defaul tlibrary>] [<use_current>]
Creates a new project under a specified home directory with a specified name and
optionally adefault library. Optional. If use_current is set to 1, then Model Sim uses the
current modelsim.ini file when creating the project rather than the default. Y ou must
specify adefault library if you want to specify use_current. A new project cannot be
created while a project is currently open or asimulation isin progress.

open <proj ect >
Opensaspecified project file, making it the current project. Changesthe current working
directory to the project's directory. Optional. Must be used outside of asimulation
Session.

renovefile <filenane>
Removes the specified file from the current project. Optional .

proj ect open /user/george/design/test3/test3. mpf
Makes /user/geor ge/design/test3/test3.mpf the current project and changes the current
working directory to /user/george/design/test3.

proj ect conpil eal
Executes current project library build scripts.

ModelSim SE Command Reference

CR-234 property list

property list

Syntax

Arguments

The property list command changes one or more properties of the specified signal, net, or
register in the List window. The properties correspond to those you can set by selecting
View > Signal Properties (List window). At least one argument must be used.

property |ist
[-w ndow <wnane>] [-I|abel <label>] [-radix <radix>]
[-trigger <setting>] [-w dth <nunber>] <pattern>

-w ndow <wname>
Specifies aparticular List window when multiple instances of the window exist (e.g.,
list2). Optional. If no window is specified the default window is used; the default window
is determined by the most recent invocation of the view command (CR-332).

-1 abel <| abel >
Specifies the label to appear at the top of the List window column. Optional.

-radi x <radi x>
Specifies the radix for List window objects. Optional.

Valid entries (or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal,
hex, symbolic, and default. If no radix is specified for an enumerated type, the default
representation is used. Y ou can change the default radix for the current simulation using
theradix command (CR-241). Y ou can change the default radix permanently by editing
the DefaultRadix (UM-531) variable in the modelsim.ini file.

If you specify aradix for an array of aVHDL enumerated type, M odel Sim converts each
signal valueto 1, 0, Z, or X.

-trigger <setting>
Valid settings are 0 or 1. Setting trigger to 1 will enable the List window to be triggered
by changes in the objects matching the specified pattern. Optional.

-wi dt h <nunber >
Valid numbers are 1 through 256. Specifies the desired column width for the objects
matching the specified pattern. Optional.

<pattern>
Specifies a name or wildcard pattern to match the full pathnames of the signals, nets, or
registers for which you are defining the property change. Required.

ModelSim SE Command Reference

property wave CR-235

property wave

The property wave command changes one or more properties of the specified signal, net,
or register inthe Wave window. The properties correspond to those you can set by selecting
View > Signal Properties (Wave window). At least one argument must be used.

Syntax
property wave
[-w ndow <wnanme>] [-color <color>] [-format <format>] [-height <nunber>]
[-of fset <nunber>] [-radix <radix>] [-scale <float>] <pattern>
Arguments

-w ndow <wname>
Specifies a particular Wave window when multiple instances of the window exist (e.g.,
wave2). Optional. If no window is specified the default window is used; the default
window is determined by the most recent invocation of the view command (CR-332).

-col or <col or>
Specifies the color to be used for the waveform. Optional.

-format <format>
The waveform <format> can be expressed as:

anal og
Displays awaveform whose height and position is determined by the -scale and -offset
values (shown below). Optional .

literal
Displays the waveform as a box containing the object value (if the value fits the space
available). Optional.

l ogic
Displaysvaluesas 0, 1, X, or Z. Optional.

- hei ght <nunber >
Specifies the height (in pixels) of the waveform. Optional.

-of fset <number>
Specifiesthe waveform position offset in pixels. Valid only when -for mat is specified as
analog. Optional.

-radi x <radi x>
Specifies the radix for Wave window objects. Optional.

Valid entries (or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal,
hex, symbolic, and default. If no radix is specified for an enumerated type, the default
representation is used. Y ou can change the default radix for the current simulation using
theradix command (CR-241). Y ou can change the default radix permanently by editing
the DefaultRadix (UM-531) variable in the modelsim.ini file.

If you specify aradix for an array of aVHDL enumerated type, M odel Sim convertseach
signal valueto 1, 0, Z, or X.

ModelSim SE Command Reference

CR-236 property wave

-scal e <fl oat>
Specifies the waveform scal e relative to the unscaled size value of 1. Vaid only when
-format is specified as analog. Optional.

<pattern>
Specifies aname or wildcard pattern to match the full path names of the signals, nets, or
registers for which you are defining the property change. Required.

ModelSim SE Command Reference

push

Syntax

Arguments

Examples

See also

push CR-237

This command is used with C Debug. See Chapter 16 - C Debug (UM-399) for more

information.

The push command moves the specified number of call frames down the C callstack.

push
<#_of | evel s>

<#_of _| evel s>

Specifies the number of call framesto move down the C callstack. Optional. If

unspecified, 1 level is assumed.

push
Moves down 1 call frame.

push 4
Moves down 4 call frames.

pop (CR-219), Chapter 16 - C Debug (UM-399)

ModelSim SE Command Reference

CR-238 pwd

pwd

The Tcl pwd command displays the current directory path in the Transcript pane.
Syntax

pwd
Arguments

None.

ModelSim SE Command Reference

quietly CR-239

quietly
The quietly command turns off transcript echoing for the specified command.

Syntax
quietly
<command>

Arguments

<conmand>
Specifies the command for which to disable transcript echoing. Required. Any results
normally echoed by the specified command will not be written to the Transcript pane. To
disable echoing for all commands usethetranscript command (CR-286) with the-quietly
option.

See also

transcript (CR-286)

ModelSim SE Command Reference

CR-240 quit

quit
The quit command exits the simulator. If you want to stop the simulation using awhen
command (CR-407), you must use a stop command (CR-273) within your when statement.
DO NOT use an exit command (CR-166) or aquit command. The stop command acts like
abreakpoint at thetimeit is evaluated.

Syntax
quit

[-f | -force] [-sin
Arguments

-f | -force
Quits without asking for confirmation. Optional. If omitted, Model Sim asks you for
confirmation before exiting. (The -f and -force arguments are equivalent.)

-sim
Unloads the current design in the simulator without exiting ModelSim. All files opened
by the simulation will be closed including the WLF file (vsim.wif).

ModelSim SE Command Reference

radix CR-241

radix

The radix command specifies the default radix to be used for the current simulation. The

command can be used at any time. The specified radix is used for all commands (for ce (CR-
180), examine (CR-162), change (CR-81), etc.) aswell asfor displayed valuesin the Objects,

Locals, Dataflow, List, and Wave windows. Y ou can change the default radix permanently
by editing the DefaultRadix (Um-531) variable in the modelsim.ini file.

Syntax

radi x
[-synmbolic | -binary | -octal | -decinal | -hexadecinal |
-unsigned | -ascii]

Arguments

Entries may be truncated to any length. For example, -symbolic could be expressed as
-sor -gy, etc. Optional.

Also, -signed may be used as an alias for -decimal. The -unsigned radix will display as
unsigned decimal. The -ascii radix will display a Verilog object as a string equivalent
using 8 bit character encoding.

If no arguments are used, the command returns the current default radix.

ModelSim SE Command Reference

CR-242 readers

readers
Thereaderscommand displaysthe names of all readers of the specified object. The reader
listisexpressed relative to the top-most design signal/net connected to the specified object.
Syntax
readers
<obj ect _nane>
Arguments
<obj ect _nane>
Specifies the name of the signal or net whose readers are to be shown. Required. All
signal or net types are valid. Multiple names and wildcards are accepted.
See also

drivers(CRr-154) command

ModelSim SE Command Reference

record CR-243

record
This command is available for UNI X only (excluding Linux).
Therecord command startsrecording areplayabletrace of all keyboard and mouse actions.
Record and play operations may also be run from the macro-helper menu object of the
macro menu. Returns nothing.
Syntax
record
[<fil enanme>]
Arguments
<fil ename>
Specifies the file for the saved recording. If <filename> is not specified, the recording
terminates.
See also

macro_option (CR-195), play (CR-218)

ModelSim SE Command Reference

CR-244 report

report
Thereport command displays the value of all simulator control variables, or the value of
any simulator state variables relevant to the current simulation.
Syntax
report
sinmul ator control | sinulator state
Arguments
si mul ator control
Displaysthe current values for all simulator control variables.
simul ator state
Displaysthe simulator state variables relevant to the current simulation.
Examples

report simulator control
Displays al simulator control variables.

UserTi meUnit = ns
RunLength = 100
IterationLimt = 5000
BreakOnAssertion = 3

Def aul t ForceKi nd = defaul t
I gnoreNote = 0

I gnoreWarning = 0
IgnoreError =0

I gnoreFailure = 0

Checkpoi nt Conpressibde = 1
Numer i cSt dNoWar ni ngs = 0
St dAri t hNoWarnings = 0

Pat hSeparator = /

Def aul t Radi x = synbolic
Del ayFil eQpen = 0

WLFFi | ename = vsimw f

HOHHEHHHHHHHHHHHHHR

report sinmulator state
Displays al simulator state variables. Only the variables that relate to the design being
simulated are displayed:

now = 0.0

delta = 0

library = work
entity = type_cl ocks
architecture = full
resolution = 1ns

* HHH

ModelSim SE Command Reference

report CR-245

Viewing preference variables

Preference variables have moreto do with the way thingslook (but not entirely) rather than
controlling the simulator. Y ou can view preference variables from the Preferences dialog
box. Select Tools > Edit Preferences (Main window).

See also

"Preference variables located in INI files' (uM-524), and "Preference variables located in
Tcl files' (UM-540)

ModelSim SE Command Reference

CR-246

restart

restart

Syntax

Arguments

Therestart command rel oads the design elements and resets the simulation time to zero.
Only design elements that have changed are reloaded. (Note that SDF files are aways
reread during arestart.) Shared libraries are handled as follows during a restart:

* Shared libraries that implement VHDL foreign architectures only are rel oaded at each
restart when the architecture is elaborated (unless the -keeploaded option to the vsim
command (CR-373) is used).

* Shared libraries|oaded from the command line (-foreign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded (unless you specify the -keeploaded
argument to vsim).

* Shared libraries that implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for aforeign architecture.

Y ou can configure defaultsfor the restart command by setting the DefaultRestartOptions
variable in the modelsim.ini file. See "Restart command defaults" (UM-539).

To handlerestartswith Verilog PLI applications, you need to define aVerilog user-defined
task or function, and register amisctf class of callback. To handlerestartswith Verilog VPI
applications, you need to register reset callbacks. To handle restarts with VHDL FLI
applications, you need to register restart callbacks. See Appendix D - Verilog PLI / VPI /
DPI for more information on the Verilog PLI/VPI/DPI and the Model Sm FLI Reference
for more information on the FLI.

restart
[-force] [-noassertions] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

-force
Specifies that the simulation will be restarted without requiring confirmation in a popup
window. Optional.

-noassertions
Specifies that current assertion and functional coverage configurationswill not be
maintained after the simulation is restarted. Optional. The default is for assertion and
functional coverage settings to be maintained after the simulation is restarted.

- nobr eakpoi nt
Specifiesthat all breakpointswill be removed when the simulation isrestarted. Optional.
The default isfor all breakpoints to be reinstalled after the simulation is restarted.

-nol i st
Specifies that the current List window environment will not be maintained after the
simulation is restarted. Optional. The default isfor al currently listed HDL objects and
their formats to be maintained.

- nol og
Specifies that the current logging environment will not be maintained after the
simulation isrestarted. Optional. The default isfor al currently logged objects to
continue to be logged.

ModelSim SE Command Reference

restart CR-247

- nowave
Specifies that the current Wave window environment will not be maintained after the
simulation isrestarted. Optional. The default isfor all objects displayed in the Wave
window to remain in the window with the same format.

See also

checkpoint (CR-93), restor e (CR-248), vSim (CR-373), " Checkpointing and restoring
simulations' (UM-86), "The difference between checkpoint/restore and restart” (UM-87)

ModelSim SE Command Reference

CR-248 restore

restore

The restore command restores the state of a simulation that was saved with a checkpoint
command (CR-93) during the current invocation of VSIM (called a"warm restore”).

Theitemsrestored are: simulation kernel state, vsimwif file, HDL objectslisted in the List
and Wave windows, file pointer positions for files opened under VHDL and under Verilog
$fopen, and the saved state of foreign architectures.

If you want to restor e while running VSIM, use this command. If you want to start up
VSIM and restore a previously-saved checkpoint, use the -restor e switch with the vsim
command (CR-373) (called a"cold restore™).

Checkpoint/restore allows a cold restore, followed by simulation activity, followed by a
warm restore back to the original cold-restore checkpoint file. Warm restoresto checkpoint
filesthat were not created in the current run are not allowed except for this specia case of
an original cold restore file.

Checkpoaint files are platform dependent—you cannot checkpoint on one platform and
restore on another.

Syntax

restore
<fil ename>

Arguments

<fil ename>

Specifies the name of the checkpoint file. Required.

See also

checkpoint (CR-93), vsim (CR-373), "The difference between checkpoint/restore and
restart" (UM-87)

ModelSim SE Command Reference

resume

Syntax

Arguments

See also

resume CR-249

The resume command is used to resume execution of amacro file after a pause command
(CR-217) or abreakpoint. It may be input manually or placed in an onbreak (CR-214)
command string. (Placing aresume command in abp (CR-75) command string does not
have thiseffect.) The resume command can aso be used in an onerror (CR-216) command
string to allow an error message to be printed without halting the execution of the macro
file

resune

None.

abort (CR-44), do (CR-151), onbreak (CR-214), onerror (CR-216), pause (CR-217)

ModelSim SE Command Reference

CR-250 right

right

The right command searches right (next) for signal transitions or values in the specified
Wave window. It executes the search on signals currently selected in the window, starting
at the time of the active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a
waveform takes on a particular value, or an expression of multiple signalsevaluatesto true.
See the left command (CR-189) for related functionality.

The procedure for using right entails three steps: click on the desired waveform; click on
the desired starting location; issue the right command. (The seetime command (CR-264)
can initially position the cursor from the command line, if desired.)

Returns. <number_found> <new_time> <new_delta>

Syntax
right
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-val ue <sig_value>] [-w ndow <wnane>] [<n>]
Arguments

-expr {<expression>}
The waveform display will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signalsthat have been logged in the referenced Wavewindow. A signal may be specified
either by itsfull path or by the shortcut label displayed in the Wave window.

See "GUI_expression_format" (Cr-22) for the format of the expression. The expression
must be placed within curly braces.

-falling
Searches for afalling edge on the specified signal if that signal isascalar signal. If itis
not ascalar signal, the option will be ignored. Optional.

-noglitch
Looksat signal values only on the last deltaof atime step. For use with the -value option
only. Optional.

-rising
Searches for arising edge on the specified signal if that signal isascalar signal. If itis
not ascalar signal, the option will be ignored. Optional.

-val ue <sig_val ue>
Species avalue of the signal to match. Must be specified in the same radix that the
selected waveformisdisplayed. Caseisignored, but otherwisethe value must be an exact
string match -- don't-care bits are not yet implemented. Only one signal may be sel ected,
but that signal may be an array. Optional.

-w ndow <wnane>
Specifies an instance of the Wave window that is not the default. Optional. Otherwise,
the default Wave window is used. Use the view command (CR-332) to change the default
window.

ModelSim SE Command Reference

Examples

See also

right CR-251

<n>
Specifiesto find the nth match. If lessthan n arefound, the number found isreturned with
awarning message, and the cursor is positioned at the last match. Optional. The default
isl

right -noglitch -value FF23 2
Finds the second time to the right at which the selected vector transitions to FF23,
ignoring glitches.

ri ght
Goesto the next transition on the selected signal .

Thefollowing examplesillustrate search expressions that use avariety of signal attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-22).
right -expr {clk’rising & (nystate == reading) && (/top/u3/addr ==
32" habcd1234)}
Searches right for an expression that evaluates to a boolean 1 when signal clk just
changed from low to high and signal mystate is the enumeration reading and signal
/top/u3/addr is equal to the specified 32-bit hex constant; otherwiseis 0.

right -expr {(/top/u3/addr and 32’ hff000000) == 32’ hac000000}
Searchesright for an expression that eval uatesto aboolean 1 when the upper 8 bits of the
32-bit signal /top/u3/addr equals hex ac.
right -expr {((NOW> 23 us) &% (NOW< 54 us)) && clk'rising & (nobde ==
witing)}
Searches right for an expression that evaluates to a boolean 1 when logfiletimeis
between 23 and 54 microseconds, and clock just changed from low to high and signal
mode is enumeration writing.

P Note: "Wave window mouse and keyboard shortcuts' (UM-609) are also available for
next and previous edge searches. Tab searches right (next) and shift-tab searches left
(previous).

"GUI_expression_format" (CR-22), |eft (CR-189), seetime (CR-264), View (CR-332)

ModelSim SE Command Reference

CR-252 run

run
The run command advances the simulation by the specified number of timesteps.
Syntax
run
[<timesteps>[<time_units>]] | [-all] | [-continue] | [-finish] | [-next]
[-step] | [-over]
Arguments

<ti mesteps>[<tine_units>]
Specifies the number of timesteps for the simulation to run. The number may be
fractional, or may be specified absolute by preceding the value with the character @.
Optional. In addition, optional <time_units> may be specified as:

fs, ps, ns, us, ms, or sec

The default <timesteps> and <time_units> specifications can be changed during a
ModelSim session by selecting Simulate > Simulation Options (Main window). Time
steps and time units may also be set with the RunLength (um-533) and UserTimeUnit (Um-
534) variablesin the modelsim.ini file.

-all
Causes the simulator to run the current simulation forever, or until it hits abreakpoint or
specified break event. Optional.

-continue
Continuesthelast simulation run after astep (CR-272) command, step -over command or
abreakpoint. A run -continue command may be input manually or used as the last
command in abp (CR-75) command string. Optional.

-finish
In"C Debug" (UM-399) only, continues the simulation run and returns control to the
calling function. Optional.

- next
Causes the simulator to run to the next event time. Optional.

-step
Steps the simulator to the next HDL statement. Optional.

-over
Specifiesthat VHDL procedures, functions and Verilog tasks are to be executed but
treated as simple statements instead of entered and traced line by line. Optional.

ModelSim SE Command Reference

run CR-253

Examples

run 1000
Advances the simulator 1000 timesteps.

run 10.4 ms
Advances the simulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run @000
Advances the simulator to timestep 8000.

See also
step (CR-272)

ModelSim SE Command Reference

CR-254 sccom

Sccom

The sccom command is actually two commands in one: sccom interacts with a C/C++
compiler to compile SystemC source code into thework library, and sccom -link takesthe
compiled source code and links the design.

This command may be invoked from within Model Sim or from the operating system
command prompt. This command may & so be invoked during simulation.

Compiledlibrariesare platform dependent. If you move between platforms, you need to run
vdel -allsystemc on the working library and then recompile your SystemC source.

Compiled libraries are version dependent. For example, you cannot use alibrary compiled
with 5.8 in asimulation using 5.8avsim. Y ou have to re-compile your design with the
updated version of sccom.

Certain restrictions apply when compiling SystemC modules with HP aCC. See
"Restrictions on compiling with HP aCC" (Um-169) for details.

During thelinking of the design (with sccom -link) the order in which you specify archives
(.a) and object filesis very important. Any dependent .a or .0 must be specified before the
.aor.oonwhich it depends.

Compile syntax

sccom
[<CPP conpiler options>] [-error <msg_nunber>[, <nmsg_nunber>,...]]
[-f <filenane>] [-help] [-log <logfile>] [-nologo][-note

<msg_nunber >[, <nmsg_nunber>,...]] [-scv] [-scns]
[- suppress <nsg_nunber>[, <msg_nunber>,...]] [-vv] [-verbose] [-version]
[-version] [-warning <msg_nunber>[, <msg_nunber>,...]] <filenane>
Link syntax
sccom -1 ink
[<CPP Iinker options>] [-f <filename>] [-help] [-lib <conpiled |ibrary>]
[-1og <logfile>] [-nologo] [-scv] [-vv] [-verbose] [-version]
[-work <library_nane>]
Arguments

<CPP conpi | er options>
Any normal C++ compiler option can be used, with the exception of the-o and -c options.
By default, sccom compiles without debugging information. Specify the -g argument to
compilefor debugging. Y ou can specify argumentsfor all sccom compiles by editing the
CppOptions variable in the modelsim.ini file.

<CPP |inker options>
Any normal C++ compiler option can be used, with the exception of the -o option. Y ou
can specify argumentsfor all sccom compiles by editing the CppOptionsvariablein the
modelsim.ini file.

-error <msg_nunber>[, <msg_nunber>, .. .]
Changesthe severity level of the specified message(s) to "error." Optional. Edit the error
(UM-536) variable in the modelsim.ini file to set a permanent default. See " Changing
message severity level" (UM-546) for more information.

ModelSim SE Command Reference

sccom CR-255

-f <fil ename>
Specifies afile with more command-line arguments. Optional. Allows complex
argument strings to be reused without retyping. Nesting of -f optionsis allowed.

Thefile syntax basically follows what you type on the command line with the exception
that newline characters are ignored. Environment variable expansion (for examplein a
pathname) does not occur in -f files.

-hel p
Displays the command’ s options and arguments. Optional.

-lib <conpiled library>
Only used for sccom -link invocations. Specifies the default working library where the
SystemC linker can find the object files for compiled SystemC modules.

-1ink
sccom'’s -link argument performs the final link of al previously compiled SystemC
source code. Required before running simulation. Any dependent .a or .0 must be
specified beforethe.a or .0 on which it depends. Two typesof dependenciesare possible,
and where you place the -link argument is different based on which type of dependency
the files have.

If your archive or object is dependent on the .o files created by sccom (i.e. your code
references symbolsin the generated SystemC .o files), then you must specify the -link
argument after the list of files, as shown below:

sccoma.o b.o libtemp.a -1ink

Under the covers, the C++ linker’s command and argument order looks like this:

ld a.o b.o libtenp.a <internal list of SC .o files> |ibsystent.a

However, if the .o files created by sccom are dependent on the object or archive you
provided, then the -link argument must be placed before the object files or archive:

sccom-link a.o b.o libtenp.a

In this case, the "undercover" command and argument order look like this:

Id <internal list of SC.o files> libsystenc.a a.0 b.o libtenp.a

-log <logfile>
Specifies the logfile in which to collect output. Optional. Related modelsim.ini variable
is SccomLodfile.

- nol ogo
Disables the startup banner. Optional.

-note <msg_nunber >[, <nmsg_nunber>, .. .]
Changes the severity level of the specified message(s) to "note.” Optional. Edit the note
(UM-536) variable in the modelsim.ini file to set a permanent default. See "Changing
message severity level" (Um-546) for more information.

-SCcVv
Includes the SystemC verification library. Optional. If you specify this argument when
compiling your C code with sccom, you must also specify it when linking the object files
with sccom -link. Related modelsim.ini variable is UseScv.

ModelSim SE Command Reference

CR-256 sccom

Examples

-Schne
Includes the SystemC master slave library. Optional. If you specify this argument when
compiling your C code with sccom, you must also specify it when linking the object files
with sccom -link.

- suppress <msg_nunber >[, <msg_nunber>,...]
Prevents the specified message(s) from displaying. Optional. Y ou cannot suppress Fatal
or Internal messages. Edit the suppress (UM-536) variable in the modelsim.ini fileto set a
permanent default. See " Changing message severity level” (UM-546) for more
information.

-VVv
Prints all subprocess invocation information. Optional. An example is the call to gcc
aong with the command-line arguments.

-verbose
Prints the name of each sc_module encountered during compilation. Optional. Related
modelsim.ini variable SccomV erbose.

-version
Displaysthe version of sccom used to compile the design. Optional.

-war ni ng <msg_nunber >[, <msg_nunber >, . . .]
Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning (UM-536) variable in the modelsim.ini fileto set a permanent default. See
"Changing message severity level" (Um-546) for more information.

-work <library_name>
For the compiler:
Specifies alogical name or pathname of alibrary that is to be mapped to the logical
library work. Optional; by default, the compiled object files (.s0) are added to the wor k
library. The specified pathname overrides the pathname specified for work in the project
file.

For the linker:
Specifies alogical name or pathname of alibrary where the final linked object file (.so)
isto be stored. Optional; by default, the linked object files are added to thework library.

<fil ename>
Specifies the name of afile containing the SystemC/C++ source to be compiled.
Required. Multiple filenames separated by spaces can be entered, or wildcards can be
used (e.g., *.cpp).

sccom -g exanpl e. cpp
Compiles example.cpp with debugging information.

sccom -1 ink
Links example.o.

sccom -work |ibl a.cpp

sccom -work |ib2 b.cpp

sccom-link -lib libl -lib lib2 -work Iib3
vsim-scwork lib3 -lib libl -lib lib2

These three commands compile a.cpp into afirst library lib1, and b.cpp into a second
library calledlib2. The compiled object files created in those two libraries are then linked

ModelSim SE Command Reference

sccom CR-257

and compiled into athird shared library, lib3. When vsim isinvoked, the -scwor k
argument is required in order to point to the location of the shared library. The-lib
arguments are required to specify the locations of the SystemC design units.

sccom - |/ home/ systent/include -DSC_| NCLUDE_FX -g a.cpp b.cpp
Compiles the SystemC code with an include directory and the compile time macro
(SC_INCLUDE_FX) to compile the source with support for fixed point types. For more
information, see "Fixed point types' (UM-182).

sccom -02 a. cpp
Compiles with the g++ -02 optimization argument.

sccom -L home/libs/ -1 nylib -link
Linksin the library libmylib.a when creating the .so file. The -L argument specifies the
search path for the libraries.
See also

Chapter 6 - SystemC simulation, scgenmod command (CR-258), vdel -allsystemc
command (CR-327)

ModelSim SE Command Reference

CR-258 scgenmod

scgenmod

Syntax

Arguments

OnceaVerilog or VHDL module is compiled into alibrary, you can use the scgenmod
command to write its equivalent SystemC foreign module declaration to standard output.
Optional arguments allow you to generate sc_bit, sc_bv, or resolved port types; sc_logic
and sc_|v port types are generated by default.

scgennod
[-help] [-lib <library_nanme>] [-sc_logic] [-sc_bit] [-bool]
[-sc_resolved] [-sc_bv] [-sc_lv] [-sc_rv] [-sc_int] [-sc_uint]

<nmodul e_nane>

-help
Displays the command’ s options and arguments. Optional.

-lib <library_nane>
Specifies the pathname of the working library. If not specified, the default library work
isused. Optional.

<nmodul e_nane>

Specifies the name of the Verilog/VHDL module to be accessed. Required.

Scalar type options:

-sc_bit
Causes scgenmod to generate sc_bit scalar port types.

- bool
Causes scgenmod to generate bool scalar port types.

-sc_logic
Causes scgenmod to generate sc_logic scalar port types.

-sc_resol ved
Causes scgenmod to generate resolved scalar port types.

Vector type options:

-sc_bv
Causes scgenmod to generate sc_bv<N> vector port types.

-sc_int
Causes scgenmod to generate sc_int<N> vector port types.

-sc_lv
Causes scgenmod to generate sc_Iv<N> vector port types.

-SC_rv
Causes scgenmod to generate resolved vector port types.

-sc_uint
Causes scgenmod to generate sc_uint<N> port types.

ModelSim SE Command Reference

scgenmod CR-259

Examples

This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

modul e vcounter (clock, topcount, count);
i nput cl ock
i nput topcount;
out put count;

reg count;
endnodul e

After compiling using vlog (CR-358), you invoke scgenmod on the compiled module with
the following command:

scgennod vcounter

The SystemC foreign module declaration for the above Verilog moduleis:

class vcounter : public sc_foreign_nodul e
{

public:

sc_in<sc_|l ogi c> cl ock

sc_in<sc_l ogi c> topcount;

sc_out <sc_| ogi c> count;

vcount er (sc_nodul e_nane nm const char* hdl _nane)
sc_forei gn_modul e(nm hdl _nane),
cl ock("cl ock")
topcount ("t opcount"),
count ("count")
{1
~vcounter ()
{1
b

See also

Chapter 6 - SystemC simulation, sccom command (CR-254)

ModelSim SE Command Reference

CR-260 search

search

The sear ch command searches the specified window for one or more objects matching the
specified pattern(s). The search starts at the object currently selected, if any; otherwise it
startsat thewindow top. Thedefault action isto search downward until thefirst match, then
move the selection to the object found, and return the index of the object found. The search
can be continued using the next command.

Returns the index of a single match, or alist of matching indices. Returns nothing if no
matches are found.

Syntax

sear ch
<wi ndow_nane> [-wi ndow <wnanme>] [-all] [-field <n>] [-toggle]
[-forward | -backward] [-wap | -nowap] [-exact] [-regexp] [-nocase]
[-count <n>] <pattern>

Arguments for all windows

<wi ndow_nane>
Specifies the window in which to search. Can be one of Signals, Objects, Variables,
Locals, Source, List, Wave, Process, Structure, or a unique abbreviation thereof.
Required.

-w ndow <wnane>
Specifies an instance of the window that is not the default. Optional. Otherwise, the
default window is used. Use the view command (CR-332) to change the default window.

-forward
Search in the forward direction. Optional. Thisis the default.

- backwar d
Search in the reverse direction. Optional. Default is forward.

<pattern>
String or glob-style wildcard pattern. Required. Must be the last argument specified.

Arguments, for all EXCEPT the Source window

-al
Finds all matches and returns alist of the indices of all objects that match. Optional.

-field <n>
Selects different fields to test, depending on the window type:

Window n=1 n=2 n=3 default

structure instance entity/ architecture instance
module

signals name - cur. value name

process status process fullpath fullpath
[abel

ModelSim SE Command Reference

search CR-261

Window n=1 n=2 n=3 default
variables name - cur. value name
wave name - cur. value name
list |abel fullname - label

Default behavior for the List window isto attempt to match the label and if that fails, try
to match the full signal name.

-toggle
Adds objects found to the selection. Does not do an initial clear selection. Optional.
Otherwise deselects al and selects only one object.

-wrap
Specifies that the search continue from the top of the window after reaching the bottom.
Optional. Thisisthe default.

-now ap
Specifies that the search stop at the bottom of the window and not continue searching at
the top. Optional. The default isto wrap.

Arguments, Source window only

- exact

Search for an exact match. Optional.

-regexp
Use the pattern as a Tcl regular expression. Optional.

-nocase
Ignore case. Optional. Default isto use case.

-count <n>

Search for the nth match. Optional. Default isto search for the first match.

Description

With the -all option, the entire window is searched, the last object matching the patternis
selected, and a Tcl list of al corresponding indices is returned.

With the -toggle option, objects found are selected in addition to the current selection.

For the List window, the search isdone on the names of the objectslisted, that is, acrossthe
header. To search for values of objectsin the List window, use the down command (CR-
152) and up command (CR-290). Likewise, inthe Wave window, the search isdone on object
names and values in the values column. To search for object values in the waveform pane
of the Wavewindow, usetheright command (CR-250) and the left command (CR-189). You
can also select Edit > Search in both windows.

See also

find (CR-176), next (CR-207), view (CR-332)

ModelSim SE Command Reference

CR-262 searchlog

searchlog

Syntax

Arguments

The sear chlog command searches one or more of the currently open logfilesfor a specified
condition. It can be used to search for rising or falling edges, for signals equal to aspecified
value, or for when a generalized expression becomes true.

sear chl og
[-count <n>] [-deltas] [-env <path>] [-expr {<expr>}] [-reverse]
[-rising | -falling | -anyedge] [-startDelta <nunk] [-value <string>]

<startTi me> <pattern>

If at least one match isfound, it returns the time (and optionally delta) at which the last
match occurred and the number of matches found, inaTcl list:

{{<tinme>} <matchCount >}

where <time> isin the format <number> <unit>. If the -deltas option is specified, the
delta of the last match is also returned:

{{<tinme>} <delta> <matchCount >}

If no matches are found, aTCL_ERROR is returned. If one or more matches are found,
but less than the number requested, it is not considered an error condition, and the time
of the farthest match is returned, with the count of the matches found.

-count <n>
Specifiesto search for the nth occurrence of the match condition, where<n> isapositive
integer. Optional.

-del tas
Indicatesto test for amatch on simulation delta cycles. Otherwise, matches are only
tested for at the end of each simulation time step. Optional.

-env <pat h>
Provides a design region in which to look for the signal names. Optional.

-expr {<expr>}
Specifiesageneral expression of signa values and simulation time. Optional. sear chlog
will search until the expression evaluates to true. The expression must have a boolean
result type. See "GUI_expression_format" (CR-22) for the format of the expression.

-reverse
Specifies to search backwards in time from <startTime>. Optional.

-rising | -falling | -anyedge
Specifies an edge to look for on a scalar signal. Optional. This option isignored for
compound signals. If no options are specified, the default is -anyedge.

-startDelta <nune
Indicates a simulation delta cycle on which to start. Optional.

-val ue <string>
Specifiesto search until asingle scalar or compound signal takes on thisvalue. Optional.

ModelSim SE Command Reference

searchlog CR-263

<startTi me>
Specifies the simulation time at which to start the search. Required. The time may be

specified as an integer number of simulation units, or as{ <num> <timeUnit>}, where
<num> can be integer or with a decimal point, and <timeUnit> is one of the standard

VHDL time units (fs, ps, ns, us, ms, sec).

<pattern>
Specifies one or more signal names or wildcard patterns of signal names to search on.

Required unless the -expr argument is used.

See also
virtual signal (CR-351), virtual log (CR-343), virtual nolog (CR-346)

ModelSim SE Command Reference

CR-264 seetime

seetime

The seetime command scrollsthe List or Wave window to make the specified time visible.

For the List window, a delta can be optionally specified as well.

Returns nothing
Syntax

seetime

I'ist|wave [-wi ndow <wnanme>] [-select] [-delta <nunmp] <tinme>

Arguments

list]wave

Specifies the target window type. Required.

-w ndow <wname>
Specifies an instance of the Wave or List window that is not the default. Optional.
Otherwise, the default Wave or List window is used. Use the view command (CR-332) to
change the default window.

-sel ect
Also moves the active cursor or marker to the specified time (and optionally, delta).
Optional. Otherwise, the window is only scrolled.

-delta <nunp
For the List window when deltas are not collapsed, this option specifiesadelta. Optional.
Otherwise, delta 0 is selected.

<time>
Specifies the time to be made visible. Required.

ModelSim SE Command Reference

setenv CR-265

setenv

The setenv command changes or reports the current value of an environment variable. The
setting is not persistent—it is valid only for the current Model Sim session.
Syntax

set env
<var name> [<val ue>]

Arguments

<var nane>
The name of the environment variable you wish to set or check. Required.

<val ue>
Thevaluefor theenvironment variable. Optional. If you don’t specify avalue, Model Sim
reports the variable' s current value.

See also

unsetenv (CR-289), printenv (CR-224)

ModelSim SE Command Reference

CR-266 shift

shift

Syntax

Arguments

Description

See also

The shift command shifts macro parameter values |eft one place, so that the value of
parameter $2 is assigned to parameter $1, the value of parameter $3 is assigned to $2, etc.
The previous value of $1 is discarded.

The shift command and macro parameters are used in macro files. If amacro file requires
more than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc (UM-542) variable.

shift

None.

For amacro file containing nine macro parameters defined as $1 to $9, one shift command
shifts al parameter values one place to the left. If more than nine parameters are named,
the value of the tenth parameter becomes the value of $9 and can be accessed from within
the macro file.

do (CR-151)

ModelSim SE Command Reference

show CR-267

show

The show command lists HDL objects and subregions visible from the current
environment. The objects listed include:

* VHDL
signals, processes, constants, variables, and instances

* Verilog
nets, registers, tasks, functions, instances, variables, and memories

If using "C Debug" (UM-399), show displays the names and types of the local variablesand
arguments of the current C function.

The show command returns formatted results to stdout. To eliminate formatting (to usethe
output in a Tcl script), use the Show command instead.
Syntax

show
[-all] [<pathnane>]

Arguments

-all

Displays all names at and below the specified path recursively. Optional.
<pat hname>
Specifies the pathname of the environment for which you want the objects and
subregions to be listed. Optional; if omitted, the current environment is assumed.
Examples

show
Lists the names of all the objects and subregion environments visible in the current
environment.

show / uut
Lists the names of all the objects and subregions visible in the environment named /uut.

show sub_regi on
Lists the names of all the objects and subregions visible in the environment named
sub_region which is directly visible in the current environment.

See also

environment (CRr-161), find (CR-176)

ModelSim SE Command Reference

CR-268 simstats

simstats

Syntax

Arguments

The simstats command returns performance-related statistics about elaboration and
simulation. The statistics measure the simulation kernal process (vsimk) for asingle
invocation of vsim. If you invoke vsim a second time, or restart the simulation, the current
statistics are discarded and new values are collected.

If executed without arguments, the command returns alist of pairslike the following:

{{elab nenory} 0} {{elab working set} 7245824} {{elab tinme} 0.942645}
{{elab cpu tine} 0.190274} {{elab context} 0} {{elab page faults} 1549}
{menory 0} {{working set} 0} {time 0} {{cpu tine} 0} {context 0}
{{page faults} 0}

The elaboration statistics are measured one time at the end of elaboration. The simulation
memory statistics are measured at the time you invoke simstats. The simulation time
statistics are updated at the end of each run command. See the arguments below for
descriptions of each statistic.

Units for time values are in seconds. Units for memory values vary by platform:
 For SunOS and Linux, the memory size isreported in Kbytes

» For HP-UX, the memory size is reported in the number of pages

 For Windows, the memory sizeis reported in bytes.

Some of the values may not be available on al platforms and other values may be
approximates. Different operating systems report these numbers differently.

sinstats
[mermory | working | time | cpu | context | faults]

menory
Returns the amount of virtual memory that the OS has allocated for vsimk. Optional.

wor ki ng
Returns the portion of allocated virtual memory that is currently being used by vsimk.
Optional. If thisnumber exceedsthe actual memory size, you will encounter performance
degradation.

tinme
Returns the cumulative "wall clock time" of al run commands. Optional.

cpu
Returns the cumulative processor time of all run commands. Optional. Processor time
differs from wall clock timein that processor timeis only counted when the cpu is

actually running vsimk. If vsimk is swapped out for another process, cpu time does not
increase.

cont ext
Returns the number of context swaps (vsimk being swapped out for another process) that
occurred during al run commands. Optional.

ModelSim SE Command Reference

simstats CR-269

faults
Returns the number of page faults that occurred during al run commands. Optional.

ModelSim SE Command Reference

CR-270 splitio

splitio

The splitio command operates on a VHDL inout or out port to create anew signa having
the same name as the port suffixed with™__0". The new signal mirrors the output driving
contribution of the port.

P Note: In ModelSim versions prior to 5.5¢, splitio was used to split the VHDL inout or
output ports so you could re-simulate your design from avcd file using
vsim -vcdread. In later versions, addition of the ved dumpports command (CR-295)
eliminated the need for splitio.

Syntax

splitio
[-outalso | -outonly] [-r] <signal _name>..

Arguments

-outal so
Allows splitio to work on out ports as well asinout ports. Optional.

-outonly
Allows splitio to work only on out ports. Optional.

-r
Specifiesthat the port selection occurs recursively into subregions. Optional. If omitted,
included ports are limited to the current region.

<si gnal _nane>. .
Specifiesthe VHDL port. Operates only on inout ports by default; out ports may be
specified with the options above. Separate multiple port names with spaces. Required.
Wildcards can be used.

Examples

The splitio command operates on inout or out ports and silently ignores any other signals
specified. The new signals created may be specified in any vsim (CR-373) commands that
operate on signals. These signal's appear to be out ports to the signal selection options on
vsim commands. For example,

splitio /data
Createsasignal data__ o if dataisan inout port.

ModelSim SE Command Reference

status

Syntax

Arguments

Examples

See also

status CR-271

The status command lists summary information about currently interrupted macros. If
invoked without arguments, the command lists the filename of each interrupted macro, the
line number at which it was interrupted, and prints the command itself. It also displays any
onbreak (CR-214) or onerror (CR-216) commands that have been defined for each
interrupted macro.

status
[file | line]

file
Reports the file pathname of the current macro.

l'ine
Reports the line number of the current macro.

The transcript below contains exampl es of resume (CR-249), and status commands.

VS| M paused) > st at us
Macro resune_test.do at line 3 (Current nmacro)
conmand executing: “pause”
is Interrupted
ONBREAK commands: “resune”
Macro startup.do at line 34
conmand executing: “run 1000"
processi ng BREAKPO NT
is Interrupted
ONBREAK conmands: “resune”
VSI M paused) > resune
Resumi ng execution of macro resune_test.do at line 4

HHHHH H R

abort (CR-44), do (CR-151), pause (CR-217), r esume (CR-249)

ModelSim SE Command Reference

CR-272 step

step

The step command steps to the next HDL or C statement. Current values of local HDL
variables may be observed at this time using the Locals window. VHDL procedures and
functions, Verilog tasks and functions, and C functions can optionally be skipped over.
When await statement or end of process is encountered, time advances to the next
scheduled activity. The Process and Source windowswill then be updated to reflect the next
activity.

Syntax

step
[-over] [<n>]

Arguments

-over
Specifies that VHDL procedures and functions, Verilog tasks and functions, and C
functions should be executed but treated as simpl e statements instead of entered and
traced line by line. Optional.

<n>

Any integer. Optional. Will execute ‘n’ steps before returning.

See also

run (CR-252)

ModelSim SE Command Reference

stop

Syntax

Arguments

See also

stop CR-273

The stop command is used with the when command (CR-407) to stop simulation in batch
files. The stop command has the same effect as hitting a breakpoint. The stop command
may be placed anywhere within the body of the when command.

st op

None.

Use the run command (CR-252) with the -continue option to continue the simulation run,
or the resume command (CR-249) to continue macro execution. If you want macro
execution to resume automatically, put the resume command at the top of your macro file:

onbreak {resune}

P Note: If you want to stop the simulation using awhen command (CR-407), you must use
a stop command within your when statement. DO NOT use an exit command (CR-166)
or aquit command (CR-240). The stop command acts like a breakpoint at thetimeit is
evaluated.

bp (CR-75), resume (CR-249), run (CR-252), when (CR-407)

ModelSim SE Command Reference

CR-274 tb

tb

Thetb (traceback) command displays a stack trace for the current processin the Transcript
pane. This lists the sequence of HDL function calls that have been entered to arrive at the
current state for the active process.

If you areusing "C Debug" (Um-399), tb displays a stack trace of the C call stack.

Syntax

th
[<#_of _Il evel s>]

Arguments

<#_of _| evel s>
Specifies the number of call framesin the C stack to display. Optional. If you don’t
specify alevel, the entire C stack is displayed. This argument is available only for "C
Debug" (UM-399).

ModelSim SE Command Reference

tcheck_set

Syntax

Arguments

tcheck_set CR-275

The tcheck_set command works in tandem with tcheck _status (CR-277) to report on and
enable/disable individual timing checks. tcheck _set modifies either a check's reporting or
X-generation status and reports the new setting in the Transcript pane.

Disabling atiming check's reporting prevents generation of associated violation messages.
For Verilog modules this means M odel Sim disables message reporting. For VHDL design
units this means M odel Sim sets the MsgOn parameter inaVITAL timing check procedure
(TCP) to FAL SE. Disabling atiming check's X generation removesatiming check’ sability
to affect the outputs of the simulation. For Verilog modules this means Model Sim toggles
the timing check's notifier. For VHDL design units this means Model Sim sets the Xon
parameter inaVITAL TCPto FALSE.

tcheck _set does not override the effects of invoking vlog (CR-358) or vsim (CR-373) with
the +nospecify, +notimingchecks, or +no_neg_tchk argument. tcheck _set can override
the effects of invoking vsim (CR-373) with the +no_notifier, +no_tchk_msg, -g, or -G
argument. These latter arguments establish initial values for the simulation, and those
values can be modified by tcheck_set.

Keep in mind the following if you areusing VHDL VITAL:

* VITAL does not provide the granularity to set individual period or width checks. These
checks are part of asingle VITAL TCP, and tcheck _set toggles MsgOn and Xon for all
checksin the TCP. See "Examples’ below for further information.

« |f aninstanceis not Level-1 optimized, you cannot set values for individual TCPs. You
can set valuesonly for theentireinstance. tcheck _statusreports"ALL" for instancesthat
aren’'t Level-1 optimized. See "Examples’ below for further information.

t check_set
<instance> [-quiet] [-r | <tcheck>] [<Stat> | <MsgStat> <XSt at >]

<i nst ance>
Specifiestheinstance for which you want to change the reporting or X-generation status.
Required.

- qui et
Suppresses printing the new setting to the Transcript pane. Optional .

-r
Attempts to change all checks on this instance and instances below this instance.
Optional.

<t check>
Specifies a specific timing check to change. Optional. If you don’t specify <tcheck> or
-r, or you specify ALL for <tcheck>, Model Sim attempts to apply the change to all
timing checks in the instance.

Y ou can specify either theinteger that is assigned to each timing check (and reported via
tcheck _status) or the actual timing check name enclosed in double quotes (see
"Examples’ below). Note that the integer number may change between library compiles.

ModelSim SE Command Reference

CR-276

tcheck_set

Examples

See also

<St at >
Enableg/disables both X generation and violation message reporting for the specified
timing check(s). Optional. Specify either ON (enable) or OFF (disable).

<MsgSt at >
Enabl eg/disablesviol ation message reporting for the specified timing check(s). Optional.
Specify either ON (enable) or OFF (disable).

<XSt at >
Enableg/disables X generation for the specified timing check(s). Optional. Specify either
ON (enable) or OFF (disable).

tcheck_set top.yl.u2 "(WDTH (negedge CLK))" OFF
Turns off message reporting and X generationfor the"(WIDTH (negedge CLK))" check
in instance top.y1.u2. Creates the following output in the Transcript pane:

#0 (WDTH (negedge CLK)) MgOf XOf
tcheck_set top.yl.u2 1 OFF ON

Turns off message reporting for timing check number 1 ininstancetop.yl.u2. Createsthe
following output in the Transcript pane:

#1 (WDTH (posedge CLK)) MgOf XOn

VSIM 2> tcheck_status dff1l

1 (PERIOD CLK) MsgOn, XOn

(WDTH (posedge CLK)) MsgOn, XOn

(WDTH (negedge CLK)) MsgOn, XOn

VSI M 3> tcheck_set dffl "(WDTH (posedge CLK))" off on
1 (PERIOD CLK) MsgOff, XOn

(WDTH (posedge CLK)) MsgOf, XOn

(WDTH (negedge CLK)) MsgOf, XOn

Shows how period and hold checks work with VHDL VITAL. In this case, specifying
"off on" for (W DTH (posedge CLK)) alsosets(PERI OD CLK) and(W DTH (negedge
CLK)) tothe same values.

VSI M 3> tcheck_status dff5
ALL MsgOn XOn

VSI M 4> tcheck_set dff5 on off

ALL MsgOn XOFf
Instance dff5 is from an unaccel erated model so tcheck _set can only toggle message
reporting and X generation for al checks on the instance.

tcheck _status (cr-277), "VITAL compliance warnings' (Um-94), Chapter 18 - Standard
Delay Format (SDF) Timing Annotation, "Disabling timing checks" (um-451), -g, -G,
no_natifier, +no_tchk_msg, +nospecify, +no_neg_tchk, and +notimingchecks
arguments to the vsim command (CR-373)

ModelSim SE Command Reference

tcheck_status CR-277

tcheck_status

The tcheck _status command works in tandem with tcheck _set (CR-275) to report on and
enable/disable individual timing checks. tcheck _status printsin the Transcript pane the
current status of al timing checksin the instance or a specific timing check specified with
the optional <tcheck> argument.

Disabling atiming check's reporting prevents generation of associated violation messages.
For Verilog modules this means Model Sim disables message reporting. For VHDL design
units this means M odel Sim sets the MsgOn parameter inaVITAL timing check procedure
(TCP) to FAL SE. Disabling atiming check's X generation removesatiming check’ sability
to affect the outputs of the simulation. For Verilog modules this means Model Sim toggles
the timing check's notifier. For VHDL design units this means Model Sim sets the Xon
parameter inaVITAL TCPto FALSE.

Syntax

tcheck_status
[-1ines] <instance> [<tcheck>]

Arguments

-lines
Specifies that the HDL source file and line numbers of the check(s) be displayed.
Optional. Has no effect on VHDL instances. Note that line information may not always
be available.

<i nst ance>
Specifies the instance for which you want timing check status reported. Required.

<t check>
Specifies a specific timing check within the instance on which to report status. Optional.
By default Model Sim reports all timing checks within the specified instance. Y ou can
specify either the integer that is assighed to each timing check (and reported via
tcheck _status) or the actual timing check name enclosed in double quotes (see
"Examples’ below). Note that the integer number may change between library compiles.

Output

The output of the tcheck_status command looks as follows:
#<Nunber > <SDF_Descri ption> [<src_line>] <MsgStat> <XStat>

Field Description

<Number> an integer that can be used as shorthand to specify the check in the
tcheck _statusor tcheck _set commands (as the <tcheck>
argument); this number can change with compiler optimizations,
and you can’'t assume it will stay the same between library compiles

<SDF_Description> | an SDF specification of the timing check including enclosing
parentheses ()’

ModelSim SE Command Reference

CR-278 tcheck_status

Field

Description

<src_line>

the source file and line number for the timing check specification;
output if you specify the -lines argument; the format of the object is
<source_fil e_nane>: <line_nunber>.

<MsgStat>

violation message reporting status indicator

MsgON/MsgOFF - violation reporting is enabled/disabled and
unchangeable

MsgOn/MsgOff - violation reporting is enabled/disabled and
modifiable

<XStat>

violation X generation status indicator

XON/XOFF - X generation is enabled/disabled and
unchangeable

XOn/XOff - X generation is enabled/disabled and modifiable

Examples

tcheck_status top.yl.u2
Creates the following output:

#0 (WDTH (negedge CLK)) MsgOn XOn

#1 (WDTH (posedge CLK)) MsgOn XOn

#2 (SETUP (negedge D) (posedge CLK)) MsgOFF XOFF
#3 (HOLD (posedge CLK) (negedge D)) MsgOn XOf f

tcheck_status -lines top.yl.u2 1
Creates the following output:

#1 (WDTH (posedge CLK)) 'cell.v:224" MsgOn XOn

See also

tcheck _set (CR-275), Chapter 18 - Standard Delay Format (SDF) Timing Annotation

ModelSim SE Command Reference

toggle add

Syntax

Returns

Arguments

toggle add CR-279

Thetoggleadd command enables collection of toggle statisticsfor the specified nodes. The
allowed nodes are Verilog nets and registers and VHDL signals of type bit, bit_vector,
std_logic, and std_logic_vector (other types are silently ignored).

You can aso collect and view toggle statistics in the Model Sim GUI. See Chapter 13 -

Measuring code coverage for details.

toggl e add

[-full] [-in] [-inout] [-internal] [-out] [-ports] [-r] <node_nane>-uni que

Command result

Return value

are found to be aready in the toggle set

no signals are added and no signalsare | Nothing added.
found to be already in the toggle set
no signals are added and some signals 0

some signals are added

the number of bits added

-ful

Enables extended mode toggle coverage, which tracks the following six transitions:

1) lorH-->0orL
2) OorL-->1orH
3) XorZ-->1orH
4) XorZ-->0orL
5) lorH-->Xorz
6) OorL-->XorZz

Optional. By default only transitionsto 0 and 1 are counted.

-in

Enables toggle statistics collection on nodes of mode IN. Optional.

-inout

Enables toggle statistics collection on nodes of mode INOUT. Optional.

-interna

Enables toggle statistics collection on internal (non-port) objects. Optional .

-out

Enables toggle statistics collection on nodes of mode OUT. Optional.

ModelSim SE Command Reference

CR-280

toggle add

Examples

See also

-ports
Enables toggle statistics collection on nodes of modes IN, OUT, or INOUT. Optional.

-r
Specifiesthat toggle statistics collectionisenabled recursively into subregions. Optional.
If omitted, toggle statistic collection is limited to the current region.

<node_name>
Enablestoggle statistics collection for the named node(s). Required. Multiple namesand
wildcards are accepted.

- uni que
Reports an attempt to add asignal that isan aliasto asignal already added. Theaiaswill
not be added. Optional.

toggl e add /dut/datal/a
Enables toggle statistics collection for signal /dut/data/a.

toggl e add {/dut/data_in[5]}
Enablestoggle statistics collection for bit 6 of bus/dut/data_in. The curly braces must be
added in order to escape the square brackets ('[]").

"Toggle coverage" (UM-343), toggle report (CR-283), toggle reset (CR-284)

ModelSim SE Command Reference

toggle disable CR-281

toggle disable

Syntax

Arguments

See also

The toggle disable command disables toggl e statistics collection on the specified nodes.
The command provides a method of implementing coverage exclusions for toggle
coverage.

The command is intended to be used as follows:

1 Enabletoggle statistics collection for all signals using the -cover t/x argument to vcom
(CR-311) or vlog (CR-358).

2 Exclude certain signals by disabling them with the toggle disable command.

toggl e disable
[-all] | [-in] [-out] [-inout] [-internal] [-ports] [-r] <node_nane>

-al
Disables toggle statistics collection for all nodes that have toggle checking enabled.
Optional. Must be used alone without other arguments.

-in
Disablestoggle statistics collection on nodes of mode IN. Optional.

-out
Disablestoggle statistics collection on nodes of mode OUT. Optional.

- i nout
Disablestoggle statistics collection on nodes of mode INOUT. Optional.

-interna
Disables toggle statistics collection on internal (non-port) objects. Optional.

-ports
Disablestoggle statistics collection on nodes of modes IN, OUT, or INOUT. Optional.

-r
Specifies that toggle statistics collection is disabled recursively into subregions.
Optional. If omitted, the disable islimited to the current region.

<node_name>
Disablestoggle statistics collection for the named node(s). Required. Multiple namesand
wildcards are accepted.

"Toggle coverage" (UM-343), toggle add (CR-279), toggle enable (CR-282)

ModelSim SE Command Reference

CR-282 toggle enable

toggle enable

Thetoggle enable command re-enables toggle statistics collection on nodes whose toggle
coverage had previously been disabled viathe toggle disable command.

Syntax
toggl e enabl e
[-all] | [-in] [-out] [-inout] [-internal] [-ports] [-r] <node_nane>
Arguments
-all
Enables toggle statistics collection for all nodes that have toggle checking disabled.
Optional. Must be used alone without other arguments.
-in
Enables toggle statistics collection on disabled nodes of mode IN. Optional.
-out
Enables toggle statistics collection on disabled nodes of mode OUT. Optional.
- i nout
Enables toggle statistics collection on disabled nodes of mode INOUT. Optional.
-internal
Enables toggle statistics collection on disabled internal (non-port) objects. Optional.
-ports
Enables toggle statistics collection on disabled nodes of modes IN, OUT, or INOUT.
Optional.
-r
Specifiesthat toggl e statistics collectionisenabled recursively into subregions. Optional.
If omitted, the enableislimited to the current region.
<node_nane>
Enablestoggle statistics collection for the named node(s). Required. Multiple namesand
wildcards are accepted.
See also

"Toggle coverage" (UM-343), toggle disable (CR-281)

ModelSim SE Command Reference

toggle report CR-283

toggle report

Thetogglereport command displaysalist of all nodes that have not transitioned to both O
and 1 at least once. Also displayed is a summary of the number of nodes checked, the
number that toggled, the number that didn't toggle, and a percentage that toggled.

You can aso collect and view toggle statistics in the Model Sim GUI. See Chapter 13 -
Measuring code coverage for details.

Thetoggle report command isintended to be used as follows:
1 Enable statistics collection with thetoggle add command (CR-279).
2 Run the simulation with therun command (CR-252).

3 Produce the report with the toggle report command.

P Note: If you want to ensure that you are reporting all signalsin the design, use the
-nocollapse argument to vsim when you load your design. Without this argument, the
simulator collapses certain portsthat are connected to the samesignal in order toimprove
performance, and those collapsed signals will not appear in the report. The -nocollapse
argument degrades simul ator performance, so it should be used only whenitisabsol utely
necessary to see all signalsin atoggle report.

Syntax
toggl e report
[-all] [-file <filename>] [<signal>...] [-summary]
Arguments
-all
Listsall nodes checked aong with their individual transition to O and 1 counts. Optional.
-file <fil ename>
Specifies afile to which to write the report. By default the report is displayed in the
Transcript pane. Optional.
<signal >. ..
Specifies the name of asignal whose toggle statistics are to be displayed. Multiple signal
names, separated by spaces, may be specified. Wildcards may be used.
-sunmary
Selects only the summary portion of the report. Optional.
See also

"Toggle coverage" (UM-343), toggle add (CR-279), toggle reset (CR-284)

ModelSim SE Command Reference

CR-284 toggle reset

toggle reset

Thetoggle reset command resets the toggle counts to zero for the specified nodes.

Syntax
toggl e reset

[-all] | [-in] [-out] [-inout] [-internal] [-ports] [-r] <node_nane>

Arguments

-al
Resets toggle statistics collection for all nodes that have toggle checking enabled.
Optional. Must be used alone without other arguments.

-in
Resets toggl e statistics collection on nodes of mode IN. Optional.

-out
Resets toggl e statistics collection on nodes of mode OUT. Optional.

- i nout
Resets toggl e statistics collection on nodes of mode INOUT. Optional.

-interna
Resets toggl e statistics collection on internal (non-port) objects. Optional.

-ports
Resets toggl e statistics collection on nodes of modes IN, OUT, or INOUT. Optional.

-r
Specifiesthat toggle statistics collection isreset recursively into subregions. Optional. If
omitted, the reset is limited to the current region.

<node_name>
Resets toggle statistics collection for the named node(s). Required. Multiple names and
wildcards are accepted.

See also

"Toggle coverage" (UM-343), toggle add (CR-279), toggle report (CR-283)

ModelSim SE Command Reference

transcribe

Syntax

Arguments

Examples

See also

transcribe CR-285

The transcribe command displays a command in the Transcript pane, and then executes
the command. The transcribe command is normally used to direct commands to the
Transcript pane from an external event such as a menu pick or button selection. The add
button (CrR-45) and add_menuitem (CR-59) commands can utilize transcribe. Returns
nothing.

transcribe
<conmand>

<conmand>
Specifies the command to execute. Required.

add button pwd {transcribe pwd} NoDi sable
Creates abutton labeled "pwd" that invokestranscribe with the pwd Tcl command, and
echoes the command and its results to the Transcript pane. The button remains active
during arun.

add button (Cr-45), add_menuitem (CR-59)

ModelSim SE Command Reference

CR-286 transcript

transcript

Syntax

Arguments

Examples

See also

Thetranscript command controls echoing of commands executed in amacro file. If no
option is specified, the current setting is reported.

transcript
[on | off | -q | quietly]

on
Specifiesthat commandsin amacro filewill be echoed to the Transcript pane asthey are
executed. Optional.

of f
Specifiesthat commandsin amacro filewill not be echoed to the Transcript pane asthey
are executed. Optional. The transcribe command (CR-285) can be used to force a
command to be echoed.

-q
Returns " 0" if transcripting is turned off or "1" if transcripting is turned on. Useful in a
Tcl conditional expression. Optional.

quietly
Turns off the transcript echo for al commands. To turn off echoing for individual
commands see the quietly command (CR-239). Optional.

transcript on
Commandswithin amacro filewill be echoed to the Transcript pane asthey are executed.

transcript
If issued immediately after the previous example, the message:

Macro transcripting is turned ON

appears in the Transcript pane.

echo (CR-156), transcribe (CR-285)

ModelSim SE Command Reference

transcript file CR-287

transcript file

Syntax

Arguments

Examples

See also

Thetranscript file command sets or queries the pathname for the transcript file. You can
use this command to clear atranscript in batch mode or to limit the size of atranscript file.
It offers an alternative to setting the PrefMain(file) Tcl preference variable.

transcript file
[<fil ename>]

<fil ename>
Specifiesthe full path and filename for the transcript file. Optional. If you specify anew
file, the existing transcript fileis closed and a new transcript file opened. If you specify
an empty string ("), the existing fileis closed and no new file is opened. If you don’t
specify this argument, the current setting is returned.

transcript file ""
Closes the current transcript file and stops writing data to the file. Thisisamethod for
reducing the size of your transcript.

transcript file ""

run 1 ns

transcript file transcript
run 1 ns

This series of commands resultsin the transcript containing only data from the second
millisecond of the simulation. Thefirst transcript file command closes the transcript so
no dataisbeing writtentoit. The second transcript file command opensanew transcript
and records data from 1 msto 2 ms.

"Transcript" (GR-16)

ModelSim SE Command Reference

CR-288 tssi2miti

tssi2mti

Thetssi2mti command is used to convert avector file in Fluence Technology (formerly
TSSI) Standard Events Format into a sequence of for ce (CR-180) and run (CR-252)
commands. The stimulus is written to the standard output.

The source code for tssi2mti is provided in the file tssi2mti.c in the examples directory.

Syntax
tssi2m
<signal _definition_file> [<sef_vector_file>]
Arguments

<signal _definition_file>
Specifiesthe name of the Fluence Technology signal definition file describing the format
and content of the vectors. Required.

<sef _vector_file>
Specifies the name of the file containing vectors to be converted. If noneis specified,
standard input is used. Optional.
Examples

tssi2mi trigger.def trigger.sef > trigger.do
The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mi trigger.def < trigger.sef > trigger.do
This exampleis the same as the previous one, but uses the standard input instead.

See also

force (CR-180), run (CR-252), writetssi (CR-429)

ModelSim SE Command Reference

unsetenv CR-289

unsetenv
The unsetenv command del etes an environment variable. The deletion is not permanent—it
isvalid only for the current Model Sim session.
Syntax
unset env
<var nanme>
Arguments
<var nane>
The name of the environment variable you wish to delete. Required.
See also

setenv (CR-265), printenv (CR-224)

ModelSim SE Command Reference

CR-290 up

up

Syntax

Arguments

The up command searches for object transitions or values in the specified List window. It
executes the search on aobjects currently selected in the window, starting at the time of the
active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which an object
takes on a particular value, or an expression of multiple objects evaluates to true. See the
down command (CR-152) for related functionality.

The procedure for using up includes three steps: click on the desired object; click on the
desired starting location; issue the up command. (The seetime command (CR-264) can
initially position the cursor from the command line, if desired.)

Returns. <number_found> <new_time> <new_delta>

up
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-val ue <sig_value>] [-w ndow <wnane>] [<n>]

-expr {<expression>}
The List window will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one object, but islimited to
objectsthat have been logged in the referenced List window. An object may be specified
either by itsfull path or by the shortcut label displayed in the List window.

See "GUI_expression_format" (Cr-22) for the format of the expression. The expression
must be placed within curly braces.

-falling
Searches for afalling edge on the specified object if that object isascaar. If itisnot a
scalar, the option will be ignored. Optional.

-noglitch
Specifies that delta-width glitches are to be ignored. Optional.

-rising
Searches for arising edge on the specified object if that object isascalar. If itisnot a
scalar, the option will be ignored. Optional.

-val ue <sig_val ue>
Specifies avalue of the object to match. Optional. Must be specified in the sameradix in
which the selected object is displayed. Case isignored, but otherwise must be an exact
string match -- don't-care bits are not yet implemented.

-w ndow <wnane>
Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-332) to change the default
window.

ModelSim SE Command Reference

up CR-291

<n>
Specifies to find the nth match. Optional. If less than n are found, the number found is
returned with awarning message, and the marker is positioned at the last match.

Examples

up -noglitch -value FF23
Finds the last time at which the selected vector transitions to FF23, ignoring glitches.

up
Goesto the previous transition on the selected object.

Thefollowing examplesillustrate search expressionsthat use avariety of signal attributes,

paths, array constants, and time variables. Such expressions follow the

"GUI_expression_format" (CR-22).

up -expr {clk’rising & (nystate == reading) &% (/top/u3/addr ==

32’ habcd1234)}
Searches up for an expression that evaluatesto aboolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal /top/u3/addr
isequal to the specified 32-bit hex constant.

up -expr {(/top/u3/addr and 32’ hff 000000) == 32’ hac000000}
Searches up for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/addr equals hex ac.

up -expr {((NOW> 23 us) && (NOW< 54 us)) & & clk’'rising & (node == witing)}
Searches up for an expression that evaluatesto aboolean 1 when logfile timeis between
23 and 54 microseconds, clock just changed from low to high, and signal mode is
enumeration writing.

See also

"GUI_expression_format" (CR-22), view (CR-332), seetime (CR-264), down (CR-152)

ModelSim SE Command Reference

CR-292 vcd add

vcd add

The ved add command adds the specified objectsto aVCD file. The allowed objects are
Verilog nets and variables and VHDL signals of type bit, bit_vector, std_logic, and
std_logic_vector (other types are silently ignored).

All ved add commands must be executed at the same simulation time. The specified
objects are added to the VCD header and their subsequent value changes are recorded in
the specified VCD file.

By default all port driver changesand internal variable changesare captured inthefile. You
can filter the output using arguments detailed bel ow.

Related Verilog tasks: $dumpvars, $fdumpvars

Syntax

vcd add
[-r] [-in] [-out] [-inout] [-internal] [-ports] [-file <fil ename>]
<obj ect _nane>

Arguments

-r
Specifies that signal and port selection occurs recursively into subregions. Optional. If
omitted, included signals and ports are limited to the current region.

-in
Includes only port driver changes from ports of mode IN. Optional.

-out
Includes only port driver changes from ports of mode OUT. Optional.

- i nout
Includes only port driver changes from ports of mode INOUT. Optional.

-interna
Includesonly internal variable or signal changes. Excludes port driver changes. Optional.

-ports
Includesonly port driver changes. Excludesinternal variable or signal changes. Optional.

-file <fil ename>
Specifies the name of the VCD file. This option should be used only when you have
created multiple VCD files using the vcd files command (CR-304).

<obj ect _nane>
Specifiesthe Verilog or VHDL object to add to the VCD file. Required. Multiple objects
may be specified by separating names with spaces. Wildcards are accepted.
See also

See Chapter 19 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the |EEE 1364 standard.

ModelSim SE Command Reference

vcd checkpoint CR-293

vcd checkpoint

The ved checkpoint command dumps the current values of al VCD variables to the
specified VCD file. While simulating, only value changes are dumped.

Related Verilog tasks: $dumpall, $fdumpall

Syntax
vcd checkpoi nt
[<fil enanme>]
Arguments
<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed onthe
file designated by the vcd file command (CR-302) or "dump.ved” if ved file was not
invoked.
See also

See Chapter 19 - Value Change Dump (VVCD) Files for more information on VVCD files.

ModelSim SE Command Reference

CR-294 vcd comment

vcd comment
The ved comment command inserts the specified comment in the specified VCD file.

Syntax

vcd conmment
<comment string> [<fil enane>]

Arguments

<conment string>
Comment to beincluded in the VCD file. Required. Must be quoted by double quotation
marks or curly braces.

<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed onthe
file designated by the vcd file command (CR-302) or "dump.ved” if ved file was not
invoked.

See also

See Chapter 19 - Value Change Dump (VVCD) Files for more information on VVCD files.

ModelSim SE Command Reference

vcd dumpports CR-295

vcd dumpports

Syntax

Arguments

The ved dumpports command creates a VCD file that includes port driver data.

By default all port driver changes are captured in the file. Y ou can filter the output using
arguments detailed below.

Related Verilog task: $dumpports

vcd dunpports
[-conpress] [-file <filenane>] [-in] [-inout] [-out] [-unique]
[-vcdstim] <object_name>

-conpress
Produces a compressed VCD file. Optional. Model Sim uses the gzip compression
algorithm. If you specify a.gz extension on the -file <filename> argument, Model Sim
compresses the file even if you don’t use the -compr ess argument.

-file <fil ename>
Specifies the path and name of a VCD fileto create. Optional. Defaults to the current
working directory and the filename dumpports.ved. Multiple filenames can be opened
during a single simulation.

-in
Includes ports of mode IN. Optional.

-i nout
Includes ports of mode INOUT. Optional.

-out
Includes ports of mode OUT. Optional.

- uni que
Generates unique VCD variable namesfor ports, even if those ports are connected to the
same collapsed net. Optional.

-vcdstim
Ensures that port name order in the VCD file matches the declaration order in the
instance’ s module or entity declaration. Optional. See "Port order issues' (UM-460) for
further information.

<obj ect _nane>
Specifiesthe Verilog or VHDL object to add to the VCD file. Required. Multiple objects
may be specified by separating names with spaces. Wildcards are accepted.

ModelSim SE Command Reference

CR-296 vcd dumpports

Examples

vcd dunpports -in -file counter.ved /test_counter/dut/*
Creates a VCD file named counter.vcd of al IN portsin the region /test_counter/dut/.

vcd dunpports -file addern.vcd /testbench/uut/*
vsi m -vcdsti m addern. ved addern -gn=8 -do "add wave /*; run 1000"

These two commands resimulate a design from a VCD file. See " Simulating with input
values from a VCD fil€" (um-458) for further details.

vcd dunpports -vecdstim-file proc.ved /top/p/*

vcd dunpports -vcdstim-file cache.vecd /top/c/*

run 1000

vsimtop -vcdstim/top/p=proc.vcd -vcdstim/top/c=cache.vcd
This series of commands creates VCD filesfor the instances proc and cache and then re-
simulates the design using the VCD filesin place of the instance source files. See
"Replacing instances with output valuesfromaV CD file" (UM-459) for more information.

ModelSim SE Command Reference

ved dumpportsall CR-297

vcd dumpportsall

The ved dumpportsall command creates a checkpoint in the VCD file which shows the
value of all selected ports at that time in the simulation, regardless of whether the port
values have changed since the last timestep.

Related Verilog task: $dumpportsall

Syntax
vcd dunpportsall
[<fil enanme>]
Arguments
<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on al
open VCD files.
See also

See Chapter 19 - Value Change Dump (VVCD) Files for more information on VVCD files.

ModelSim SE Command Reference

CR-298 vcd dumpportsflush

vcd dumpportsflush

The ved dumpportsflush command flushes the contents of the VCD file buffer to the
specified VCD file.

Related Verilog task: $dumpportsflush

Syntax
vcd dunpportsflush
[<fil enanme>]
Arguments
<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on al
open VCD files.
See also

See Chapter 19 - Value Change Dump (VVCD) Files for more information on VVCD files.

ModelSim SE Command Reference

vcd dumpportslimit CR-299

vcd dumpportslimit

Syntax

Arguments

See also

The ved dumpportslimit command specifies the maximum size of the VCD file (by
default, limited to available disk space). When the size of the file exceeds the limit, a
comment is appended to the file and VCD dumping is disabled.

Related Verilog task: $dumpportslimit

vcd dunpportslimt
<dunplimt> [<fil ename>]

<dunplimt>
Specifies the maximum VCD file size in bytes. Required.

<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on al
open VCD files.

See Chapter 19 - Value Change Dump (VVCD) Files for more information on VVCD files.

ModelSim SE Command Reference

CR-300 vcd dumpportsoff

vcd dumpportsoff

The ved dumpportsoff command turns off VCD dumping and records all dumped port
values as x.

Related Verilog task: $dumpportsoff

Syntax
vcd dunpport sof f
[<fil enanme>]
Arguments
<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on al
open VCD files.
See also

See Chapter 19 - Value Change Dump (VVCD) Files for more information on VVCD files.

ModelSim SE Command Reference

vcd dumpportson CR-301

vcd dumpportson

Thevcd dumpportson command turnson V CD dumping and records the current val ues of
all selected ports. This command istypically used to resume dumping after invoking ved
dumpportsoff.

Related Verilog task: $dumpportson

Syntax
vcd dunpportson
[<fil enanme>]
Arguments
<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed on al
open VCD files.
See also

See Chapter 19 - Value Change Dump (VVCD) Files for more information on VVCD files.

ModelSim SE Command Reference

CR-302 vcd file

vcd file

Syntax

Arguments

The ved file command specifies the filename and state mapping for the VCD file created
by avcd add command (CR-292). The ved file command is optional. If used, it must be
issued before any ved add commands.

Related Verilog task: $dumpfile

P Note: ved fileisincluded for backward compatibility. Use the ved files command (CR-
304) if you want to use multiple VCD files during a single simulation.

ved file
[-dunpports] [<filename>] [-map <mapping pairs>] [-nonmap]

- dunpports
Capture detailed port driver datafor Verilog portsand VHDL std_logic ports. Optional.
This option works only on ports, and any subsequent vcd add command (CR-292) will
accept only qualifying ports (silently ignoring all other specified objects).

<fil ename>
Specifies the name of the VCD file that is created (the default is dump.vcd). Optional.

-map <mappi ng pairs>
Affectsonly VHDL signals of type std_logic. Optional. It allows you to override the
default mappings. The mapping isspecified asalist of character pairs. Thefirst character
inapair must be one of the std_logic characters UX01ZWLH- and the second character
is the character you wish to be recorded in the VCD file. For example, to map L and H
toz

ved file -map "L z H z"

Note that the quotesin the example above area Tcl convention for command strings that
include spaces.

- nomap
Affectsonly VHDL signals of type std_logic. Optional. It specifies that the values
recordedintheV CD fileshall usethestd |ogic enumeration charactersof UX01ZWLH-.
This option results in anon-standard VCD file because VCD values are limited to the
four state character set of x01z. By default, the std_logic characters are mapped as
follows.

VHDL VCD VHDL VCD
U X wW X
X X L 0
0 0 H 1

ModelSim SE Command Reference

See also

ved file CR-303

VHDL VCD VHDL VCD
1 1 - X
Z z

See Chapter 19 - Value Change Dump (VCD) Files for more information on VCD files.

Verilog tasks are documented in the |EEE 1364 standard.

ModelSim SE Command Reference

CR-304 vcd files

vcd files

The vced files command specifies afilename and state mapping for aVCD file created by a
ved add command (CR-292). The ved files command is optional. If used, it must be issued
before any ved add commands.

Related Verilog task: $fdumpfile

Syntax

ved files
[-conpress] <filenane> [-nmap <mappi ng pairs>] [-nomap]

Arguments

-conpress
Produces a compressed VCD file. Optional. Model Sim uses the gzip compression
agorithm. If you specify a.gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’'t use the -compr ess argument.

<fil ename>
Specifiesthe name of aVCD fileto create. Required. Multiplefiles can be opened during
asingle smulation; however, you can create only onefileat atime. If you want to create
multiple files, invoke vcd files multiple times.

-map <mappi ng pairs>
Affectsonly VHDL signals of type std_logic. Optional. It allows you to override the
default mappings. The mapping isspecified asalist of character pairs. Thefirst character
in apair must be one of the std_logic characters UX01ZWLH- and the second character
is the character you wish to be recorded in the VCD file. For example, tomap L and H
toz

ved files -map "L z H z"

Note that the quotesin the example above area Tcl convention for command strings that
include spaces.

- nonmap
Affectsonly VHDL signals of type std_logic. Optional. It specifies that the values
recordedintheV CD fileshall usethestd |ogic enumeration charactersof UX01ZWLH-.
This option results in anon-standard VCD file because VCD values are limited to the
four state character set of x01z. By default, the std_logic characters are mapped as

follows.

VHDL VCD VHDL VCD
U X wW X

X X L 0

0 0 H 1

1 1 - X

Z z

ModelSim SE Command Reference

vcd files CR-305

Examples
The following example shows how to "mask" outputs from aVVCD file until a certain time
after the start of the simulation. The example usestwo ved files commands and the ved on
(CR-309) and ved off (CR-308) commands to accomplish this task.
ved files in_inout.vced
ved files output.ved
vcd add -in -inout -file in_inout.vecd /*
vcd add -out -file output.ved /*
ved of f output.ved
run 1lus
vcd on output. ved
run -al
See also

See Chapter 19 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the |EEE 1364 standard.

ModelSim SE Command Reference

CR-306 vcd flush

vcd flush

Syntax

Arguments

See also

The ved flush command flushes the contents of the VCD file buffer to the specified VCD
file. Thiscommand isuseful if you want to create acompleteVVCD file without ending your
current simulation.

Related Verilog tasks: $dumpflush, $fdumpflush

ved flush
[<fil ename>]

<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed onthe
file designated by the vcd file command (CR-302) or dump.ved if ved file was not
invoked.

See Chapter 19 - Value Change Dump (VCD) Filesfor more information on VCD files.
Verilog tasks are documented in the |EEE 1364 standard.

ModelSim SE Command Reference

ved limit

Syntax

Arguments

See also

ved limit CR-307

The ved limit command specifies the maximum size of aV CD file (by default, limited to
available disk space). When the size of the file exceeds the limit, acomment is appended
to thefile and VCD dumping is disabled.

Related Verilog tasks: $dumplimit, $fdumplimit

ved limt
<filesize> [<fil enane>]

<filesize>
Specifies the maximum VCD file size in bytes. Required.

<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed onthe
file designated by the vcd file command (CR-302) or dump.ved if ved file was not
invoked.

See Chapter 19 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the |EEE 1364 standard.

ModelSim SE Command Reference

CR-308 vcd off

vcd off

Syntax

Arguments

See also

The ved off command turns off VCD dumping to the specified file and records all VCD
variable values as x.

Related Verilog tasks: $dumpoff, $fdumpoff

vced of f
[<fil ename>]

<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed onthe
file designated by the vcd file command (CR-302) or dump.ved if ved file was not
invoked.

See Chapter 19 - Value Change Dump (VCD) Filesfor more information on VCD files.
Verilog tasks are documented in the |EEE 1364 standard.

ModelSim SE Command Reference

vcd on

Syntax

Arguments

See also

ved on CR-309

The ved on command turns on VCD dumping to the specified file and records the current
values of all VCD variables. By default, ved on is automatically performed at the end of
the simulation time that the ved add (CR-292) commands are performed.

Related Verilog tasks: $dumpon, $fdumpon

vcd on
[<fil ename>]

<fil ename>
Specifies the name of the VCD file. Optional. If omitted the command is executed onthe
file designated by the vcd file command (CR-302) or dump.ved if ved file was not
invoked.

See Chapter 19 - Value Change Dump (VCD) Filesfor more information on VCD files.
Verilog system tasks are documented in the IEEE 1364 standard.

ModelSim SE Command Reference

CR-310 vcd2wilf

vced2wlif
ved2wlf is autility that translates aVCD (Vaue Change Dump) fileinto a WLF file that
can be displayed in Model Sim using the veim -view argument.
Syntax
ved2w f
[-splitio] [-splitio_in_ext <extension>] [-splitio_out_ext <extension>]
<vcd filename> <wl f fil ename>
Arguments

-splitio
Specifiesthat extended VCD port values areto be split into their corresponding input and
output components by creating 2 signalsinstead of just 1 in the resulting .wif file.
Optional. By default the new input-component signal keepsthe same name astheoriginal
port name while the output-component name is the original name with *__ 0" appended
toit.

-splitio_in_ext <extension>
Specifies an extension to add to input-component signal names created by using -splitio.
Optional.

-splitio_out_ext <extension>
Specifies an extension to add to output-component signal names created by using
-splitio. Optional.

<vcd fil enane>
Specifies the name of the VCD file you want to translate into a WLF file. Required.

<w f filename>
Specifies the name of the output WLF file. Required.

ModelSim SE Command Reference

vcom

Syntax

Arguments

vcom CR-311

The vcom command compiles VHDL source code into a specified working library (or to
thework library by default).

This command may be invoked from within Model Sim or from the operating system
command prompt. This command may & so be invoked during simulation.

Compiled libraries are major-version dependent. For example you cannot use alibrary
compiled with 5.7 in asimulation using 5.8 vsim. Y ou would have to refresh the libraries
using the-r efr esh argument to vcom. Thisisnot true for minor versions(e.g., 5.7alibraries
work in 5.7d).

vcom
-87] [-93] [-2002] [+acc[=<spec>][+<entity>[(architecture)]]]

- bi ndAt Conpi | €] [-bindAtLoad] [-check_synthesis] [-cover <stat>]
-debugVA] [-error <nmsg_nunber>[, <msg_nunber>,...]] [-explicit]

-f <filename>] [-force_refresh] [-help] [-ignoredefaultbinding]
-ignorevitalerrors] [-just abcep] [-line <nunber>] [-lint] [-noll64]
-noaccel <package_nane>] [-nocasestaticerror] [-nocheck] [-nocoverage]
-nodebug[=ports]] [-noindexcheck] [-nologo] [-nonstddriverinit]

-noot hersstaticerror] [-nopsl] [-norangecheck]

-note <msg_nunber>[, <msg_nunber>, ...]] [-novital] [-novital check]
-nowarn <nunber>] [-C0 | -OL | -O4 | -0B] [-pedanticerrors]
-perforndefaul tbinding] [-pslfile <filename>] [-quiet] [-rangecheck]
-refresh] [-s] [-skip abcep] [-source]

-suppress <msg_nunber >[, <nmsg_nunber>, ...]]

-time] [-version] [-warning <nmsg_nunber>[, <nsg_nunber>,...]]

-work <library_nane>] <filename>

—_ e e — — — ——

-87
Disables support for VHDL-1993 and 2002. Optional. Default is -2002. See additional
discussion in the examples. Y ou can modify the VHDL 93 variable in the modelsim.ini
file to set this permanently (see " Preference variables located in INI files' (UM-524)).

-93
Disables support for VHDL-1987 and 2002. Optional. Default is -2002. See additional
discussion in the examples. Y ou can modify the VHDL 93 variable in the modelsim.ini
file to set this permanently (see " Preference variables located in INI files' (UM-524)).

-2002
Specifies that the compiler isto support VHDL-2002. Optional. Thisis the default.

+acc[=<spec>] [+<entity>[(architecture)]]
Enables access to design objects that would otherwise become unavailable due to
optimizations. Optional. Note that using this option may reduce optimizations.

<spec> currently has only one choice:

v—Enable access to variables, constants, and aliasesin processes that would otherwise be
merged due to optimizations.

ModelSim SE Command Reference

CR-312 vcom

<entity> and (<architecture>) specify the design unit(s) in which to alow the access. If
(<architecture>) isnot specified, then all architectures of agiven <entity> are enabled for
access.

- bi ndAt Conpi | e
Forces Model Sim to perform default binding at compile time rather than at load time.
Optional. See "Default binding" (um-79) for more information. Y ou can change the
permanent default by editing the BindAtCompile (uM-527) variable in the modelsim.ini.

- bi ndAt Load
Forces Model Sim to perform default binding at load time rather than at compile time.
Optional. Default. See "Default binding” (um-79) for more information.

- check_synt hesi s
Turns on limited synthesis rule compliance checking. Specifically, it checksto see that
signalsread by aprocessarein the sensitivity list. Optional. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis (uM-527) variablein the
modelsim.ini file to set a permanent default.

-cover <stat>
Enables various coverage statistics collection. Optional.

<stat> is one or more of the following characters:
b—Collect branch statistics.
c—Collect condition statistics.
e-Collect expression statistics.
s—Collect statement statistics. Default.
t—Collect toggle statistics. Cannot be used if 'x’ is specified.

x—Collect extended toggle statistics (see "Toggle coverage”" (UM-343) for details).
Cannot be used if 't’ is specified.

By default only statement coverageisenabled when you invoke vsim with the -cover age
option.

- debugVA
Printsaconfirmationif aVITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration. Optional.

-error <msg_nunber>[, <msg_nunber>, .. .]
Changesthe severity level of the specified message(s) to "error.” Optional. Edit the error
(UM-536) variable in the modelsim.ini file to set a permanent default. See "Changing
message severity level" (Um-546) for more information.

-explicit
Directs the compiler to resolve ambiguous function overloading by favoring the explicit
function definition over theimplicit function definition. Optional. Strictly speaking, this
behavior does not match the VHDL standard. However, the majority of EDA tools
choose explicit operators over implicit operators. Using this switch makes ModelSim
compatible with common industry practice.

ModelSim SE Command Reference

vcom CR-313

-f <fil ename>
Specifies afile with more command-line arguments. Optional. Allows complex
argument strings to be reused without retyping. Allows gzipped input files. Nesting of
-f optionsis allowed.

Thefile syntax basically follows what you type on the command line with the exception
that newline characters are ignored. Environment variable expansion (for examplein a
pathname) does not occur in -f files.

-force_refresh
Forcesthe refresh of adesign unit. Optional. When the compiler refreshes a design unit,
it checks each dependency to ensure its source has not been changed and recompiled. If
a dependency has been changed and recompiled, the compiler will not refresh the
dependent design unit (unless you use -force_refresh). To avoid potential errors or
mismatches caused by the dependency recompilation, you should recompile the
dependent design unit’ s source rather than use this switch.

-hel p
Displays the command’ s options and arguments. Optional.

-i gnoredef aul t bi ndi ng
Instructs the compiler not to generate a default binding during compilation. Optional.
Y ou must explicitly bind all components in the design to use this switch.

-ignorevitalerrors
Directs the compiler to ignore VITAL compliance errors. Optional. The compiler till
reportsthat VITAL errorsexist, but it will not stop the compilation. Y ou should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.

-just abcep
Directs the compiler to “just” include:
a - architectures

b - bodies

c - configurations
e - entities

p - packages

Any combination in any order can be used, but one choice isrequired if you use this
optional switch.

-1ine <nunber>
Starts the compiler on the specified linein the VHDL sourcefile. Optional. By default,

the compiler starts at the beginning of thefile.

-lint
Enables warning messages for two situations: 1) the result of the built-in concatenation
operator ("&") isthe actual for asubprogram formal parameter of an unconstrained array
type; and 2) the entity to which a component instantiation is bound has a port that is not
on the component, and for which there is no error otherwise. Optional.

-noll64
Causes the source files to be compiled without taking advantage of the built-in version
of the IEEE std_logic_1164 package. Optional. Thiswill typically result in longer
simulation timesfor VHDL programs that use variables and signals of type std_logic.

ModelSim SE Command Reference

CR-314 vcom

-noaccel <package_nane>

Turns off acceleration of the specified package in the source code using that package.

-nocasestaticerror

Suppresses case statement static warnings. Optional. VHDL standards require that case
statement alternative choices be static at compile time. However, some expressions
which are globally static are allowed. This switch preventsthe compiler from warning on
such expressions. If the -pedanticerrors switch is specified, this switch isignored.

-nocheck

Disablesindex and range checks. Optional. Y ou can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

-nocover age

Disables collection of statement coverage statistics, which is on by default. Optional.

- nodebug[=port s]

Hides the internal data of the compiled design unit. Optional. The design unit’s source
code, internal structure, signals, processes, and variableswill not display in ModelSim’'s
windows. In addition, none of the hidden objects may be accessed through the Dataflow
window or with commands. This also means that you cannot set breakpoints or single
step within this code. Don’'t compile with this switch until you’ re done debugging.

Note that thisis not a speed switch like the “ nodebug” option on many other products.

The optional =ports switch hides the ports for the lower levels of your design; it should
only be used to compile the lower levels of the design. If you hide the ports of the top
level you will not be able to simulate the design.

Design units or modules compiled with -nodebug can only instantiate design units or
modules that are also compiled -nodebug.

- noi ndexcheck

Disables checking on indexing expressions to determine whether indices are within
declared array bounds. Optional.

- nol ogo

Disables display of the startup banner. Optional.

-nonstddriverinit

Forces Model Sim to match pre-5.7c¢ behavior in initializing driversin a particular case.
Optional. Prior to 5.7c, VHDL ports of mode out or inout could have incorrectly
initialized driversif the port did not have an explicit initialization value and the actual
signal connected to the port had explicit initial values. Depending on anumber of factors,
Model Sim could incorrectly use the actual signal'sinitial value when initializing lower
level drivers. Note that the argument does not cause all lower-level driversto use the
actual signal'sinitial value. It does this only in the specific cases where older versions
used the actual signal'sinitial value.

-noot hersstaticerror

Disables warnings that result from array aggregates with multiple choices having
"others" clausesthat are not locally static. Optional. If the -pedanticerrors switchis
specified, this switch isignored.

ModelSim SE Command Reference

vcom CR-315

- nopsl
Instructs the compiler to ignore embedded PSL assertions. By default vcom parses any
PSL assertion statementsit finds in the specified files. See "Compiling and simulating
assertions' (UM-375) for more information.

- nor angecheck
Disables run time range checking. In some designs, this resultsin a 2X speed increase.
Range checking is enabled by default or, once disabled, can be enabled using
-rangecheck. See "Range and index checking” (um-74) for additional information.

-note <msg_nunber >[, <msg_nunber>, ...]
Changes the severity level of the specified message(s) to "note.” Optional. Edit the note
(UM-536) variable in the modelsim.ini file to set a permanent default. See "Changing
message severity level" (Um-546) for more information.

-novita
Causes vcom to use VHDL code for VITAL procedures rather than the accel erated and
optimized timing and primitive packages built into the simulator kernel. Optional .
Allows breakpointsto be set in the VITAL behavior process and permits single stepping
through the VITAL procedures to debug your model. Also al of the VITAL datacan be
viewed in the Locals or Objects windows.

-novi tal check
Disables Vita level 1 checks and also Vital level 0 checks defined in section 4 of the

Vital-95 Spec (IEEE Std 1076.4-1995). Optional.

-nowar n <numrber >
Selectively disables a category of warning message. Optional. Multiple -nowarn
switches are allowed. Warnings may be disabled for all compiles viathe Main window
Compile> Compile Options menu command or the modelsim.ini file (see the "[vcom]
VHDL compiler control variables' (Um-527)).

The warning message categories are:

1 = unbound component

2 = process without await statement

3= null range

4 = no spaceintimeliteral

5= multiple drivers on unresolved signal

6 = VITAL compliance checks

7 =VITAL optimization messages

8 =lint checks

9 =signal value used in expression evaluated at elaboration
10 = VHDL-1993 constructsin VHDL-1987 code
11 =PSL checks

-0 | -OL| -4 | -CB
Lower the optimization to a minimum with -OO0 (capital oh zero). Optional. Use thisto
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

Enable PE-level optimization with -O1. Optional. Note that changing from the default
-O4to-O1 may cause event order differencesin your simulation.

ModelSim SE Command Reference

CR-316 vcom

Enable standard SE optimizations with -O4. Default. The main differences between -O4
and -O1 are that Model Sim attempts to improve memory management for vectors and
accelerate VITAL Level 1 moduleswith -O4.

Enable maximum optimization with -O5. Optional. We recommend use of this switch
with large sequentia blocks only; other uses may significantly increase compile times.
-O5 attempts to optimize loops and prevents variable assignmentsin situations where a
variableisassigned but isnot actually used. Using the +acc argument to vcom will cancel
this latter optimization.

- pedanticerrors
Forces Model Sim to error (rather than warn) on three conditions: 1) when achoicein a
case statement isnot alocally static expression; 2) when an array aggregate with multiple
choices doesn’t have alocally static "others' choice; 3) when a generate statement
without a BEGIN keyword exists between the declarative objects and the concurrent
statements. Optional. This argument overrides -nocasestaticerror and
-noother sstaticerror (see above).

- per f or mdef aul t bi ndi ng
Enables default binding when it has been disabled viathe
RequireConfigFor AllDefaultBinding option in the modelsim.ini file. Optional.

-pslifile <fil enane>
Identifies an external PSL assertion file to compile along with the VHDL source files.
See "Compiling and simulating assertions" (UM-375) for more information.

- qui et

Disables’Loading’ messages. Optional.

-rangecheck
Enables run time range checking. Default. Range checking can be disabled using the
-nor angecheck argument. See "Range and index checking” (um-74) for additional
information.

-refresh
Regeneratesalibrary image. Optional. By default, thework library isupdated; use-wor k
<library> to update adifferent library. See vcom "Examples" (CR-317) for more
information.

-S
Instructs the compiler not to load the standar d package. Optional. Thisargument should
only be used if you are compiling the standard package itself.

-skip abcep
Directs the compiler to skip all:
a - architectures
b - bodies
c - configurations
e - entities
p - packages
Any combination in any order can be used, but one choiceisrequired if you use this
optional switch.

ModelSim SE Command Reference

Examples

vcom CR-317

-source
Displays the associated line of source code before each error message that is generated
during compilation. Optional. By default, only the error message is displayed.

- suppress <msg_nunber >[, <msg_nunber>,...]
Prevents the specified message(s) from displaying. Optional. Y ou cannot suppress Fatal
or Internal messages. Edit the suppress (UM-536) variable in the modelsim.ini fileto set a
permanent default. See " Changing message severity level” (UM-546) for more
information.

-time
Reports the "wall clock time" vcom takes to compile the design. Optional. Note that if
many processes are running on the same system, wall clock time may differ greatly from
the actual "cpu time" spent on vcom.

-version
Returns the version of the compiler as used by the licensing tools, such as"Model
Technology Model Sim SE veom 5.5 Compiler 2000.01 Jan 29 2000".

-war ni ng <msg_nunber >[, <nmsg_nunber >, . ..]
Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning (UM-536) variable in the modelsim.ini fileto set a permanent default. See
"Changing message severity level" (Um-546) for more information.

-work <library_name>
Specifies alogical name or pathname of alibrary that is to be mapped to the logical
library work. Optional; by default, the compiled design units are added to the wor k
library. The specified pathname overrides the pathname specified for work in the project
file.

<fil ename>
Specifies the name of afile containing the VHDL source to be compiled. One filename
is required; multiple filenames can be entered separated by spaces or wildcards may be
used (e.g., *.vhd).

If you don’t specify afilename, and you are using the GUI, adialog box pops up allowing
you to select the options and enter afilename.

vcom exanpl e. vhd
Compiles the VHDL source code contained in the file example.vhd.

vcom -87 o_unitsl.vhd o_units2.vhd
vcom -93 n_uni t91. vhd n_uni t92. vhd

Model Sim supports designs that use elements conforming to the 1987, 1993, and 2002
standards. Compile the design units separately using the appropriate switches.

vcom - nodebug exanpl e. vhd
Hidestheinternal data of example.vhd. Models compiled with -nodebug cannot use any
of the Model Sim debugging features; any subsequent user will not be ableto seeinto the
model.

vcom - nodebug=ports | evel 3.vhd | evel 2. vhd
vcom - nodebug top. vhd

Thefirst line compiles and hides theinternal data, plus the ports, of the lower-level
design units, level 3.vhd and level 2.vhd. The second line compiles the top-level unit,

ModelSim SE Command Reference

CR-318 vcom

top.vhd, without hiding the ports. It isimportant to compile the top level without =ports
because top-level ports must be visible for simulation.

vcom - noaccel numeric_std exanpl e.vhd
When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieee library.

vcom -explicit exanple.vhd

Although it is not obvious, the = operator is overloaded in the std_logic_1164 package.
All enumeration datatypesin VHDL get an “implicit” definition for the = operator. So
whilethereisno explicit = operator, thereisanimplicit one. Thisimplicit declaration can
be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in adifferent package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

ARI THVETI C. " =" (l eft, right)

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

vcom -work nmylib -refresh
The -work option specifies mylib asthe library to regenerate. -r efr esh rebuilds the
library image without using source code, allowing model s delivered ascompiled libraries
without source code to be rebuilt for a specific release of ModelSim (4.6 and later only).

ModelSim SE Command Reference

vcover convert CR-319

vcover convert

Syntax

Arguments

See also

The vcover convert command converts a code coverage file created in ModelSim 5.7 to a
Model Sim 5.8 format. Y ou can al so use the command with the -strip or -install arguments
to create a new datafile with different levels of hierarchy. The command can be invoked
within the Model Sim GUI or at the command line.

vcover convert
[-57] [-install <path>] [-log <filename>] [-strip <n>] <outfile> <file>

-57
Converts the specified file to a 5.8 format. Optional.

-install <path>
Adds <path> as additional hierarchy on the front end of instance and object namesin the
input file. Optional. This argument allows you to create a new coverage file with a
different level of hierarchy.

-log <fil ename>
Specifiesthefile for outputting progress messages. Optional. By default these messages
are output to vcover.log.

-strip <n>
Removes <n> levels of hierarchy from instance and object names in the datafiles.
Optional. Thisargument allows you to create a new coverage file with a different level
of hierarchy.

<outfile>
Specifies the name of the new file you want to output. Required.

<file>
Specifies the file you want to convert. Required.

vcover merge command (CR-320), vcover stats command (CR-325), Chapter 13 -
Measuring code coverage

ModelSim SE Command Reference

CR-320 vcover merge

vcover merge

The vcover mer ge command merges multiple code or functional coverage datafiles that
were created with the cover age save command (CR-135) or the fcover save command (CR-
175), respectively. The command adjusts its functionality to the type of coveragefiles
(functional coverage or code coverage) given on its command line. The command can be
invoked within the Model Sim GUI or at the system prompt.

A | mportant: Code coverage databases and functional coverage databases are not
interoperable. Itisillegal to mix code coverage and functional coveragefilesin the same
invocation of vcover mer ge.

Syntax
vcover merge
[-and] [-append] [-inputs <pathname>] [-install <path>] [-1o0g <fil enanme>]
[-strip <n>] [-verbose] <outfile> <filel> <file2> <filen>..
Arguments
-and

Excludes statementsin the output file only if they are excluded in al input files. Optional .
By default a statement is excluded in the output mergefileif the statement isexcluded in
any of theinput files. Not avalid option when merging functional coverage databases.

- append
Specifies that progress messages are to be appended to the current log file. Optional. By
default anew log file is created each time you invoke the command. Not avalid option
when merging functional coverage databases.

-inputs <pat hname>
Specifies atext file containing input filenames that you want to merge. Optional.

-install <path>
Adds <path> as additional hierarchy on the front end of instance and object namesin the
datafiles. Optional. This argument allows you to merge coverage results from
simulations that have different hierarchies.

-log <fil ename>
Specifiesthefile for outputting progress messages. Optional. By default these messages
are output to vcover.log.

-strip <n>
Removes <n> levels of hierarchy from instance and object names in the datafiles.
Optional. Thisargument allowsyou to merge coverage resultsfrom simulationsthat have
different hierarchies.

-verbose
Enables summary code coverage statistics to be computed and directed to the log file
each time afileis merged into the base. The statistics are instance-based. Optional. Not
avalid option when merging functional coverage databases.

<outfile>
Specifies the name of the file that will contain the merged output. Required.

ModelSim SE Command Reference

Example

See also

vcover merge CR-321

<filel> <file2> <filen>..
Specifiesthefile(s) you want to merge. Required. Multiple pathnames and wildcards are
allowed.

vcover nerge nyresult nyfilel nyfile2
Merges coverage statistics for myfilel and myfile2 and writes them to myresult.

vcover nerge nyresult2 /dut/*.cov
Useswildcardsto mergeall fileswith a.cov extensionin aparticular directory. Y ou must
enter this command at a UNIX shell prompt. This example does not work currently on
Windows platforms.

eval vcover nerge summary [glob *.cov]
Allows the above vcover mer ge example using wildcards to work on al platforms.
"glob" returns alist of the fields whose names end in .cov.

vcover convert command (CR-319), vcover stats command (CR-325), fcover save
command (CR-175), Chapter 13 - Measuring code coverage, Chapter 15 - Functional
coverage with PSL and ModelSim

ModelSim SE Command Reference

CR-322 vcover report

vcover report

The vcover report command produces textual output of coverage statistics from a
previously saved code or functional coverage run. Thisallowsyou to producereportsin an
"offline" manner (i.e., without having to load asimulation.) Y ou can choose from anumber
of report output options using the arguments listed below.

Syntax
vcover report

[-above <percent> | -bel ow <percent>] [-aggregated] [-append] [-comment]
[-details] [-lines | -totals] [-instance <pathname> [-recursive]]
[-noaggregated] [-nocomment] [-nodetails] [-output <pathnanme>] [-package
<pkgname>] [-select bces[t]|Xx]]
[-toggles [-all]] [-xm] <file>

Arguments

-above <percent>
Specifiesthat only objectswith coverage values above this percentage beincludedin the
output. Optional.

- bel ow <percent >
Specifiesthat only objectswith coverage values bel ow this percentage beincluded in the
output. Optional.

-aggregat ed
Includes aggregated statisticsin the output. Not avalid option when reporting on a code
coverage database. Optional. Defaullt.

-al
When used with -toggles, creates areport that lists both toggled and untoggled signals.
Not a valid option when reporting on afunctional coverage database. Optional.

- append
Appends the report data to the named output file. Optional.

- comrent
Specifies that comments should be included with the report. Comments are excluded by
default. Not avalid option when reporting on a code coverage database. Optional.

-details
Includes detail s associated with each cover directive (e.g., count) in the output. Not a
valid option when reporting on a code coverage database. Optional. Default.

-instance <pat hnane>
Writes out the source file summary coverage data for the selected instance. Optional.

-lines
Writes out the source file summary data and after each file it writes out the details for
each executable line in the file. Not a valid option when reporting on a functional
coverage database. Optional.

- noaggr egat ed
Excludes aggregated statisticsfrom the output. The statisticsareincluded by default. Not
avalid option when reporting on a code coverage database. Optional.

ModelSim SE Command Reference

vcover report CR-323

- nhocoment
Excludes comments from the report. Not a valid option when reporting on a code
coverage database. Optional. Default.

-nodetails
Excludes detail s associated with each cover directive (e.g., count) from the output.
Details are included by default. Not avalid option when reporting on a code coverage
database. Optional.

- package <pkgnanme>
Createsareport on the specified VHDL package body. Not avalid option when reporting
on afunctional coverage database. Optional.

-recursive
Reports on the instance specified with -instance and every included instance, recursively.
Can aso be used with -lines and -totals. Optional.

-out put <pat hname>
Specifies the name of the file that will contain the report. Optional. The report will print
to stdout if you do not specify an output file.

-sel ect bces[t]x]
Specifies which code coverage statisticsto includein the report. Not avalid option when
reporting on afunctional coverage database. Optional. By default the report includes
statistics for all categories you enabled at compile time.

The characters are as follows:
b—Include branch statistics.
c—Include condition statistics.
e-Include expression statistics.
s-Include statement statistics.
t—Include toggle statistics.
x—Include extended toggle statistics.
Note that "t" and "x" are mutually exclusive.

-toggl es
Creates areport of untoggled signals. If you also specify -al, all signals (both toggled
and untoggled) arelisted in the report. Not avalid option when reporting on afunctional
coverage database. Optional.

-totals
Writes out atop-level summary of the number of files, statements, branches, hits, and
signal togglesfor both file-based and instance-based views of the current analysis. Useful
for tracking changes. Not a valid option when reporting on afunctional coverage
database. Optional.

- xmi
Outputs report in XML format. Optional. See "Reporting coverage data" (UM-350) for
more information.

<file>
Specifies the previoudly saved code or functional coverage file on which you want to
report. Required.

ModelSim SE Command Reference

CR-324 vcover report

Examples

See also

vcover report -totals -output myreport.cov
Writes atop-level summary of the number of instances, statements, branches, hits, and
signal toggles to myreport.cov.

vcover report -lines -select bcs save.cov
Writes detailed branch, condition, and statement statistics, without associated source
code, to save.cov.

vcover report save.cov
Writes a summary of code coverage for all instances to save.cov.

vcover report -lines nmyreport.cov
Writes code coverage details of all instances in the design to myreport.cov. The -lines
option reports coverage statistics for each statement and branch. Branch coverage
statistics will following statement statistics and will be presented in four columns: line,
column, true branch count, false branch count.

vcover report -lines -instance /top/p save.cov
Writes code coverage details of one specific instance to save.cov.

vcover report -lines -below 90 -file nyreport.cov
Writes a summary of coverage by source file for coverage less than or equal to 90%.

vcover report -zeros -output mnyzerocov.txt
Writes alist of statements with zero coverage to myzerocov.txt.

Chapter 13 - Measuring code coverage, cover age save (CR-135), fcover save (CR-175),
coverage report command (CR-132), fcover report command (CR-173)

ModelSim SE Command Reference

vecover stats CR-325

vcover stats

Thevcover statscommand computes and printsto stdout summary statisticsfor previously
saved code or functional coverage databases. It can be invoked within the Model Sim GUI
or at the command line.

For functional coverage databases, vcover stats creates coverage statistics output that is
roughly equivalent to the output from this command:

fcover report -config -details -aggregated -r *

The format and filtering of the report output produced by vcover statsisnot asflexible as
that of the fcover report command (CR-173).

Syntax
vcover stats
[-and] [-append] [-incremental] [-inputs <pathname>] [-install <path>]
[-log <filename>] [-strip <n>] [-verbose] <filel> [<file2> <filen>...]
Arguments
-and

Excludes statements in the output merge file only if they are excluded in all input files.
Optional. By default statements are excluded in the output file if the statement is
excluded in any of theinput files. Not avalid option when merging functional coverage
databases.

- append
Specifies that progress messages are to be appended to the current log file. Optional. By
default anew log file is created each time you invoke the command. Not avalid option
when merging functional coverage databases.

-inputs <pat hname>
Specifies atext file containing input filenames for which you want to produce statistics.
Optional.

-incrementa
Prints statistics for the specified files asif the fileswere merged one after the other in the
listed order. Optional. For example, using this argument will cause vcover statsto print
the statistics for <filel>, then any incremental coverage after merging <file2>, and then
any incremental coverage after merging <file3> into the merge of <filel> and <file2>,
and so forth. At the end it prints the total statistics for the full merge. The statistics are
written to both stdout and vcover.log. Not a valid option when merging functional
coverage databases.

-install <path>
Adds <path> as additional hierarchy on the front end of instance and object namesin the
datafiles. Optional. This argument allows you to merge coverage results from
simulations that have different hierarchies.

-log <fil ename>
Specifiesthe file for outputting progress messages. Optional. By default these messages
are output to vcover.log.

ModelSim SE Command Reference

CR-326 vcover stats

-strip <n>
Removes <n> levels of hierarchy from instance and object names in the datafiles.
Optional. Thisargument allowsyou to merge coverage resultsfrom simulationsthat have
different hierarchies.

-verbose
Enables summary code coverage statistics to be computed and directed to the log file
each time afileis merged into the base. The statistics are instance-based. Not avalid
option when merging functional coverage databases.

<filel> [<file2> <filen>. ..]
Specifies the file(s) for which you want summary statistics. Required. Multiple
pathnames and wildcards are allowed.

See also

cover age save command (CR-135), fcover save command (CR-175), vcover merge
command (CR-320), fcover report command (CR-173), Chapter 13 - Measuring code
coverage, Chapter 15 - Functional coverage with PSL and ModelSm

ModelSim SE Command Reference

vdel

Syntax

Arguments

Examples

vdel CR-327

The vdel command deletes adesign unit from a specified library.

vdel
[-help] [-lib <library_nanme>] [-verbose]
[-all | <design_unit> [<arch_nane>] | -allsystent]

-al
Deletesan entire library. Optional. BE CAREFUL! Libraries cannot be recovered once
deleted, and you are not prompted for confirmation.

-all systent
Deletes all SystemC modulesin adesign from the working directory. Optional.

<ar ch_name>
Specifies the name of an architecture to be deleted. Optional. If omitted, al of the
architecturesfor the specified entity are deleted. Invalid for a configuration or a package.

<design_unit>
Specifiesthe entity, package, configuration, or moduleto be del eted. Required unless-all
isused. This option is not supported for SystemC modules.

-hel p
Displays the command’ s options and arguments. Optional.

-lib <library_name>
Specifies the logical name or pathname of the library that holds the design unit to be
deleted. Optional. By default, the design unit is deleted from the work library.

-verbose

Displays progress messages. Optional.

vdel -al
Deletesthework library.

vdel -lib synopsys -al

Deletes the synopsys library.

vdel xor
Deletes the entity named xor and all its architectures from the work library.

vdel xor behavi or
Deletes the architecture named behavior of the entity xor from the work library.

vdel base
Deletes the package named base from the work library.

ModelSim SE Command Reference

CR-328 vdir

vdir
The vdir command lists the contents of adesign library.
This command can also be used to check compatibility of avendor library. If vdir cannot
read a vendor-supplied library, the library may not be Model Sim compatible. SystemC
modules are listed with this command.
Syntax
vdi r
[-help] [-1] [-r] [-all] | [-lib <library_nane>] [<design_unit>]
Arguments
-hel p
Displays the command’ s options and arguments. Optional.
-1
Prints the version of vcom, vlog, or sccom with which each design unit was compiled.
Also prints the object-code version number that indicates which versions of vcom/vlog/
sccom and M odel Sim are compatible. Thisexamplewas printed by vdir -I for the counter
module in thework library:
Library Vendor : Model Technol ogy
MODULE ramthb
Verilog Version: DPV:j32Jc=Q?7<3><C; OKO
Ver si on nunber: CRW<UhheaW LIL2_B5031
Source nodified tine: 1064511064
Source file: ramtb.v
Opcode format: 5.8 Beta 2; VLOG SE Object version 172
Optimzed Verilog design root: 1
Language standard: 1
Source directory: C:\nodel si m exanpl es\ nenory\vl og_nenory
-r
Prints architecture information for each entity in the output.
-al
Liststhe contents of all librarieslisted in the[Library] section of the active modelsim.ini
file. Optional. See"[Library] library path variables' (um-525) for more information.
-lib <library_nane>
Specifiesthe logical name or the pathname of the library to be listed. Optiona. By
default, the contents of the work library are listed.
<desi gn_unit>
Indicates the design unit to search for within the specified library. If the design unitisa
VHDL entity, itsarchitecturesarelisted. Optional. By default all entities, configurations,
modules, packages, and optimized design unitsin the specified library are listed.
Examples

vdir -lib design my_asic
Lists the architectures associated with the entity named my_asic that residein the HDL
design library called design.

ModelSim SE Command Reference

verror CR-329

verror

The verror command prints a detailed description about a message number. It may also
point to additional documentation related to the error.

Syntax
verror
[-all [-kind <tool>]] [-fm] [-ranges] <nsgNump..
Arguments

-all [-kind <tool>]
Prints all error messages. Optional. If you specify -kind <tool>, it prints just those error
messages associated with the specified tool.

-ft
Prints the format string that is used in the actual error message. Optional.

-ranges
Prints the numeric ranges of error message numbers by tool. Optional.

<msgNune
Specifies the message number of a Model Sim message. Required unless you specify the
-all argument. The message number can be obtained from messages that have the format:

** <|evel>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedM sg>

Example
Say you see the following message in the transcript:

** Error (vsim3061) foo.v(22): Too many Verilog port connections

Y ou would type:
verror 3061

and receive the following output:

Message # 3061
Too many Veril og ports were specified in a mxed VHDL/ Verilog instantiation
Verify that the correct VHDL/ Verilog connection is being made and that the

nurmber of ports matches

[DOC: Mpdel Sim User's Manual - M xed VHDL and Verilog Designs Chapter]

ModelSim SE Command Reference

CR-330 vgencomp

vgencomp

Syntax

Arguments

Examples

OnceaVerilog moduleis compiled into alibrary, you can use the vgencomp command to
write its equivalent VHDL component declaration to standard output. Optional switches
allow you to generate bit or vl_logic port types; std_logic port types are generated by
default.

vgenconp
[-help] [-lib <library_nane>] [-b] [-s] [-v] <nodul e_name>

-hel p
Displays the command’ s options and arguments. Optional.

-lib <library_name>
Specifies the pathname of the working library. If not specified, the default library work
isused. Optional.

-b
Causes vgencomp to generate bit port types. Optional.

-s
Used for the explicit declaration of default std_logic port types. Optional.

-V
Causes vgencomp to generate vl_logic port types. Optional.

<nmodul e_nane>
Specifies the name of the Verilog module to be accessed. Required.

This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

modul e top(il, ol, o2, iol);
paraneter width = 8
paraneter delay = 4.5
paraneter filename = "file.in";

input i1;
output [7:0] o1l;
output [4:7] o2
inout [width-1:0] iol
endnodul e
After compiling, vgencomp isinvoked on the compiled module:

vgenconp top

and writes the following to stdout:

conponent top

generi c(

ModelSim SE Command Reference

wi dt h
del ay
filenane
)
port (
il
ol
02
iol
).

end conponent;

i ntege
rea
string

in
out
out
i nout

r :=8;
= 4.500000
="file.in"
std_|l ogi c;

vgencomp CR-331

std_l ogi c_vector (7 downto 0);
std_l ogic_vector(4 to 7);

std_| ogi c_vector

ModelSim SE Command Reference

CR-332 view

view

Syntax

Arguments

The view command displays a stand-alone window or Main window pane and shifts focus
to that window or pane. If multiple instances of a stand-alone window exist, view will
change the default window of that type to the specified window. Using the -new option,
view will create an additional instance of the specified stand-alone window type and set it
to be the default window for that type.

Names for windows are generated as follows:

* Thefirst window name (automatically created without using -new) hasthe same name as
the window type.

* Additional window names created by -new append an integer to the window type, starting
with 1.

To remove awindow, use the noview command (CR-212).

The view command returns the name(s) of the viewed window(s).

Vi ew
[*] [-height <n>] [-icon] [-new] [-title {New Wndow Title}] [-undock | -
dock] [-width <n>] [-x <n>] [-y <n>] <wi ndow_type>..

Specifies that all windows be opened. Optional.

-hei ght <n>
Specifiesthe window height in pixels. Valid only for stand-alone windows, not panesin
the Main window. Optional.

-icon
Toggles the view between window and icon. Valid only for stand-alone windows, not
panesin the Main window. Optional.

- new
Createsanew instance of thewindow type specified with the<window_type> argument.
Valid only for stand-alone windows, not panes in the Main window. Optional. New
window names are created by appending an integer to the window type, starting with 1,
then incrementing the integer.

-title {New Wndow Title}
Specifies the window title of the designated window. Curly braces are only needed for
titles that include spaces. Double quotes can be used in place of braces, for example
"New Window Title". If the new window title does not include spaces, no braces or
quotes are needed. For example: -title new_wave wave assigns the title new_wave to the
Wave window.

-undock
Opens the specified pane as a standalone window, undocked from the Main window.
Optional.

ModelSim SE Command Reference

Examples

See also

view CR-333

- dock
Docks the specified standal one window into the Main window.

-wi dth <n>
Specifies the window width in pixels. Valid only for stand-alone windows, not panesin
the Main window. Optional.

<wi ndow_t ype>. ..
Specifies the window/pane typeto view. Required. Y ou do not need to type thefull type
(see examples below); implicit wildcards are accepted; multiple window types may be
used. Available window/pane types are:

assertions, dataflow, fcovers, list, locals, mdiwave, memory, objects, process, profile,
profile_details, signals, source, structure, variables, watch, wave, and workspace

Also createsanew instance of the specified stand-al one window type when used with the
-new option. Y ou may also specify the window(s) to view when multiple instances of
that window typeexist (e.g., wave?). Thisworksonly with M odel Sim-generated window
names, not with window titles specified with the -title argument.

-X <n>
Specifies the window upper-left-hand x-coordinate in pixels. Valid only for stand-alone
windows, not panes in the Main window. Optional.

-y <n>
Specifies the window upper-left-hand y-coordinate in pixels. Valid only for stand-alone
windows, not panes in the Main window. Optional.

Vi ew -undock wave.
Undocks the Wave pane from the Main window and makes it a standalone window.

Vi ew w

Displays the Watch and Wave panes.

vi ew ob pr
Displays the Objects and Active Process panes.

view -title {M/ Wave W ndow} wave
Opens a new Wave window with My Wave Window asitstitle.

Vi ew wave
Vi ew - new wave

The first command creates awindow named 'wave'. The second command creates a
window named ‘wavel’. Itsfull Tk pathis‘.wavel’. Wavel is now the default Wave
window. Any add wave command (CR-52) would add objectsto wavel.

Vi ew wave
Changes the default Wave window back to ‘wave'.

add wave -win .wavel nysig
Will override the default Wave window and add mysig to wavel.

noview (CR-212)

ModelSim SE Command Reference

CR-334 virtual count

virtual count

Thevirtual count command counts the number of currently defined virtuals that were not
read in using amacro file.

Syntax
virtual count
[-kind <kind>] [-unsaved]
Arguments
-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
-unsaved
Specifies that the count include only those virtuals that have not been saved to a macro
file. Optional.
See also

virtual define (CR-335), virtual save (CR-349), virtual show (CR-350), "Virtual Objects
(User-defined buses, and more)" (Um-233)

ModelSim SE Command Reference

virtual define CR-335

virtual define

The virtual define command prints to the Transcript pane the definition of the virtual
signal or function in the form of a command that can be used to re-create the object.

Syntax
virtual define
[-kind <kind>] <pathname>
Arguments
-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
<pat hname>
Specifies the path to the virtual(s) for which you want definitions. Required. Wildcards
can be used.
Examples
virtual define -kind explicits *
Shows the definitions of all the virtuals you have explicitly created.
See also

virtual describe (CR-337), virtual show (CR-350), "Virtual Objects (User-defined buses,
and more)" (UM-233)

ModelSim SE Command Reference

CR-336 virtual delete

virtual delete

The virtual delete command removes the matching virtuals.

Syntax
virtual delete
[-kind <kind>] <pathname>
Arguments
-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
<pat hname>
Specifies the path to the virtual (s) you want to delete. Required. Wildcards can be used.
Examples
virtual delete -kind explicits *
Deletes all of the virtuals you have explicitly created.
See also

virtual signal (CR-351), virtual function (CR-339), "Virtual Objects (User-defined buses,
and more)" (UM-233)

ModelSim SE Command Reference

virtual describe CR-337

virtual describe

Thevirtual describe command prints to the Transcript pane a compl ete description of the
datatype of one or more virtual signals. Similar to the existing describe command.

Syntax
virtual describe
[-kind <kind>] <pathname>
Arguments
-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
<pat hname>
Specifiesthe path to the virtual (s) for which you want descriptions. Required. Wildcards
can be used.
Examples
virtual describe -kind explicits *
Describes the data type of al virtuals you have explicitly created.
See also

virtual define (CR-335), virtual show (CR-350), "Virtual Objects (User-defined buses, and
more)" (UM-233)

ModelSim SE Command Reference

CR-338 virtual expand

virtual expand

Thevirtual expand command producesalist of al the non-virtual objects contained inthe
specified virtua signal(s). Thiscan be used to create alist of argumentsfor acommand that
does not accept or understand virtual signals.

Syntax

virtual expand
[-base] <pat hname>

Arguments

- base
Causes the root signal parent to be output in place of a subelement. Optional. For
example:

vced add [virtual expand -base myVirtual Signal]

the resulting command after substitution would be;

vcd add signala signalb signalc

<pat hname>
Specifies the path to the signals and virtual signals to expand. Required. Wildcards can
be used. Any number of paths can be specified.

Examples

vcd add [virtual expand nmyVirtual Signal]
Adds the elements of avirtual signal to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand ..."), then the result substituted into the surrounding
command. Soif myVirtual Signal isaconcatenation of signala, signalb.recl and signalc(5
downto 3), the resulting command after substitution would be:

vcd add signala signalb.recl {signalc(5 downto 3)}

The dlice of signalc is quoted in curly braces, because it contains spaces.

See also

virtual signal (CR-351), "Virtual Objects (User-defined buses, and more)" (Um-233)

ModelSim SE Command Reference

virtual function CR-339

virtual function

Syntax

Arguments

Thevirtual function command creates a new signal, known only by the GUI (not the
kernel), that consists of logical operations on existing signals and simulation time, as
described in <expressionString>. It cannot handle bit selects and slices of Verilog
registers. Please see " Syntax and conventions' (CR-9) for more details on syntax.

If the virtual function references more than a single scalar signal, it will display asan
expandable object in the Wave and Objectswindows. The children correspond to the inputs
of the virtua function. This allows the function to be "expanded" in the Wave window to
see the values of each of the input waveforms, which could be useful when using virtual
functions to compare two signal values.

Virtual functions can also be used to gate the List window display.

virtual function
[-env <path>] [-install <path>] [-delay <time>] {<expressionString>}
<nanme>

Arguments for virtual function are the same as those for virtual signal, except for the
contents of the expression string.

-env <pat h>
Specifiesahierarchical context for the signal namesin <expressionString> so they don't
all haveto be full paths. Optional.

-install <path>
Causes the newly-created signal to become a child of the specified region. If -install is
not specified, the newly-created signal becomes a child of the nearest common ancestor
of al objects appearing in <expressionString>. If the expression references more than
one WLFfile (dataset), the virtual signal will automatically be placed in region
virtuals:/Functions. Optional.

-del ay <time>
Specifies avaue by which the virtua function will be delayed. Optional. Y ou can use
negative valuesto look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{<expressionString>}
A text string expression in the MT1 GUI expression format. Required. See
"GUI_expression_format" (CR-22) for more information.

<nane>
The name you define for the virtual signal. Required. Caseisignored unlessinstalled in
aVerilog region. Use alpha, numeric, and underscore characters only, unless you are
using VHDL extended identifier notation. If using VHDL extended identifier notation,
<name> needs to be quoted with double quotes or with curly braces.

ModelSim SE Command Reference

CR-340 virtual function

Examples

virtual function { not /chip/sectionl/clk } clk_n
Creates asignal /chip/section1/clk_n that is the inverse of /chip/sectionl/clk.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega }

rega_slv
Creates astd_logic_vector equivalent of aVerilog register rega and installs it as/chip/
rega_slv.

virtual function { /chip/addr[11:0] == Oxfab } addr_eq_fab

Creates a boolean signal /chip/addr_eq_fab that is true when /chip/addr[11:0] isequal
to hex "fab", and false otherwise. It is acceptableto mix VHDL signal path notation with
Verilog part-select notation.

virtual function { gate:/chip/siga XORrtl:/chip/siga } siga_diff
Creates asignal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
there is no common design region for the inputs to the expression, siga_diff isinstalled
in region virtuals./Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signals that are being compared.

virtual function -delay {10 ns} {/top/signal A AND /top/signal B} myDel ayAandB
Creates avirtua signal consisting of the logical "AND" function of /top/signal A with
/top/signal B, and delaysit by 10 ns.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) } outbus_diff
Createsaone-hit signal outbus_diff which is non-zero during timeswhen any bit of /chip/
outbusin the gate-level version doesn’t match the corresponding bit in the rtl version.

This expression uses the "OR-reduction” operator, which takes the logical OR of al the
bits of the vector argument.

ModelSim SE Command Reference

Commands fully compatible with virtual functions

virtual function CR-341

add list (CRr-48)

add log /log (CR-191)

add wave (CR-52)

checkpoint (CR-93) and restore (CR-
248)

delete (CR-146)

describe (CR-147) ("virtual describe" is
alittle faster)

down (CR-152) / up (CR-290)

examine (CR-162)

find (CR-176)

restart (CR-246)

left (CR-189) / right (CR-250)

search (CR-260)

searchlog (CR-262)

show (CR-267)

Commands not currently compatible with virtual functions

check contention add (CR-84)

check contention config (CR-86)

check contention off (CR-87)

check float add (CR-88)

check float config (CR-89)

check float off (CR-90)

check stable on (CR-92)

check stable off (CrR-91)

drivers (CR-154)

force (CR-180)

noforce (CR-208)

power add (CR-220)

power report (CR-221)

power reset (CR-222)

toggle add (CR-279)

toggle reset (CR-284)

toggle report (CR-283)

ved add (CR-292)

when (CR-407)

See also

virtual count (CR-334)

virtual define (CR-335)

virtual delete (CR-336)

virtual describe (CR-337)

virtual expand (CR-338)

virtual hide (CR-342)

virtual log (CR-343)

virtual nohide (CR-345)

virtual nolog (CR-346)

virtual region (CR-348)

virtual save (CR-349)

virtual show (CR-350)

virtual signal (CR-351)

virtual type (CR-354)

Virtual Objects (User-defined
buses, and more) (Um-233)

ModelSim SE Command Reference

CR-342 virtual hide

virtual hide

Syntax

Arguments

See also

The virtual hide command causes the specified real or virtual signalsto not be displayed
in the Objectswindow. Thisis used when you want to replace an expanded buswith auser-
defined bus. Y ou make the signals reappear using the virtual nohide command.

virtual hide
[-kind <kind>]|[-region <path>] <pattern>

-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-regi on <path>
Used in place of -kind to specify aregion of design space in which to look for the signal
names. Optional.

<pattern>
Indicates which signal names or wildcard patterns should be used in finding the signals
to hide. Required. Any number of names or wildcard patterns may be used.

virtual nohide (CR-345), "Virtual Objects (User-defined buses, and more)" (UM-233)

ModelSim SE Command Reference

virtual log CR-343

virtual log
The virtual log command causes the simulation-mode dependent signals of the specified
virtual signalsto be logged by the kernel. If wildcard patterns are used, it will also log any
normal signals found, unless the -only option is used. Y ou unlog the signals using the
virtual nolog command.
Syntax
virtual |og
[-kind <kind>]|[-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>
Arguments
-kind <ki nd>

Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-regi on <path>
Used in place of -kind to specify aregion of design space in which to look for signalsto
log. Optional.

-recursive
Specifiesthat the scope of the search isto descend recursively into subregions. Optional.
If omitted, the search islimited to the selected region.

-only
Can be used with awildcard to specify that only virtual signals (asopposedto all signals)
found by the wildcard should be logged. Optional.

-in
Specifies that the kernel log data for ports of mode IN whose hames match the
specification. Optional.

-out
Specifies that the kernel log data for ports of mode OUT whose names match the
specification. Optional.

-inout
Specifies that the kernel log data for ports of mode INOUT whose names match the
specification. Optional.

-interna
Specifies that the kernel log data for internal (non-port) objects whose names match the
specification. Optional.

-ports
Specifies that the kernel log data for al ports. Optional.

<pattern>
Indicates which signal names or wildcard patterns should be used in finding the signals
to log. Required. Any number of names or wildcard patterns may be used.

ModelSim SE Command Reference

CR-344 virtual log

See also

virtual nolog (CR-346), "Virtual Objects (User-defined buses, and more)" (Um-233)

ModelSim SE Command Reference

virtual nohide CR-345

virtual nohide

The virtual nohide command reverses the effect of avirtual hide command, causing the
specified real or virtual signals to reappear the Objects window.

Syntax
virtual nohide
[-kind <kind>]|[-region <path>] <pattern>
Arguments
-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
-regi on <path>
Used in place of -kind to specify aregion of design space in which to look for the signal
names. Optional.
<pattern>
Indicates which signal names or wildcard patterns should be used in finding the signals
to expose. Required. Any number of names or wildcard patterns may be used.
See also

virtual hide (CRrR-342), "Virtual Objects (User-defined buses, and more)" (UM-233)

ModelSim SE Command Reference

CR-346 virtual nolog

virtual nolog

The virtual nolog command reverses the effect of avirtual log command. It causes the
simulation-dependent signals of the specified virtua signals to be excluded ("unlogged")
by the kernel. If wildcard patterns are used, it will aso unlog any normal signals found,
unless the -only option is used.

Syntax
virtual nol og
[-kind <kind>]|[-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>
Arguments
-ki nd <ki nd>

Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-regi on <path>
Used in place of -kind to specify aregion of design space in which to look for signalsto
unlog. Optional.

-recursive
Specifiesthat the scope of the search isto descend recursively into subregions. Optional.
If omitted, the search islimited to the selected region.

-only
Can be used with awildcard to specify that only virtual signals (asopposedto all signals)
found by the wildcard should be unlogged. Optional.

-in
Specifies that the kernel exclude data for ports of mode IN whose hames match the
specification. Optional.

-out
Specifies that the kernel exclude data for ports of mode OUT whose names match the
specification. Optional.

-inout
Specifiesthat the kernel exclude datafor ports of mode INOUT whose names match the
specification. Optional.

-interna
Specifiesthat the kernel exclude datafor internal (non-port) objects whose names match
the specification. Optional.

-ports
Specifies that the kernel exclude datafor all ports. Optional.

<pattern>
Indicates which signal names or wildcard pattern should be used in finding the signalsto
unlog. Required. Any number of names or wildcard patterns may be used.

ModelSim SE Command Reference

virtual nolog CR-347

See also

virtual log (CR-343), "Virtua Objects (User-defined buses, and more)" (Um-233)

ModelSim SE Command Reference

CR-348 virtual region

virtual region

Thevirtual region command creates a new user-defined design hierarchy region.

Syntax
virtual region
<par ent Pat h> <r egi onNane>
Arguments
<par ent Pat h>
The full path to the region that will become the parent of the new region. Required.
<r egi onNanme>
The name you want for the new region. Required.
See also

virtual function (CR-339), virtual signal (CR-351), "Virtual Objects (User-defined buses,
and more)" (UM-233)

P Note: Virtual regions cannot be used in the when (CR-407) command.

ModelSim SE Command Reference

virtual save CR-349

virtual save

The virtual save command saves the definitions of virtualsto afile.

Syntax
virtual save
[-kind <kind>] [-append] [<filenane>]
Arguments
-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
- append
Specifiesto save only virtualsthat are not already saved or weren't read in from amacro
file. These unsaved virtuals are then appended to the specified or default file. Optional.
<fil ename>
Used for writing the virtual definitions. Optional. If you don’t specify <filename>, the
default virtual filename (virtuals.do) will be used. Y ou can specify a different default in
the pref.tcl file.
See also

virtual count (CRr-334), "Virtual Objects (User-defined buses, and more)" (UM-233)

ModelSim SE Command Reference

CR-350 virtual show

virtual show

The virtual show command lists the full path names of all explicitly defined virtuals.

Syntax
virtual show
[-kind <kind>]
Arguments
-kind <ki nd>
Specifies asubset of virtualsto look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.
See also

virtual define (CR-335), virtual describe (CR-337), "Virtual Objects (User-defined buses,
and more)" (UM-233)

ModelSim SE Command Reference

virtual signal CR-351

virtual signal

Syntax

Arguments

Thevirtual signal command createsanew signal, known only by the GUI (not the kernel),
that consists of concatenations of signals and subel ements as specified in
<expressionString>. It cannot handle bit selects and slices of Verilog registers. Please see
"Concatenation of signals or subelements” (CR-27) for more details on syntax.

virtual signa
[-env <path>] [-install <path>] [-delay <time>] {<expressionString>}
<nane>

-env <path>
Specifies ahierarchical context for the signal namesin <expressionString>, so they
don't all have to be full paths. Optional.

-install <path>
Causes the newly-created signal to become a child of the specified region. If -install is
not specified, the newly-created signal becomes a child of the nearest common ancestor
of al objects appearing in <expressionString>. If the expression references more than
one WLF file (dataset), the virtual signal will automatically be placed in region virtuas:/
Signals. Optional.

-delay <time>
Specifies avaue by which the virtual signal will be delayed. Optional. Y ou can use
negative valuesto look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{<expressionString>}
A text string expression in the MTI GUI expression format that defines the signal and
subelement concatenation. Can also be aliteral constant or computed subexpression.
Required. For details on syntax, please see " Syntax and conventions' (CR-9).

<nane>
The name you define for the virtual signal. Required. Caseisignored unlessinstalled in
aVerilog region. Use alpha, numeric, and underscore characters only, unless you are
using VHDL extended identifier notation. If using VHDL extended identifier notation,
<name> needs to be quoted with double quotes or with curly braces.

ModelSim SE Command Reference

CR-352 virtual signal

Examples

virtual signal -env sim/chip/alu { (concat_range (4 downto 0))(a_04 & a_03
& a_ 02 &a 01 &a_00) } a

Reconstructs a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a_ii areall scalars of the same type.

virtual signal -env simchip.alu { (concat_range [4:0])& a_04, a_03, a_02
a_01, a_00} } a

Reconstructs abus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -install sim/testbench { /chipa/alu/a(l9 dowto 13) &
/ chi pa/ decode/inst & /chipa/node } stuff

Creates asignal sim:/testbench/stuff which is arecord type with three fields
corresponding to the three specified signal's. The exampl e assumes/chipa/modeisof type
integer, /chipa/alu/aisof typestd logic_vector, and /chipa/decode/inst isa user-defined
enumeration.

virtual signal -delay {10 ps} {/top/signal AA myDel ayedSi gnal A
Creates avirtual signal that isthe same as/top/signal A except it is delayed by 10 ps.

virtual signal { chip.instruction[23:21] } address_node
Creates a three-bit signal, chip.address_ mode, as an alias to the specified bits.

virtual signal {a & b & c & 3'b000} nyextendedbus
Concatenates signals a, b, and c with the literal constant ' 000’.

virtual signal {num & "000"} fullbus
add wave -unsigned full bus

Addsthree missing bitsto the bus num, createsavirtual signal fullbus, and then adds that
signal to the Wave window.

virtual signal { nunBl & nunBO & nunm29 & ... & numd & nunB & "000" } full bus
add wave -unsigned full bus

Reconstructs a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (i.e. num28, num27, etc.)
represented by the ... in the syntax above.

virtual signal {(aold == anew) & (bold == bnew)} mnyequalityvector
Creates atwo-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit istrue (1).
Alternatively, if bold does not equal bnew, the second bit isfalse (0). Each subexpression
is evaluated independently.

virtual signal {(concat_reverse)(busl & bus2[7:4])} newbus
Creates signal newbus that is a concatenation of busl (bit-reversed) and bus2[7:4] (bit-
reversed). Assuming busl has indices running 7 downto 0O, the result will be
newbus] 11:0] with the upper 8 bits being bus1[0:7] and the lower 4 bits being bus2[4:7].
See "Concatenation directives' (CR-28) for further details.

ModelSim SE Command Reference

Commands fully compatible with virtual signals

virtual signal CR-353

add list (CRr-48)

add log / log (CR-191)

add wave (CR-52)

checkpoint (CR-93) and restore (CR-
248)

delete (CR-146)

describe (CR-147) ("virtua
describe" is alittle faster)

down (CR-152) / up (CR-290)

examine (CR-162)

find (CR-176)

force (CR-180)/noforce (CR-208)

restart (CR-246)

left (CR-189) / right (CR-250)

search (CR-260)

searchlog (CR-262)

show (CR-267)

Commands compatible with virtual signals using [virtual expand <signal>]

check contention add (CR-84)

check contention config (CR-86)

check contention off (CR-87)

check float add (CR-88)

check float config (CR-89)

check float off (CR-90)

check stable on (CR-92)

check stable off (CrR-91)

drivers (CR-154)

power add (CR-220)

power report (CR-221)

power reset (CR-222)

toggle add (CRr-279)

toggle reset (CR-284)

toggle report (CR-283)

ved add (CR-292)

Commands not currently compatible with virtual signals

when (CR-407)

See also

virtual count (CR-334)

virtual define (CR-335)

virtual delete (CR-336)

virtual describe (CR-337)

virtual expand (CR-338)

virtual function (CR-339)

virtual hide (CR-342)

virtual log (CR-343)

virtual nohide (CR-345)

virtual nolog (CR-346)

virtual region (CR-348)

virtual save (CR-349)

virtual show (CR-350)

virtual type (CR-354)

Virtual Objects (User-defined
buses, and more) (UMm-233)

ModelSim SE Command Reference

CR-354 virtual type

virtual type

Syntax

Arguments

Examples

Thevirtual type command creates anew enumerated type, known only by the GUI, not the
kernel. Virtual types are used to convert signal values to character strings. The command
works with signed integer values up to 64 bits.

Virtual types cannot be used in the when (CR-407) command.

virtual type
-delete <name> | {<list_of_strings>} <name>

-del ete <name>
Deletes apreviously defined virtual type. <name> is the name you gave the virtua type
when you originally defined it. Required if not defining atype.

{<list_of _strings>}
A list of values and their associated character strings. Required if -delete is not used.
Values can be expressed in decimal or based notation and can include "don’t-cares" (see
examples below). Three kinds of based notation are supported: Verilog, VHDL, and C-
language styles. The values are interpreted without regard to the size of the busto be
mapped. Bus widths up to 64 bits are supported.

Thereis currently no restriction on the contents of each string, but if strings contain
spaces they would need to be quoted, and if they contain characters treated specially by
Tcl (square brackets, curly braces, backslashes...), they would need to be quoted with
curly braces.

See the examples below for further syntax.

<nane>
The user-defined name of the virtual type. Required if -delete is not used. Case is not
ignored. Use a pha, numeric, and underscore charactersonly, unlessyou areusing VHDL
extended identifier notation. If using VHDL extended identifier notation, <name> needs
to be quoted with double quotes or with curly braces.

virtual type {stateO statel state2 state3} nystateType

virtual function {(nmystateType)nysignal} nmyConvertedSignal

add wave nyConvertedSi gnal
Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by one in the positive direction.When myConvertedSgnal is
displayed in the Wave, List, or Objects window, the string "state0" will appear when
mysignal == 0, "statel” when mysignal == 1, "state2" when
mysignal == 2, etc.

ModelSim SE Command Reference

virtual type CR-355

virtual type {{0 NULL_STATE} {1 sti1} {2 st2} {0x04 st3} {16'h08 st4} \
{'h10 st5} {16#20 st6} {0b01000000 st7} {O0x80 st8} \
{default BAD_STATE}} nyMappedType
virtual function {(myMppedType)mybus} myConvertedBus
add wave nyConvert edBus
Uses sparse mapping of bus values to a phanumeric strings for an 8-bit, one-hot
encoding. It shows the variety of syntax that can be used for values. The value "default”
has specia meaning and corresponds to any value not explicitly specified.

virtual type -delete nystateType
Deletes the virtual type "mystateType".

virtual type {{0x01-- add}{0x02-- sub}{default bad}} nydecodetype
Creates avirtual type that includes "don’t-cares’ (the’-’ character).

virtual type {{0x0100 Oxff add}{0x0200 Oxff sub}{default bad}} nydecodetype
Creates avirtual type using amask for "don’t-cares." The middle field is the mask, and
the mask should have bits set to 1 for the bits that are don't care.

See also

virtual function (CR-339), "Virtual Objects (User-defined buses, and more)" (UM-233)

ModelSim SE Command Reference

CR-356 vlib

vlib

Syntax

Arguments

Examples

Thevlib command createsadesign library. Y ou must use vlib rather than operating system
commands to create alibrary directory or index file. If the specified library already exists
asavalid ModelSim library, the vlib command will exit with awarning message without
touching the library.

vlib
[-archive [-conmpact <percent>]] [-help] [-dos | -short | -unix | -long]
[-unnaned_desi gns <val ue>] <name>

-archive [-conpact <percent >]
Causes design units that are compiled into the created library to be stored in archives
rather than in subdirectories. Optional. See "Archives' (UM-59) for more details.

Y ou may optionally specify adecimal number between 0 and 1 that denotes the allowed
percentage of wasted space before archives are compacted. By default archives are
compacted when 50% (.5) of their space is wasted. See an example below.

-hel p
Displays the command’ s options and arguments. Optional.

-dos
Specifies that subdirectoriesin alibrary have names that are compatible with DOS. Not
recommended if you use the vmake (CR-369) utility. Optional.

-short
I nterchangeable with the -dos argument. Optional.

-uni x
Specifies that subdirectoriesin alibrary may have long file namesthat are NOT
compatible with DOS. Optional. Default for ModelSim SE.

-l ong
Interchangeable with the -unix argument. Optional .

-unnaned_desi gns <val ue>
Specifies how many unnamed, optimized versions of a design the vopt command (CR-
371) will save within the library. Once <value> is reached, vopt deletes the ol dest
unnamed, optimized version. Optional.

<nane>

Specifies the pathname or archive name of the library to be created. Required.

vlib design
Createsthe design library design. Y ou can define alogical namefor thelibrary using the
vmap command (CR-370) or by adding alineto thelibrary section of the modelsim.ini file
that is located in the same directory.

ModelSim SE Command Reference

vlib CR-357

vlib -archive -conpact .3 uut
Createsthedesign library uut and specifiesthat any design unitscompiledinto the library
are created as archives. Also specifies that each archive be compacted when 30% of its
space is wasted.

ModelSim SE Command Reference

CR-358 vlog

viog

Syntax

Arguments

Thevlog command compiles V erilog source code into aspecified working library (or to the
work library by default).

vlog may be invoked from within Model Sim or from the operating system command
prompt. It may also be invoked during simulation.

Compiled libraries are major-version dependent. For example you cannot use alibrary
compiled with 5.7 in asimulation using 5.8 vsim. Y ou would have to refresh the libraries
using the -r efr esh argument to vlog. Thisis not true for minor versions (e.g., 5.7alibraries
work in 5.7d).

vl og

[-93] [-help] [-conpat] [-conpile_uselibs[=<directory_nanme>]]

[-cover <stat>] [-debugCell Opt] [+define+<macro_nanme>[=<macro_t ext >]]

[+del ay_node_di stri buted] [+del ay_node_path] [+del ay_node_unit]

[+del ay_node_zero] [-dpi header] [-error <msg_nunber>[, <nmsg_nunber>,...]]
[-f <filenane>] [-fast[=<secondary_nanme>] [+acc[=<spec>] [+<nodule>[.]]]]

[-forcecode] [-hazards] [+incdir+<directory>] [-incr]
[-instantiateReadOnly] [-isynfile] [-keep_delta] [-L <libnane>]
[-Lf <libname>] [+libext+<suffix>] [-1ibmap <pathname>] [-I|ibnap_verbose]

[+librescan] [-line <number>] [-lint] [+maxdel ays] [+m ndel ays]
[+nocheckALL] [+nocheckCLUP] [+nocheckDELAY] [+nocheckDNET] [+nocheck OPRD]

[+nocheckSUDP] [-nocoverage] [-nodebug[=ports | =pli]] [-noincr]
[+nolibcell] [-nologo] [-nopsl] [+nospecify]
[-note <nsg_nunber>[, <nsg_nunber>,...]] [+noti m ngchecks] [-novopt]

[+nowar n<CODE>] [-Q0 | -OL | -O4 | -06] [+opt+[<lib>.]<nodul e>]
[-pslifile <filename>] [-quiet] [-R[<simargs>]] [-refresh] [-source] [-sV]

[- suppress <nsg_nunber>[, <msg_nunber>,...]] [-tinme] [+typdelays] [-u]
[-v <library_file>] [-version] [-vlog95conpat] [-vopt]
[-warni ng <nsg_nunber >[, <nsg_nunber>,...]] [-work <library_nanme>]

[-y <library_directory>] <filenane>

-93

Specifies that the VHDL interface to Verilog modules use VHDL 1076-1993 extended
identifiersto preserve casein Verilog identifiersthat contain uppercase | etters. Optional.

-hel p

Displays the command’ s options and arguments. Optional.

- conpat

Disables optimizations that result in different event ordering than Verilog-XL. Optional.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it isinefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. See "Event ordering in Verilog designs’ (uM-132) for additional
information.

ModelSim SE Command Reference

vlog CR-359

-conpi |l e_usel i bs[=<di rect ory_nanme>]
Locates source files specified in a “uselib directive (see "Verilog-XL “uselib compiler
directive" (UmM-120)), compilesthosefilesinto automatically created libraries, and updates
the modelsim.ini file with the logical mappings to the new libraries. Optional. If a
directory_nameis not specified, Model Sim uses the name specified in the
MTI_USELIB_DIR environment variable. If that variable is not set, Model Sim creates
the directory mti_uselibs in the current working directory.

-cover <stat>
Specifies type(s) of coverage statistics to collect. Optional.

<stat> is one or more of the following characters:
b—Collect branch statistics.
c—Collect condition statistics.
e-Collect expression statistics.
s—Collect statement statistics.
t—Collect toggle statistics. Cannot be used if 'X’ is specified.

x—Collect extended toggle statistics (see "Toggle coverage”" (UM-343) for details).
Cannot be used if 't’ is specified.
By default only statement coverageisenabled when you invoke vsim with the -cover age
option.
- debugCel | Opt
Produces Transcript pane output that identifies why certain cells within the design were
not optimized. Used only when compiling gate-level Verilog libraries with -fast (see
below). Optional.
+def i ne+<macr o_nane>[=<nacr o_t ext >]
Allows you to define amacro from the command line that is equivalent to the following
compiler directive:

“define <macro_nanme> <nmcro_text>

Optional. Y ou can specify more than one macro with a single +define. For example:

vl og +define+one=r1+two=r2+three=r3 test.v

A command line macro overrides a macro of the same name defined with the “define
compiler directive.

+del ay_node_di stri but ed
Disables path delaysin favor of distributed delays. Optional. See "Delay modes' (UM-
144) for details.

+del ay_node_path
Setsdistributed delaysto zero in favor of using path delays. Optional. See " Delay modes'
(UM-144) for details.

+del ay_node_uni t
Sets path delays to zero and non-zero distributed delays to one time unit. Optional. See

"Delay modes® (UM-144) for details.

ModelSim SE Command Reference

CR-360 vlog

+del ay_node_zero
Sets path delays and distributed delaysto zero. Optional. See"Delay modes" (UM-144) for
details.

- dpi header
Generates a header file that may then beincluded in C source code for DPI import
functions.

-error <msg_nunber>[, <msg_nunber>, .. .]
Changesthe severity level of the specified message(s) to "error.” Optional. Edit the error
(UM-536) variable in the modelsim.ini file to set a permanent default. See "Changing
message severity level" (Um-546) for more information.

-f <fil ename>
Specifies afile with more command line arguments. Optional. Allows complex
arguments to be reused without retyping. Allows gzipped input files. Nesting of -f
optionsis allowed.

Thefile syntax basically follows what you type on the command line with the exception
that newline characters are ignored. Environment variable expansion (for examplein a
pathname) does not occur in -f files.

-fast[=<secondary_nanme>] [+acc[=<spec>] [+<nodule>[.]]]
Increases simul ation speed on gate-level designsby allowing parameter propagation and
global optimizations. If you are simulating RTL, use the vopt command (CR-371) instead
of -fast. Please see "Optimizing Verilog designs” (uM-124). The following options are
available:

=<secondary_nane>
Allows you to specify a different secondary name for the optimized code. The compiler
automatically assigns a secondary hame to distinguish optimized code from
un-optimized code that may exist in the same library. The default secondary name for
optimized codeis "fast"; the default secondary name for un-optimized code is "verilog".

+acc[=<spec>] [+<nmodul e>[.]]
Allows you to maintain design object visibility. Note that using this option may reduce
simulation speed.

<spec> is one or more of the following characters:

b—Enable access to bits of vector nets. Thisis necessary for PLI applications that
require handles to individual bits of vector nets. Also, some user interface commands
require this accessif you need to operate on net bits.

c—Enable accessto library cells. By default any Verilog module containing a
non-empty specify block may be optimized, and debug and PL1 access may belimited.
This option keeps module cell visibility.

|I—-Enable access to line number directives and process names.
n—Enable access to nets.

p—Enable access to ports. This disables the module inlining optimization, and is
necessary only if you have PLI applications that require access to port handles.

r—Enabl e access to registers (including memories, integer, time, and real types).
s—Enable access to system tasks.
t—Enabl e access to tasks and functions.

ModelSim SE Command Reference

viog CR-361

If <spec> isomitted, access is enabled for all objects.

<module> is amodule name, optionally followed by "." to indicate all children of the
module. Multiple modules are allowed, with each separated by a"+". If no modules are
specified, then all modules are affected.

-forcecode
Forces code generation for optimized inlined modules when using the -fast switch.
Should be used only when compiling vendor-supplied cell librariesthat will be placed in
aread-only location. Optional.

- hazards
Detects event order hazards involving simultaneous reading and writing of the same
register in concurrently executing processes. Optional. Y ou must also specify this
argument when you simulate the design with vsim (CR-373). See "Hazard detection” (UM-
135) for more details.

A | mportant: Enabling -hazar dsimplicitly enables the -compat argument. As aresult,
using this argument may affect your simulation results.

+i ncdi r+<di rectory>
Specifies directories to search for files included with “include compiler directives.
Optional. By default, the current directory is searched first and then the directories
specified by the +incdir optionsin the order they appear on the command line. Y ou may
specify multiple +incdir options as well as multiple directories separated by "+" in a
single +incdir option.

-l ncr
Performs an incremental compile. Optional. Compiles only code that has changed. For
example, if you change only one module in afile containing several modules, only the
changed module will be recompiled. Note however that if the compile options change,
al modules are recompiled regardlessif you use -incr or not.

-instanti at eReadOnl y
Enables a-fast optimized design to instantiate modules or UDPsfrom awork library that
has read-only permission. The instantiations will not be in-lined or further optimized.
Recommended usage is to always have write access to the work library.

-isynfile
Generates a complete list of all imported TFs. Used with DPI to determine all imported
TFsthat are expected by Model Sim. Valid only for Windows, RS6000 and RS64
platforms only.

-keep_delta
Disables optimizations that remove delta delays. Optional.

Deltadelays result from zero delay events. Those events are normally processed in the
next iteration or "delta’ of the current timestep. -fast and +opt implement optimizations
that can remove delta delays and process an event earlier.

-L <libname>
Searches the specified resource library for precompiled modules. The library search
options you specify here must also be specified when you run the veim command (CR-
373). Optional.

ModelSim SE Command Reference

CR-362 vlog

-Lf <libname>
Same as-L but the specified library is searched before any ’uselib directives. (See
"Library usage" (Um-117) and "Verilog-XL compatible compiler arguments” (Um-119) for
more information). Optional.

+l i bext +<suffi x>
Worksin conjunction with the-y option. Specifiesfile extensionsfor thefilesin asource
library directory. Optional. By default the compiler searchesfor fileswithout extensions.
If you specify the +libext option, then the compiler will search for afile with the suffix
appended to an unresolved name. Y ou may specify only one +libext option, but it may
contain multiple suffixes separated by "+". The extensions are tried in the order they
appear in the +libext option.

-1ibmap <pat hname>
SpecifiesaVerilog 2001 library map file. Optional. Y ou can omit this argument by
placing the library map file as the first option on the vlog invocation (e.g., viog top.map
top.v top_cfg.v).

-1i bmap_verbose
Displayslibrary map pattern matching information during compilation. Optional. Use to
troubleshoot problems with matching filename patternsin alibrary file.

+l i brescan
Scans libraries in command-line order for all unresolved modules. Optional.

-line <nunber>
Starts the compiler on the specified linein the Verilog source file. Optional. By default,
the compiler starts at the beginning of thefile.

-lint
Instructs Model Sim to perform three lint-style checks. 1) warn when Module ports are
NULL; 2) warn when assigning to an input port; 3) warn when referencing undeclared
variables/nets in an instantiation. The warnings are reported as WARNING[8]. Can also
be enabled using the Show_Lint (Um-526) variable in the modelsim.ini file.

+maxdel ays
Sel ects maximum delays from the "min:typ:max" expressions. Optional. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator.

+m ndel ays
Sel ects minimum delaysfrom the " min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

+nocheckALL
Enablesall +nocheck argumentsdescribed below. Optional . Argument has an effect only
when compiling gate-level cell libraries with -fast (see above). The +nocheck switches
increase the optimizations of -fast.

+nocheck CLUP
Allows connectivity loopsin acell to be optimized. Optional. Argument has an effect
only when compiling gate-level cell libraries with -fast (see above).

ModelSim SE Command Reference

vlog CR-363

+nocheck DELAY
When used in conjunction with +delay_mode_path (see above), allowsinlined Verilog
modules with distributed delays and no path delays to be optimized. Optional. Argument
has an effect only when compiling gate-level cell libraries with -fast (see above).

+nocheck DNET
Allows both the port and the delayed port (created for negative setup/hold) to be used in
the functional section of the cell. Optional. Argument has an effect only when compiling
gate-level cdll libraries with -fast (see above).

+nocheck OPRD
Allows an output port to be read internally by the cell. Optional. Argument has an effect
only when compiling gate-level cell librarieswith-fast (seeabove). Notethat if thevalue
read is the only value contributed to the output by the cell, and if there's adriver on the
net outside the cell, the value read will not reflect the resolved value.

+nocheck SUDP
Allows a sequential UDP to drive another sequential UDP. Optional. Argument has an
effect only when compiling gate-level cell libraries with -fast (see above).

-nocover age
Disables collection of statement coverage statistics, which are on by default. Optional.

-nodebug[=ports | =pli]
Hides the internal data of the compiled design unit. Optional. The design unit’s source
code, internal structure, registers, nets, etc. will not display in ModelSim’ s windows. In
addition, none of the hidden objects may be accessed through the Dataflow window or
with commands. This aso means that you cannot set breakpoints or single step within
this code. Don’t compile with this switch until you’ re done debugging.

Note that thisis not a speed switch like the “ nodebug” option on many other products.
Use the vopt command (CR-371) to increase simulation speed.

The optional =ports switch hides the ports for the lower levels of your design; it should
be used only to compile the lower levels of the design. If you hide the ports of the top
level you will not be able to simulate the design.

The optional =pli switch prevents the use of pli functionsto interrogate individual
modules for information; this switch may be used at any level of the design. Combine
both switches with =ports+pli or =pli+ports.

-nodebug encrypts entire files. The “protect compiler directive allows you to encrypt
regions within afile. See "Model Sim compiler directives' (Um-155) for details.

- noi ncr
Disables incremental compile previoudly turned on with -incr. Optional.

+nol i bcel
By default all modules compiled from a sourcelibrary are treated as though they contain
a celldefine compiler directive. This option disables this default. The “celldefine
directive only affectsthe PLI accessroutines acc_next_cell and acc_next_cell_load.
Optional.

- nol ogo

Disables the startup banner. Optional.

ModelSim SE Command Reference

CR-364 vlog

- nopsl
Instructs the compiler to ignore embedded PSL assertions. By default viog parses any
PSL assertion statementsit finds in the specified files. See "Compiling and simulating
assertions' (UM-375) for more information.

+nospeci fy
Disables specify path delays and timing checks. Optional.

-note <msg_nunber >[, <msg_nunber >, .. .]
Changes the severity level of the specified message(s) to "note.” Optional. Edit the note
(UM-536) variable in the modelsim.ini file to set a permanent default. See "Changing
message severity level" (Um-546) for more information.

+noti m ngchecks
Removes all timing check entries from the design asiit is parsed. Optional. To disable
checks on individual instances, use the tcheck_set command (CR-275).

- novopt
Forces vlog to produce code if you have set the VoptFlow (Um-534) variablein the
modelsim.ini to 1. Y ou can use this argument in tandem with vsim -novopt to run
Model Sim in debug mode when the default behavior is optimized.

+nowar n<CODE>
Disables warning messages in the category specified by <CODE>. Optiona. Warnings
that can be disabled include the <CODE> name in square brackets in the warning
message. For example,

** WArning: test.v(15): [RDGAN] - Redundant digits in nuneric literal.
Thiswarning message can be disabled by specifying +nowar nRDGN.

-0 | -0l | -4 | -0k
L ower the optimization to a minimum with -OO0 (capital oh zero). Optional. Use thisto
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

Enable PE-level optimization with -O1. Optional.
Enable standard SE optimizations with -O4. Default.

Enable maximum optimization with -O5. Optional. -O5 attempts to optimize loops and
prevents variable assignments in situations where avariable is assigned but is not
actually used. Using the +acc argument to viog will cancel this latter optimization.

Use caution with the -O5 argument. We recommend use of this argument with large
sequential blocks only; other uses may significantly increase compile times.

+opt +[<l'i b>.] <modul e>
Generates optimized code for designs that have been previously compiled un-optimized
(without the -fast option; see above). Optional. The <module> specification is the name
of the top-level design module, and <lib>, which is optional, isthe library in which it
resides. By default, the top-level moduleis searched for in thework library. If the design
has multiple top-level modules, then provide the namesin alist separated by plus signs.
For example,

vl og +opt +t est bench+gl obal s

Any optionsthat are appropriate with -fast are also appropriate with +opt. Specifically,
use the +acc option to enable PLI access, and usethe -L and -L f options to specify the
libraries to be searched.

ModelSim SE Command Reference

vlog CR-365

+pr ot ect
Enables "protect ... ‘endprotect directives. Optional. See "Model Sim compiler
directives' (um-155) for more information.

-pslfile <fil ename>
Identifies an external PSL assertion file to compile along with the Verilog source files.
See "Compiling and simulating assertions" (UM-375) for more information.

-qui et
Disables 'L oading' messages. Optional.

-R [<si mar gs>]
Instructs the compiler to invoke vsim (CR-373) after compiling the design. The compiler
automatically determines which top-level modules are to be simulated. The command
line arguments following -R are passed to the simulator, not the compiler. Place the -R
option at the end of the command line or terminate the simulator command line
arguments with asingle"-" character to differentiate them from compiler command line
arguments.

The-R option is not aVerilog-XL option, but it is used by Model Sim to combine the
compile and simulate phases together as you may be used to doing with Verilog-XL. It
is not recommended that you regularly use this option because you will incur the
unnecessary overhead of compiling your design for each simulation run. Mainly, itis
provided to ease the transition to Model Sim.

-refresh
Regeneratesalibrary image. Optional. By default, thework library isupdated; use-wor k
<library_name> to update a different library. See viog examples for more information.

-source
Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

-SV
Enables System Verilog keywords. Optional. By default Model Sim follows the rules of
IEEE Std 1364-2001 and ignores System Verilog keywords. If asource filehasa™.sv"
extension, Model Sim will automatically parse System Verilog keywords.

- suppress <msg_nunber >[, <nmsg_nunber>,...]
Prevents the specified message(s) from displaying. Optional. Y ou cannot suppress Fatal
or Internal messages. Edit the suppress (UM-536) variable in the modelsim.ini fileto set a
permanent default. See " Changing message severity level” (UM-546) for more
information.

-time
Reports the "wall clock time" vlog takes to compile the design. Optional. Note that if
many processes are running on the same system, wall clock time may differ greatly from
the actual "cpu time" spent on viog.

+t ypdel ays
Selectstypical delaysfrom the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by specifying the same option to the simulator.

-u
Convertsregular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Optional.

ModelSim SE Command Reference

CR-366 vlog

-v <library_file>
Specifies asource library file containing module and UDP definitions. Optional. See
"Verilog-XL compatible compiler arguments’ (UM-119) for more information.

After al explicit filenames on the viog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet
defined. Modules and UDPs within the file are compiled only if they match previously
unresolved references. Multiple -v options are allowed. See additional discussion in the
examples.

-version
Returns the version of the compiler as used by the licensing tools, such as"Model
Technology ModelSim SE vlog 5.5 Compiler 2000.01 Jan 28 2000".

- vl og95conpat
DisablesVerilog 2001 keywords, which ensuresthat code that was valid according to the
1364-1995 spec can still be compiled. By default Model Sim follows the rules of IEEE
Std 1364-2001. Some requirements in 1364-2001 conflict with requirementsin 1364-
1995. Optional. Edit the vlog95compat (Um-526) variablein the modelsim.ini fileto set a
permanent default.

- vopt
Notifies vlog that the vopt command (CR-371) will be run. Asaresult, viog will not
produce code. Optional.

-war ni ng <msg_nunber >[, <msg_nunber >, . ..]
Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning (UM-536) variable in the modelsim.ini fileto set a permanent default. See
"Changing message severity level" (Um-546) for more information.

-work <library_name>
Specifies alogical name or pathname of alibrary that is to be mapped to the logical
library work. Optional; by default, the compiled design units are added to the wor k
library. The specified pathname overrides the pathname specified for work in the project
file.

-y <library_directory>
Specifies a source library directory containing module and UDP definitions. Optional.
See "Verilog-XL compatible compiler arguments” (Um-119) for more information.

After al explicit filenames on the viog command line have been processed, the compiler
uses the -y option to find and compile any modules that were referenced but not yet
defined. Files within this directory are compiled only if the file names match the names
of previously unresolved references. Multiple -y options are allowed. Y ou will need to
specify afile suffix by using -y in conjunction with the +libext+<suffix> option if your
filenames differ from your module names. See additional discussion in the examples.

A 'mportant: Any -y argumentsthat follow a-refr esh argument on avlog command line
areignored. Any -y arguments that come before the -r efr esh argument on avlog
command line are processed.

<fil ename>
Specifies the name of the Verilog source code file to compile. One filenameis required.
Multiple filenames can be entered separated by spaces. Wildcards can be used.

ModelSim SE Command Reference

Examples

vlog CR-367

vl og exanple.vlg
Compiles the Verilog source code contained in the file example.vig.

vl og -nodebug exanple.v
Hidestheinternal data of example.v. Models compiled with -nodebug cannot use any of
the Model Sim debugging features; any subsequent user will not be able to seeinto the
model.

vl og - nodebug=ports level 3.v level 2.v
vl og - nodebug top.v

Thefirst line compiles and hides theinternal data, plus the ports, of the lower-level
design units, level 3.v and level 2.v. The second line compiles the top-level unit, top.v,
without hiding the ports. It isimportant to compile the top level without =ports because
top-level ports must be visible for simulation.

vl og -nodebug=ports+pli level3.v level2.v
vl og -nodebug=pli top.v

The first command hides the internal data, and ports of the design units, level 3.v and
level2.v. In addition it prevents the use of PLI functions to interrogate the compiled
modulesfor information (either =ports+pli or =pli+por tsworksfine for thiscommand).
The second line compiles the top-level unit without hiding the ports but restricts the use
of PLI functions as well.

Note that the =pli switch may be used at any level of the design but =ports should only
be used on lower levels since you can’t simulate without visible top-level ports.

viog -L work -L IibA -L IibB top.v
This command demonstrates how to compile hierarchical modules organized into
separate libraries that have sub-module names that overlap among the libraries. Assume
you have atop-level module top that instantiates module modA from library libA and
module modB from library libB. Furthermore, modA and modB both i nstantiate modules
named cell A, but the definition of cell Acompiledinto libAisdifferent from that compiled
into libB. In this case, you can’'t just specify -L libA - L libB because instantiations of
cell A from modB resolve to the libA version of cellA. See"Library usage" (um-117) for
further information.

vlog top.v -v undl
After compiling top.v, vliog will scan the file und1 for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

vliog top.v +libext+.v+.u -y viog_lib
After compiling top.v, viog will scan theviog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
impliesfilenameswith a.v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

vliog -work nylib -refresh
The -work option specifies mylib asthe library to regenerate. -r efr esh rebuilds the
library image without using source code, allowing model sdelivered ascompiled libraries
without source code to be rebuilt for a specific release of ModelSim.

If your library contains VHDL design units be sure to regenerate the library with the
vcom command (CR-311) using the -r efr esh option as well. See "Regenerating your
design libraries" (um-66) for more information.

ModelSim SE Command Reference

CR-368 vlog

vlog nodulel.v -u -Q0 -incr
The-incr option determines whether or not the module source or compile options have
changed as modulel.v is parsed. If no change is found, the code generation phase is
skipped. Differences in compile options are determined by comparing the compiler
options stored inthe _info filewith the compiler options given. They must match exactly.

ModelSim SE Command Reference

vmake

Syntax

Arguments

Examples

vmake CR-369

The vmake utility allows you to use a UNIX or Windows MAKE program to maintain
libraries. Y ou run vmake on a compiled design library, and the utility outputs a makefile.
Y ou can then run the makefile with aversion of MAKE (not supplied with Model Sim) to
reconstruct the library. A MAKE program is included with Microsoft Visual C/C++, as
well as many other program development environments.

After running the vmake utility, MAKE recompiles only the design units (and their
dependencies) that have changed. Y ou run vmake only once; then you can simply run
MAKE to rebuild your design. If you add new design units or delete old ones, you should
re-run vmake to generate a new makefile.

Thevmakeutility ignoreslibrary objects compiled with -nodebug. Also, thevmake utility
is not supported for use with SystemC.

This command must be invoked from either the UNIX or the Windows/DOS prompt.

vieke
[-fullsrcpath] [-help] [<library_name>] [><makefil e>]

-fullsrcpath
Produces complete source file paths within generated makefiles. Optional. By default
source file paths are relative to the directory in which compiles originally occurred. This
argument makes it possible to copy and evaluate generated makefiles within directories
that are different from where compiles originally occurred.

-hel p
Displays the command’ s options and arguments. Optional.

<l'i brary_name>
Specifies the library name; if noneis specified, then work is assumed. Optional.

><nakefil e>

Specifies the makefile name. Optional.

To produce a makefile for the work library:

vimake >makefil e

Y ou can aso run vmake on libraries other than work:
vireke nylib >nylib. mak

To rebuild mylib, specify its makefile when you run MAKE:
make -f nylib. mak

ModelSim SE Command Reference

CR-370 vmap

vmap

Syntax

Arguments

The vmap command defines a mapping between alogical library name and adirectory by
modifying the modelsim.ini file. With no arguments, vmap reads the appropriate
modelsim.ini file(s) and prints the current logical library to physical directory mappings.
Returns nothing.

vimap
[-help] [-c] [-del] [<logical_nane>] [<path>]

-hel p
Displays the command’ s options and arguments. Optional.

-C
Copies the default modelsim.ini file from the Model Sim installation directory to the
current directory. Optional.

Thisargument is intended only for making a copy of the default modelsim.ini file to the
current directory. Do not use it while making your library mappingsor the mappings may
end up in the incorrect copy of the modelsim.ini.

-de
Deletes the mapping specified by <logical _name> from the current project file. Optional.

<l ogi cal _name>

Specifies the logical name of the library to be mapped. Optional.

<pat h>
Specifies the pathname of the directory to which the library isto be mapped. Optional. If
omitted, the command displays the mapping of the specified logical name.

ModelSim SE Command Reference

vopt CR-371

vopt
The vopt command performs global optimizations on Verilog and mixed-HDL designs
after they have been compiled with vcom or viog.

Thevopt command produces an optimized version of your design in theworking directory.
Y ou provide aname for this optimized version using the -o argument. Y ou can then invoke
vsim directly on that new design unit name.

Inthe course of optimizing adesign, vopt will remove objectsthat are deemed unnecessary
for simulation. For example, line numbers are removed, processes are merged, nets and
registers may be removed, etc. If you need visibility into your design for debugging
purposes, use the +acc argument to conditionally enable visibility for parts of your design.
Note, however, that using +acc may reduce simulation speed.

Syntax

vopt
[+acc[=<spec>] [+<nodul e>[.]]] -work <library_name> <desi gn_unit> -0 <nane>

Arguments

+acc[=<spec>] [+<nmodul e>[.]]
Allows you to maintain design object visibility. Note that using this option may reduce
simulation speed. Optional.

<spec> is one or more of the following characters:

a—Preserve PSL assertion and functional coverage browser data. Note that if a PSL
construct is being driven by a port signal, vopt may replace that signal name with its
higher-level driver. Soin this case, if you prefer thelocal port name, the +acc "p"
option should also be specified (i.e., +acc=ap).

b—Enable access to hits of vector nets. Thisis necessary for PLI applications that
require handlesto individual bits of vector nets. Also, some user interface commands
require this access if you need to operate on net bits.

c—Enable accessto library cells. By default any Verilog module containing a
non-empty specify block may be optimized, and debug and PL 1 access may be limited.
This option keeps module cell visibility.

|—-Enable access to line number directives and process names.
n—Enable access to nets.

p—Enable access to ports. This disables the module inlining optimization, and is
necessary only if you have PLI applications that require accessto port handles.

r—Enabl e access to registers (including memories, integer, time, and real types).
s—-Enable access to system tasks.
t—Enable access to tasks and functions.

If <spec> isomitted, access is enabled for all objects.

<module> is a module name, optionally followed by "." to indicate all children of the
module. Multiple modules are alowed, with each separated by a"+". If no modules are
specified, then all modules are affected.

ModelSim SE Command Reference

CR-372 vopt

Examples

See also

-work <library_name>
Specifies alogical name or pathname of alibrary that is to be mapped to the logical
library wor k. Optional; by default, the optimized output for the design is added to the
work library. The specified pathname overrides the pathname specified for work in the
project file.

<design_unit>
One or more top-level design units that you want to optimize. Required.

-0 <nane>
Specifies aname for the optimized version of the design. Required.

vopt top -o nydesign
vsi m nydesi gn

Runs optimizations on top-level design unit top and produces an optimized design unit
named "mydesign”. The simulator vsim is then invoked on design unit mydesign.

vopt top +acc -o nydesign
Runs optimizations on top-level design unit top but preserves all visibility. Names the
optimized design "mydesign.”

vopt top +acc+foo -0 nydesign
Runs optimizations on top-level design unit top but preserves visibility on sub-module
foo. Names the optimized design "mydesign.”

vopt top +acc+foo. -o nydesign
Runs optimizations on top-level design unit top but preserves visibility on sub-module
foo and all its children.

vopt top +acc=rn -0 nydesign
Runs optimizations on top-level design unit top but enables net and register accessin al
modules in the design. Names the optimized design "mydesign.”

"Optimizing Verilog designs' (Um-124),

ModelSim SE Command Reference

vVSsim

Syntax

vsim CR-373

The veim command is used to invoke the VSIM simulator, or to view the results of a
previous simulation run (when invoked with the -view switch). Y ou can simulateaVHDL
configuration or an entity/architecture pair; aVerilog module or configuration; a SystemC
module; or an optimized design. If you specify aVHDL configuration, itisinvalid to
specify an architecture. During elaboration vsim determinesif the source has been
modified since the last compile.

To manually interrupt design elaboration use the Break key or <Ctrl-c> from a shell.

Y ou can invoke vsim from a command prompt or in the Transcript pane of the Main
window. Y ou can also invoke it from the GUI by selecting Simulate > Start Simulation.

vsim
[-assertfile <filename>] [-assune] [-c] [-csupv2] [-conpress_el ab]
[-coverage] [-do “<command_string>" | <nacro_file_nane>]

[+dunpport s+di rection] [+dunpports+uni que]
[-elab <filenane>] [-elab_cont <filenane>]

[-elab_defer_fli] [-error <msg_nunber>[, <msg_nunber>,...]] [-f <fil ename>]
[-filemap_el ab <HDLfi | ename>=<NEW i | enane>]
[-g<Nane>=<Val ue> ...] [-G<Nane>=<Value> ...] [-gblso <filenane>]

[-help] [-i] [-installcolormap] [-keepl oaded] [-keepl oadedrestart]
[-keepstdout] [-1 <filenane>] [-lib <libname>] [<license_option>]
[-1oad_el ab <filenane>] [-nenprof] [-nenprof+file=<filenane>]
[-menprof +fileonly=<filenane>] [-nultisource_delay min | nmax | latest]
[+mul tisource_int_del ays] [-noassune] [-noconpress] [+no_notifier]
[-nopsl] [+no_tchk_nsg] [-note <nsg_nunber>[, <nsg_nunber>,...]]

[+noti m ngchecks]

[-novopt] [+pul se_int_e/<percent>] [+pulse_int_r/<percent>] [-quiet]
[-restore <filenane>] [+sdf_iopath_to_primok]

[-sdfmin | -sdftyp | -sdfmax[@del ayScal e>] [<instance>=]<sdf_fil enane>]
[-sdf maxerrors <n>] [-sdfnoerror] [-sdfnowarn] [+sdf_verbose]
[-suppress <nsg_nunber>[, <nsg_nunber>,...]]

[-t [<multiplier>]<tine_unit>] [-tag <string>] [-title <title>]
[-trace_foreign <int>] [+transport_int_del ays]
[-vedstim[<instance>=]<filenane>] [-version]

[-view [<dat aset _nane>=] <W.F_filename>] [-vopt] [-voptargs="<args>"]

[-warni ng <nsg_nunber >[, <nsg_nunber>,...]] [-Wf <fil enanme>]

[-wW fcollapsedelta] [-w fcollapsetinme] [-w fconpress]

[-w fopt] [-w fnocol | apse] [-w fnoconpress] [-w fnoopt]
[-Wfslim<size>] [-wlftlim<duration>]

[-absentisenpty] [-foreign <attribute>] [-nocollapse] [-nofileshare]
[-noglitch] [+no_glitch_nmsg] [-std_input <filenanme>]

[-std_output <filenane>] [-strictvital] [-vcdread <fil enane>]
[-vital 2. 2b]

[+al t _pat h_del ays] [+del ayed_ti m ng_checks]

[- dpi exportobj <objfile>] [-extend_tcheck_data_linmit <percent>]
[-extend_tcheck_ref _|inmt <percent>]

[-hazards] [+int_delays] [-L <library_name> ...] [-Lf <library_name> ...]
[+maxdel ays] [+mi ndel ays] [+no_cancell ed_e_nsg] [+no_neg_t chk]
[+no_notifier] [+no_path_edge] [+no_pul se_nmsg] [-no_risefall _del aynet s]
[+no_show cancel | ed_e] [+no_tchk_nsg] [+nosdferror] [+nosdfwarn]

[+nospeci fy] [+nowarn<CODE>] [+ntc_warn] [-pli "<object list>"]

[+<pl usarg>] [+pul se_e/ <percent>] [+pul se_e_styl e_ondetect]

[+pul se_e_styl e_onevent] [+pul se_r/<percent>] [+sdf_nocheck_celltype]

ModelSim SE Command Reference

CR-374 vsim

[+show cancel l ed_e] [-sv_lib <shared_obj>] [-sv_liblist <filename>]
[-sv_root <dirname>] [+transport_path_del ays] [+typdel ays]
[-v2k_int_del ays]

[-sclib] [-sc_arg <string> ...]

[<library_nane>. <desi gn_unit >]

VSIM arguments are grouped by language:

Arguments, all languages (CR-374)
Arguments, VHDL (CR-384)
Arguments, Verilog (CR-385)
Arguments, SystemC (CR-389)
Arguments, object (CR-390)

Arguments, all languages

-assertfile <fil enane>

Designates an aternative file for recording assertion messages. Optional. By default
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (see "Creating atranscript file" (UM-537)).

-assune

Simulates PSL assume directives as though they were assert directives. Optional.
Default. This option may also be specified with the SimulateA ssumeDirectives (UM-533)
variable in the modelsim.ini file. See "Processing assume directivesin simulation” (Um-
363) for more information.

-C

Specifies that the simulator isto be run in command-line mode. Optional . Also see
"Model Sim modes of operation” (uM-27) for more information.

-csupv2

Instructsvsim to use /usr/lib/libCsup_v2.d for shared object loading. Optional. Use this
argument only on HP-UX 11.00 when you have compiled FLI/PLI/VPI C++ code with
aCC's-AA option. This option may also be specified with the UseCsupV 2 (UM-534)
variable in the modelsim.ini file.

-conpress_el ab

Compresses an elaboration file when it is created. Optional. See "Simulating with an
elaboration file" (UM-138) for more information.

-coverage

Enables Code Coverage statistics collection during simulation. Optional . See Chapter 13
- Measuring code coverage for more information.

-do “<command_string>" | <macro_file_name>

Instructs vsim to use the command(s) specified by <command_string> or the macro file
named by <macro_file_name> rather than the startup file specified in the .ini file, if any.
Optional. Multiple commands should be separated by semi-colons (;).

+dunpport s+di rection

Modifies the format of extended VCD files to contain direction information. Optional.

ModelSim SE Command Reference

vsim CR-375

+dunpport s+uni que
Generates unique VCD variable names for portsin a VCD file, even if those ports are
connected to the same collapsed net. Optional.

-elab <fil ename>
Creates an elaboration file for use with -load_elab. Optional. See " Simulating with an
elaboration file" (um-138) for more information.

-elab_cont <fil ename>
Creates an elaboration file for use with -load_elab and then continues the simulation.
Optional.

-el ab_defer_fl
Deferstheinitialization of FLI models until the load of the elaboration file. Use this
argument along with -elab to create elaboration files for designs with FLI models that
don't support checkpoint/restore. Note that FLI models sensitive to design load ordering
may still not work correctly even if you use this argument. See " Simulating with an
elaboration file" (um-138) for more information.

-error <msg_nunber>[, <msg_nunber>, .. .]
Changesthe severity level of the specified message(s) to "error.” Optional. Edit the error
(UM-536) variable in the modelsim.ini file to set a permanent default. See "Changing
message severity level" (Um-546) for more information.

-f <fil ename>
Specifiesafilewith more command line arguments. Optional . Allows complex argument
strings to be reused without retyping. Environment variable expansion (for examplein a
pathname) does not occur in -f files.

-filemap_el ab <HDLfi | ename>=<NEW i | enanme>
Defines afile mapping during -load_elab that lets you change the stimulus. Optional.
See "Simulating with an elaboration file" (Um-138) for more information.

- g<Nane>=<Val ue> ..
Assignsavalue to al specified VHDL generics and Verilog parameters that have not
received explicit values in generic maps, instantiations, or via defparams (such as top-
level generics/parameters and generics/parameters that would otherwise receive their
default values). Optional. Note there is no space between -g and <Name>=<Value>.

"Name" is the name of the generic/parameter, exactly asit appearsin the VHDL source
(caseisignored) or Verilog source. "Value" is an appropriate value for the declared data
type of aVHDL generic or any legal valuefor aV erilog parameter. Make surethe Vaue
you specify for aVHDL generic is appropriate for VHDL declared data types. VHDL

type mismatches will cause the specification to beignored (including no error messages).

No spaces are allowed anywhere in the specification, except within quotes when
specifying a string value. Multiple -g options are allowed, one for each generic/
parameter.

Name may be prefixed with arelative or absolute hierarchical path to select genericsin
an instance-specific manner. For example,

Specifying -g/top/ul/tpd=20ns on the command line woul d affect only thetpd generic on
the /top/ul instance, assigning it a value of 20ns.

Specifying -gul/tpd=20ns affects the tpd generic on al instances named ul.
Specifying -gtpd=20ns affects all generics named tpd.

ModelSim SE Command Reference

CR-376 vsim

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ram ul/tpd_hl =10ns -gtpd_hl=15ns top

Thiscommand setstpd_hl to 10nsfor the /top/ranmyul instance. However, al other tpd_hl
generics on other instances will be set to 15ns.

Limitation: In general, generics/parameters of composite type (arrays and records)
cannot be set from the command line. However, you can set string arrays, std_logic
vectors, and bit vectorsiif they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this
command from a shell, put aforward tick around the string. For example:

-gstrgen=""This is a string"

If working within the Model Sim GUI, you would enter the command as follows:

{-gstrgen="This is a string"}

- G<Name>=<Val ue> ...
Same as-g (see above) except that it will also override generics/parameters that received
explicit values in generic maps, instantiations, or via defparams. Optional. Note thereis
no space between -G and <Name>=<Vaue>.

-gbl so <fil enane>
On UNIX platforms, loads PLI/FLI shared objects with global symbol visibility.
Essentially al data and functions are exported from the specified shared object and are
available to be referenced and used by other shared objects. This option may also be
specified with the Global SharedObjectsList (UmM-532) variable in the modelsim.ini file.
Optional.

- gui
Starts the Model Sim GUI without loading a design. Optional.

-hel p
Displays the command’ s options and arguments. Optional.

-i
Specifies that the simulator isto be run in interactive mode. Optional.

-install col or map
For UNIX only. Causes vsim to use its own colormap so as not to hog al the colors on
the display. Thisis similar to the -install switch on Netscape. Optional.

- keepl oaded
Preventsthe simulator from unloading/rel oading any FLI/PL1/VPI shared libraries when
it restartsor loadsanew design. Optional. The shared librarieswill remain loaded at their
current positions. User application code in the shared libraries must reset itsinternal state
during arestart in order for thisto work effectively.

- keepl oadedrestart
Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries
during arestart. Optional. The shared libraries will remain loaded at their current

ModelSim SE Command Reference

vsim CR-377

positions. User application codein the shared libraries must reset itsinternal state during
arestart in order for thisto work effectively.

We recommend using this option if you’ll be doing warm restores after arestart and the
user application code has set callbacksin the simulator. Otherwise, the callback function
pointers might not be valid if the shared library isloaded into a new position.

- keepst dout
For use with foreign programs. Instructs the simulator to not redirect the stdout stream to
the Main window. Optional.

-1 <fil ename>
Saves the contents of the Transcript pane to <filename>. Optional. Default istaken from
the TranscriptFile (UMm-534) variable (initially set to transcript) in the modelsim.ini.

-1ib <libname>
Specifies the default working library where vaim will look for the design unit(s).
Optional. Default is "work™.

<license_option>
Restricts the search of the license manager. Optional. Use one of the following options.

<license_option> Description

-lic_nomgc exclude any MGC licenses from the search

-lic_nomti exclude any MTI licenses from the search

-lic_noqueue do not wait in queue when licenseis unavailable

-lic_plus checks out ModelSim PLUS (VHDL and Verilog)
license immediately after invocation

-lic_vhdl checks out ModelSim VHDL license immediately after
invocation

-lic_vlog checks out Model Sim VL OG license immediately after
invocation

The options may al so be specified with the License (Um-532) variable in the modelsim.ini
file. Note that settings made from the command line are additive to options set in the
License variable.

-l oad_el ab <fil enanme>
Loads an elaboration file that was created with -elab. Optional. See " Simulating with an
elaboration file" (UM-138) for more information.

- menpr of
Causes memory allocation data to be collected during elaboration and simulation.
Optional.

-menprof +fi | e=<fil ename>
Saves memory profile datato the named file and makes the data available for viewing
and reporting during the current simulation. The file can be used for archival or
comparison purposes. Optional.

ModelSim SE Command Reference

CR-378 vsim

-menpr of +fi | eonl y=<fil enanme>
Saves memory profile data to the named file only. The file can be read in later with the
profilereload command (CR-230) for analysis. This modeis useful for large designs,
when the design plusinternal profiling datawould use up too much memory. Optional.

-mul tisource_delay min | max | |atest
Controls the handling of multiple PORT or INTERCONNECT constructs that terminate
at the same port. Optional. By default, the Module Input Port Delay (MIPD) is set to the
max value encountered in the SDF file. Alternatively, you may choose the min or latest
of thevaues. If you have aV erilog design and want to model multipleinterconnect paths
independently, use the +multisource_int_delays argument.

+mul ti source_int _del ays
Enables multisource interconnect delay with pulse handling and transport del ay
behavior. Works for both Verilog and VITAL cells. Optional.

Use this argument when you have interconnect datain your SDF file and you want the
delay on each interconnect path modeled independently. Pulse handling is configured
using the +pulse_int_e and +pulse_int_r switches (described below).

The +multisource_int_delays argument cannot be used if you compiled using the
-novital argument to vcom. The -novital argument instructs vcom to implement VITAL
functionality using VHDL code instead of accelerated code, and multisource
interconnect delays cannot be implemented purely within VHDL.

- noassune
Prevents PSL assume directivesfrom being simulated. Optional. Thisoption may also be
specified with the SimulateA ssumeDirectives (UM-533) variable in the modelsim.ini file.
See "Processing assume directives in simulation" (Um-363) for more information.

-noconpress
Causes VSIM to create uncompressed checkpoint files. Optional. This option may also
be specified with the CheckpointCompressM ode (UM-531) variable in the model sim.ini
file.

+no_notifier
Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and
the notifier usually causes a UDP to propagate an X. This argument suppresses X
propagation in both Verilog and VITAL for the entire design. Y ou can suppress X
propagation on individual instances using the tcheck _set command (CR-275).

- nopsl
Instructs Model Sim to ignore any PSL assertions that were compiled with the design. By
default vsim automatically invokes the PSL assertion engine at runtime if any assertions
were compiled with the design.

+no_t chk_nsg
Disables error messages generated when timing checks are violated. Optional. For
Verilog, it disables messages issued by timing check system tasks. For VITAL, it
overrides the MsgOn arguments and generics.

Notifier registers are still toggled and may result in the propagation of Xsfor timing
check violations. Y ou can disable individual messages using the tcheck _set command
(CR-275).

ModelSim SE Command Reference

vsim CR-379

-note <msg_nunber >[, <msg_nunber >, .. .]
Changes the severity level of the specified message(s) to "note.” Optional. Edit the note
(UM-536) variable in the modelsim.ini file to set a permanent default. See "Changing
message severity level" (Um-546) for more information.

+noti m ngchecks
Disables Verilog and VITAL timing checks for faster simulation. Optional. By defaullt,
Verilog timing check system tasks ($setup, $hold.,...) in specify blocks are enabled. For
VITAL, the timing check default is controlled by the ASIC or FPGA vendor, but most
default to enabled. Y ou can disable individual checks using the tcheck _set command
(CR-275).

- novopt
Prevents M odel Sim from running the vopt command (CR-371) automatically. If you have
set the V optFlow (UM-534) variable to 1 in the modelsim.ini file, vaim will automatically
runvopt if you didn’tinvoke it manually. Thisargument allowsyou to run ModelSimin
debug mode when the default mode is optimized.

+pul se_i nt _e/ <percent >
Controls how pulses are propagated through interconnect delays, where <percent> isa
number between 0 and 100 that specifiesthe error limit as a percentage of the
interconnect delay. Optional. Used in conjunction with +multisource_int_delays (see
above). This option works for both Verilog and VITAL cells, though the destination of
the interconnect must be a Verilog cell. The source may be VITAL or Verilog.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_int_r/<percent>
below) propagates to the output as an X. If the rejection limit is not specified, then it
defaults to the error limit. For example, consider an interconnect delay of 10 along with
a+pulse_int_e/80 option. The error limit is 80% of 10 and the rgjection limit defaultsto
80% of 10. Thisresultsin the propagation of pulses greater than or equal to 8, while al
other pulses are filtered.

+pul se_i nt _r/<percent >
Controls how pulses are propagated through interconnect delays, where <percent> isa
number between 0 and 100 that specifies the rejection limit as a percentage of the
interconnect delay. Optional. This option works for both Verilog and VITAL cells,
though the destination of the interconnect must be a Verilog cell. The source may be
VITAL or Verilog.

A pulse less than the rejection limit is filtered. If the error limit is not specified by
+pulse_int_ethen it defaults to the rejection limit.

-qui et
Disable 'L oading' messages during batch-mode simulation. Optional.

-restore <fil enane>
Specifiesthat vsim isto restore a simulation saved with the checkpoint command (CR-

93). Optional.

Y ou must restore vsim under the same environment in which you did the checkpoint.
Thismeans not only the sametype of machine and OS and at |east the same memory size,
but a so the same vaim environment such as GUI vs. command line mode.

ModelSim SE Command Reference

CR-380 vsim

+sdf _i opath_to_pri m ok
Preventsvsim fromissuing an error when it cannot locate specify path delaysto annotate.
If you specify this argument, IOPATH statements are annotated to the primitive driving
the destination port if a corresponding specify path is not found. Optional. See " SDF to
Verilog construct matching” (um-445) for additional information.

-sdfmn | -sdftyp | -sdfmax[@del ayScal e>] [<instance>=]<sdf_fil ename>
Annotates VITAL or Verilog cells in the specified SDF file (a Standard Delay Format
file) with minimum, typical, or maximum timing. Optional.

The optional argument @<delayScale> scales al values by the specified value. For
example, if you specify -sdf max@1.5..., all maximum valuesin the SDF file will be
scaled to 150% of their original value.

The use of [<instance>=] with <sdf_filename> isaso optional; it is used when the
backannotation is not being done at the top level. See " Specifying SDF files for
simulation” (UM-440).

- sdf maxerrors <n>
Controls the number of Verilog SDF missing instance messages that will be emitted
before terminating vsim. Optional. <n> is the maximum number of missing instance
error messages to be emitted. The default number is 5.

- sdf noerror
Errorsissued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

- sdf nowar n
Disableswarnings from the SDF reader. Optional. See Chapter 4 - VHDL simulation for
an additional discussion of SDF.

+sdf _ver bose
Turns on the verbose mode during SDF annotation. The Transcript pane provides
detailed warnings and summaries of the current annotation. Optional.

- suppress <msg_nunber >[, <nmsg_nunber>, ...]
Prevents the specified message(s) from displaying. Optional. Y ou cannot suppress Fatal
or Internal messages. Edit the suppress (UM-536) variable in the modelsim.ini fileto set a
permanent default. See " Changing message severity level" (UM-546) for more
information.

-t [<multiplier>]<time_unit>
Specifies the simulator time resolution. Optional. <time_unit> must be one of the
following:

fs, ps, ns, us, ms, sec

The default is 1ns; the optional <multiplier> may be 1, 10 or 100. Note that thereis no
space between the multiplier and the unit (i.e., 10fs, not 10 fs).

If you omit the -t argument, the default time resolution depends on design type: in a
Verilog design with ‘timescal e directives, the minimum time precision is used (see
"Simulator resolution limit" (um-129) for further details); in Verilog designs without any
timescale directives, or in aVHDL or mixed design, the value specified for the
Resolution (UM-533) variable in the modelsim.ini file is used.

ModelSim SE Command Reference

vsim CR-381

Once you' ve begun simulation, you can determine the current simulator resolution by
invoking the report command (CR-244) with the ssmulator state option.

-tag <string>
Specifies astring tag to append to foreign trace filenames. Optional. Used with the
-trace foreign <int> option. Used when running multiple traces in the same directory.
See the Model Sm FLI Reference for more information.

-title <title>
Specifies the title to appear for the ModelSim Main window. Optional. If omitted the
current Model Sim version is the window title. Useful when running multiple
simultaneous simulations. Text strings with spaces must be in quotes (e.g., "my title").

-trace_foreign <int>
Creates two kinds of foreign interface traces: alog of what functions were called, with
the value of the arguments, and the results returned; and a set of C-languagefilesto
replay what the foreign interface side did.

The purpose of thelogfileisto aid the debugging of your FLI/PLI/VPI code. The primary
purpose of the replay facility isto send the replay file to MTI support for debugging co-
simulation problems, or debugging problems for which it isimpractical to send the FLI/
PLI/VPI code. See the Model Sm FLI Reference for more information.

+transport _int_del ays
Sel ects transport mode with pulse control for single-source nets (one interconnect path).
Optional. By default interconnect delays operatein inertial mode (pulses smaller thanthe
delay arefiltered). In transport mode, narrow pulses are propagated through interconnect
delays.

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. This option
works independently from +multisour ce_int_delays.

-vedstim [<i nstance>=] <fil ename>
SpecifiesaVCD filefrom which to re-simulate the design. Optional. The VCD file must
have been created in a previous Model Sim simulation using the ved dumpports
command (CR-295). See "Using extended VCD as stimulus’ (UM-458) for more
information.

-version
Returns the version of the ssmulator as used by the licensing tools, such as "Model
Technology Model Sim SE vsim 5.5 Simulator 2000.01 Jan 28 2000".

-vi ew [<dat aset _name>=] <W.F_fi | ename>
Specifiesawavelog format (WLF) filefor vsim to read. Allowsyou to use vsim to view
the results from an earlier simulation. The Structure, Objects, Wave, and List windows
can be opened to |ook at theresults stored inthe WLF file (other Model Sim windows will
not show any information when you are viewing a dataset). See additional discussion in
"Examples’ (CR-391).

-vopt
Instructs vsim to run the vopt command (CR-371) automatically if vopt wasn't manually
invoked. Optional. You can make this the default behavior. See "Making the optimized
flow the default” (um-125) for more information.

ModelSim SE Command Reference

CR-382 vsim

-vopt ar gs="<ar gs>"
Specifies arguments that vsim should pass to vopt (CR-371) when running vopt
automatically (see "Making the optimized flow the default” (um-125)). The primary
purpose of this argument isto pass +acc arguments. Optional.

-war ni ng <msg_nunber >[, <msg_nunber >, . ..]
Changes the severity level of the specified message(s) to "warning." Optional. Edit the
warning (UM-536) variable in the modelsim.ini fileto set a permanent default. See
"Changing message severity level" (Um-546) for more information.

-w f <fil ename>
Specifies the name of the wave log format (WLF) fileto create. The default is vsim.wif.
Optional. Corresponding .ini file entry is WL FFilename.

-wl fcoll apsedel ta
Instructs Model Sim to record valuesin the WLF file only at the end of each simulator
deltastep. Any sub-deltavalues areignored. May dramatically reduce WLF file size.
This option may also be specified with the WL FCollapseM ode (Um-534) variablein the
modelsim.ini file. Default.

-wl fcoll apsetinme
Instructs Model Sim to record valuesin the WLF file only at the end of each simulator
time step. Any delta or sub-deltavalues areignored. May dramatically reduce WLF file
size. This option may also be specified with the WL FCollapseM ode (UM-534) variablein
the modelsim.ini file. Optional.

-w fconpress
Creates compressed WLF files. Default. Use -wlfnocompr ess to turn off compression.

-w f opt
Optimizesthe display of waveformsin the Wave window. Default. Optional. WLF files
created prior to Model Sim version 5.8 cannot take advantage of the optimization. This
option may also be specified with the WLFOptimize (Um-535) variablein the
modelsim.ini file.

-w fnocol | apse
Instructs Model Sim to preserve al events and event order. May result inrelatively larger
WLF files. This option may also be specified with the WLFCollapseM ode (UM-534)
variable in the modelsim.ini file. Optional.

-w fnoconpr ess
Causes vsim to create uncompressed WLF files. Optional. Beginning with version 5.5,
WLF files are compressed by default in order to reduce file size. This may slow
simulation speed by one to two percent. Y ou may want to disable compression to speed
up simulation or if you are experiencing problems with faulty datain the resulting WLF
file. This option may also be specified with the WLFCompress (Um-535) variablein the
modelsim.ini file.

-w f noopt
Disables optimization of waveform display in the Wave window. Optional.
Corresponding .ini file entry is WLFOptimize.

-w fslim<size>
Specifies asize restriction in megabytes for the event portion of the WLF file. Optional.
The default isinfinite size (0). The <size> must be an integer.

ModelSim SE Command Reference

vsim CR-383

Note that a WLF file contains event, header, and symbol portions. The sizerestrictionis
placed on the event portion only. When Model Sim exits, the entire header and symbol
portion of the WLF fileiswritten. Consequently, the resulting file will be larger than the
size specified with -wlifslim.

If used in conjunction with -wiftlim, the more restrictive of the limits takes precedence.

This option may also be specified with the WLFSizeLimit (uM-535) variable in the
modelsim.ini file.

ModelSim SE Command Reference

CR-384 vsim

-w ftlim<duration>
Specifies the duration of simulation time for WLF file recording. Optional. The default
isinfinite time (0). The <duration> is an integer of simulation time at the current
resol ution; you can optionally specify the resolution if you place curly braces around the
specification. For example,

{5000 ns}

sets the duration at 5000 nanoseconds regardless of the current simulator resolution.

The time range begins at the current simulation time and moves back in simulation time
for the specified duration. For example,

vsim-w ftlim 5000
writes at least the last 5000ns of the current simulation to the WLF file (the current
simulation resolution in this case is ns).
If used in conjunction with -wlfslim, the more restrictive of the limits will take effect.

This option may also be specified with the WLFTimeLimit (um-535) variablein the
modelsim.ini file.

The -wlfslim and -wliftlim switches were designed to help userslimit WLF file sizesfor
long or heavily logged simulations. When small values are used for these switches, the
values may be overridden by theinternal granularity limits of the WLF file format.

Arguments, VHDL

-absenti senpty
Causes VHDL files opened for read that target non-existent filesto be treated as empty,
rather than Model Sim issuing fatal error messages. Optional.

-foreign <attribute>
Specifies the foreign module to load. Optional. <attribute> is a quoted string consisting
of the name of a C function and a path to a shared library. For example,

vsim-foreign "c_init for.sl"

Y ou can load up to ten foreign modules. Syntax for the attribute is further described in
the Introduction chapter of the ModelSm FLI Reference.

-nocol | apse
Disables the optimization of internal port map connections. Optional.

-nofileshare
Turns off file descriptor sharing. Optional. By default Model Sim shares a file descriptor
for all VHDL files opened for write or append that have identical names.

-noglitch
Disables VITAL glitch generation. Optional.

See Chapter 4 - VHDL simulation for additional discussion of VITAL.

+no_glitch_nsg

Disable VITAL glitch error messages. Optional.

-std_i nput <fil enanme>

Specifies the file to use for the VHDL TextlO STD_INPUT file. Optional.

ModelSim SE Command Reference

vsim CR-385

-std_out put <fil ename>
Specifies the fileto use for the VHDL TextlO STD_OUTPUT file. Optional.

-strictvita
Specifies to exactly match the VITAL package ordering for messages and delta cycles.
Optional. Useful for eliminating delta cycle differences caused by optimizations not
addressed in the VITAL LRM. Using this argument negatively impacts simulator
performance.

-vcdread <fil ename>
Simulates the VHDL top-level design from the specified VCD file. Optional. This
argument isincluded for backwards compatibility. Resimulationsin Model Sim versions
5.5¢ and newer should use the -vedstim argument. See " Simulating with input values
fromaVCD file" (um-458) for more details.

-vital 2. 2b
Selects SDF mapping for VITAL 2.2b (default is VITAL 2000). Optional.

Arguments, Verilog

+al t _pat h_del ays
Configures path delaysto operatein inertial mode by default. Optional. Ininertial mode,
apending output transition is cancelled when anew output transition is scheduled. The
result is that an output may have no more than one pending transition at atime, and that
pulses narrower than the delay are filtered. The delay is selected based on the transition
from the cancelled pending value of the net to the new pending value. The
+alt_path_delays option modifies the inertial mode such that adelay is based on a
transition from the current output value rather than the cancell ed pending value of thenet.
This option has no effect in transport mode (see +pulse_e/<per cent> and
+pulse_r/<percent>).

+del ayed_ti m ng_checks
Causestiming checksto be performed on the delayed versions of input ports (used when
there are negative timing check limits). Optional.

- dpi exportobj <objfile>
Generate specified DPI export object file. Required only for Windows, RS6000, and
RS64 platforms.

-extend_tcheck_data_limt <percent>

-extend_tcheck_ref_limt <percent>
Causes a one-time extension of qualifying data or reference limitsin an attempt to
provide adelay net solution prior to any limit zeroing. A limit qualifiesif it bounds a
violation region which does not overlap arelated violation region.

<percent> is the maximum percent of limit relaxation.

- hazards
Enables event order hazard checking in Verilog modules. Optional. Y ou must aso
specify this argument when you compile your design with vlog (CR-358). See "Hazard
detection” (Um-135) for more details.

A | mportant: Enabling -hazar dsimplicitly enables the -compat argument. As aresult,
using this argument may affect your simulation results.

ModelSim SE Command Reference

CR-386 vsim

+i nt _del ays
Optimizes annotation of interconnect delays for designs that have been compiled using
-fast (see vlog command (CR-358)). Optional. This argument causes vsim to insert
"placeholder” delay elements at optimized cell inputs, resulting in faster backannotation
of interconnect delays from an SDF file.

-L <library_name> ...
Specifies the library to search for design units instantiated from Verilog. See"Library
usage" (um-117) for more information. If multiple libraries are specified, each must be
preceded by the -L option. Libraries are searched in the order in which they appear on
the command line.

-Lf <library_name> ...
Same as-L but libraries are searched before ‘ uselib directives. See "Library usage” (UM-
117) for more information. Optional.

+maxdel ays
Sel ects the maximum value in min:typ:max expressions. Optional. The default isthe
typical value. Has no effect if you specified the min:typ:max selection at compile time.

+m ndel ays
Sel ects the minimum value in min:typ:max expressions. Optional. The default isthe
typical value. Has no effect if you specified the min:typ:max selection at compile time.

+no_cancel | ed_e_nsg
Disables negative pul se warning messages. Optional. By default vsim issues awarning
and then filters negative pul ses on specify path delays. Y ou can drivean X for anegative
pulse using +show_cancelled_e.

+no_neg_t chk
Disables negative timing check limits by setting them to zero. Optional. By default
negative timing check limits are enabled. Thisisjust the opposite of Verilog-XL, where
negative timing check limits are disabled by default, and they are enabled with the
+neg_tchk option.

+no_notifier
Disables the toggling of the notifier register argument of all timing check system tasks.
Optional. By default, the notifier is toggled when there is atiming check violation, and
the notifier usually causes a UDP to propagate an X. This argument suppresses X
propagation on timing violations for the entire design. Y ou can suppress X propagation
on individual instances using the tcheck _set command (CR-275).

+no_pat h_edge
Causes Model Sim to ignore the input edge specified in apath delay. Optional. The result
of thisargument is that al edges on the input are considered when sel ecting the output
delay. Verilog-XL aways ignores the input edges on path delays.

+no_pul se_nsg
Disables the warning message for specify path pulse errors. Optional. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection
limit and pulse error limit set with the +pulse_r and +pulse_eoptions. A path pulse error
resultsin awarning message, and the pulse is propagated as an X. The +no_pulse msg
option disables the warning message, but the X is till propagated.

ModelSim SE Command Reference

vsim CR-387

-no_risefall_del aynets
Disables therise/fall delay net delay negative timing check algorithm. Optional. This
argument is provided to return Model Sim to its pre-6.0 behavior where violation regions
must overlap in order to find adelay net solution. In 6.0 versions and later, ModelSim
uses separate rise/fall delays, so violation regions need not overlap for a delay solution
to be found.

+no_show_cancel |l ed_e
Filters negative pulses on specify path delays so they don’t show on the output. Default.
Use +show_cancelled_eto drive apulse error state.

+no_t chk_nsg
Disables error messages issued by timing check system tasks when timing check
violations occur. Optional. Notifier registers are still toggled and may result in the
propagation of Xsfor timing check violations. You can disable individual messages
using the tcheck_set command (CR-275).

+nosdferror
Errorsissued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

+nosdf war n
Disables warnings from the SDF annotator. Optional.

+nospeci fy
Disables specify path delays and timing checks. Optional.

+nowar n<CODE>
Disables warning messages in the category specified by <CODE>. Optiona. Warnings
that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

** WArning: (vsim3017) test.v(2): [TFMPC] - Too few port connections
Expected <mp, found <n>.

Thiswarning message can be disabled with +nowarnTFM PC.

+nt c_warn
Enables warning messages from the negative timing constraint algorithm. Optional. By
default, these warnings are disabled.

Thisalgorithm attemptsto find aset of delaysfor thetiming check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If there is no solution for this set of limits, then the algorithm sets one of
the negative limits to zero and recal culates the delays. This process is repeated until a
solution isfound. A warning message isissued for each negative limit set to zero.

ModelSim SE Command Reference

CR-388 vsim

-pli "<object list>"
L oads a space-separated list of PLI shared objects. Optional. Thelist must be quoted if it
contains more than one object. Thisis an alternative to specifying PLI objectsin the
Veriuser entry in the modelsim.ini file, see "Preference variables located in INI files'
(UM-524). Y ou can use environment variables as part of the path.

+<pl usar g>
Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs(). Optional.

+pul se_e/ <per cent >
Controls how pulses are propagated through specify path delays, where <percent> isa
number between 0 and 100 that specifiesthe error limit as a percentage of the path delay.
Optional.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_r/<percent>)
propagates to the output as an X. If the rgjection limit is not specified, then it defaults to
theerror limit. For example, consider apath delay of 10 along with a+pulse_e/80 option.
Theerror limit is 80% of 10 and the rejection limit defaultsto 80% of 10. Thisresultsin
the propagation of pulses greater than or equal to 8, while al other pulses are filtered.
Note that you can force specify path delaysto operate in transport mode by using the
+pulse_e/0 option.

+pul se_e_styl e_ondet ect
Selects the "on detect” style of propagating pulse errors (see +pulse_e). Optional. A
pulse error propagates to the output as an X, and the "on detect” styleisto schedule the
X immediately, as soon asit has been detected that a pul se error has occurred. "on event”
styleisthe default for propagating pulse errors (see +pulse_e_style onevent).

+pul se_e_styl e_onevent
Selectsthe "on event” style of propagating pulse errors (see +pulse_e). Default. A pulse
error propagates to the output as an X, and the "on event” styleisto schedule the X to
occur at the same time and for the same duration that the pulse would have occurred if it
had propagated through normally.

+pul se_r/ <percent >
Controls how pulses are propagated through specify path delays, where <percent> isa
number between 0 and 100 that specifies the rejection limit as a percentage of the path
delay. Optional.

A pulse less than the rejection limit is suppressed from propagating to the output. If the
error limit is not specified by +pulse_e then it defaults to the rejection limit.

+sdf _nocheck_cel I type
Disables the error check a for mismatch between the CELLTY PE name in the SDF file
and the module or primitive name for the CELL instance. It isan error if the names do
not match. Optional.

+show_cancel | ed_e
Drives apulse error state (' X") for the duration of a negative pulse on a specify path
delay. Optional. By default Model Sim filters negative pul ses.

ModelSim SE Command Reference

vsim CR-389

-sv_lib <shared_obj>
Specifiesthe name of the DPI shared object with no extension. Required for use with DPI
import libraries.

-sv_liblist <filename>
Specifies the name of abootstrap file containing names of DPI shared objects to load.
Optional.

-sv_root <dirname>
Specifies the directory name to be used as the prefix for DPI shared object lookups.
Optional.

+transport _pat h_del ays
Selects transport mode for path delays. Optional. By default, path delays operatein
inertial mode (pulses smaller than the delay are filtered). In transport mode, narrow
pulses are propagated through path delays. Note that this option affects path delays only,
and not primitives. Primitives always operate in inertial delay mode.

+t ypdel ays
Selects the typica value in min:typ:max expressions. Default. Has no effect if you
specified the min:typ:max selection at compile time.

-v2k_int _del ays
Causesinterconnect delaysto be visible at theload modul e port per the IEEE 1364-2001
spec. Optional. By default Model Sim annotates INTERCONNECT delays in a manner
compatiblewith Verilog-XL. If you have $sdf _annotate() callsin your design that are not
getting executed, add the Verilog task $sdf _done() after your last $sdf _annotate() to
remove any zero-delay MIPDs that may have been created (see "Model Sim Verilog
system tasksand functions’ (Um-152) for moreinformation). May be used in tandem with
the +multisour ce_int_delays argument (see above).

Arguments, SystemC

-sclib
Specifiesthe design library where the SystemC shared library is created. By default, the
SystemC shared library is created in the logical work library. This option is only
necessary when the shared library is compiled in adesign library other than the logical
work directory (viasccom -link -work <lib>). For moreinformation on the sccom -link
and -work arguments, see ScCOm (CR-254).

-sc_arg <string> ...
Specifies a string representing a startup argument which is subsequently accessible from
within SystemC viathesc_argc() and sc_argv() functions (see" Accessing command-line
arguments’ (UM-183).

If multiple SystemC startup arguments are specified, each must have a separate-sc_arg
argument. SystemC startup arguments returned viasc_argv() arein the order in which
they appear on the command line. White space within the <string> will not be treated
specially, and the string, white space and all, will be accessible as a single string among
the strings returned by sc_argv().

ModelSim SE Command Reference

CR-390 vsim

Arguments, object

The object arguments may be a[<library_name>].<design_unit>, a.mpf file, a.wif file, or
atext file. Multiple design units may be specified for Verilog modules and mixed VHDL/
Verilog configurations.

<l'i brary_nanme>. <desi gn_uni t>
Specifiesalibrary and associated design unit; multiple library/design unit specifications
can be made. Optional. If no library is specified, the work library is used. Environment
variables can be used. <design_unit> may be one of the following:

<configuration> Specifies the VHDL configuration to simulate.

<nodul e> ... Specifies the name of one or more top-level Verilog
modules to be smulated. Optional.

<entity> [(<architecture>)] Specifiesthe name of thetop-level VHDL entity to be
simulated. Optional. The entity may have an
architecture optionally specified; if omitted the last
architecture compiled for the specified entity is
simulated. An entity is not valid if aconfiguration is
specified.2

<opti mi zed_desi gn_nane> Specifies the name of an optimized design. See the
vopt command (CR-371). Optional.

aMost UNIX shells require arguments containing () to be single-quoted to prevent
special parsing by the shell. See the examples bel ow.

<MPF_fil e_name>
Opens the specified project. Optional.

<WLF_fil e_name>
Opens the specified dataset. Optional.

<text_file_name>
Opens the specified text file in a Source window. Optional.

ModelSim SE Command Reference

vsim CR-391

Examples

vsi m - gedge=""l ow high"' -gVCC=4.75 cpu
Invokes vsim on the entity cpu and assigns values to the generic parameters edge and
VCC. If working within the Model Sim GUI, you would enter the command as follows:

vsi m {-gedge="1 ow high"} -gVCC=4.75 cpu

vsim -view test=sin2. wf
Instructs Model Sim to view the results of a previous simulation run stored in the WLF
file sim2.wif. The simulation is displayed as a dataset named test. Use the -wIf option to
specify the name of the WLF file to create if you plan to create many filesfor later
viewing. For example:

vsim-wf ny_design.iOl ny_asic structure
vsim-wf ny_design.i02 ny_asic structure

vsim -sdf m n /top/ul=nyasic. sdf
Annotates instance /top/ul using the minimum timing from the SDF file myasic.sdf.

Use multiple switches to annotate multiple instances:
vsim-sdfmn /top/ul=sdfl -sdfmn /top/u2=sdf2 top

vsim ' 'nylib.top(only)’ gatelib.cache_set
This exampl e searches the libraries mylib for top(only) and gatelib for cache_set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) is optional.

vsim-do "set PrefMain(forceQuit) 1; run -all" work.test_counter
Invokesvsim on test_counter and instructs the simulator to run until a break event and
quit when it encounters a $finish task.

ModelSim SE Command Reference

CR-392 vsim<info>

vsim<info>

The vsim<info> commands return information about the current vsim executable.

vsi mAut h
Returns the authorization level (PE/SE, VHDL/Verilog/PLUS).

vsi nDat e
Returns the date the executable was built, such as"Apr 10 2000".

vsimd
Returns the identifying string, such as"ModelSim 5.4".

vsi nVer si on
Returns the version as used by the licensing tools, such as *1999.04".

vsi mVer si onString
Returns the full vsim version string.

This sameinformation can be obtained using the-version argument of the vsim command
(CR-373).

ModelSim SE Command Reference

vsource CR-393

vsource
The vsour ce command specifies an alternative file to use for the current source file. This
command is used when the current source file has been moved. The aternative source
mapping exists for the current simulation only.
Syntax
vsource
[<fil ename>]
Arguments
<fil ename>
Specifies arelative or full pathname. Optional. If filename is omitted the source file for
the current design context is displayed.
Examples

vsour ce design.vhd
vsource /ol d/ design. vhd

ModelSim SE Command Reference

CR-394 wave

wave

A number of wave commands can be use to manipulate the Wave window. The following
tables summarize the avail abl e options for manipulating cursors, for zooming, and for
adjusting the wave display view in the Wave window:

Cursor Commands

Description

wave activecursor

Sets the active cursor to the specified cursor or, if no cursor is
specified, reports the active cursor

wave addcursor

Addsanew cursor at specified time and returns the number of the
newly added cursor

wave cursortime

Moves or reports the time of the specified cursor or, if no cursor
is specified, the time of the active cursor

wave del etecursor Deletesthe specified cursor or, if no cursor isspecified, theactive
cursor

wave Seecursor Positionsthe wave display such that the specified or active cursor
appears at the specified percent from the left edge of the display
— 0% istheleft edge, 100% is the right edge.

Zooming Description

Commands

wave zoomin Zoom in the wave display by the specified factor. The default
factor is2.0.

wave zoomout Zoom out the wave display by the specified factor. The default
factor is 2.0.

wave zoomfull Zoom the wave display to show the full simulation time.

wave zoomlast

Return to last zoom range.

wave zoomrange

Setsleft and right edge of wave display to the specified start time
and endtime. If timesare not specified, reportsleft and right edge
times.

Display view
Commands

Description

wave interrupt

Immediately stops wave window drawing

wave refresh

Cleans wave display and redraws waves

wave Seecursor

ModelSim SE Command Reference

Positionsthe wave display such that the specified or active cursor
appears at the specified percent from the left edge of the display
— 0% istheleft edge, 100% is the right edge.

Syntax

Arguments

wave CR-395

Display view Description
Commands
wave seetime Positions the wave display such that the specified time appears at

the specified percent from the left edge of the display — 0% isthe
left edge, 100% is the right edge.

wave activecursor

[-wi ndow <wi n>] [<cursor-nun®]

wave addcursor

[-w ndow <wi n>] [-tine <tine>]

wave cursortine
[-wi ndow <wi n>]

wave del et ecursor
[-w ndow <wi n>]

wave interrupt
[-w ndow <wi n>]

wave refresh
[-w ndow <wi n>]

wave seecursor
[-w ndow <wi n>]

wave seetine
[-w ndow <wi n>]

wave zoom n
[-w ndow <wi n>]

wave zoonout
[-w ndow <wi n>]

wave zoonful |
[-w ndow <wi n>]

wave zoomnl ast
[-w ndow <wi n>]

wave zoontange
[-w ndow <wi n>]

[-w ndow <wi n>]

[-tinme <tinme>] [<cursor-nunp]

[<cursor - nun®]

[-at <percent>] [<cursor-nunp]

[-at <percent>] <tinme>

[<factor>]

[<factor>]

[<start-tinme>] [<end-tine>]

All commands default to the active Wave window unlessthisargument is used to specify
adifferent Wave window. Optional.

[<cursor - nunp]

Specifies a cursor number. Optional.

ModelSim SE Command Reference

CR-396 wave

[-time <time>]
Specifies atime. Optional.

[<factor>]
A number that specifies how much you want to zoom into or out of the wave display.
Optional. Default valueis 2.0.

[<start-time>]
[<end-time>]

start-time and end-time are times that specify a zoom range. If neither number is
specified, the command returnsthe current zoom range. If only onetimeisspecified, then
the zoom range is set to start at 0 and end at specified time.

[-at <percent>]
Positions the display such that the time or cursor is the specified <percent> from the left
edge of the wave display. 0% isthe left edge; 100% is the right edge. Optional. Default
is50%.

Examples
wave zoonrange 20ns 100ns
wave zoonrange 20 100

Either of these commands creates azoom range with astart time of 20 nsand an endtime
of 100 ns.

ModelSim SE Command Reference

wave create CR-397

wave create

{ The wave cr eate command generates a waveform known only to the GUI. Y ou can then
modify the waveform interactively and use the results to drive simulation. See Chapter 10
- Generating stimulus with Waveform Editor for more information.

Syntax

wave create
[-driver freeze|deposit|driver|expectedoutput] [-endtine <tine>]
[-initialvalue <value>] [-language VHDL| Veril og]
-pattern clock| constant|randonirepeater|counter|none
[-portnode in|out|inout|input|output|internal]
[-starttine <tine>] <object_nane>

-period <val ue> -dutycycle <val ue>
-val ue <val ue>

-period <value> -random type <val ue>
[-seed <val ue>]

-sequence {vall val2 val3 ...} -period <val ue>
-repeat forever|never|<#_of _tinmes>

-direction <val ue> -type Bi nary| Range| Johnson| OneHot | Zer oHot | Gr ay
-endval ue <val ue> -period <val ue> -repeat forever|never|<#_of _tinmes>
-startval ue <val ue> -step <val ue>
The arguments below are grouped according to waveform pattern. The first set appliesto
al waveforms regardless of pattern.

Arguments for all waveforms

-driver freeze|deposit|driver|expectedout put
Specifiesthat the signal isadriver of the specified type. Appliesto signals of type inout
or internal. Optional.

-endtime <time>
The simulation time that the waveform should stop. If omitted, the waveform stops at
1000 simulation time units. Optional .

-initialvalue <val ue>
Theinitia value for the waveform. VValue must be appropriate for the type of waveform
you are creating. Not applicable to counter patterns. Optional.

-l anguage VHDL| Veril og
The language for the created wave. By default Model Sim uses VHDL to create the
waveform. Optional.

-pattern cl ock|constant|randonirepeater|counter|none
The pattern for the created waveform. See " Creating waveforms from patterns' (GR-289)
for a description of the pattern types. Required.

-portnode in|out|inout|input|output|interna
The port type for the created waveform. Model Sim uses interna by default. Useful for
creating signals prior to loading a design. Optional.

ModelSim SE Command Reference

CR-398 wave create

-starttinme <tinme>
The simulation time at which the waveform should start. If omitted, the waveform starts
at 0 simulation time units. Optional.

<obj ect _nane>
The name of the created waveform. Required.
Arguments, clock patterns only

-dutycycl e <val ue>
The duty cycle of the clock, which is the percentage of the period that the clock is high
or low. Acceptable values range from 0 to 100. Required.

-period <val ue>
The period of the signal. Required.
Arguments, constant patterns only
-val ue <val ue>
The value for the constant. Required.
Arguments, random patterns only

-period <val ue>

The period after which the value should change. Required.

-random type <val ue>
The type of random pattern to generate. Required. Choices for <value> include Normal,
Uniform, Poisson, or Exponential.

-seed <val ue>
A seed value for the random generator. If omitted, Model Sim uses the value 5. Optional.
Arguments, repeater patterns only

-period <val ue>

The period after which the value should change. Required.

-repeat forever|never|<#_of _tinmes>
The number of times to repeat. Required.

-sequence {vall val2 val3 ...}
The set of values that you want repeated. Required.
Arguments, counter patterns only

-direction <val ue>
The direction which the counter should increment or decrement. Optional. The default is
Up. Choices for <value> include Up, Down, UpThenDown, and DownThenUp.

-type Bi nary| Range| Johnson| OneHot | Zer oHot | G- ay
The type of counter to create. Default is Range. Optional.

ModelSim SE Command Reference

wave create CR-399

-endval ue <val ue>
The ending value of the counter. This option appliesto Range counter patterns only. All
other counter patterns start from 0 and go to the max valuefor that particular signd (e.g.,
for a 3-bit signal, the start value will be 000 and end value will be 111).

-period <val ue>

The period after which the value should change. Required.

-repeat forever|never|<#_of _tinmes>
The number of times to repeat. Required.

-startval ue <val ue>
The starting value of the counter. This option appliesto Range counter patternsonly. All
other counter patterns start from 0 and go to the max valuefor that particular signd (e.g.,
for a 3-bit signal, the start value will be 000 and end value will be 111).

-step <val ue>
The step by which the counter isincremented/decremented. Required.
Examples

wave create -pattern /counter/clk
Creates a clock signal with the following default values: -period 100 -dutycycle 50
-starttime O -endtime 1000 -initialvalue 0
wave create -driver freeze -pattern constant -value 1111 -starttime Ons -
endtime 1000ns sim/andnfv_cont2
Creates a constant signal from 0 to 1000 nswith avalue of 1111 and a drive type of
freeze.

See also

wave edit command (CR-400), wave modify command (CR-405), Chapter 10 - Generating
stimulus with Waveform Editor

ModelSim SE Command Reference

CR-400 wave edit

wave edit
Thewave edit command modifieswaveforms created with the wave cr eate command. See
the Model Sim Command Reference for syntax. The following table summarizes the
available editing options:
Command Description
wave edit cut Cut part of awaveform to the clipboard
wave edit copy Copy part of awaveform to the clipboard
wave edit paste Paste the waveform from the clipboard
wave edit invert Verticaly flip part of awaveform
wave edit mirror Mirror part of awaveform
wave edit insert_pulse | Insert anew edge on awaveform; doesn't affect waveform
duration
wave edit delete Delete an edge from awaveform; doesn’t affect waveform
duration
wave edit stretch Move an edge by stretching the waveform
wave edit move Move an edge without moving other edges
wave edit change value | Change the value of part of awaveform
wave edit extend Extend all waves
wave edit driveType Change the driver type
wave edit undo Undo an edit
wave edit redo Redo a previoudly undone edit
Syntax

wave edit cut|copy| paste|invert|mrror
[-end <time>] -start <time> <object_nane>

wave edit insert_pul se
[-duration <tine>] -start <tine> <object_nane>

wave edit delete
-time <time> <object_nanme>

wave edit stretch|nove
-backward <time>|-forward <tinme> -tine <tinme> <object_nane>

wave edit change_val ue
-end <time> -start <tinme> <val ue> <obj ect_nane>

wave edit extend
-extend to|by -time <tinme>

ModelSim SE Command Reference

wave edit CR-401

wave edit extend
-extend to| by -tine <tine>

wave edit driveType
-driver freeze|deposit|driver|expectedoutput -end <time> -start <tinme>

The arguments below are grouped by editing operation. Many operations share similar
arguments.

Arguments for cut, copy, paste, invert, and mirror

-end <time>
The end of the section of waveform to perform the editing operation upon, denoted by a
simulation time. Optional for paste.

-start <time>
The beginning of the section of waveform to perform the editing operation upon, denoted
by asimulation time. Required.

<obj ect _nane>
The pathname of the waveform to edit. Required.
Arguments for insert_pulse

-duration <time>
The length of the pulse. Default is 10 time units. Optional.

-start <time>
The time at which the new pulse should be inserted. Required.

<obj ect _nane>
The pathname of the waveform on which you are inserting a pulse. Required.
Arguments for delete

-time <time>
The time at which the edge to delete occurs. Required.

<obj ect _nane>
The pathname of the waveform for which you are deleting an edge. Required.

Arguments for stretch and move

-backward <time>
The amount to stretch or move the edge backwards in simulation time. Required if
-forward <time> isn't specified.

-forward <time>
The amount to stretch or move the edge forwards in simulation time. Required if
-backward <time> isn't specified.

-tinme <tinme>
The time at which the edge to stretch or move occurs. Required.

<obj ect _nane>
The pathname of the waveform on which you are stretching or moving an edge.
Required.

ModelSim SE Command Reference

CR-402 wave edit

Arguments for change_value

-end <tinme>
The end of the section of waveform of which you are changing the value. Required.

-start <time>
The beginning of the section of waveform of which you are changing the value.
Required.

<val ue>

The new value. Must match the type of the <object_name>. Required.
<obj ect _nane>
The pathname of the waveform on which you are changing a value. Required.
Arguments for extend

-extend to| by
Specify whether you are extending waves to a specific time or by a certain amount of
time. Required.

-tine <tinme>
The time to extend waves to or the amount by which to extend the waves. Required.
Arguments for driveType

-driver freeze|deposit|driver|expectedout put
The type of driver to which you want the specified section of the waveform changed.
Required.

-end <time>
The end of the section of waveform of which you are changing the drive type. Required.

-start <time>
The beginning of the section of waveform of which you are changing the drive type.
Required.
Arguments for undo and redo

<number >
The number of editing operations to undo or redo. If omitted, only one editing operation
is undone or redone. Optional.

See also

wave cr eate command (CR-397), Chapter 10 - Generating stimulus with Waveform Editor

ModelSim SE Command Reference

wave export CR-403

wave export

Syntax

Arguments

See also

Thewave export command creates a stimulus file from waveforms created with the wave
create command.

wave export
[-designunit <name>] [-end <time>] -file <nane>
-format force|vcd|vhdl |verilog [-start <tine>]

-desi gnunit <name>
The name of the design unit for which you want to export created waves. If omitted, the
command exports waves from the active design unit. Optional.

-end <tinme>
The simulation time at which you want to stop exporting. Required.

-file <name>
The filename for the saved stimulus file. Required.

-format force|vcd|vhdl|verilog
The format of the saved stimulusfile. Required. The format options include:

force - A Tcl script that recreates the waveforms. The file should be sourced when
reloading the simulation.

vcd - An extended VCD file. Load using the -vedstim argument to vsim.
vhdl - A VHDL testbench. Compile and load the file as your top-level design unit.
verilog - A Verilog testbench. Compile and load the file as your top-level design unit.

-start <time>
The simulation time at which you want to start exporting. Required.

wave cr eate command (CR-397), wave import command (CR-404), Chapter 10 -
Generating stimulus with Waveform Editor

ModelSim SE Command Reference

CR-404 wave import

wave import

Thewaveimport command imports an extended V CD file that was created with the wave
export command. It cannot read extended VCD file created by software other than
Model Sim. Use this command to apply aV CD file as stimulus to the current simulation.

Syntax
wave i nport
<VCD file>
Arguments
<VCD file>
The name of the extended VCD file to import. Required.
See also

wave cr eate command (CR-397), wave export command (CR-403), Chapter 10 - Generating
stimulus with Waveform Editor

ModelSim SE Command Reference

wave modify CR-405

wave modify

Thewave modify command modifies waveform parameters set by aprevious wave create
command.

Syntax

wave nodify
<wave_name> [-driver freeze|deposit|driver|expectedoutput]
[-endtine <tine>] [-initialvalue <val ue>]
-pattern clock| randonirepeater|counter|none [-starttinme <tinme>]

-period <val ue> -dutycycl e <val ue>

-period <val ue> -random type Normal | Uni form
[-seed <val ue>]

-period <val ue> -repeat forever|never|<#_of _tinmes>
-sequence {vall val2 val3 ...}

-direction down|up -type Binary| Range| Johnson| OneHot | Zer oHot | Gr ay
-endval ue <val ue> -period <val ue> -repeat forever|never|<#_of _tinmes>
-startval ue <val ue> -step <val ue>

Arguments for all waveforms

<wave_nane>
The name of an existing waveform created with the wave cr eate command (CR-397).

Required.

-driver freeze|deposit|driver|expectedout put
Specifiesthat the signal isadriver of the specified type. Appliesto signals of type inout
or internal. Optional.

-endtime <time>
The simulation time that the waveform should stop. If omitted, the waveform stops at
1000 simulation time units. Optional .

-initialvalue <val ue>
Theinitial value for the waveform. VValue must be appropriate for the type of waveform
you are creating. Not applicable to counter patterns. Optional.

-pattern cl ock|randon] repeater|counter|none
The pattern for the created waveform. See " Creating waveforms from patterns' (GR-289)
for a description of the pattern types. Required.

-starttime <time>
The simulation time that the waveform should start. If omitted, the waveform startsat O
simulation time units. Optional .
Arguments, clock patterns only

-period <val ue>

The period of the signal. Required.

ModelSim SE Command Reference

CR-406 wave modify

-dutycycl e <val ue>
The duty cycle of the clock, which is the percentage of the period that the clock is high
or low. Acceptable values range from 0 to 100. Required.

Arguments, random patterns only

-period <val ue>

The period after which the value should change. Required.

-random t ype Normal | Uni form
The type of random pattern to generate. Required.

-seed <val ue>
A seed value for the random generator. If omitted, Model Sim uses the value 5. Optional.

Arguments, repeater patterns only

-period <val ue>

The period after which the value should change. Required.

-repeat forever| never|<#_of _tines>
The number of times to repeat. Required.

-sequence {vall val2 val3 ...}

The set of values that you want repeated. Required.

Arguments, counter patterns only

-direction down| up
The direction which the counter should increment or decrement. Optional. The default is

up.

-type Bi nary| Range| Johnson| OneHot | Zer oHot | G- ay
The type of counter to create. Default is Range. Optional.

-endval ue <val ue>
The ending value of the counter. This option appliesto Range counter patterns only. All
other counter patterns start from 0 and go to the max valuefor that particular signd (e.g.,
for a 3-bit signal, the start value will be 000 and end value will be 111).

-period <val ue>

The period after which the value should change. Required.

-repeat forever|never|<#_of _tinmes>
The number of times to repeat. Required.

-startval ue <val ue>
The starting value of the counter. This option appliesto Range counter patternsonly. All
other counter patterns start from 0 and go to the max valuefor that particular signd (e.g.,
for a 3-bit signal, the start value will be 000 and end value will be 111).

-step <val ue>
The step by which the counter isincremented/decremented. Required.

See also

wave cr eate command (CR-397), Chapter 10 - Generating stimulus with Waveform Editor

ModelSim SE Command Reference

when

Syntax

Arguments

when CR-407

Thewhen command instructs Model Sim to perform actions when the specified conditions
are met. For example, you can use the when command to break on asignal value or at a
specific simulator time (see " Time-based breakpoints” (CR-411)). Use the nowhen
command (CR-213) to deactivate when commands.

The when command uses awhen_condition_expression to determine whether or not to
perform the action. Conditions can include the following HDL objects: VHDL signa's, and
Verilog nets and registers. The when_condition_expression uses asimple restricted
language (that is not related to Tcl), which permits only four operators and operands that
may be either HDL object names, signame’ event, or constants. Model Sim evaluates the
condition every time any object in the condition changes, hence the restrictions.

Here are some additional pointsto keep in mind about the when command:

» Thewhen command createsthe equivalent of aVHDL processor aVerilog always block.
It does not work like alooping construct you might find in other languages such as C.

* Virtual signals, functions, regions, types, etc. cannot be used in the when command.
Neither can simulator state variables other than $now.

» With no arguments, when will list the currently active when statements and their labels
(explicit or implicit).

when
[[-1abel <label>] [-id <id#>] {<when_condition_expression>} {<comand>}]

- | abel <l abel >
Used to identify individual when commands. Optional.

-id <id#>
Attemptsto assign thisid number to the when command. Optional. If the id number you
specify is aready used, Model Sim will return an error.

P Note: Idsfor when commands are assigned from the same pool as those used for the bp
command (CR-75). So, even if you haven't used an id number for awhen command, it's
possibleit is used for a breakpoint.

{<when_condi ti on_expressi on>}
Specifiesthe conditionsto be met for the specified <command> to be executed. Required
if acommand is specified. The condition is evaluated in the simulator kernel and can be
an object name, in which case the curly braces can be omitted. The command will be
executed when the object changes value. The condition can be an expression with these
operators:

Name Operator

equals ==, =

ModelSim SE Command Reference

CR-408 when

Name Operator
not equal I=, /=
greater than >
less than <
greater than or >=
equal

less than or equal <=

AND &&, AND

OR I, OR

The operands may be object names, signame’ event, or constants. Subexpressionsin
parentheses are permitted. The command will be executed when the expression is
evaluated as TRUE or 1.

The forma BNF syntax is:

condition ::= Nane | { expression }

expression ::= expression AND rel ation
| expression OR relation
| relation

relation ::= Nanme = Literal

| Name /= Litera
| Nane ' EVENT
| (expression)

Literal ::= '<char>' | “<bitstring>" | <bitstring>

The"=" operator can occur only between a Name and a Literal. This means that you
cannot compare the value of two signals, i.e., Name = Nameis not possible.

Tcl variables can be used in the condition expression but you must replace the curly

braces ({}) with double quotes (""). Thisworks like a macro substitution where the Tcl

variables are evaluated once and the result is then evaluated as the when condition.

Condition expressions are evaluated in the vsim kernel, which knows nothing about Tcl
variables. That's why the condition expression must be evaluated in the GUI beforeitis

sent to the vsim kernel. See below for an example of using a Tcl variable.
The">","<", ">=" and "<=" operators are the standard ones for vector types, not the

overloaded operatorsin the std_logic_1164 package. This may cause unexpected results
when comparing objectsthat contain values other than 1 and 0. Model Sim does alexical

comparison (position number) for values other than 1 and 0. For example:

0000 < 1111 ## This evaluates to true
HOOO < 1111 ## This evaluates to fal se
001X >= 0010 ## This al so evaluates to fal se

ModelSim SE Command Reference

Examples

when CR-409

{ <command>}
The command(s) for this argument are evaluated by the Tcl interpreter within the
ModelSim GUI. Any ModelSim or Tcl command or series of commands are valid with
one exception—the run command (CR-252) cannot be used with the when command.
Required if awhen expression is specified. The command sequence usually contains a
stop command (CR-273) that sets a flag to break the simulation run after the command
sequence is completed. Multiple-line commands can be used.

P Note: If you want to stop the simulation using awhen command, you must use a stop
command (CR-273) within your when statement. DO NOT use an exit command (CR-166)
or aquit command. The stop command acts like abreakpoint at thetimeit is evaluated.
See "Ending the simulation with the stop command" (CR-410) for examples.

Thewhen command below instructsthe simulator to display the value of object cin binary
format when there is a clock event, the clock is 1, and the value of b is01100111. Finally,
the command tells Model Sim to stop.
when -| abel whenl {clk’event and clk="1" and b = “01100111"} {
echo “Signal c is [exa -bin c]"
stop

}

The commands below show an example of using a Tcl variable within awhen command.
Note that the curly braces ({}) have been replaced with double quotes ("").

set clkb_path /tb/ps/dprb_0/udprb/ucar_reg/uint_rancl kb

when -l abel whenl "$cl kb_path' event and $clkb_path = 1"" {
echo "Detected Cl k edge at path $cl kb_pat h"
}

Thisnext exampleusesthe Tcl set command to disabl e arithmetic packagewarningsat time
0. Note that the time unit (nsin this case) would vary depending on your simulation
resolution.

when {$now = @ns } {set NumericStdNoWarnings 1}
run -al

The when command below is labeled a and will cause Model Sim to echo the message “b
changed” whenever the value of the object b changes.

when -l abel a b {echo “b changed”}

The multi-line when command below does not use a label and has two conditions. When
the conditions are met, an echo (CR-156) and a stop (CR-273) command will be executed.
when {b =1
and ¢ /=0 1} {

echo “bis 1 and ¢ is not 0"
st op

ModelSim SE Command Reference

CR-410 when

In the example below, for the declaration "wire[15:0] &, thewhen command will activate
when the selected bitsmatch a 7:

when {a(3:1) = 3'h7} {echo "matched at time " $now}

If you encounter a vectored net caused by optimizing with vopt (CR-371), use the ' event
qualifier to prevent the command from fal sely evaluating when unrelated bitsof '@ change:

when {a(3:1) = 3'h7 and a(3:1)'event} {echo "matched at time " $now}

In the example bel ow, we want to sample the values of the address and data bus on thefirst
faling edge of clk after sstrb has gone high.

::strobe is our state variable
set ::strobe Zero
This signal breakpoint only fires when sstrb changes to a '1'
when -| abel checkStrobe {/top/sstrb =="'1"} {
Qur state Zero condition has been nmet, nove to state One
set ::strobe One

}
This signal breakpoint fires each tinme clk goes to '0
when {/top/clk == "'0"} {

if {$::strobe eq "One"} {
Qur state One condition has been net
Sanpl e the busses
echo Sanpl e paddr=[exanmine -hex /top/paddr] :: sdata=[exam ne -hex
/t op/ sdat a]
reset our state variable until next rising edge of sstrb (back to
state Zero)
set ::strobe Zero

}

Ending the simulation with the stop command

Batch mode simulations are often structured as "run until condition X istrue," rather than
"run for X time" simulations. The multi-line when command below sets a done condition
and executes an echo (CR-156) and astop (CR-273) command when the condition is reached.

The simulation will not stop (even if aquit -f command is used) unlessa stop command is
executed. To exit the simulation and quit Model Sim, use an approach like the following:

onbreak {resune}
when {/done_condition == "1'} {
echo "End condition reached"
if [batch_node] {
set DoneConditi onReached 1

st op
}
}
run 1000 us
i f {$DoneCondi ti onReached == 1} {
quit -f
}

Here's another example that stops 100ns after asignal transition:

when {a = 1} {
|f the 100ns delay is already set then let it go.
if {[when -label a_100] == ""} {
when -l abel a_100 { $now = 100 } {
delete this breakpoint then stop

ModelSim SE Command Reference

See also

when CR-411

nowhen a_100
st op
}
}
}

Time-based breakpoints
Y ou can build time-based breakpoints into awhen statement with the following syntax.
For absolute time (indicated by @) use:

when {$now = @750ns} {stop}

Y ou can also use:

when {errorFlag = '1' OR $now = 2ms} {stop}
This example adds 2ms to the simulation time at which the when statement is first
evaluated, then stops.

Y ou can a'so use variables, as shown in the following example:

set time 1000

when "\ $now = $time" {stop}
The quotesinstruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop
Note that "$now" hasthe'$' escaped. This prevents Tcl from expanding the variable,
because if it did, you would get:

when "0 = 1000" stop

bp (CRrR-75), disablebp (CR-148), enablebp (CR-158), nowhen (CR-213)

ModelSim SE Command Reference

CR-412 where

where

The wher e command displays information about the system environment. This command
is useful for debugging problems where Model Sim cannot find the required libraries or
support files.

The command displays two system settings:

current directory
Thisisthe current directory that Model Sim was invoked from, or was specified on the
ModelSim command line.

current project file
Thisisthe .mpf file Model Sim is using. All library mappings are taken from here when
aproject is open.

Syntax

wher e

Arguments

None.

ModelSim SE Command Reference

wlf2log CR-413

wlf2log

Thewlf2log command translates aModel Sim WLF file (vsim.wif) to aQuickSim 11 logfile.
The command reads the vsim.wif WLF file generated by the add list, add wave, or log
commands in the simulator and convertsit to the QuickSim Il logfile format.

A mportant: This command should be invoked only after you have stopped the
simulation using quit -sim or dataset close sim.

Syntax

w f 2l og
[-bits] [-fullname] [-help] [-inout] [-input] [-internal]
[-1 <instance_path>] [-lower] [-0 <outfile>] [-output] [-quiet] <wlffile>

Arguments

-bits
Forces vector nets to be split into 1-bit wide netsin the log file. Optional.

-full name
Shows the full hierarchical pathname when displaying signal names. Optional.

-hel p
Displays alist of command options with a brief description for each. Optional.

- i nout
Lists only the inout ports. Optional. This may be combined with the -input, -output, or
-internal switches.

-input
Lists only the input ports. Optional. This may be combined with the -output, -inout, or
-internal switches.

-interna
Listsonly theinterna signals. Optional. This may be combined with the -input, -output,
or -inout switches.

-1 <instance_pat h>
Liststhesignalsat or below the specified HDL instance path within the design hierarchy.
Optional.

- | ower
Shows all logged signalsin the hierarchy. Optional. When invoked without the -lower
switch, only the top-level signals are displayed.

-0 <outfile>
Directs the output to be written to the file specified by <outfile>. Optional. The default
destination for the logfile is standard out.

- out put
Lists only the output ports. Optional. This may be combined with the -input, -inout, or
-internal switches.

ModelSim SE Command Reference

CR-414

wif2log

-qui et
Disables error message reporting. Optional.

< ffile>
Specifies the Modd Sim WLF file that you are converting. Required.

Additional information for QuickSim Il users

In some casesyour original QuickHDL/Model Sim simulation results (in your vsimwif file)
may contain signal values that do not directly correspond to gsim_12state values. The
resulting QuickSim Il logfile generated by wlf2log may contain state values that are
surrounded by single quotes, e.g. '0'and '1'. To makethislogfile compatible with QuickSim
models (that expect gsim_12state) you need to use a QuickSim |1 function named
$convert_wdb().

This function was created to convert logfiles resulting from VHDL simulation that used
std_logic and std_ulogic sincethese datatypesdo not correlateto QuickSim's 12 simulation
states. Other VHDL datatypes such asgsim_state or bit (2 state) do not require conversion
asthey are directly compatible with gsim_12state QuickSim |1 Waveform Databases
(WDB).

The following procedure can be used to convert a wlf2log-generated logfile into a
compatible QuickSim WDB. The procedure below shows how to convert the logfile while
loaded into memory in QuickSim I1.

1 Loadthelodfile (the output from wif2log) into a WDB other than "forces'. "Forces' is
the default WDB, so you need to choose a unique name for the WDB when loading the
logfile (for example, "fred").

2 Enter the following at the command prompt from within QuickSim:
$convert _wdb("fred", 0)

Thefirst argument, which is "fred", is the name of the new WDB to be created. The
second argument, which is 0, specifiesthe type of conversion. At thistime only onetype
of conversion is supported. The value 0 specifiesto convert std_logic or std_ulogic into
gsim_12state.

3 Doaconnect_wdb (either through the pulldown menus, the " Connect WDB" paletteicon
under "Stimulus®, or afunction invocation). 'Y ou specify the name of the WDB that you
originally loaded the logfileinto (in this case, "fred").

At thispoint you canissuethe"run" command and the stimulusin the converted logfile will
be applied. Before exiting the simul ation you should save the new WDB ("fred") asaWDB
or logfile so that it can be loaded again in the future. The new WDB or logfile will contain
the correct gsim_12state values eliminating the need to re-use $convert_wdh().

ModelSim SE Command Reference

wlf2vcd CR-415

wlf2vcd

The wlf2ved command translates a Model Sim WLF file to astandard V CD file. Complex
datatypesthat are unsupported in the VCD standard (records, memories, etc.) are not
converted.

A 'mportant: Thiscommand should be invoked only after you have stopped the
simulation using quit -sim or dataset close sim.

Syntax
w f 2ved
[-help] [-0 <outfile>] [-quiet] <wlffile>
Arguments

-hel p
Displays alist of command options with a brief description for each. Optional.

-0 <outfile>
Specifies afilename for the output. By default the VCD output goes to stdout. Optional.

-qui et
Disables warning messages that are produced when an unsupported type (e.g., records)
is encountered in the WLF file. Optional.

< ffile>
Specifies the Modd Sim WLF file that you are converting. Required.

ModelSim SE Command Reference

CR-416 wilfman

wlfman

Syntax

Thewlfman command allowsyou to get information about and manipulate WLFfiles. The
command performs four functions depending on which mode you use:

» wlfman info generates file information, resolution, versions, etc.

» wlfman itemsgeneratesalist of HDL objects(i.e., signals) from the source WLF fileand
outputsit to stdout. When redirected to afile, the output is called an object_list_file, and
it can beread in by wifman filter. The object_list_fileisalist of objects, one per line.
Comments start with a'# and continue to the end of the line. Wildcards are legal in the
leaf portion of the name. Here is an example:

/top/foo # signal foo
/top/ull* # all signals under ul
/top/ul # same as |ine above

-r /top/u2 # recursively, all signals under u2

Note that you can produce these files from scratch but be careful with syntax. wifman
items always creates alegal object_list_file.

wifman filter readsin aWLF file and optionally an object_list_file and writes out
another WL F file containing filtered information from those sources. Y ou determine the
filtered information with the arguments you specify.

» wifman profile generates a report of the estimated percentage of file space that each
signal istaking inthe specified WLFfile. Thiscommand can identify signal sthat account
for alarge percentage of the WLF file size (e.g., alogged memory that uses a zero-delay
integer loop to initialize the memory). Y ou may be able to drastically reduce WLF file
size by not logging those signals.

» wlfman mer ge combines two WLF fileswith different signalsinto one WLFfile. It does
not combine wlif files containing the same signals at different runtime ranges (i.e.,
mixedhdl_Ons 100ns.wlif & mixedhdl_100ns 200ns.wif).

The different modes are intended to be used together. For example, you might run wifman
profile and identify asignal that accounts for 50% of the WLF file size. If you don’t
actually need that signal, you can then run wifman filter to remove it from the WLF file.

w fman info
<wffile>

w fman itens
[-n] [-v] <wiffile>

W fman filter
[-begin <tine>] [-end <tine>] [-f <object_list_file>] [-r <object>]
[-s <synmbol >] [-t <resolution>] <sourcewlffile> <outwlffile>

w frman profile
[-rank] [-top <number>] <wiffile>

w fman nerge
-noopt -opt -rank -top <nunber>

ModelSim SE Command Reference

wlfman CR-417

Arguments for wifman info

<wffile>
Specifies the WLF file from which you want information. Required.

Arguments for wlfman items

-Nn

Listsregions only (no signals). Optional.

-V
Produces verbose output that lists the object type next to each object. Optional.

<wffile>
Specifies the WLF file for which you want a profile report. Required.

Arguments for wifman filter

-begin <time>
Specifies the simulation time at which you want to begin reading information from the
source WLFfile. Optional. By default the output includesthe entire time that is recorded
in the source WLF file.

-end <time>
Specifies the simulation time at which you want to end reading information from the
source WLF file. Optional.

-f <object_list_file>
Specifiesan object_list_file created by wifman itemsto include in the output WLF file.
Optional.

-r <object>
Specifies an object (region) to recursively include in the output. If <object>isasignal,
the output would be the same as using -s. Optional.

-s <synbol >
Specifies an object to include in the output. Optional. By default all objects are output.

-t <resolution>
Specifies the time resol ution of the new WLF file. Optional. By default the resolution is
the same as the source WLFfile.

<sourcew ffile>
Specifies the source WLF file from which you want objects. Required.

<outw ffile>
Specifies the name of the output WLF file. Required. The output WLF file will contain
al objects specified by -f <object_list_file>, -r <object>, and -s <symbol>. Output
WLFfilesare alwayswrittenin thelatest WL F version regardless of the source WLFfile
version.

ModelSim SE Command Reference

CR-418 wilfman

Arguments for wifman profile

-rank

Sorts the report by percentage. Optional.

-top <nunber>
Filtersthe report so that only the top <number> signalsin terms of file space percentage
are displayed. Optional.

<wffile>
Specifies the WLF file from which you want object information. Required.

Arguments for wlifman merge

- hoopt
Disables WLF file optimizations when writing output WLF file. Optional.

- opt
Forces WLF file optimizations when writing output WLF file. Optional. Defaullt.

-0 <outw ffile>
Specifies the name of the output WLF file. Required. The output WLF file will contain
all objects from <wlffilel> and <wlffile2>. Output WLF files are always written in the
latest WLF version regardless of the source WLF file version.

<wffilel> <wffile2>
Specifies the WLF files whose objects you want to copy into one WLF file. Optional.

Examples

w frman profile -rank top_vh.w f
The output from this command would look something like this:

#Repeated | D #' s nmean those signals share the same
#space in the wif file.

1D Transitions File % Nane

2192 33 % /top_vh/ pdat a
/top_vh/ processor/data
/top_vh/ cache/ pdat a
/top_vh/ cache/ gen__0/s/data
/top_vh/ cache/ gen__1/s/data
/top_vh/ cache/ gen__2/s/data
/top_vh/ cache/ gen__3/s/data

1224 18 % /top_vh/ ptrans

1216 18 % /top_vh/sdata
/top_vh/ cache/ sdat a
/top_vh/ nmenory/ dat a

675 10 % /top_vh/strans

423 6 % /top_vh/ cache/ gen__3/ s/ dat a_out

135 3% /t op_vh/ paddr

OCUDRWWWNRRRRREERR

w frman profile -top 3 top_vh.w f
The output from this command would look something like this:

ModelSim SE Command Reference

wlfman CR-419

1D Transitions File % Nanme

2192 33 % /top_vh/ pdat a
/top_vh/ processor/data
/top_vh/ cache/ pdat a
/top_vh/ cache/ gen__0/ s/ data
/top_vh/ cache/ gen__1/s/data
/top_vh/ cache/ gen__2/s/data
/top_vh/ cache/ gen__3/s/data

1224 18 % /top_vh/ptrans

1216 18 % /top_vh/sdata
/top_vh/ cache/ sdat a
/top_vh/ nmenory/ dat a

WWWNRRRRRRR

See also
Chapter 8 - WLF files (datasets) and virtuals (uUM-225)

ModelSim SE Command Reference

CR-420 wilfrecover

wlfrecover

Syntax

Arguments

The wifrecover tool attemptsto "repair” WLF files that are incompl ete due to a crash or
the file being copied prior to completion of the simulation. The tool works only on WLF
files created by Model Sim versions 5.6 or later. Y ou can run the tool from the VSIM> or
Model Sim> prompt or from a shell.

w frecover
<filename> [-force] [-q]

<fil ename>

Specifies the WLF file to repair. Required.

-force
Disregardsfile locking and attempts to repair the file. Optional.

-q
Hides all messages unless thereis an error while repairing the file. Optional.

ModelSim SE Command Reference

write cell_report CR-421

write cell _report

Thewrite cell_report command writes to the Transcript pane or to afilealist of Verilog
modules which qualified for and received gate-level cell optimizations.

Gate-level cell optimizations are applied at the modulelevel, in addition to normal Verilog
optimizations, to improve performance of gate-level simulations.

Syntax
wite cell_report
[-filter <nunber>] [-infile <filename>] [-nonopt]
[[-outfile] <filenane>]
Arguments

-filter <number>
Excludes cells with instance counts fewer than <number>. Optional .

-infile <fil ename>
Specifies apreviously generated write report file to use as input. Optional. If not
specified then the write report command will be run.

- honopt
Reports only non-optimized instances. Optional.

[-outfile] <filenane>
Writes the report to the specified output file rather than the Transcript pane. Optional.

ModelSim SE Command Reference

CR-422 write format

write format

Syntax

Arguments

Examples

Output

Thewrite format command records the names and display options of the HDL objects
currently being displayed in the List or Wave window. Thefile created isprimarily alist of
add list (Cr-48), add wave (CR-52), and configur e (CR-123) commands, though afew other
commands are included (see "Output” below). This file may be invoked with the do
command (CR-151) to recreate the List or Wave window format on a subsequent simulation
run.

When you load awave or list format file, Model Sim verifies the existence of the datasets
required by theformat file. Model Sim displays an error messageif the requisite datasets do
not all exist. To force the execution of the wave or list format file even if all datasets are
not present, use the -for ce switch with your do command. For example:

VSI M> do wave. do -force

Note that thiswill result in error messages for signals referencing nonexistent datasets.
Also, -force is recognized by the format file not the do command.

wite format
list | wave [-w ndow <wi ndow_nanme>] <fil ename>

list | wave
Specifies that the contents of either the List or the Wave window are to be recorded.
Required.

-w ndow <wi ndow_nane>
Specifies the window for which you want contents recorded. Optional. Use when you
have more than one instance of the List or Wave window.

<fil ename>
Specifies the name of the output file where the datais to be written. Required.

wite format list alu_list.do
Saves the current datain the List window in afile named alu_list.do.

wite format wave al u_wave. do
Saves the current datain the Wave window in afile named alu_wave.do.

Below is an example of a saved Wave window format file.

onerror {resune}

qui etly WaveActi vat eNext Pane {} O

add wave -noupdate -format Logic /cntr_struct/ld
add wave -noupdate -format Logic /cntr_struct/rst
add wave -noupdate -format Logic /cntr_struct/clk
add wave -noupdate -format Literal /cntr_struct/d
add wave -noupdate -format Literal /cntr_struct/q

ModelSim SE Command Reference

See also

write format CR-423

TreeUpdat e [Set Def aul t Tr ee]

qui etly WaveActi vat eNext Pane

add wave -noupdate -format Logic /cntr_struct/pl
add wave -noupdate -format Logic /cntr_struct/p2
add wave -noupdate -format Logic /cntr_struct/p3
TreeUpdat e [Set Def aul t Tr ee]

WaveRest oreCursors {0 ns}

WaveRest oreZoom {0 ns} {1 us}

configure wave -nanmecol wi dth 150

configure wave -val uecolw dth 100

configure wave -signal namewi dth 0

configure wave -justifyvalue left

In the example above, five signals are added with the -noupdate argument to the default
window pane. The TreeUpdate command then refreshes all five waveforms. The second
WaveA ctivateNextPane command creates a second pane which containsthreesignals. The
WaveRestoreCur sor s command restores any cursors you set during the original
simulation, and the WaveRestor eZoom command restores the Zoom range you set. These
four commands are used only in saved Wave format files; therefore, they are not
documented el sewhere.

add list (CR-48), add wave (CR-52)

ModelSim SE Command Reference

CR-424 write list

write list

Syntax

Arguments

Examples

See also

Thewritelist command records the contents of the most recently opened or specified List
window inalist output file. Thisfile contains simulation datafor all HDL objectsdisplayed
in the List window: VHDL signals and variables and Verilog nets and registers.

wite |ist
[-events] [-wi ndow <wnane>] <fil enanme>

-events
Specifies to write print-on-change format. Optional. Default is tabular format.

-wi ndow <wname>
Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-332) to change the default
window.

<fil ename>
Specifies the name of the output file where the datais to be written. Required.

wite list alu.lst
Saves the current data in the default List window in afile named alu.lst.

wite list -win listl groupl.list
Saves the current datain window ‘listl’ in afile named groupl.list.

writetssi (CR-429)

ModelSim SE Command Reference

write preferences CR-425

write preferences

Syntax

Arguments

See also

The write preferences command saves the current GUI preference settingsto a Tcl
preference file. Settings saved include current window locations and sizes;, Wave, Objects,
and L ocalswindow column widths; Wave, Objects, and L ocalswindow valuejustification;
and Wave window signal name width.

write preferences
<preference file nane>

<preference file name>
Specifies the name for the preference file. Optional. If the file is named modelsim.tcl,
ModelSim will read thefile eachtimevsimisinvoked. To use apreferencefile other than
modelsim.tcl you must specify the alternative file name with the MODEL SIM_TCL
(UM-521) environment variable.

Y ou can modify variables by editing the preference file with the Model Sim notepad (CR-
211):

not epad <preference file name>

ModelSim SE Command Reference

CR-426 write report

write report

Thewritereport command printsasummary of the design being simulated including alist
of all design units (VHDL configurations, entities, and packages, and Verilog modules)
with the names of their source files. If you have compiled aV erilog design using -fat, the
report will aso identify cells which have been optimized.

Syntax
wite report
[[-file <filename>] [-recursive | <instance_nanel>...<instance_nameN>]] |
[-tcl]
Arguments
<fil ename>
Specifies the name of the output file where the datais to be written. Optional. If the
<filename> is omitted, the report is written to the Transcript pane.
-1
Generates more detailed information about the design including alist of sparse
memories. Default.
-S
Generates a short list of design information. Optional.
-tcl
GeneratesaTcl list of design unit information. Optional. This argument cannot be used
with afilename.
Examples

wite report alu.rep
Saves information about the current design in afile named alu.rep.

ModelSim SE Command Reference

write timing CR-427

write timing

The write timing command prints timing information about the specified instance. Sy ntax

wite timng
[-recursive] [-file -file <filenane>]

Arguments
-recursive
Generatestiming information for the specified instance and al instances underneath it in
the design hierarchy. Optional.
-file <fil ename>
Specifies the name of the output file where the datais to be written. Optional. If the -file
argument is omitted, timing information is written to the Transcript pane.
<i nst ance_nanel>. .. <i nstance_naneN>
The name(s) of the instance(s) for which timing information will be written. Required.
Examples

wite timng -r -f timng.txt /top/ul
Writes timing about /top/ul and all instances underneath it in the hierarchy to thefile
timing.txt.

wite timng /top/ul /top/u2 /top/u3 /top/u8
Writes timing information about the designated instances to the Transcript pane.

ModelSim SE Command Reference

CR-428 write transcript

write transcript

Thewritetranscript command writes the contents of the Transcript pane to the specified
file. Theresulting file can be used to replay the transcribed commandsasaDO file (macro).

The command cannot be used in batch mode. In batch mode use the standard " Transcript"
(GR-16) file or redirect stdout.

Syntax
wite transcript
[<fil enanme>]
Arguments
<fil ename>
Specifies the name of the output file where the datais to be written. Optional. If the
<filename> is omitted, the transcript is written to a file named transcript.
See also

do (CR-151)

ModelSim SE Command Reference

write tssi

Syntax

Arguments

Description

write tssi CR-429

Thewritetssi command records the contents of the default or specified List window in a
"TSSI format” file. The file contains simulation data for all HDL objects displayed in the
List window that can be converted to TSSI format (VHDL signals and Verilog nets). A
signal definition file is also generated.

The List window needsto be using symbolic radix in order for writetssi to produce useful
output.

wite tssi
[-w ndow <wnanme>] <filenane>

-wi ndow <wname>
Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-332) to change the default
window.

<fil ename>
Specifies the name of the output file where the datais to be written. Required.

“TSSI format” is documented in the Fluence TDS Software System, Chapter 2 of VVolume
[, Getting Started, R11.1, dated November 15, 1999. In that document, TSSI format is
called Standard Events Format (SEF).

If the <filename> has a file extension (e.g., listfile.lst), then the definition fileis given the
same file name with the extension .def (e.g., listfile.def). The valuesin the listfile are
produced in the same order that they appear in the List window. The directionality is
determined from the port type if the object is a port, otherwiseit is assumed to be
bidirectional (mode INOUT).

Objectsthat can be converted to SEF are VHDL enumerations with 255 or fewer elements
and Verilog nets. The enumeration valuesU, X, 0, 1, Z, W, L, H and - (the enumeration
values defined in the IEEE Standard 1164 std_ulogic enumeration) are converted to SEF
values according to the table below. Other values are converted to aquestion mark (?) and
cause an error message. Though the write tssi command was devel oped for use with
std_ulogic, any signal which uses only the values defined for std_ulogic (including the
VHDL standard type bit) will be converted.

std_ulogic State SEF State Characters
Characters L .
Input Output Bidirectional
U N X ?
X N X ?
D L 0

ModelSim SE Command Reference

CR-430 write tssi

std_ulogic State SEF State Characters

Characters Input Output Bidirectional
1 U H 1

4 4 T F

W N X ?

L D L 0

H U H 1

- N X ?

Bidirectional logic values are not converted because only the resolved value is available.
The Fluence (TSSI) TDS ASCII In Converter and ASCII Out Converter can be used to
resolvethedirectionality of the signal and to determinethe proper forcing or expected vaue
on the port. Lowercase values x, z, w, |, and h are converted to the same values as the
corresponding capitalized values. Any other values will cause an error message to be
generated the first time an invalid value is detected on asignal, and the value will be

converted to a question mark (?).

P Note: The TDS ASCII In Converter and ASCII Out Converter are part of the TDS
software from Fluence Technology. Model Sim outputs a vector file, and Fluence’ stools

determine whether the bidirectional signals are driving or not.

See also

tssi2mti (CR-288)

ModelSim SE Command Reference

write wave

Syntax

Arguments

Examples

write wave CR-431

The write wave command records the contents of the most currently opened or specified
Wave window in PostScript format. The output file can then be printed on a PostScript
printer.

wite wave
[-w ndow <wnane>] [-wi dth <real _nun®] [-height <real _nunp]
[-margin <real _nunp] [-start <tine>] [-end <tine>] [-perpage <tinme>]
[-landscape] [-portrait] <filenane>

-w ndow <wnane>
Specifies an instance of the Wave window that is not the default. Optional. Otherwise,
the default Wave window is used. Use the view command (CR-332) to change the default
window.

-wi dth <real _nunp

Specifies the paper width in inches. Optional. Default is 8.5.

- hei ght <real _nun»

Specifies the paper height in inches. Optional. Default is 11.0.

-margin <real _nune
Specifies the margin in inches. Optional. Default is0.5.

-start <time>
Specifies the start time (on the waveform timescal€) to be written. Optional .

-end <time>
Specifies the end time (on the waveform timescal€) to be written. Optional.

- per page <time>

Specifies the time width per page of output. Optional.

-l andscape
Use landscape (horizontal) orientation. Optional. Thisis the default orientation.

-portrait
Use portrait (vertical) orientation. Optional. The default is landscape (horizontal).

<fil ename>

Specifies the name of the PostScript output file. Required.

wite wave al u.ps
Saves the current datain the Wave window in afile named alu.ps.

wite wave -win wave2 group2.ps
Saves the current datain window ‘wave2' in afile named group2.ps.

ModelSim SE Command Reference

CR-432 write wave

wite wave -start 600ns -end 800ns -perpage 100ns top. ps
Writes two separate pages to top.ps. The first page contains data from 600ns to 700ns,
and the second page contains data from 701ns to 800ns.

To makethejob of creating a PostScript waveform output file easier, usethe File > Print
Postscript menu selection in the Wave window. See "Saving a .epsfile and printing
under UNIX" (uM-262) for more information.

ModelSim SE Command Reference

CR-433

End-User License Agreement

IMPORTANT - USE OF THIS SOFTWARE IS SUBJECT TO LICENSE
RESTRICTIONS.
CAREFULLY READ THIS LICENSE AGREEMENT BEFORE USING THE
SOFTWARE.

Thislicenseis alegal “Agreement” concerning the use of Softwar e between you, the
end user, either individually or as an authorized representative of the company
acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited acting directly or through their subsidiaries or authorized
distributors (collectively “Mentor Graphics’). USE OF SOFTWARE INDICATES
YOUR COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS
AND CONDITIONS SET FORTH IN THISAGREEMENT. If you do not agree to
these terms and conditions, promptly return, or, if received electronically, certify
destruction of Software and all accompanying items within five days after receipt of
Softwar e and receive a full refund of any license fee paid.

END-USER LICENSE AGREEMENT

GRANT OF LICENSE. The software programs you are installing, downloading, or have
acquired with this Agreement, including any updates, modifications, revisions, copies,
documentation and design data (“ Software”) are copyrighted, trade secret and confidential
information of Mentor Graphics or its licensors who maintain exclusive title to all
Software and retain all rights not expressly granted by this Agreement. Mentor Graphics
grants to you, subject to payment of appropriate license fees, a nontransferable,
nonexclusive license to use Software solely: (a) in machine-readable, object-code form;
(b) for your internal business purposes; and (c) on the computer hardware or at the site for
which an applicable license fee is paid, or as authorized by Mentor Graphics. A siteis
restricted to a one-half mile (800 meter) radius. Mentor Graphics' standard policies and
programs, which vary depending on Software, license fees paid or service plan purchased,
apply to the following and are subject to change: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by asingle
user on the authorized hardware or for arestricted period of time (such limitations may be
communicated and technically implemented through the use of authorization codes or
similar devices); (c) support services provided, including eligibility to receive telephone
support, updates, modifications, and revisions. Current standard policies and programs are
available upon request.

ESD SOFTWARE. If you purchased a license to use embedded software development
("ESD”) Software, Mentor Graphics grants to you a nontransferable, nonexclusive license
to reproduce and distribute executable files created using ESD compilers, including the
ESD run-time libraries distributed with ESD C and C++ compiler Software that are linked
into a composite program as an integral part of your compiled computer program,
provided that you distribute these files only in conjunction with your compiled computer
program. Mentor Graphics does NOT grant you any right to duplicate or incorporate
copies of Mentor Graphics' real-time operating systems or other ESD Software, except
those explicitly granted in this section, into your products without first signing a separate
agreement with Mentor Graphics for such purpose.

BETA CODE. Portions or al of certain Software may contain code for experimental
testing and evaluation (“Beta Code”), which may not be used without Mentor Graphics
explicit authorization. Upon Mentor Graphics authorization, Mentor Graphics grants to
you a temporary, nontransferable, nonexclusive license for experimental use to test and
evaluate the Beta Code without charge for alimited period of time specified by Mentor
Graphics. This grant and your use of the Beta Code shall not be construed as marketing or

ModelSim SE Command Reference

CR-434 License Agreement

offering to sell alicense to the Beta Code, which Mentor Graphics may choose not to
release commercialy in any form. If Mentor Graphics authorizes you to use the Beta
Code, you agree to evaluate and test the Beta Code under normal conditions as directed by
Mentor Graphics. You will contact Mentor Graphics periodically during your use of the
Beta Code to discuss any malfunctions or suggested improvements. Upon completion of
your evaluation and testing, you will send to Mentor Graphics a written evaluation of the
Beta Code, including its strengths, weaknesses and recommended improvements. Y ou
agree that any written evaluations and all inventions, product improvements,
modifications or developments that Mentor Graphics conceived or made during or
subsequent to this Agreement, including those based partly or wholly on your feedback,
will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive
rights, title and interest in all such property. The provisions of this subsection shall survive
termination or expiration of this Agreement.

RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to
support the authorized use. Each copy must include all notices and legends embedded in
Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Y ou shall maintain a
record of the number and primary location of all copies of Software, including copies
merged with other software, and shall make those records available to Mentor Graphics
upon request. Y ou shall not make Software availablein any form to any person other than
employees and contractors, excluding Mentor Graphics' competitors, whose job
performance requires access. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does
not disclose it or use it except as permitted by this Agreement. Except as otherwise
permitted for purposes of interoperability as specified by applicable and mandatory local
law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way
derive from Software any source code. Y ou may not sublicense, assign or otherwise
transfer Software, this Agreement or the rights under it, whether by operation of law or
otherwise (“attempted transfer”), without Mentor Graphics' prior written consent and
payment of Mentor Graphics' then-current applicable transfer charges. Any attempted
transfer without Mentor Graphics' prior written consent shall be a material breach of this
Agreement and may, at Mentor Graphics' option, result in the immediate termination of
the Agreement and licenses granted under this Agreement.

The terms of this Agreement, including without limitation, the licensing and assignment
provisions shall be binding upon your heirs, successors in interest and assigns. The
provisions of this section 4 shall survive the termination or expiration of this Agreement.

LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period Software, when properly
installed, will substantially conform to the functional specifications set forth in the
applicable user manual. Mentor Graphics does not warrant that Software will meet
your requirements or that operation of Software will be uninterrupted or error free.
The warranty period is 90 days starting on the 15th day after delivery or upon
installation, whichever first occurs. You must notify Mentor Graphics in writing of
any nonconformity within the warranty period. This warranty shall not be valid if
Software has been subject to misuse, unauthorized modification or installation.
MENTOR GRAPHICS ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY
SHALL BE, AT MENTOR GRAPHICS OPTION, EITHER (A) REFUND OF THE
PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B)
MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT
MEET THISLIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE
COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO

ModelSim SE Command Reference

CR-435

WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH
ISLICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST,;
OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “AS
IS

52. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE.
NEITHER MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT.
MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY.

LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR
RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER
APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICSOR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR SAVINGYS)
WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY,
EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR
GRAPHICS OR ITSLICENSORS' LIABILITY UNDER THIS AGREEMENT
EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR SERVICE
GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID,
MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR
ANY DAMAGES WHATSOEVER.

LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN
CONNECTION WITH THE USE OF SOFTWARE IN ANY APPLICATION WHERE
THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY.

INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS
MENTOR GRAPHICS AND ITS LICENSORS FROM ANY CLAIMS, LOSS, COST,
DAMAGE, EXPENSE, OR LIABILITY, INCLUDING ATTORNEY S FEES, ARISING
OUT OF OR IN CONNECTION WITH YOUR USE OF SOFTWARE AS DESCRIBED
IN SECTION 7.

INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought
against you alleging that Software infringes a patent or copyright or misappropriates a
trade secret in the United States, Canada, Japan, or member state of the European
Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. Y ou understand and agree
that as conditions to Mentor Graphics' obligations under this section you must:
(a) notify Mentor Graphics promptly in writing of the action; (b) provide Mentor
Graphics all reasonable information and assistance to defend or settle the action; and
(c) grant Mentor Graphics sole authority and control of the defense or settlement of
the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense;
(a) replace or modify Software so that it becomes noninfringing; (b) procure for you

ModelSim SE Command Reference

CR-436 License Agreement

10.

11

12.

13.

14.

the right to continue using Software; or (c) require the return of Software and refund
to you any license fee paid, less a reasonable alowance for use.

9.3. Mentor Graphics has no liability to you if infringement is based upon: (a) the
combination of Software with any product not furnished by Mentor Graphics; (b) the
modification of Software other than by Mentor Graphics; (c) the use of other than a
current unaltered release of Software; (d) the use of Software as part of an infringing
process; (e) a product that you make, use or sell; (f) any Beta Code contained in
Software; (g) any Software provided by Mentor Graphics' licensors who do not
provide such indemnification to Mentor Graphics' customers; or (h) infringement by
you that is deemed willful. Inthe case of (h) you shall reimburse Mentor Graphics for
its attorney fees and other costs related to the action upon afinal judgment.

9.4. THIS SECTION 9 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS
AND ITSLICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH
RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR
TRADE SECRET MISAPPROPRIATION BY ANY SOFTWARE LICENSED
UNDER THIS AGREEMENT.

TERM. This Agreement remains effective until expiration or termination. This
Agreement will immediately terminate upon notice if you exceed the scope of license
granted or otherwise fail to comply with the provisions of Sections 1, 2, or 4. For any
other material breach under this Agreement, Mentor Graphics may terminate this
Agreement upon 30 days written notice if you are in material breach and fail to cure such
breach within the 30-day notice period. If Software was provided for limited term use,
this Agreement will automatically expire at the end of the authorized term. Upon any
termination or expiration, you agree to cease all use of Software and return it to Mentor
Graphics or certify deletion and destruction of Software, including all copies, to Mentor
Graphics' reasonable satisfaction.

EXPORT. Software is subject to regulation by local laws and United States government
agencies, which prohibit export or diversion of certain products, information about the
products, and direct products of the products to certain countries and certain persons. Y ou
agree that you will not export any Software or direct product of Software in any manner
without first obtaining all necessary approval from appropriate local and United States
government agencies.

RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense
and is commercial computer software provided with RESTRICTED RIGHTS. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is
subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, as
applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 SW
Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by
Mentor Graphics from Microsoft or other licensors, Microsoft or the applicable licensor is
athird party beneficiary of this Agreement with the right to enforce the obligations set
forth herein.

AUDIT RIGHTS. With reasonable prior notice, Mentor Graphics shall have the right to
audit during your normal business hours all records and accounts as may contain
information regarding your compliance with the terms of this Agreement. Mentor
Graphics shall keep in confidence al information gained as a result of any audit. Mentor

ModelSim SE Command Reference

15.

16.

17.

CR-437

Graphics shall only use or disclose such information as necessary to enforce its rights
under this Agreement.

CONTROLLING LAW AND JURISDICTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF
OREGON, USA, IF YOU ARE LOCATED IN NORTH OR SOUTH AMERICA, AND
THE LAWS OF IRELAND IF YOU ARE LOCATED OUTSIDE OF NORTH AND
SOUTH AMERICA. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of Dublin, Ireland when the laws of Ireland apply,
or Wilsonville, Oregon when the laws of Oregon apply. This section shall not restrict
Mentor Graphics’ right to bring an action against you in the jurisdiction where your place
of businessislocated. The United Nations Convention on Contracts for the International
Sale of Goods does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent
jurisdiction to be void, invalid, unenforceable or illegal, such provision shall be severed
from this Agreement and the remaining provisions will remain in full force and effect.

PAYMENT TERMS AND MISCELLANEOUS. You will pay amounts invoiced, in
the currency specified on the applicable invoice, within 30 days from the date of such
invoice. This Agreement contains the parties' entire understanding relating to its subject
matter and supersedes all prior or contemporaneous agreements, including but not limited
to any purchase order terms and conditions, except valid license agreements related to the
subject matter of this Agreement (which are physically signed by you and an authorized
agent of Mentor Graphics) either referenced in the purchase order or otherwise governing
this subject matter. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and
shall not constitute subsequent consent, waiver or excuse. The prevailing party in any
legal action regarding the subject matter of this Agreement shall be entitled to recover, in
addition to other relief, reasonable attorneys fees and expenses.

Rev. 040401, Part Number 221417

ModelSim SE Command Reference

CR-438 License Agreement

ModelSim SE Command Reference

ABCDEFGHIJKLMNOPORSTUVWAXY Z

Index

CR = Command Reference, UM = User’s Manual, GR = GUI Reference

Symbols

#, comment character UM-476
+acc option, design object visibility UM-126
+typdelays CR-365
-, in acoverage report UM-353
.S0, shared object file
loading PLI/VPI C applications UM-568
loading PLI/VPI C++ applications UM-574
{} CR-15
"hasX, hasX CR-24

Numerics

1076, |EEE Std UM-30
differences between versions UM-75
1364, IEEE Std UM-30, UM-113
2001, keywords, disabling CR-366
64-hit libraries UM-66
64-bit Model Sim, using with 32-bit FLI apps UM-598
64-bit time
now variable UM-543
Tcl time commands UM-481

A

+acc option, design object visibility UM-126
abort command CR-44
absolute time, using @ CR-18
ACC routines UM-591
accel erated packages UM-65
access
hierarchical objects UM-417
limitations in mixed designs UM-190
Active Processes pane GR-108
see also windows, Active Processes pane
add button command CR-45
Add fileto Project didlog GR-44
Add Folder didlog GR-47
add list command CR-43
add monitor command CR-51
add PSL files UM-53, GR-53, GR-56
add wave command CR-52
add_menu command CR-56
add_menucb command CR-58
add_menuitem simulator command CR-59
add_separator command CR-60

add _submenu command CR-61
aggregates, SystemC UM-180
alias command CR-62
analog

signal formatting CR-53, GR-239

supported signal types GR-239
annotating interconnect delays, v2k_int_delays CR-389
architecture simulator state variable UM-542
archives

described UM-59
archives, library CR-356
argc simulator state variable UM-542
arguments

passing to aDO file UM-487
arguments, accessing commandl-line UM-183
arithmetic package warnings, disabling UM-538
array of sc_signal<T> UM-180
arrays

indexes CR-12

slices CR-12, CR-15
AssertFile .ini file variable UM-529
assertion fail command CR-63
assertion pass command CR-65
assertion report command CR-67
AssertionFailEnable .ini variable UM-529
AssertionFailLimit .ini variable UM-529
AssertionFailLog .ini variable UM-529
AssertionFormat .ini file variable UM-529
AssertionFormatBreak .ini file variable UM-529
AssertionFormatError .ini file variable UM-529
AssertionFormatFail .ini file variable UM-530
AssertionFormatFatal .ini file variable UM-530
AssertionFormatNote .ini file variable UM-530
AssertionFormatWarning .ini file variable UM-530
AssertionPassEnable .ini variable UM-530
AssertionPassLimit .ini variable UM-530
AssertionPassLog .ini variable UM-530
assertions

configuring from the GUI GR-86

enabling CR-63, CR-65

failure behavior CR-63

file and line number UM-529

flow UM-362

library and use clauses UM-367

limitations UM-362

messages

aternate output file UM-381
turning off UM-538

ABCDEFGHIJKLMNOPORSTUVWAXY Z

multiclocked properties UM-369
pass behavior CR-65
reporting on CR-67, UM-381
selecting severity that stops simulation GR-86
setting format of messages UM-529
testing for with onbreak command CR-214
viewing in Wave window UM-382
warnings, locating UM-529
Assertions pane
described GR-110
hiding/showing columns GR-112
assume directives
disabling UM-363
SimulateAssumeDirectives .ini variable UM-533
AtL east counts, functional coverage UM-387
attributes, of signals, using in expressions CR-24
auto find bp command UM-406
auto step mode, C Debug UM-407

B

bad magic number error message UM-227
balloon dialog, toggling on/off GR-256
balloon popup

C Debug GR-99
base (radix)

List window UM-259

Memory window GR-183

Wave window UM-255
batch mode command CR-69
batch-mode simulations UM-28

halting CR-410
bd (breakpoint delete) command CR-70
binary radix, mapping to std_logic values CR-29
BindAtCompile .ini file variable UM-527
binding, VHDL, default UM-79
bitwise format UM-279
blocking assignments UM-134
bookmark add wave command CR-71
bookmark delete wave command CR-72
bookmark goto wave command CR-73
bookmark list wave command CR-74
bookmarks

Source window GR-204

Wave window UM-250
bp (breakpoint) command CR-75
brackets, escaping CR-15
break

on assertion GR-86

on signal value CR-407

stop simulation run GR-35
BreakOnAssertion .ini file variable UM-530
breakpoints
C code UM-403
conditional CR-407
continuing simulation after CR-252
deleting CR-70, GR-203, GR-264
listing CR-75
setting CR-75, GR-203
setting automatically in C code UM-407
signal breakpoints (when statements) CR-407
Source window, viewing in GR-199
time-based
in when statements CR-411
.bsm file UM-313
buffered/unbuffered output UM-534
bus contention checking CR-84
configuring CR-86
disabling CR-87
bus float checking
configuring CR-89
disabling CR-90
enabling CR-88
busses
escape charactersin CR-15
RTL-level, reconstructing UM-234
user-defined CR-53, UM-264
buswise format UM-279
button
adding to windows GR-106
buttons, adding to the Main window toolbar CR-45

C

C applications
compiling and linking UM-568
debugging UM-399

C callstack
moving down CR-237
moving up CR-219

C Debug UM-399
auto find bp UM-406
auto step mode UM-407
debugging functions during elaboration UM-410
debugging functions when exiting UM-414
function entry points, finding UM-406
initialization mode UM-410
menu reference GR-31
registered function cdls, identifying UM-407
running from aDO file UM-402

ABCDEFGHIJKLMNOPORSTUVWAXY Z

Stop on quit mode UM-414
C Debug setup dialog GR-99
C debugging CR-79
C++ applications
compiling and linking UM-574
cancelling scheduled events, performance UM-108
case choice, must be locally static CR-314
case sensitivity
named port associations UM-207
VHDL vs. Verilog CR-15
causality, tracing in Dataflow window UM-306
cd (change directory) command CR-78
cdbg command CR-79
cdbg_wait_for_starting command UM-402
cell libraries UM-144
cells
hiding in Dataflow window GR-140, GR-141
change command CR-81
change directory, disabled GR-21
Change Memory dialog GR-179
Change Selected Variable dialog GR-167
change_menu_cmd command CR-83
chasing X UM-307
check contention add command CR-84
check contention config command CR-86
check contention off command CR-87
check float add command CR-88
check float config command CR-89
check float off command CR-90
check stable off command CR-91
check stable on command CR-92
-check_synthesis argument CR-312
warning message UM-552
CheckPlusargs .ini file variable (VLOG) UM-530
checkpoint command CR-93
checkpoint/restore UM-86, UM-142
CheckpointCompressMode .ini file variable UM-531
CheckSynthesis .ini file variable UM-527
class member selection, syntax CR-13
class of sc_signal<T> UM-180
cleanup
SystemC state-based code UM-175
clean-up of SystemC state-based code UM-175
clock change, sampling signals at UM-268
clocked comparison UM-276
Code Coverage
$coverage save system function UM-152
by instance UM-334
columns in workspace GR-116
condition coverage UM-334, UM-355
coverage clear command CR-128

coverage exclude command CR-129
coverage reload command CR-131
coverage report command CR-132
coverage save command CR-135
Current Exclusions pane GR-121
data types supported UM-335
Details pane GR-123
display filter toolbar GR-127
enabling with vcom or viog UM-337
enabling with veim UM-337
excluding lines/files UM-347
exclusion filter files UM-348
expression coverage UM-334, UM-356
important notes UM-336
Instance Coverage pane GR-122
Main window coverage data UM-340
merge utility UM-354
merging report files CR-131
merging reports CR-320
missed branches GR-120
missed coverage GR-120
pragma exclusions UM-347
reports UM-350
Source window data UM-341
source window details GR-124
statistics in Main window UM-340
toggle coverage UM-334
excluding signals CR-281
toggle details GR-123
vcover report command CR-322
Workspace pane GR-116
collapsing ports, and coverage reporting UM-345
collapsing time and delta steps UM-232
colorization, in Source window GR-205
columns
hide/showing in GUI GR-262
moving GR-262
sorting by GR-262
Combine Selected Signals dialog GR-161
combining signals, busses CR-53, UM-264
command history GR-28
command line args, accessing
vsim sc_arg command CR-389
CommandHistory .ini file variable UM-531
command-line arguments, accessing UM-183
command-line mode UM-27
commands
.main clear CR-43
abort CR-44
add button CR-45
add list CR-48

Index

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

add monitor CR-51

add wave CR-52

add_menu CR-56
add_menuch CR-58
add_menuitem CR-59
add_separator CR-60
add_submenu CR-61

alias CR-62

assertion fail command CR-63
assertion pass CR-65
assertion report CR-67
batch_mode CR-69

bd (breakpoint delete) CR-70
bookmark add wave CR-71
bookmark delete wave CR-72
bookmark goto wave CR-73
bookmark list wave CR-74
bp (breakpoint) CR-75

cd (change directory) CR-78
cdbg CR-79

change CR-81
change_menu_cmd CR-83
check contention add CR-84
check contention config CR-86
check contention off CR-87
check float add CR-88
check float config CR-89
check float off CR-90

check stable off CR-91
check stable on CR-92
checkpoint CR-93

compare add CR-94
compare annotate CR-98, CR-101
compare clock CR-99
compare close CR-105
compare delete CR-104
compare info CR-106
compare list CR-107
compare open CR-119
compare options CR-108
compare reload CR-112
compare savediffs CR-115
compare saverules CR-116
compare see CR-117
compare start CR-114
configure CR-123

coverage clear CR-128
coverage exclude CR-129
coverage reload CR-131
coverage report CR-132
coverage save CR-135

dataset alias CR-136
dataset clear CR-137
dataset close CR-138
dataset info CR-139
dataset list CR-140
dataset open CR-141
dataset rename CR-142, CR-143
dataset snapshot CR-144
delete CR-146
describe CR-147
disable_menu CR-149
disable_menuitem CR-150
disablebp CR-148
do CR-151
down CR-152
drivers CR-154
dumplog64 CR-155
echo CR-156
edit CR-157
enable_menu CR-159
enable_menuitem CR-160
enablebp CR-158
environment CR-161
event watching in DO file UM-487
examine CR-162
exit CR-166
fcover clear

functional coverage

clearing database CR-167

fcover comment CR-168
fcover configue CR-169
fcover reload CR-171
fcover report CR-173
fcover save CR-175
find CR-176
force CR-180
gdb dir CR-183
getactivecursortime CR-184
getactivemarkertime CR-185
help CR-186
history CR-187
lecho CR-188
left CR-189
log CR-191
Ishift CR-193
Isublist CR-194
macro_option CR-195
mem display CR-196
mem list CR-198
mem load CR-199
mem save CR-202

ABCDEFGHIJKLMNOPORSTUVWAXY Z

mem search CR-204
modelsim CR-206
next CR-207
noforce CR-208
nolog CR-209

notation conventions CR-10

notepad CR-211
noview CR-212
nowhen CR-213
onbreak CR-214
onElabError CR-215
onerror CR-216
pause CR-217

play CR-218

pop CR-219

power add CR-220
power report CR-221
power reset CR-222
printenv CR-223, CR-224
profile clear CR-225
profile interval CR-226
profile off CR-227
profile on CR-228
profile option CR-229
profile reload CR-230
profile report CR-231
property list CR-234
property wave CR-235
push CR-237

pwd CR-238

quietly CR-239

quit CR-240

radix CR-241

readers CR-242
record CR-243

report CR-244

restart CR-246
restore CR-248
resume CR-249

right CR-250

run CR-252

sccom CR-254
scgenmod CR-258
search CR-260
searchlog CR-262
seetime CR-264
setenv CR-265

shift CR-266

show CR-267

splitio CR-270

status CR-271

step CR-272

stop CR-273

system UM-479

tb (traceback) CR-274
tcheck_set CR-275
tcheck_status CR-277
toggle add CR-279
toggle disable CR-281
toggle enable CR-282
toggle report CR-283
toggle reset CR-284
transcribe CR-285
transcript CR-286
transcript file CR-287
TreeUpdate CR-423
tssizmti CR-288
unsetenv CR-289

up CR-290
variablesreferenced in CR-17
ved add CR-292

ved checkpoint CR-293
ved comment CR-294
ved dumpports CR-295
ved dumpportsall CR-297
ved dumpportsflush CR-298
ved dumpportslimit CR-299
ved dumpportsoff CR-300
ved dumpportson CR-301
vcd file CR-302

vcd files CR-304

ved flush CR-306

ved limit CR-307

ved off CR-308

ved on CR-309

vcom CR-311

vcover convert CR-319
vcover merge CR-320
vcover report CR-322
vdel CR-327

vdir CR-328

verror CR-329
vgencomp CR-330

view CR-332

virtual count CR-334
virtual define CR-335
virtual delete CR-336
virtual describe CR-337
virtual expand CR-338
virtual function CR-339
virtual hide CR-342
virtual log CR-343

Index

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

virtual nohide CR-345
virtual nolog CR-346
virtual region CR-348
virtual save CR-349
virtual show CR-350
virtual signal CR-351
virtual type CR-354

vlib CR-356

viog CR-358

vmake CR-369

vmap CR-370

vopt CR-371

vsim CR-373

VSIM Tcl commands UM-480
vsimDate CR-392

vsimld CR-392
vsimVersion CR-392
wave CR-394

wave create CR-397
wave edit CR-400

wave export CR-403
wave import CR-404
wave modify CR-405
WaveActivateNextPane CR-423
WaveRestoreCursors CR-423
WaveRestoreZoom CR-423
when CR-407

where CR-412

wlif2log CR-413

wlf2ved CR-415

wlfman CR-416
wlfrecover CR-420

write cell_report CR-421
write format CR-422
write list CR-424

write preferences CR-425
write report CR-426
write timing CR-427
write transcript CR-428
writetssi CR-429

write wave CR-431

icons UM-281

method UM-276

options UM-278

pathnames UM-279

reference dataset UM-272

reference region UM-275

tab UM-273

test dataset UM-273

timing differences UM-279

tolerance UM-276

values UM-280

wave window display UM-279
compare add command CR-94
compare annotate command CR-98, CR-101
compare by region UM-275
compare clock command CR-99
compare close command CR-105
compare delete command CR-104
compare info command CR-106
compare list command CR-107
Compare Memory dialog GR-181
compare open command CR-119
compare options command CR-108
compare reload command CR-112
compare savediffs command CR-115
compare saverules command CR-116
compare see command CR-117
compare simulations UM-225
compare start command CR-114
compatibility, of vendor libraries CR-328
compile

gensrc errors during UM-185

projects

add PSL files UM-53, GR-53, GR-56

compile order

auto generate UM-46

changing UM-46
Compile Order dialog GR-69
Compile Source Files dialog

dialogs

Compile Source Files GR-59

comment character compiler directives UM-153
Tcl and DO files UM-476 |EEE Std 1364-2000 UM-153
comment charactersin VSIM commands CR-10 XL compatible compiler directives UM-154

compare Compiler Options dialog GR-60

add region UM-275

add signals UM-274

by signal UM-274

clocked UM-276

difference markers UM-279
displayed in List window UM-281

compiling
changing order in the GUI UM-46
graphic interface to GR-59
grouping files UM-47
order, changing in projects UM-46
properties, in projects UM-52

ABCDEFGHIJKLMNOPORSTUVWAXY Z

range checkingin VHDL CR-316, UM-74
source errors, locating GR-264
SystemC CR-254, CR-258, UM-164
converting sc_main() UM-164
exporting top level module UM-165
for source level debug UM-167
invoking sccom UM-167
linking the compiled source UM-172
modifying source code UM-164
replacing sc_start() UM-164
using sccom vs. raw C++ compiler UM-170
Verilog CR-358, UM-114
incremental compilation UM-115
library components, including CR-361
optimizing performance CR-360
XL "uselib compiler directive UM-120
XL compatible options UM-119
VHDL CR-311, UM-73
at a specified line number CR-313
selected design units (-just eapbc) CR-313
standard package (-s) CR-316
VITAL packages UM-95
compiling the design
overview UM-25
component declaration
generating SystemC from Verilog or VHDL UM-
223
generating VHDL from Verilog UM-204
vgencomp for SystemC UM-223
vgencomp for VHDL UM-204
component, default binding rules UM-79
Compressing files
VCD tasks UM-462
compressing files
VCD files CR-295, CR-304
concatenation
directives CR-28
of signals CR-27, CR-351
ConcurrentFileLimit .ini file variable UM-531
conditional breakpoints CR-407
configuration simulator state variable UM-542
configurations
instantiation in mixed designs UM-203
Verilog UM-122
configurations, simulating CR-373
configure command CR-123
Configure cover directives dialog GR-149
connectivity, exploring UM-303
constants
in case statements CR-314
values of, displaying CR-147, CR-162

contention checking CR-84
context menu

List window GR-155
context menus

Library tab UM-61
context sensitivity UM-501
control function, SystemC UM-192
control_foreign_signal() function UM-183
conversion, radix CR-241
convert real to time UM-99
convert timeto real UM-98
coverage

merging data UM-354

saving raw data UM-354

see also Code Coverage

see also functional coverage
coverage clear command CR-128
coverage exclude command CR-129
coverage reload command CR-131
coverage report command CR-132
Coverage Report dialog GR-90
coverage reports UM-350

reporting al signals UM-345

sample reports UM-352

xml format UM-351
coverage save command CR-135
$coverage save system function UM-152
CoverAtLeast .ini file variable UM-531
CoverEnable .ini file variable UM-531
CoverLimit .ini file variable UM-531
CoverLog .ini file variable UM-531
CoverWeight .ini file variable UM-531
covreport.xsl UM-351
CppOptions .ini file variable (sccom) UM-528
CppPath .ini file variable (sccom) UM-528
Create aNew Library dialog GR-38
Create Project dialog GR-37
Create Project File dialog GR-43
current exclusions

pragmas UM-347
Current Exclusions pane GR-121
CUrsors

adding, deleting, locking, naming UM-245

link to Dataflow window UM-302

measuring time with UM-245

trace events with UM-306

Wave window UM-245
Customize Toolbar dialog GR-106
customizing

adding buttons CR-45

via preference variables GR-266

Index

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

D

deltas
explained UM-80
datatypes
Code Coverage UM-335
database, functional coverage, saving UM-395
Dataflow Options dialog GR-140
Dataflow Page Setup dialog GR-138
Dataflow window UM-300, GR-128
automatic cell hiding GR-140, GR-141
menu bar GR-129
options GR-140, GR-141
pan UM-305
zoom UM-305
see also windows, Dataflow window
dataflow.bsm file UM-313
dataset alias command CR-136
Dataset Browser UM-229, GR-49
dialog GR-49
dataset clear command CR-137
dataset close command CR-138
dataset info command CR-139
dataset list command CR-140
dataset open command CR-141
dataset rename command CR-142, CR-143
Dataset Snapshot UM-231
dataset snapshot command CR-144
datasets UM-225
environment command, specifying with CR-161
managing UM-229
openingdialogs
Open File GR-39
reference UM-272
restrict dataset prefix display UM-230
test UM-273
DatasetSeparator .ini file variable UM-531
debuggable SystemC objects UM-176
debugging
C code UM-399
debugging the design, overview UM-26
declarations, hiding implicit with explicit CR-318
default binding
BindAtCompile .ini file variable UM-527
disabling UM-79
default binding rules UM-79
default clock UM-368
Default editor, changing UM-521
DefaultForceKind .ini file variable UM-531
DefaultRadix .ini file variable UM-531
DefaultRestartOptions variable UM-531, UM-539

defaults
restoring UM-520
+define+ CR-359
Define Clock dialog GR-188
definition (ID) of memory GR-170
delay
deltadelays UM-80
interconnect CR-378
modes for Verilog models UM-144
SDF files UM-439
stimulus delay, specifying GR-187
+delay_mode_distributed CR-359
+delay_mode_path CR-359
+delay_mode_unit CR-359
+delay_mode zero CR-360
'delayed CR-24
DelayFileOpen .ini file variable UM-532
delaying test signal, Waveform Comparison GR-244
delete command CR-146
deleting library contents UM-61
dedlta collapsing UM-232
ddltasmulator state variable UM-542
dedltas
collapsing in the List window GR-163
collapsing in WLF files CR-382
hiding inthe List window CR-124, GR-163
in List window UM-265
referencing simulator iteration
as asimulator state variable UM-542
dependencies, checking CR-328
dependent design units UM-73
describe command CR-147
descriptions of HDL items GR-203
design library
creating UM-60
logical name, assigning UM-62
mapping search rules UM-63
resource type UM-58
VHDL design units UM-73
working type UM-58
design object icons, described GR-12
Design Optimization dialog GR-70
design portability and SystemC UM-168
design units UM-58
report of units simulated CR-426
Verilog
adding to alibrary CR-358
details
code coverage GR-123
dialogs GR-49
Add file to Project GR-44

ABCDEFGHIJKLMNOPORSTUVWAXY Z

Add Folder GR-47

C Debug setup GR-99

Change Memory GR-179

Change Selected Variable GR-167
Combine Selected Signals GR-161
Compare Memory GR-181
Compile Order GR-69

Compiler Options GR-60
Configure cover directives GR-149
Coverage Report GR-90

Create aNew Library GR-38
Create Project GR-37

Create Project File GR-43
Customize Toolbar GR-106
Dataflow Options GR-140
Dataflow Page Setup GR-138
Define Clock GR-188

Design Optimization GR-70

File Breakpoint GR-98

Filter instance list GR-92

Find in Assertions GR-113

Find in dataflow GR-139

Find in FCovers GR-148

Findin List GR-156

Find in Locals GR-168

Find in memory GR-182

Find in Process GR-109

Force Selected Signal GR-186
Functional coverage filter GR-151
Functional coverage reload GR-145
Functional coverage report GR-146
List Signal Properties GR-159

List Signal Search GR-157

Load Coverage Data GR-89
Macro GR-102

Modify Breakpoints GR-95
Modify Display Properties GR-162
Optimization Configuration GR-45
Preferences GR-104

Print GR-135

Print Postscript GR-137

Profile Report GR-93, GR-197
Project Compiler Settings GR-50
Project Settings GR-57

Properties (memory) GR-183
Restart GR-88

Runtime Options GR-85

Save Memory GR-177

Signal Breakpoints GR-97
Simulation Configuration GR-46
Start Simulation GR-76

SystemC Link dialog GR-68
directories

mapping libraries CR-370

moving libraries UM-63
directory, changing, disabled GR-21
disable_menu command CR-149
disable_menuitem command CR-150
disablebp command CR-148
distributed delay mode UM-145
dividers

adding from command line CR-52

Wave window UM-256
DLL files, loading UM-568, UM-574
do command CR-151
DO files (macros) CR-151

error handling UM-490

executing at startup UM-521, UM-534

parameters, passing to UM-487

Tcl source command UM-491
docking

window panes GR-258
documentation UM-35
DOPATH environment variable UM-521
down command CR-152
DPI

export TFs UM-551
DPI export TFs UM-551
DPI use flow UM-566
drag & drop preferences GR-103
drivers

Dataflow Window UM-303

show in Dataflow window UM-269

Wave window UM-269
drivers command CR-154

drivers, multiple on unresolved signal GR-53, GR-62

dump files, viewing in ModelSim CR-310
dumplog64 command CR-155
dumpports tasks, VCD files UM-461

E

echo command CR-156
edges, finding CR-189, CR-250
edit command CR-157
Editing

in notepad windows UM-605

in the Main window UM-605

in the Source window UM-605
EDITOR environment variable UM-521
editor, default, changing UM-521

Index

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

elab_defer_fli argument UM-84, UM-140
elaboration file
creating UM-83, UM-139
loading UM-83, UM-139
modifying stimulus UM-83, UM-139
resimulating the same design UM-82, UM-138
simulating with PLI or FLI models UM-84, UM-
140
elaboration, interrupting CR-373
embedded wave viewer UM-304
empty port name warning UM-551
enable_menu command CR-159
enable_menuitem command CR-160
enablebp command CR-158
encryption
+protect argument CR-365
‘protect compiler directive UM-155
-nodebug argument (vcom) CR-314
-nodebug argument (vliog) CR-363
securing pre-compiled libraries UM-70
end_of_construction() function UM-183
end_of_simulation() function UM-183
ENDFILE function UM-91
ENDLINE function UM-91
endpoint directives
clocking and UM-371
restrictions on UM-371
endpoints, PSL directive UM-398
“endprotect compiler directive UM-155
entities
default binding rules UM-79
entities, specifying for simulation CR-390
entity simulator state variable UM-542
enumerated types
user defined CR-354
environment command CR-161
environment variables UM-521
accessed during startup UM-613
reading into Verilog code CR-359
referencing from Model Sim command line UM-523
referencing with VHDL FILE variable UM-523
setting in Windows UM-522
specifying library locations in modelsim.ini file
UM-525
specifying UNIX editor CR-157
state of CR-224
TranscriptFile, specifying location of UM-534
used in Solarislinking for FLI UM-568, UM-574
using in pathnames CR-15
using with location mapping UM-67
variable substitution using Tcl UM-479

environment, displaying or changing pathname CR-161
error
can't locate C compiler UM-551
Error .ini file variable UM-536
errors
bad magic number UM-227
during compilation, locating GR-264
getting details about messages CR-329
getting more information UM-546
libswift entry not found UM-555
multiple definition UM-186
onerror command CR-216
out-of-line function UM-186
SDF, disabling CR-380
SystemC loading UM-184
Tcl_init error UM-552
void function UM-186
VSIM license lost UM-555
errors, changing severity of UM-546
escape character CR-15
event order
changing in Verilog CR-358
in optimized designs UM-128
in Verilog simulation UM-132
event queues UM-132
event watching commands, placement of UM-487
events, tracing UM-306
examine command CR-162
examine tooltip
toggling on/off GR-256
exclusion filter files UM-348
excluding udp truth table rows UM-349
exclusions
lines and files UM-347
exit codes UM-549
exit command CR-166
expand net UM-303
Explicit .ini file variable UM-527
export TFs, in DPI UM-551
Exporting SystemC modules
to Verilog UM-214
exporting SystemC modules
to VHDL UM-223
exporting top SystemC module UM-165
Expression Builder UM-253
configuring a List trigger with UM-266
saving expressions to Tcl variable UM-253
extended identifiers CR-16
in mixed designs UM-203, UM-222

ABCDEFGHIJKLMNOPORSTUVWAXY Z

F

-f CR-360
F8 function key UM-607
-fast CR-360
fcover clear command CR-167
fcover comment command CR-168
fcover configue command CR-169
fcover reload command CR-171
fcover report command CR-173
fcover save command CR-175
features, new UM-499
field descriptions

coverage reports UM-352
FIFQOs, viewing SystemC UM-181
File Breakpoint dialog GR-98
File compression

VCD tasks UM-462
file compression

SDF files UM-439

VCD files CR-295, CR-304
file format

MTI memory data GR-178
filel/O

splitio command CR-270

Textl O package UM-88

VCD files UM-455
file-line breakpoints GR-203
files

opening in GUI GR-39
files, grouping for compile UM-47
filter

processes GR-108
Filter instance list dialog GR-92

filtering signalsin Objects window GR-185

filters

for Code Coverage UM-348
find command CR-176
Find in Assertions dialog GR-113
Find in dataflow dialog GR-139
Find in FCovers dialog GR-148
Findin List didlog GR-156
Find in Locals dialog GR-168
Find in memory dialog GR-182
Find in Process dialog GR-109
Find in Transcript dialog

dialogs

Find in Transcript GR-48

fixed point types UM-182
FLI UM-100

debugging UM-399

folders, in projects UM-50
font scaling
for dual monitors GR-28
fonts
controlling in X-sessions GR-13
scaling GR-13
force command CR-180
defaults UM-539
Force Selected Signal dialog GR-186
foreign language interface UM-100
foreign model loading
SmartModels UM-618
foreign module declaration
Verilog example CR-259, UM-210
VHDL example UM-218
foreign module declaration, SystemC UM-209
format file UM-261
List window CR-422
Wave window CR-422, UM-261
FPGA libraries, importing UM-69
function calls, identifying with C Debug UM-407
Functional coverage
merging databases offline CR-320
functional coverage
AtLeast counts UM-387
commentsin the database CR-168
compiling and simulating UM-385
configuring directives CR-169
described UM-360
merging statistics CR-171, UM-396
reloading CR-171, UM-396
reporting CR-173, UM-391
saving database CR-175, UM-395
weighting directives UM-387
Functional coverage filter dialog GR-151
Functional coverage reload dialog GR-145
Functional coverage report dialog GR-146
functions
SystemC
control UM-192
observe UM-192
unsupported UM-182

G

-g C++ compiler option UM-178
g++, dternate installations UM-168
gate-level designs

optimizing UM-127
gdb

Index

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

setting source directory CR-183
gdb debugger UM-400
gdb dir command CR-183
generate statements, Veilog UM-123
GenerateFormat .ini file variable UM-532
generic support

SystemC instantiating VHDL UM-218
generics

assigning or overriding values with -g and -G CR-

375

examining generic values CR-162

limitation on assigning composite types CR-376

VHDL UM-195
get_resolution() VHDL function UM-96
getactivecursortime command CR-184
getactivemarkertime command CR-185
glitches

disabling generation

from command line CR-384
from GUI GR-78

global visibility

PLI/FLI shared objects CR-376, UM-581
Global SharedObjectsList .ini file variable UM-532
graphic interface UM-237, UM-299, GR-9

UNIX support UM-29
grayed-out menu options UM-501
grouping files for compile UM-47
grouping objects, Monitor window GR-209
GUI preferences, saving GR-266
GUI_expression_format CR-22

GUI expression builder UM-253

syntax CR-23

H

hardware model interface UM-628
"hasX CR-24
Hazard .ini file variable (VLOG) UM-525
hazards
-hazards argument to viog CR-361
-hazards argument to vsim CR-385
limitations on detection UM-135
help command CR-186
hierarchical reference support, SystemC UM-183
hierarchical references
SystemC/HDL designs UM-192
hierarchical references, mixed-language UM-190
hierarchy
driving signalsin UM-419, UM-429
forcing signalsin UM-97, UM-425, UM-434

referencing signalsin UM-97, UM-422, UM-432
releasing signalsin UM-97, UM-427, UM-436
viewing signal names without GR-255
highlighting, in Source window GR-205
history
of commands
shortcuts for reuse CR-19, UM-603
history command CR-187
hm_entity UM-629
HOME environment variable UM-521
HP aCC, restrictions on compiling with UM-169

1/10

splitio command CR-270

TextlO package UM-88

VCD files UM-455
icons

shapes and meanings GR-12
ieee.ini file variable UM-525
|EEE libraries UM-65
|EEE Std 1076 UM-30

differences between versions UM-75
|EEE Std 1364 UM-30, UM-113
IgnoreError .ini file variable UM-532
IgnoreFailure .ini file variable UM-532
IgnoreNote .ini file variable UM-532
IgnoreVitalErrors..ini file variable UM-527
IgnoreWarning .ini file variable UM-532
implicit operator, hiding with vcom -explicit CR-318
importing EVCD files, waveform editor GR-295
importing FPGA libraries UM-69
+incdir+ CR-361
incremental compilation

automatic UM-116

manual UM-116

with Verilog UM-115
index checking UM-74
indexed arrays, escaping square brackets CR-15
INF, in a coverage report UM-353
$init_signal_driver UM-429
init_signal_driver UM-419
$init_signal_spy UM-432
init_signal_spy UM-97, UM-422
init_usertfs function UM-412, UM-561
Initial dialog box, turning on/off UM-520
initialization of SystemC state-based code UM-175
initialization sequence UM-615
inlining

ABCDEFGHIJKLMNOPORSTUVWAXY Z

Verilog modules UM-125

VHDL subprograms UM-74
instance

code coverage UM-334
instantiation in mixed-language design

Verilog from VHDL UM-203

VHDL from Verilog UM-207
instantiation in SystemC-Verilog design

SystemC from Verilog UM-214

Verilog from SystemC UM-209
instantiation in SystemC-VHDL design

VHDL from SystemC UM-217
instantiation in VHDL-SystemC design

SystemC from VHDL UM-222
interconnect delays CR-378, UM-451

annotating per Verilog 2001 CR-389
internal signals, adding to aVCD file CR-292
IOPATH

matching to specify path delays UM-445
iteration_limit, infinite zero-delay loops UM-81
IterationLimit .ini file variable UM-532

K

keyboard shortcuts
List window UM-608
Main window UM-605
Source window UM-605
Wave window UM-609
keywords
disabling 2001 keywords CR-366
enabling System Verilog keywords CR-365

L

-L work UM-118
language templates GR-201
language versions, VHDL UM-75
lecho command CR-188
left command CR-189
libraries
64-bit and 32-bit in same library UM-66
archives CR-356
creating UM-60
dependencies, checking CR-328
design libraries, creating CR-356, UM-60
design library types UM-58
design units UM-58
group use, setting up UM-63
IEEE UM-65

importing FPGA libraries UM-69
including precompiled modules GR-71, GR-80
listing contents CR-328
mapping
from the command line UM-62
from the GUI UM-62
hierarchically UM-537
search rules UM-63
modelsim_lib UM-96
moving UM-63
multiple libraries with common modules UM-118
naming UM-62
precompiled modules, including CR-361
predefined UM-64
refreshing library images CR-316, CR-365, UM-66
resource libraries UM-58
std library UM-64
Synopsys UM-65
vendor supplied, compatibility of CR-328
Verilog CR-386, UM-117, UM-194
VHDL library clause UM-64
working libraries UM-58
working vs resource UM-24
working with contents of UM-61
library map file, Verilog configurations UM-122
library mapping, overview UM-25
library maps, Verilog 2001 UM-122
library simulator state variable UM-542
library, definitionin Model Sim UM-24
libsm UM-618
libswift UM-618
entry not found error UM-555
License .ini file variable UM-532
licensing
Licensevariablein .ini file UM-532
linking SystemC source UM-172
lint-style checks CR-362
List Signal Properties dialog GR-159
List Signal Search dialog GR-157
List window UM-243, GR-153
adding itemsto CR-48
context menu GR-155
GUI changes UM-509
setting triggers UM-266
waveform comparison UM-281
see also windows, List window
LM_LICENSE_FILE environment variable UM-521
Load Coverage Data dialog GR-89
loading the design, overview UM-26
Locas window GR-166
see also windows, Locals window

Index

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

location maps, referencing source files UM-67
locations maps
specifying source files with UM-67
lock message UM-551
locking cursors UM-245
log command CR-191
log file
log command CR-191
nolog command CR-209
overview UM-225
QuickSim Il format CR-413
redirecting with -1 CR-377
virtual log command CR-343
virtual nolog command CR-346
see also WLF files
Logic Modeling
SmartModel
command channel UM-622
SmartModel Windows
Imewin commands UM-623
memory arrays UM-624
long ssimulations
saving at intervals UM-231
Ishift command CR-193
Isublist command CR-194

M

Macro dialog GR-102
macro_option command CR-195
MacroNestingLevel simulator state variable UM-542
macros (DO files) UM-487
breakpoints, executing at CR-76
creating from a saved transcript GR-17
depth of nesting, simulator state variable UM-542
error handling UM-490
executing CR-151
forcing signals, nets, or registers CR-180
parameters
as asimulator state variable (n) UM-542
passing CR-151, UM-487
total number passed UM-542
relative directories CR-151
shifting parameter values CR-266
Startup macros UM-538
.main clear command CR-43
Main window GR-14
code coverage UM-340
GUI changes UM-500
see also windows, Main window

manuals UM-35
mapping
datatypes UM-193
libraries
from the command line UM-62
hierarchically UM-537
symbols
Dataflow window UM-313
SystemC in mixed designs UM-202
SystemC to Verilog UM-199
SystemC to VHDL UM-202
Verilog states in mixed designs UM-194
Verilog statesin SystemC designs UM-198
Verilog to SytemC, port and data types UM-198
Verilog to VHDL datatypes UM-193
VHDL to SystemC UM-196
VHDL to Verilog datatypes UM-195
mapping libraries, library mapping UM-62
mapping signals, waveform editor GR-295
master slave library (SystemC), including CR-256
math_complex package UM-65
math_real package UM-65
+maxdelays CR-362
mc_scan_plusargs()
using with an elaboration file UM-84, UM-140
mc_scan_plusargs, PLI routine CR-388
MDI frame UM-501, GR-17
MDI pane
tab groups GR-18
mem display command CR-196
mem list command CR-198
mem load command CR-199
mem save command CR-202
mem search command CR-204
memories
displaying the contents of GR-169
initializing GR-175
loading memory patterns GR-175
MTI memory datafile GR-178
MTI’s definition of GR-170
navigating to memory locations GR-182
saving memory datato afile GR-177
selecting memory instances GR-171
sparse memory modeling UM-156
viewing contents GR-171
viewing multiple instances GR-171
memory
modeling in VHDL UM-101
memory allocation profiler UM-318
Memory Declaration, View menu UM-513
memory leak, cancelling scheduled events UM-108

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

Memory window GR-169
GUI changes UM-510
modifying display GR-183
see also windows, Memory window
window
Memory window
see also Memory window
memory, displaying contents CR-196
memory, listing CR-198
memory, loading contents CR-199
memory, saving contents CR-202
memory, searching for patterns CR-204
menu options grayed-out UM-501
menus
Dataflow window GR-129
List window GR-154
Main window GR-20
Profiler windows GR-195
Source window GR-206
Wave window GR-216
merging coverage data UM-354, UM-396
merging coverage reports CR-320
messages UM-545
bad magic number UM-227
echoing CR-156
empty port name warning UM-551
exit codes UM-549
getting more information CR-329, UM-546
loading, disbling with -quiet CR-316, CR-365
lock message UM-551
long description UM-546
message system variables UM-536
metaval ue detected UM-552
Model Sim message system UM-546
redirecting UM-534
sensitivity list warning UM-552
suppressing warnings from arithmetic packages
UM-538
Tcl_init error UM-552
too few port connections UM-554
turning off assertion messages UM-538
VSIM license lost UM-555
warning, suppressing UM-548
metaval ue detected warning UM-552
MGC _LOCATION_MAP env variable UM-67
MGC_LOCATION_MAP variable UM-521
+mindelays CR-362
MinGW gcc UM-569, UM-575
missed coverage
branches GR-120
Missed Coverage pane GR-120

mixed-language simulation UM-188
access limitations UM-190
mnemonics, assigning to signal values CR-354
MODEL_TECH environment variable UM-521
MODEL_TECH_TCL environment variable UM-521
modeling memory in VHDL UM-101
ModelSim
commands CR-31—CR-432
modes of operation UM-27
simulation task overview UM-23
tool structure UM-22
verification flow UM-22
modelsim command CR-206
MODELSIM environment variable UM-521
modelsim.ini
found by ModelSim UM-615
default to VHDL93 UM-539
delay file opening with UM-539
environment variablesin UM-537
force command default, setting UM-539
hierarchical library mapping UM-537
opening VHDL files UM-539
restart command defaults, setting UM-539
startup file, specifying with UM-538
transcript file created from UM-537
turning off arithmetic package warnings UM-538
turning off assertion messages UM-538
modelsim.tcl file GR-266
modelsim_lib UM-96
path to UM-525
MODELSIM_TCL environment variable UM-521
modes of operation, ModelSim UM-27
Modified field, Project tab UM-45
Modify Breakpoints dialog GR-95
Modify Display Properties dialog GR-162
modules
handling multiple, common names UM-118
with unnamed ports UM-206
Monitor window
adding itemsto CR-51
grouping/ungrouping objects GR-209
monitor window GR-208
add monitor command CR-51
monitors, dua, font scaling GR-28
mouse shortcuts
Main window UM-605
Source window UM-605
Wave window UM-609
.mpf file UM-38
loading from the command line UM-55
order of access during startup UM-612

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

MTI memory datafile GR-178

mti_cosim_trace environment variable UM-521
mti_inhibit_inline attribute UM-74

MTI_SYSTEMC macro UM-168

MTI_TF_LIMIT environment variable UM-522
multiclocked assertions UM-369

multiple document interface UM-501, GR-17
multiple drivers on unresolved signal GR-53, GR-62
Multiple simulations UM-225

multi-source interconnect delays CR-378

N

n simulator state variable UM-542
name case sensitivity, VHDL vs. Verilog CR-15
Namefield
Project tab UM-45
name visibility in Verilog generates UM-123
names, modules with the same UM-118
negative pulses
driving an error state CR-388
Negative timing
$setuphold/$recovery UM-150
negative timing
algorithm for calculating delays UM-136
check limits UM-136
extending check limits CR-385
nets
Dataflow window, displaying in UM-300, GR-128
drivers of, displaying CR-154
readers of, displaying CR-242
stimulus CR-180
values of
displaying in Objects window GR-184
examining CR-162
saving as binary log file UM-226
waveforms, viewing GR-211
new features UM-499
next and previous edges, finding UM-610
next command CR-207
Nlview widget Symlib format UM-313
no space in time literal GR-53, GR-62
-no_risefal_delaynets CR-387
NoCaseStaticError .ini file variable UM-527
NoDebug .ini file variable (VCOM) UM-527
NoDebug .ini file variable (VLOG) UM-526
-nodebug argument (vcom) CR-314
-nodebug argument (vliog) CR-363
noforce command CR-208
NolndexCheck .ini file variable UM-527

+nolibcell CR-363
nolog command CR-209
NOMMAP environment variable UM-522
non-blocking assignments UM-134
NoOthersStaticError .ini file variable UM-527
NoRangeCheck .ini file variable UM-527
Note .ini file variable UM-536
notepad command CR-211
Notepad windows, text editing UM-605
-notrigger argument UM-268
noview command CR-212
NoVital .ini file variable UM-527
NoVitalCheck .ini file variable UM-527
Now simulator state variable UM-542
now simulator state variable UM-542
+nowarn<CODE> CR-364
nowhen command CR-213
numeric_bit package UM-65
numeric_std package UM-65

disabling warning messages UM-538
NumericStdNoWarnings .ini file variable UM-533

O

object
defined UM-34
object_list_file, WLF files CR-416
Objects window GR-184
see also windows, Objects window
observe function, SystemC UM-192
observe foreign signal() function UM-183
onbreak command CR-214
onElabError command CR-215
onerror command CR-216
Open File didog GR-39
opening files GR-39
operating systems supported, See Installation Guide
Optimization Configuration dialog GR-45
Optimization Configurations UM-49
optimizations
disabling for Verilog designs CR-364
disabling for VHDL designs CR-315
disabling process merging CR-311
gate-level designs UM-127
Verilog designs UM-124
VHDL subprogram inlining UM-74
viathe gui GR-70
vopt command CR-371
optimize for std_logic 1164 GR-53, GR-62
Optimize 1164 .ini file variable UM-527

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

optimizing Verilog designs

design object visibility UM-126

event order issues UM-128

timing checks UM-128
OptionFile entry in project files GR-56, GR-65
order of events

changing in Verilog CR-358

in optimized designs UM-128
ordering files for compile UM-46
organizing projects with folders UM-50
organizing windows, MDI pane GR-18
OSCI 2.1 features supported UM-183
OSCI simulator, differences from ModelSim UM-182
OSCI simulator, differences with vsim UM-182
others .ini file variable UM-525
overriding the simulator resolution UM-174
overview, simulation tasksin ModelSim UM-23

P

packages

standard UM-64

textio UM-64

util UM-96

VITAL 1995 UM-93

VITAL 2000 UM-93
page setup

Dataflow window UM-312

Wave window UM-262, GR-230
pan, Dataflow window UM-305
panes

docking and undocking GR-258
parameter support

SystemC instantiating Verilog UM-211

Verilog instantiating SystemC UM-214
parameters

making optional UM-488

using with macros CR-151, UM-487
path delay mode UM-145
path delays,matching to IOPATH statements UM-445
pathnames

comparisons UM-279

hiding in Wave window UM-255

in VSIM commands CR-12

spacesin CR-11
PathSeparator .ini file variable UM-533
pause command CR-217
PedanticErrors .ini file variable UM-527
performance

cancelling scheduled events UM-108

improving for Verilog simulations UM-124
vopt command CR-371
platforms supported, See Installation Guide
play command CR-218
PLI
loading shared objectswith global symbol visibility
CR-376, UM-581
specifying which apps to load UM-562
Veriuser entry UM-562
PLI/VPI UM-158, UM-560
debugging UM-399
tracing UM-599
PL1OBJS environment variable UM-522, UM-562
pop command CR-219
popup
toggling waveform popup on/off UM-280, GR-256
Port driver data, capturing UM-467
ports, unnamed, in mixed designs UM-206
ports, VHDL and Verilog UM-193
Postscript
saving awaveformin UM-262
saving the Dataflow display in UM-310
power add command CR-220
power report command CR-221
power reset command CR-222
pragmas UM-347
precedence of variables UM-541
precision, simulator resolution UM-129, UM-191
pref.tcl file GR-266
Preference dialog GR-104
preference variables
.ini files, located in UM-524
editing GR-266
saving GR-266
Tcl files, located in GR-266
Preferences
drag and drop GR-103
preferences, saving GR-266
primitives, symbolsin Dataflow window UM-313
Print dialog GR-135
Print Postscript dialog GR-137
printenv command CR-223, CR-224
printing
Dataflow window display UM-310
waveformsin the Wave window UM-262
Process window GR-143
see also windows, Process window
processes
optimizations, disabling merging CR-311
without wait statements GR-53, GR-62
profile clear command CR-225

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

profile interval command CR-226
profile off command CR-227
profile on command CR-228
profile option command CR-229
profile reload command CR-230
profile report command CR-231, UM-331
Profile Report dialog GR-93, GR-197
Profiler UM-317
Yoparent fields UM-325
clear profile data UM-321
enabling memory profiling UM-319
enabling statistical sampling UM-321
getting started UM-319
handling large files UM-320
Hierarchical View UM-325
interpreting data UM-323
memory allocation UM-318
memory allocation profiling UM-321
profile report command UM-331
Profile Report dialog UM-332, GR-93
Ranked View UM-324
report option UM-331
reporting GR-93
results, viewing UM-324
statistical sampling UM-318
Structural View UM-326
unsupported on Opteron UM-317
view_profile command UM-324
viewing profile details UM-327
Programming Language Interface UM-158, UM-560
Project Compiler Settings dialog GR-50
Project Settings dialog GR-57
project tab
information in UM-45
sorting UM-45
Projects
MODELSIM environment variable UM-521
projects UM-37
accessing from the command line UM-55
adding filesto UM-41
benefits UM-38
code coverage settings UM-338
compile order UM-46
changing UM-46
compiler propertiesin UM-52
compiling files UM-43
creating UM-40
creating simulation configurations UM-48
foldersin UM-50
grouping filesin UM-47
loading a design UM-44

override mapping for work directory with vcom CR-
256, CR-317
override mapping for work directory with viog CR-
366
overview UM-38
propagation, preventing X propagation CR-378
Properties (memory) dialog GR-183
property list command CR-234
property wave command CR-235
Protect .ini file variable (VLOG) UM-526
‘protect compiler directive UM-155
protected types UM-101
PSL
assume directives UM-363
endpoint directives UM-398
standard supported UM-30
PSL assertions UM-359
see also assertions
pulse error state CR-388
push command CR-237
pwd command CR-238

Q

quick reference

table of Model Sim tasks UM-23
QuickSim Il logfile format CR-413
Quiet .ini file variable

VCOM UM-527
Quiet .ini file variable (VLOG) UM-526
quietly command CR-239
quit command CR-240

R

race condition, problems with event order UM-132
radix
changing in Objects, Locals, Dataflow, List, and
Wave windows CR-241
character strings, displaying CR-354
default, DefaultRadix variable UM-531
List window UM-259
of signals being examined CR-163
of signalsin Wave window CR-54
specifying in Memory window GR-183
Wave window UM-255
radix command CR-241
range checking UM-74
disabling CR-315
enabling CR-316

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

readers and drivers UM-303
readers command CR-242
real type, converting to time UM-99
reative testbenches, PSL endpoints UM-398
rebuilding supplied libraries UM-65
reconstruct RTL-level design busses UM-234
record command CR-243
record field selection, syntax CR-13
records, values of, changing GR-167
$recovery UM-150
redirecting messages, TranscriptFile UM-534
reference region UM-275
refreshing library images CR-316, CR-365, UM-66
registered function calls UM-407
registers
values of
displaying in Objects window GR-184
saving as binary log file UM-226
waveforms, viewing GR-211
report
simulator control UM-520
simulator state UM-520
report command CR-244
reporting
code coverage UM-350
variable settings CR-17
RequireConfigForAllDefaultBinding variable UM-527
resolution
in SystemC simulation UM-174
mixed designs UM-191
overriding in SystemC UM-174
returning as areal UM-96
specifying with -t argument CR-380
verilog simulation UM-129
VHDL simulation UM-78
Resolution .ini file variable UM-533
resolution simulator state variable UM-542
resource libraries UM-64
restart command CR-246
defaults UM-539
in GUI GR-26
toolbar button GR-35, GR-127, GR-222
Restart dialog GR-88
restore command CR-248
restoring defaults UM-520
results, saving simulations UM-225
resume command CR-249
right command CR-250
RTL-level design busses
reconstructing UM-234
run command CR-252

RunLength .ini file variable UM-533
Runtime Options dialog GR-85

S

Save Memory dialog GR-177
saving
simulation options in a project UM-48
waveforms UM-225
saving simulations UM-86, UM-142
sc_arge() function UM-183
sc_argv() function UM-183
sc_clock() functions, moving UM-164
sc_cycle() function UM-182
sc_fifo UM-181
sc_foreign_module UM-217
and parameters UM-211
sc_initialize(), removing calls UM-182
sc_main() function UM-182
sc_main() function, converting UM-164
SC_MODULE_EXPORT macro UM-165
sc_set_time resolution() function UM-182
sc_start() function UM-182
sc_start() function, replacing in SystemC UM-182
sc_start(), replacing for ModelSim UM-164
ScalarOpts .ini file variable UM-526, UM-527
scaling fonts GR-13
sccom
using sccom vs. raw C++ compiler UM-170
sccom command CR-254
sccom -link command UM-172, UM-223
sccomLogdfile .ini file variable (sccom) UM-528
sccomVerbose .ini file variable (sccom) UM-528
scgenmod command CR-258
scgenmod, using UM-209, UM-217
-sclib command CR-389
scope, setting region environment CR-161
SCV library, including CR-255
SDF
controlling missing instance messages CR-380
disabling individua checks CR-275
disabling timing checks UM-451
errors and warnings UM-441
errors on loading, disabling CR-380
instance specification UM-440
interconnect delays UM-451
mixed VHDL and Verilog designs UM-450
specification with the GUI UM-441
troubleshooting UM-452
Verilog

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

$sdf _annotate system task UM-444
optional conditions UM-449
optional edge specifications UM-448
rounded timing values UM-449
SDF to Verilog construct matching UM-445
VHDL
resolving errors UM-443
SDF to VHDL generic matching UM-442
warning messages, disabling CR-380
$sdf _done UM-152
search command CR-260
search libraries CR-386, GR-71, GR-80
searching
binary signal valuesin the GUI CR-29
Expression Builder UM-253
in the source window GR-204
List window
signal values, transitions, and names CR-22,
CR-152, CR-290
next and previous edge in Wave window CR-189,
CR-250
Verilog libraries UM-117, UM-207
Wave window
signal values, edges and names CR-189, CR-
250, GR-233
searchlog command CR-262
seetime command CR-264
sensitivity list warning UM-552
setenv command CR-265
$setuphold UM-150
severity, changing level for errors UM-546
shared library
building in SystemC UM-172, GR-25
shared objects
loading FLI applications
see ModelSim FLI Reference manual
loading PLI/VPI C applications UM-568
loading PLI/VPI C++ applications UM-574
loading with global symbol visibility CR-376, UM-
581
shift command CR-266
Shortcuts
text editing UM-605
shortcuts
command history CR-19, UM-603
command line caveat CR-18, UM-603
List window UM-608
Main window UM-605
Source window UM-605
Wave window UM-609
show command CR-267

show drivers
Dataflow window UM-303
Wave window UM-269
show source lines with errors GR-52, GR-61
Show_BadOptionWarning .ini file variable UM-526
Show_Lint .ini filevariable (VLOG) UM-526, UM-527
Show_source .ini file variable
VCOM UM-528
Show_source .ini file variable (VLOG) UM-526
Show_VitalChecksWarning .ini file variable UM-528
Show_Warningl .ini file variable UM-528
Show_Warning?2 .ini file variable UM-528
Show_Warning3 .ini file variable UM-528
Show_Warning4 .ini file variable UM-528
Show_Warning5 .ini file variable UM-528
Show3DMem .ini file variable UM-533
ShowEnumMem .ini file variable UM-533
ShowlIntMem .ini file variable UM-533
Signal Breakpoints dialog GR-97
signal interaction
Verilog and SystemC UM-196
Signal Spy UM-97, UM-422
overview UM-418
using in PSL assertions UM-367
$signal_force UM-434
signal_force UM-97, UM-425
$signal_release UM-436
signal_release UM-97, UM-427
signals
aternative namesin the List window (-label) CR-48
alternative names in the Wave window (-label) CR-
53
applying stimulus to GR-186
attributes of, using in expressions CR-24
breakpoints CR-407
combining into a user-defined bus CR-53, UM-264
Dataflow window, displaying in UM-300, GR-128
drivers of, displaying CR-154
driving in the hierarchy UM-419
environment of, displaying CR-161
filtering in the Objects window GR-185
finding CR-176
force time, specifying CR-181
hierarchy
driving in UM-419, UM-429
referencing in UM-97, UM-422, UM-432
releasing anywhere in UM-427
releasing in UM-97, UM-436
log file, creating CR-191
names of, viewing without hierarchy GR-255
pathnamesin VSIM commands CR-12

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

radix
specifying for examine CR-163
specifying in List window CR-49
specifying in Wave window CR-54
readers of, displaying CR-242
sampling at a clock change UM-268
states of, displaying as mnemonics CR-354
stimulus CR-180
transitions, searching for UM-249
types, selecting which to view GR-185
unresolved, multiple drivers on GR-53, GR-62
values of
displaying in Objects window GR-184
examining CR-162
forcing anywhere in the hierarchy UM-97,
UM-425, UM-434
replacing with text CR-354
saving as binary log file UM-226
waveforms, viewing GR-211
Signals (Objects) window UM-514
SimulateAssumeDirectives .ini file variable UM-533
Simulating
Comparing simulations UM-225
simulating
batch mode UM-27
command-line mode UM-27
default run length GR-86
delays, specifying time unitsfor CR-18
design unit, specifying CR-373
elaboration file UM-82, UM-138
graphic interface to GR-76
iteration limit GR-86
mixed language designs
compilers UM-190
libraries UM-190
resolution limit in UM-191
mixed Verilog and SystemC designs
channel and port type mapping UM-196
SystemC sc_signal datatype mapping UM-197
Verilog port direction UM-198
Verilog state mapping UM-198
mixed Verilog and VHDL designs
Verilog parameters UM-193
Verilog state mapping UM-194
VHDL and Verilog ports UM-193
VHDL generics UM-195
mixed VHDL and SystemC designs
SystemC state mapping UM-202
VHDL port direction UM-201
VHDL port type mapping UM-200
VHDL sc_signal datatype mapping UM-200

optimizing Verilog performance CR-360
saving dataflow display as a Postscript file UM-310
saving optionsin a project UM-48
saving simulations CR-191, CR-382, UM-225
saving waveform as a Postscript file UM-262
speeding-up with the Profiler UM-317
stepping through a ssmulation CR-272
stimulus, applying to signals and nets GR-186
stopping simulation in batch mode CR-410
SystemC UM-159, UM-173
usage flow for SystemC only UM-163
time resolution GR-77
Verilog UM-129
delay modes UM-144
hazard detection UM-135
optimizing performance UM-124
resolution limit UM-129
XL compatible simulator options UM-136
VHDL UM-78
viewing resultsin List window UM-243, GR-153
VITAL packages UM-95
simulating the design, overview UM-26
simulation
basic stepsfor UM-24
Simulation Configuration
creating UM-48
dialog GR-46
simulations
event order in UM-132
saving results CR-143, CR-144, UM-225
saving results at intervals UM-231
saving with checkpoint UM-86, UM-142
simulator resolution
mixed designs UM-191
returning asareal UM-96
SystemC UM-174
Verilog UM-129
VHDL UM-78
vsim -t argument CR-380
simulator state variables UM-542
simulator version CR-381, CR-392
simulator, Model Sim and OSCI differences UM-182
simultaneous eventsin Verilog
changing order CR-358
sizetf callback function UM-587
sm_entity UM-619
SmartModels
creating foreign architectures with sm_entity UM-
619
invoking SmartModel specific commands UM-622
linking to UM-618

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

Imecwin commands UM-623
memory arrays UM-624
Verilog interface UM-625
VHDL interface UM-618
S0, shared object file
loading PLI/VPI C applications UM-568
loading PL1/VPI C++ applications UM-574
software version GR-33
source balloon
C Debug GR-99
source code pragmas UM-347
source code, security UM-70, UM-155
source directory, setting from source window GR-21,
GR-206
source errors, locating during compilation GR-264
source files, referencing with location maps UM-67
source files, specifying with location maps UM-67
source highlighting, customizing GR-205
source libraries
arguments supporting UM-119
source lines with errors
showing GR-52, GR-61
Source window GR-199
code coverage data UM-341
colorization GR-205
tab stopsin GR-205
see also windows, Source window
source-level debug
SystemC, enabling UM-178
spaces in pathnames CR-11
sparse memories
listing with write report CR-426
sparse memory modeling UM-156
SparseMemThreshhold .ini file variable UM-526
specify path delays CR-388
matching to IOPATH statements UM-445
speeding-up the simulation UM-317
splitio command CR-270
sguare brackets, escaping CR-15
stability checking
disabling CR-91
enabling CR-92
Standard Developer’s Kit User Manual UM-35
standards supported UM-30
Start Simulation dialog GR-76
start_of_simulation() function UM-183
Startup
macros UM-538
startup
alternate to startup.do (vsim -do) CR-374
environment variables access during UM-613

files accessed during UM-612
macro in the modelsim.ini file UM-534
startup macro in command-line mode UM-27
using a startup file UM-538
Startup .ini file variable UM-534
state variables UM-542
statistical sampling profiler UM-318
status bar
Main window GR-19
status command CR-271
Statusfield
Project tab UM-45
std .ini file variable UM-525
std_arith package
disabling warning messages UM-538
std_developerskit .ini file variable UM-525
Std_logic
mapping to binary radix CR-29
std_logic_arith package UM-65
std_logic_signed package UM-65
std_logic_textio UM-65
std_logic_unsigned package UM-65
StdArithNoWarnings .ini file variable UM-534
STDOUT environment variable UM-522
step command CR-272
steps for simulation, overview UM-24
stimulus
applying to signals and nets GR-186
modifying for elaboration file UM-83, UM-139
stop command CR-273
struct of sc_signal<T> UM-180
subprogram inlining UM-74
subprogram write is ambiguous error, fixing UM-90
Support UM-36
Suppress .ini file variable UM-536
symbol mapping
Dataflow window UM-313
symbolic constants, displaying CR-354
symbolic link to design libraries (UNIX) UM-63
symbolic names, assigning to signal values CR-354
Synopsis hardware modeler UM-628
synopsys .ini file variable UM-525
Synopsys libraries UM-65
syntax highlighting GR-205
synthesis
rule compliance checking CR-312, UM-527, GR-
52, GR-61
system calls
VCD UM-461
Verilog UM-146
system commands UM-479

ABCDEFGHIJKLMNOPORSTUVWAXY Z

system tasks

VCD UM-461
Verilog UM-146
Verilog-XL compatible UM-150

system tasks and functions

ModelSim Verilog UM-152

System Verilog

enabling with -sv argument CR-365

SystemC

aggregates of signals/ports UM-180
class and structure member naming syntax CR-13
compiling for source level debug UM-167
compiling optimized code UM-167
component declaration for instantiation UM-223
control function UM-192
converting sc_main() UM-164
exporting sc_main, example UM-165
exporting top level module UM-165
foreign module declaration UM-209
generic support, instantiating VHDL UM-218
hierarchical reference support UM-183
hierarchical references in mixed designs UM-192
instantiation criteriain Verilog design UM-214
instantiation criteriain VHDL design UM-222
Link dialog GR-68
linking the compiled source UM-172
maintaining design portability UM-168
mapping statesin mixed designs UM-202

VHDL UM-202
master slave library, including CR-256
mixed designs with Verilog UM-188
mixed designs with VHDL UM-188
observe function UM-192
parameter support, Verilog instances UM-211
prim channel aggregates UM-180
replacing sc_start() UM-164
sc_clock(), moving to SC_CTOR UM-164
sc_fifo UM-181
simulating UM-173
source code, modifying for ModelSim UM-164
specifying shared library path, command CR-389
stack space for threads UM-184
state-based code, initializing and cleanup UM-175
troubleshooting UM-184
unsupported functions UM-182
verification library, including CR-255
viewabl e/debuggabl e objects UM-176
viewing FIFOs UM-181
virtual functions UM-175

SystemC modules

exporting for usein Verilog UM-214

exporting for usein VHDL UM-223
SystemVerilog UM-30
SystemVerilog DPI
registering DPlapplications UM-565
specifying the DPI file to load UM-580

T

tab groups GR-18
tab stops
Source window GR-205
tb command CR-274
tcheck set command CR-275
tcheck_status command CR-277
Tcl UM-472—UM-482
command separator UM-478
command substitution UM-477
command syntax UM-474
evaluation order UM-478
history shortcuts CR-19, UM-603
Man Pagesin Help menu GR-33
preference variables GR-266
relational expression evaluation UM-478
time commands UM-481
variable
in when commands CR-408
substitution UM-479
VSIM Tcl commands UM-480
Tcl_init error message UM-552
Technical support and updates UM-36
temp files, VSOUT UM-523
test signal
ddlaying GR-244
testbench, accessing internal objectsfrom UM-417
testbenches
PSL endpoint reactivity UM-398
text and command syntax UM-34
Text editing UM-605
TEXTIO
buffer, flushing UM-92
TextlO package
aternative I/O files UM-92
containing hexadecimal numbers UM-91
dangling pointers UM-91
ENDFILE function UM-91
ENDLINE function UM-91
file declaration UM-88
implementation issues UM-90
providing stimulus UM-92
standard input UM-89

Index

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

standard output UM-89
WRITE procedure UM-90
WRITE_STRING procedure UM-90
TF routines UM-593, UM-595
TFMPC
disabling warning CR-387
explanation UM-554
time
absolute, using @ CR-18
measuring in Wave window UM-245
resolution in SystemC UM-174
simulation time units CR-18
timeresolution asasimulator state variable UM-542
time collapsing CR-382, UM-232
time literal, missing space GR-53, GR-62
time resolution
in mixed designs UM-191
inVerilog UM-129
in VHDL UM-78
setting
with the GUI GR-77
with vsim command CR-380
timetype
converting to real UM-98
time, time units, simulation time CR-18
timescal e directive warning
disabling CR-387
investigating UM-130
timing
$setuphold/$recovery UM-150
annotation UM-439
differences shown by comparison UM-279
disabling checks CR-364, UM-451
disabling checksfor entire design CR-379
disabling individual checks CR-275
in optimized designs UM-128
negative check limits
described UM-136
extending CR-385
status of individual checks CR-277
title, Main window, changing CR-381
TMPDIR environment variable UM-522
to_real VHDL function UM-98
to_time VHDL function UM-99
toggle add command CR-279
toggle coverage
excluding signals CR-281
toggle disable command CR-281
toggle enable command CR-282
toggle report command CR-283
toggle reset command CR-284

toggle statistics
enabling CR-279
reporting CR-283
resetting CR-284
toggling waveform popup on/off UM-280, GR-256
tolerance
leading edge UM-276
trailing edge UM-276
too few port connections, explanation UM-554
toolbar
Dataflow window GR-132
Main window GR-34
Wave window GR-220
waveform editor GR-222
tooltip, toggling waveform popup GR-256
tracing
events UM-306
source of unknown UM-307
transcribe command CR-285
transcript
clearing CR-43
disablefile creation UM-537, GR-17
file name, specifed in modelsim.ini UM-537
redirecting with -1 CR-377
reducing file size CR-287
saving GR-16
using asaDO file GR-17
transcript command CR-286
transcript file command CR-287
TranscriptFile .ini file variable UM-534
transitions, signal, finding CR-189, CR-250
TreeUpdate command CR-423
triggers, in the List window UM-266
triggers, in the List window, setting UM-265, GR-163
troubleshooting
SystemC UM-184
unexplained behaviors, SystemC UM-184
TSCALE, disabling warning CR-387
TSSI CR-429
in VCD files UM-467
tssi2mti command CR-288
type
converting real to time UM-99
converting time to real UM-98
Typefield, Project tab UM-45
types, fixed point in SystemC UM-182

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

U

-u CR-365
unbound component GR-53, GR-62
UnbufferedOutput .ini file variable UM-534
undeclared nets, reporting an error CR-362
undefined symbol, error UM-184
unexplained behavior during simulation UM-184
unexplained simulation behavior UM-184
ungrouping objects, Monitor window GR-209
unit delay mode UM-145
unknowns, tracing UM-307
unnamed ports, in mixed designs UM-206
unresolved signals, multiple drivers on GR-53, GR-62
unsetenv command CR-289
unsupported functionsin SystemC UM-182
up command CR-290
UpCase .ini file variable UM-526
use 1076-1993 language standard GR-51, GR-60
use clause, specifying alibrary UM-64
use explicit declarations only GR-52, GR-61
use flow

Code Coverage UM-334

SystemC-only designs UM-163
UseCsupV2 .ini file variable UM-534
user hook Tcl variable GR-107
user-defined bus CR-53, UM-233, UM-264
UserTimeUnit .ini file variable UM-534
UseScv .ini file variable (sccom) UM-528
util package UM-96

Vv

-v CR-366
v2k_int_delays CR-389
values
describe HDL items CR-147
examine HDL item values CR-162
of HDL items GR-203
replacing signal values with strings CR-354
variable settings report CR-17
variables
describing CR-147
environment variables UM-521
LM_LICENSE_FILE UM-521
personal preferences UM-520
precedence between .ini and .tcl UM-541
reading from the .ini file UM-536
referencing in commands CR-17
setting environment variables UM-521

simulator state variables
current settings report UM-520
iteration number UM-542
name of entity or module asavariable UM-542
resolution UM-542
simulation time UM-542
value of
changing from command line CR-81
changing with the GUI GR-167
examining CR-162
values of
displaying in Objects window GR-184
saving as binary log file UM-226
Variables (Locals) window UM-518
variables, Tcl, user hook GR-107
ved add command CR-292
ved checkpoint command CR-293
ved comment command CR-294
ved dumpports command CR-295
ved dumpportsall command CR-297
ved dumpportsflush command CR-298
ved dumpportslimit command CR-299
ved dumpportsoff command CR-300
ved dumpportson command CR-301
vcd file command CR-302
VCD files UM-455
adding items to the file CR-292
capturing port driver data CR-295, UM-467
case sensitivity UM-456
converting to WLF files CR-310
creating CR-292, UM-456
dumping variable values CR-293
dumpports tasks UM-461
flushing the buffer contents CR-306
from VHDL source to VCD output UM-463
generating from WLF files CR-415
inserting comments CR-294
internal signals, adding CR-292
specifying maximum file size CR-307
specifying name of CR-304
specifying the file name CR-302
state mapping CR-302, CR-304
stimulus, using as UM-458
supported TSS| states UM-467
turn off VCD dumping CR-308
turn on VCD dumping CR-309
VCD system tasks UM-461
viewing files from another tool CR-310
ved files command CR-304
ved flush command CR-306
ved limit command CR-307

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

vcd off command CR-308
vcd on command CR-309
ved2wlf command CR-310
vcom
enabling code coverage UM-337
vcom command CR-311
vcover command UM-354
vcover convert command CR-319
vcover merge command CR-320
vcover report command CR-322
vdel command CR-327
vdir command CR-328
vector elements, initializing CR-81
vendor libraries, compatibility of CR-328
Vera, see Veradocumentation
Verilog
ACC routines UM-591
capturing port driver datawith -dumpports CR-302,
UM-467
cell libraries UM-144
compiler directives UM-153
compiling and linking PL1 C applications UM-568
compiling and linking PL1 C++ applications UM-
574
compiling design units UM-114
compiling with XL "uselib compiler directive UM-
120
component declaration UM-204
configurations UM-122
event order in simulation UM-132
generate statements UM-123
instantiation criteriain mixed-language design UM-
203
instantiation criteriain SystemC design UM-209
instantiation of VHDL design units UM-207
language templates GR-201
library usage UM-117
mapping statesin mixed designs UM-194
mapping statesin SystemC designs UM-198
mixed designs with SystemC UM-188
mixed designs with VHDL UM-188
parameter support, instantiating SystemC UM-214
parameters UM-193
port direction UM-198
sc_signal data type mapping UM-197
SDF annotation UM-444
sdf _annotate system task UM-444
simulating UM-129
delay modes UM-144
XL compatible options UM-136
simulation hazard detection UM-135

simulation resolution limit UM-129
SmartModel interface UM-625
source code viewing GR-199
standards UM-30
system tasks UM-146
TF routines UM-593, UM-595
to SystemC, channel and port type mapping UM-
196
XL compatible compiler options UM-119
XL compatible routines UM-597
XL compatible system tasks UM-150
verilog .ini file variable UM-525
Verilog 2001
disabling support CR-366, UM-526
Verilog PLI/VPI
64-bit support in the PLI UM-598
compiling and linking PLI/VPI C applications UM-
568
compiling and linking PL1/VPI C++ applications
UM-574
debugging PL1/VPI code UM-599
PLI callback reason argument UM-585
PLI support for VHDL objects UM-590
registering PL| applications UM-561
registering VPl applications UM-563
specifying the PLI/VPI fileto load UM-580
Verilog-XL
compatibility with UM-111, UM-559
Veriuser .ini file variable UM-534, UM-562
Veriuser, specifying PLI applications UM-562
veriuser.c file UM-589
verror command CR-329
version
obtaining via Help menu GR-33
obtaining with vsim command CR-381
obtaining with vaim<info> commands CR-392
vgencomp command CR-330
VHDL
compiling design units UM-73
creating a design library UM-73
delay file opening UM-539
dependency checking UM-73
field naming syntax CR-13
file opening delay UM-539
foreign language interface UM-100
hardware model interface UM-628
instantiation criteriain SystemC design UM-217
instantiation from Verilog UM-207
instantiation of Verilog UM-193
language templates GR-201
language versions UM-75

ABCDEFGHIJKLMNOPORSTUVWAXY Z

library clause UM-64
mixed designs with SystemC UM-188
mixed designs with Verilog UM-188
object support in PLI UM-590
optimizations
inlining UM-74
port direction UM-201
port type mapping UM-200
sc_signal data type mapping UM-200
simulating UM-78
SmartModel interface UM-618
source code viewing GR-199
standards UM-30
timing check disabling UM-78
VITAL package UM-65
VHDL utilities UM-96, UM-97, UM-422, UM-432
get_resolution() UM-96
to_real() UM-98
to_time() UM-99
VHDL-1987, compilation problems UM-75
VHDL-1993, enabling support for CR-311, UM-528
VHDL-2002, enabling support for CR-311, UM-528
VHDL93 .ini file variable UM-528
view command CR-332
view_profile command UM-324
viewing
library contents UM-61
waveforms CR-382, UM-225
viewing FIFOs UM-181
virtual count commands CR-334
virtual define command CR-335
virtual delete command CR-336
virtual describe command CR-337
virtual expand commands CR-338
virtual function command CR-339
virtual functionsin SystemC UM-175
virtual hide command CR-342, UM-234
virtual log command CR-343
virtual nohide command CR-345
virtual nolog command CR-346
virtual objects UM-233
virtual functions UM-234
virtual regions UM-235
virtual signals UM-233
virtual types UM-235
virtual region command CR-348, UM-235
virtual regions
reconstruct the RTL hierarchy in gate-level design
UM-235
virtual save command CR-349, UM-234
virtual show command CR-350

virtual signal command CR-351, UM-233

virtual signals
reconstruct RTL-level design busses UM-234
reconstruct the original RTL hierarchy UM-234
virtual hide command UM-234

virtual type command CR-354

visibility
column in structure tab UM-228
VITAL
compiling and simulating with accelerated VITAL

packages UM-95
compliance warnings UM-94
disabling optimizations for debugging UM-95
specification and source code UM-93
VITAL packages UM-93
vital 95 .ini file variable UM-525
vlib command CR-356
vliog
enabling code coverage UM-337
vlog command CR-358
vlog.opt file GR-56, GR-65
vlog95compat .ini file variable UM-526
vmake command CR-369
vmap command CR-370
vopt
gui access GR-70
vopt command CR-371, UM-124
VoptFlow .ini file variable UM-534
VPI, registering applications UM-563
VPI/PLI UM-158, UM-560
compiling and linking C applications UM-568
compiling and linking C++ applications UM-574
vsim build date and version CR-392
vsim command CR-373
VSIM license lost UM-555
vsim, differences with OSCI simulator UM-182
VSOUT temp file UM-523

w

Warning .ini file variable UM-536
WARNING][8], -lint argument to viog CR-362
warnings

changing severity of UM-546

disabling at time 0 UM-538

empty port name UM-551

exit codes UM-549

getting more information UM-546

messages, long description UM-546

metaval ue detected UM-552

Index

Index

ABCDEFGHIJKLMNOPORSTUVWAXY Z

SDF, disabling CR-380
suppressing VCOM warning messages CR-315,
UM-548
suppressing VLOG warning messages CR-364,
UM-548
suppressing V SIM warning messages CR-387, UM-
548
Tcl initialization error 2 UM-552
too few port connections UM-554
turning off warnings from arithmetic packages UM-
538
waiting for lock UM-551
watching asignal value GR-208
watching signal values CR-51
wave commands CR-394
wave create command CR-397
wave edit command CR-400
wave export command CR-403
wave import command CR-404
Wave Log Format (WLF) file UM-225
wave log format (WLF) file CR-382
of binary signal values CR-191
see also WLF files
wave modify command CR-405
wave viewer, Dataflow window UM-304
Wave window UM-240, GR-211
adding itemsto CR-52
compare waveforms UM-279
docking and undocking UM-241, GR-212
in the Dataflow window UM-304
saving layout UM-261
toggling waveform popup on/off UM-280, GR-256
values column UM-280
see also windows, Wave window
WaveA ctivateNextPane command CR-423
Waveform Compare
created waveforms, using with GR-296
Waveform Comparison CR-94
add region UM-275
adding signals UM-274
clocked comparison UM-276
compare by region UM-275
compare by signal UM-274
compare options UM-278
compare tab UM-273
comparison method UM-276
comparison method tab UM-276
delaying the test signal GR-244
difference markers UM-279
flattened designs UM-283
hierarchical designs UM-283

icons UM-281

introduction UM-270

leading edge tolerance UM-276

List window display UM-281

pathnames UM-279

reference dataset UM-272

reference region UM-275

test dataset UM-273

timing differences UM-279

trailing edge tolerance UM-276

values column UM-280

Wave window display UM-279
Waveform Editor

Waveform Compare, using with GR-296
waveform editor

creating waveforms GR-289

creating waves CR-397

editing commands CR-400

editing waveforms GR-290

importing vcd stimulus file CR-404

mapping signals GR-295

modifying existing waves CR-405

saving stimulus files GR-294

saving waves CR-403

simulating GR-293

toolbar buttons GR-222
waveform logfile

log command CR-191

overview UM-225

see also WLF files
waveform popup UM-280, GR-256
waveforms UM-225

optimize viewing of UM-535

optimizing viewing of CR-382

saving and viewing CR-191, UM-226

viewing GR-211
WaveRestoreCursors command CR-423
WaveRestoreZoom command CR-423
WaveSignalNameWidth .ini file variable UM-534
weighting, coverage directives UM-387
Welcome dialog, turning on/off UM-520
when command CR-407
when statement

time-based breakpoints CR-411
where command CR-412
wildcard characters

for pattern matching in simulator commands CR-17
Windows

Main window

text editing UM-605
Source window

text editing UM-605

windows

Active Processes pane GR-108
buttons, adding to GR-106
code coverage statistics UM-340
Dataflow window UM-300, GR-128
toolbar GR-132
zooming UM-305
Functional coverage browser GR-143
List window UM-243, GR-153
display properties of UM-259
formatting HDL items UM-259
output file CR-424
saving data to afile UM-263
saving the format of CR-422
setting triggers UM-265, UM-266, GR-163
Locals window GR-166
Main window GR-14
adding user-defined buttons CR-45
status bar GR-19
time and delta display GR-19
toolbar GR-34
Memory window GR-169
monitor GR-208
Objects window GR-184
opening
from command line CR-332
with the GUI GR-23
Process window GR-143
specifying next process to be executed GR-143
viewing processing in the region GR-143
Signals window
VHDL and Verilog items viewed in GR-184
Source window GR-199
viewing HDL source code GR-199
Variables window
VHDL and Verilog items viewed in GR-166
Wave window UM-240, GR-211
adding HDL itemsto UM-244
cursor measurements UM-245
display properties UM-255
display range (zoom), changing UM-249
format file, saving UM-261
path elements, changing CR-125, UM-534
time cursors UM-245
zooming UM-249

WLF file

collapsing deltas CR-382
collapsing time steps CR-382

WLF files

collapsing events UM-232

converting to VCD CR-415
creating from VCD CR-310
filtering, combining CR-416
limiting size CR-382
log command CR-191
optimizing waveform viewing CR-382, UM-535
overview UM-226
repairing CR-420
saving CR-143, CR-144, UM-227
saving at intervals UM-231
specifying name CR-382
wlf2log command CR-413
wlif2ved command CR-415
WL FCollapseMode .ini file variable UM-534
WLFFilename UM-535
wlfman command CR-416
wlfrecover command CR-420
work library UM-58
creating UM-60
workspace GR-15
code coverage GR-116
Filestab GR-116
write cell_report command CR-421
write format command CR-422
write list command CR-424
write preferences command CR-425
WRITE procedure, problems with UM-90
write report command CR-426
write timing command CR-427
write transcript command CR-428
write tssi command CR-429
write wave command CR-431

X

X

tracing unknowns UM-307
Xdefaultsfile, controlling fonts GR-13
X propagation

disabling for entire design CR-378

disabling X generation on specific instances CR-

275

xml format

coverage reports UM-351
X-session

controlling fonts GR-13

Index

Index

-y CR-366

Z

zero delay elements UM-80
zero delay mode UM-145
zero-delay loop, infinite UM-81
zero-delay oscillation UM-81
zero-delay race condition UM-132
zoom
Dataflow window UM-305
from Wave toolbar buttons UM-249
saving range with bookmarks UM-250
with the mouse UM-249
zooming window panes GR-260

	Bookcase
	Command Reference
	Technical support and updates
	Where to find our documentation

	Table of Contents
	Syntax and conventions
	Documentation conventions
	File and directory pathnames
	Design object names
	Object name syntax
	SystemC class/structure/union member specification
	Specifying names
	Escaping brackets and spaces in array slices
	Environment variables and pathnames
	Name case sensitivity
	Extended identifiers

	Wildcard characters
	ModelSim variables
	Simulation time units
	Comments in argument files
	Command shortcuts
	Command history shortcuts
	Numbering conventions
	VHDL numbering conventions
	Verilog numbering conventions

	GUI_expression_format
	Expression typing
	Expression syntax
	Signal and subelement naming conventions
	Grouping and precedence
	Concatenation of signals or subelements
	Record field and SystemC class/structure/union members
	Searching for binary signal values in the GUI

	Commands
	Command reference table
	.main clear
	abort
	add button
	add dataflow
	add list
	add watch
	add wave
	add_menu
	add_menucb
	add_menuitem
	add_separator
	add_submenu
	alias
	assertion fail
	assertion pass
	assertion report
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	cd
	cdbg
	change
	change_menu_cmd
	check contention add
	check contention config
	check contention off
	check float add
	check float config
	check float off
	check stable off
	check stable on
	checkpoint
	compare add
	compare annotate
	compare clock
	compare configure
	compare continue
	compare delete
	compare end
	compare info
	compare list
	compare options
	compare reload
	compare reset
	compare run
	compare savediffs
	compare saverules
	compare see
	compare start
	compare stop
	compare update
	configure
	context
	coverage clear
	coverage exclude
	coverage reload
	coverage report
	coverage save
	dataset alias
	dataset clear
	dataset close
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	disable_menu
	disable_menuitem
	do
	down
	drivers
	dumplog64
	echo
	edit
	enablebp
	enable_menu
	enable_menuitem
	environment
	examine
	exit
	fcover clear
	fcover comment
	fcover configure
	fcover reload
	fcover report
	fcover save
	find
	force
	gdb dir
	getactivecursortime
	getactivemarkertime
	help
	history
	lecho
	left
	log
	lshift
	lsublist
	macro_option
	mem display
	mem list
	mem load
	mem save
	mem search
	modelsim
	next
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	pause
	play
	pop
	power add
	power report
	power reset
	precision
	printenv
	profile clear
	profile interval
	profile off
	profile on
	profile option
	profile reload
	profile report
	project
	property list
	property wave
	push
	pwd
	quietly
	quit
	radix
	readers
	record
	report
	restart
	restore
	resume
	right
	run
	sccom
	scgenmod
	search
	searchlog
	seetime
	setenv
	shift
	show
	simstats
	splitio
	status
	step
	stop
	tb
	tcheck_set
	tcheck_status
	toggle add
	toggle disable
	toggle enable
	toggle report
	toggle reset
	transcribe
	transcript
	transcript file
	tssi2mti
	unsetenv
	up
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vcover convert
	vcover merge
	vcover report
	vcover stats
	vdel
	vdir
	verror
	vgencomp
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vopt
	vsim
	vsim<info>
	vsource
	wave
	wave create
	wave edit
	wave export
	wave import
	wave modify
	when
	where
	wlf2log
	wlf2vcd
	wlfman
	wlfrecover
	write cell_report
	write format
	write list
	write preferences
	write report
	write timing
	write transcript
	write tssi
	write wave

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

