
Overview of the
ECE Computer Software Curriculum

David O’Hallaron
Associate Professor of ECE and CS

Carnegie Mellon University

18-200

The Fundamental Idea of Abstraction

– 2 –

Devices
Circuits

Physics

Logic
Architecture

Software systems
Applications

Human beings

Systems of all kinds control complexity using layers of
abstractions.

18-200

Why Study Software?

– 3 –

Devices
Circuits

Physics

Logic
Architecture

Software systems
Applications

Human beings

Softw
are tools

1. Engineers working at all levels need to build and use
software tools.

18-200

Why Study Software? (cont)

2. Mediocre engineers understand one level

– 4 –

Devices
Circuits

Physics

Logic

Software systems
Applications

Human beings

Architecture

18-200

Why Study Software? (cont)

2. Mediocre engineers understand one level
Good engineers understand a level above and below

– 5 –

Devices
Circuits

Physics

Logic

Software systems
Applications

Human beings

Architecture

18-200

Why Study Software? (cont)

2. Mediocre engineers understand one level
Good engineers understand a level above and below
The best engineers understand all levels!

– 6 –

Devices
Circuits

Physics

Logic

Software systems
Applications

Human beings

Architecture

18-200

Computer Systems

– 7 –

Devices
Circuits

Physics

Logic
Architecture

Software systems
Applications

Human beings

Computer Systems area

The ECE “software” track introduces you to the
intellectual area of Computer Systems.

18-200

Computer Systems Courses
15-100/111

Java
15-211

Data Structs
& Algs

15-251
Math Found

of CS

15-212
Principles
of Prog

15-123
C/Linux

15-213
Computer
Systems

18-348/349
Embedded
Systems

18-549
Embedded
Capstone

15-410/412
OS

15-441/18-345
Networking

18-447/741
Computer

Arch

Many CS courses

Many CS courses

15-462
Computer
Graphics

15-411
Compilers

15-418
Parallel

Systems

18-200

15-213: Intro to Computer Systems (ICS)

1995-1997: REB/DROH teaching computer
architecture/organization course at CMU.

– Good material, dedicated teachers, but students hate it
– Don’t see how it will affect their lives as programmers

Course Evaluations

2

2.5

3

3.5

4

4.5

5

1995 1996 1997 1998 1999 2000 2001 2002

CS Average

REB: Computer Architecture

18-200

ICS Background (cont)
1997: OS instructors complain about lack of

preparation
– Students don’t know machine-level programming well enough

» What does it mean to store the processor state on the run-
time stack?

– Our architecture course was not part of prerequisite stream

18-200

ICS Background
1997: REB/DROH pursue new idea:

Introduce students to computer systems from a
programmer's perspective rather than a system
designer's perspective.

Topic Filter: What parts of a computer system affect
the correctness, performance, and utility of my C
programs?

18-200

Computer Arithmetic
Builder’s Perspective

– How to design high performance arithmetic circuits

32-bit
Multiplier

18-200

Computer Arithmetic
Programmer’s Perspective

– Numbers are represented using a finite word size
– Operations can overflow when values too large

» But behavior still has clear, mathematical properties

void show_squares()
{

int x;
for (x = 5; x <= 5000000; x*=10)
printf("x = %d x^2 = %d\n", x, x*x);

}

x = 5 x2 = 25
x = 50 x2 = 2500
x = 500 x2 = 250000
x = 5000 x2 = 25000000
x = 50000 x2 = -1794967296
x = 500000 x2 = 891896832
x = 5000000 x2 = -1004630016

18-200

Memory System
Builder’s Perspective

Builder’s Perspective

– Must make many difficult design decisions
– Complex tradeoffs and interactions between components

Main
memory Disk

L1 i-cache

L1 d-cacheRegs L2
unified
cacheCPU

Write
through or

write
back?

Direct
mapped or

set
indexed?

How many
lines?

Virtual or
physical

indexing?

Synchronous
or

asynchronous?

18-200

Memory System
Programmer’s Perspective

– Hierarchical memory organization
– Performance depends on access patterns

» Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

59,393,288 clock cycles 1,277,877,876 clock cycles

21.5 times slower!
(Measured on 2GHz

Intel Pentium 4)

18-200

The Memory Mountain

s1

s3

s5

s7

s9

s1
1

s1
3

s1
5

8m

2m 51
2k 12

8k 32
k 8k

2k

0

200

400

600

800

1000

1200

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

Stride (words) Working set size (bytes)

Pentium III Xeon
550 MHz
16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

L1

L2

Mem

xe

copyij

copyji

18-200

15-213: Intro to Computer Systems
Goals

– Introduced in 1998
– Teach students to be sophisticated application programmers
– Prepare students for upper-level systems courses

Taught every semester to 150 students
– 50% CS, 40% ECE, 10% other.

Part of the 4-course CMU CS core:
– Data structures and algorithms (Java) (15-211)
– Computer systems (C) (15-213)
– Fundamentals of Programming (ML) (15-212)
– Mathematical foundations of CS (15-251)

Will (likely) become part of new ECE core in Fall’07
– Circuits, Logic design, Computer systems, Signal processing

18-200

ICS Feedback

Students

Faculty
– Prerequisite for most upper level CS systems courses
– Also required for ECE embedded systems, architecture, and network

courses. Added to ECE required core in Fall 2007.

Course Evaluations

2

2.5

3

3.5

4

4.5

5

1995 1996 1997 1998 1999 2000 2001 2002

REB: Intro. Comp. Systems

CS Average

REB: Computer Architecture

18-200

Lecture Topics
Data representations [3]

– It’s all just bits.
– int’s are not integers and float’s are not reals.

IA32 machine language [5]
– Analyzing and understanding compiler-generated machine

code.

Program optimization [2]
– Understanding compilers and modern processors.

Memory Hierarchy [3]
– Caches matter!

Linking [1]
– With DLL’s, linking is cool again!

18-200

Lecture Coverage (cont)
Exceptional Control Flow [2]

– The system includes an operating system that you must
interact with.

Measuring performance [1]
– Accounting for time on a computer is tricky!

Virtual memory [4]
– How it works, how to use it, and how to manage it.

I/O and network programming [4]
– Programs often need to talk to other programs.

Application level concurrency [2]
– Processes, I/O multiplexing, and threads.

Total: 27 lectures, 14 week semester.

18-200

Labs
Key teaching insight:

– Cool Labs ⇒ Great Course

A set of 1 and 2 week labs define the course.

Guiding principles:
– Be hands on, practical, and fun.
– Be interactive, with continuous feedback from automatic

graders
– Find ways to challenge the best while providing worthwhile

experience for the rest
– Use healthy competition to maintain high energy.

18-200

Fostering “Friendly Competition”
Desire

– Challenge the best without blowing away everyone else

Method
– Web-based submission of solutions
– Server checks for correctness and computes performance

score
» How many stages passed, program throughput, …

– Keep updated results on web page
» Students choose own nickname

Relationship to Grading
– Students get full credit once they reach set threshold
– Push beyond this just for own glory/excitement

18-200

Lab Exercises
Data Lab (2 weeks)

– Manipulating bits.
Bomb Lab (2 weeks)

– Defusing a binary bomb.
Buffer Lab (1 week)

– Exploiting a buffer overflow bug.
Performance Lab (2 weeks)

– Optimizing kernel functions.
Shell Lab (1 week)

– Writing your own shell with job control.
Malloc Lab (2-3 weeks)

– Writing your own malloc package.
Proxy Lab (2 weeks)

– Writing your own concurrent Web proxy.

18-200

Bomb Lab
– Idea due to Chris Colohan, TA during inaugural offering

Bomb: C program with six phases.
Each phase expects student to type a specific string.

– Wrong string: bomb explodes by printing BOOM! (- 1/4 pt)
– Correct string: phase defused (+10 pts)
– In either case, bomb sends a message to a grading server
– Grading server posts current scores anonymously and in real time

on Web page

Goal: Defuse the bomb by defusing all six phases.
The kicker:

– Students get only the binary executable of a unique bomb
– To defuse their bomb, students must disassemble and reverse

engineer this binary

18-200

The Beauty of the Bomb
Get a deep understanding of machine code in the

context of a fun game

Learn about machine code in the context they will
encounter in their professional lives

– Working with compiler-generated code

Learn concepts and tools of debugging
– Forward vs backward debugging
– Students must learn to use a debugger to defuse a bomb

18-200

Summary and Conclusions
Claim: The best engineers understand computer

systems at all levels of abstraction, including the
software levels.

Carnegie Mellon ECE students take courses in
computer systems that are offered by both the CS
and ECE departments

15-213 – Introduction to Computer Systems is the
prereq for all upper level systems courses.

