A protocol family approach to survivable storage infrastructures

Jay J. Wylie, Garth R. Goodson, Gregory R. Ganger, Michael K. Reiter
Carnegie Mellon University

Abstract

A protocol family supports a variety of fault models with
a single client-server protocol and a single server imple-
mentation. Protocol families shift the decision of which
types of faults to tolerate from system design time to data
creation time. With a protocol family based on a com-
mon survivable storage infrastructure, each data-item can
be protected from different types and numbers of faults.
Thus, a single implementation can be deployed in dif-
ferent environments. Moreover, a single deployment can
satisfy the specific survivability requirements of different
data for costs commensurate with its requirements.

1 Motivation

Survivable, or fault-tolerant, storage systems protect data
by spreading it redundantly across a set of storage-nodes.
In the design of such systems, determining which kinds
of faults to tolerate and which timing model to assume
are important and difficult decisions. Fault models range
from crash faults to Byzantine faults and timing models
range from synchronous to asynchronous. These deci-
sions affect the access protocol employed, which can have
a major impact on performance. For example, a system’s
access protocol can be designed to provide consistency
under the weakest assumptions (i.e., Byzantine failures
in an asynchronous system), but this induces potentially-
unnecessary performance costs. Alternatively, designers
can “assume away” certain faults to gain performance.

Traditionally, the fault model decision is hard-coded
during the design of an access protocol. This traditional
approach has two significant shortcomings. First, it limits
the utility of the resulting system—in some environments,
the system incurs unnecessary costs, and, in others, it can-
not be deployed. The natural consequence is distinct sys-
tem implementations for each distinct fault model. Sec-
ond, all users of any given system implementation must
use the same fault model, either paying unnecessary costs
or accepting more risk than desired. For example, tempo-
rary and easily-recreated data incur the same overheads
as the most critical data.

We advocate an alternative approach, in which the de-
cision of which faults to tolerate is shifted from design
time to data-item creation time. This shift is achieved
through the use of a family of access protocols that share
a common server implementation and client-server inter-
face (i.e., storage infrastructure). A protocol family sup-

ports different fault models in the same way that most
access protocols support varied numbers of failures: by
simply changing the number of storage-nodes utilized,
and some read and write thresholds. A protocol family
enables a given storage infrastructure to be used for a mix
of fault models and allows the number of faults tolerated
to be chosen independently for each data-item.

We have developed a protocol family for survivable
storage infrastructures [6, 8]. Each member of this pro-
tocol family exports a block-based interface. The surviv-
able storage infrastructure consists of versioning storage-
nodes that offer a single interface for all data, regardless
of the fault model. Clients of the infrastructure realize a
particular model for a data-item by interacting with the
right number of storage-nodes.

Such a protocol family is particularly appropriate for
increasingly-popular “storage brick”-based systems, such
as Self-* Storage [5], Federated Array of Bricks [3], and
Collective Intelligent Bricks [12]. Such systems seek to
compose high-quality storage out of collections of cost-
efficient, commaodity servers. These storage servers are
meant to be generic, and customers are meant to com-
pose systems to fit their needs by simply buying a suf-
ficient number of them. Using a protocol family assists
this vision in two ways. First, one server software imple-
mentation can be reused for different environments: for
example, a system on a secure machine room network
might safely assume a synchronous model of communi-
cation, whereas a system on an open network susceptible
to flooding attacks cannot safely make such an assump-
tion. This capability allows for a single storage brick
product to apply to many environments. Second, a sin-
gle deployment can store data with differing survivability
requirements without all data incurring the costs that must
be paid for the most sensitive data.

Wide-area storage infrastructures, such as those pro-
posed to run on network overlays, are another suitable
environment for a storage protocol family. A wide-area
infrastructure provides greater returns on investment if
it can be reused for many purposes. A protocol family
would allow different applications to specialize their use
of the common infrastructure, rather than having to de-
ploy their own infrastructure or pay unnecessary costs.

2 A survivable storage protocol family

To illustrate the concept, this section briefly overviews
our protocol family, which has been designed for consis-
tent access to redundant storage. Each member of the
protocol family works roughly as follows. To perform a
write, a client sends time-stamped fragments to the set
of storage-nodes involved in storing the data being up-
dated. Storage-nodes keep all versions of fragments they
are sent until garbage collection frees them. To perform
a read, a client fetches the latest fragment versions from
the storage-nodes and determines whether they comprise
a completed write; usually, they do. If they do not, addi-
tional fragments or historical fragments are fetched, until
a completed write is observed (or, some family members
may abort). Only in certain cases of failures or concur-
rency are there additional overheads incurred to maintain
consistency.

Our protocol family is particularly interesting because
it can be space-efficient, is optimized for the common
case, and is scalable. Protocol family members can be
space-efficient because they support m-of-n erasure codes
(i.e., any mof a set of n erasure-coded fragments can be
used to reconstruct the data), which can tolerate multiple
failures with less network bandwidth (and storage space)
than replication. Members are optimized for the common
case: most read operations complete in a single round
trip. Only read operations that observe write concurrency
or failures (of storage-nodes or a client write) may in-
cur additional work—failures ought to be rare, and con-
currency is rare in file system workloads. Members are
scalable since most protocol processing is performed by
clients rather than servers. As well, read and write oper-
ations do not require server-to-server communication (a
potential scalability bottleneck with regard to the number
of faults tolerated).

2.1 Protocol family member ship

There are four main parameters that differentiate mem-
bers of the protocol family: the timing model, the storage-
node failure model, the client failure model, and whether
clients are allowed to perform repair.

Timing model. Protocol family members are either
asynchronous or synchronous. Asynchronous members
rely on no timeliness assumptions (i.e., no assump-
tions about message transmission delays or execution
rates). In contrast, synchronous members assume known
bounds on message transmission delays between correct
clients/storage-nodes and their execution rates. In a syn-
chronous system, storage-nodes that crash are detectable
via timeouts, which provide useful information to the
client. But, systems with assumed timeouts may produce
incorrect results if unexpected delays occur.

Storage-node failure model. Our protocol family’s

members tolerate a hybrid failure model of storage-nodes.
Storage-node crash failures, omission failures [13], or
crash-recovery [1] failures can be mixed with Byzan-
tine [10] storage-node failures. The concept of hybrid
failure models was introduced in [14] with t crash fail-
ures mixed with b <t Byzantine failures. For crash-
Byzantine and omission—-Byzantine members, t is the up-
per bound on storage-nodes that can crash and experience
omissions, respectively. For crash-recovery—Byzantine
members, t is the upper bound on the number of “bad” [1]
storage-nodes (Byzantine storage-nodes are included in
the set of “bad” storage-nodes). By setting b =0 in each
of the hybrid models, one gets a wholly crash, omission,
and crash-recovery model.

Client failure model. Each member of the protocol fam-
ily tolerates crash client failures and may additionally
tolerate Byzantine client failures. Crash failures during
write operations can result in subsequent read operations
observing partially complete write operations. Readers
cannot distinguish read-write concurrency from a crash
failure during a write operation.

As in any general storage system, an authorized Byzan-
tine client can write arbitrary values to storage, which af-
fects the value of the data but not its consistency. Mech-
anisms are employed to ensure that writes by Byzantine
clients have integrity (i.e., that every possible read opera-
tion will observe the same value) [7]. These mechanisms
successfully reduce Byzantine actions to either being de-
tectable or crash-like.

Repair by clients. Each member of the protocol fam-
ily either allows, or does not allow, clients to perform re-
pair. Repair involves having a client “write back” a value
during a read operation to ensure that the value being re-
turned is completely written. In repairable protocol mem-
bers, all read operations can complete.

In systems that differentiate write privileges from read
privileges, client repair cannot be allowed. Non-repair
protocol members allow read operations to abort. Reads
can be retried at either the protocol or application level.
At the protocol level, concurrency is visible in the times-
tamp histories—an aborted read could be retried until a
stable set of timestamps is observed. Other possibilities
include requiring action by some external agent or block-
ing until a new value is written to the data-item (as in the
“Listeners” protocol of Martin et al. [11]).

2.2 Selection of protocol members

Many, possibly conflicting, factors influence which pro-
tocol family member best meets a system’s survivability
goals. There are costs associated with “safer” members
that may not be worth paying for some data. For exam-
ple, asynchronous, Byzantine-tolerant members require
more storage-nodes and more client computation than
synchronous crash-tolerant members. As well, where and

Protocol family Example reasons ‘

parameter
Synchronous | LAN, physically isolated systems
Asynchronous | WAN, resilience to DOS attacks on network
Crash-only Closely monitored systems

Crash-Byzantine Greater survivability, untrusted environments,

storage-nodes complex software
Crash-only [Self-validating data, well-managed client systems
Byzantine clients | Critical data, open systems with many distinct clients
Repairable [NFS model of trusted client OSes
Non-repair | Distinct data publishers and readers

Table 1: Example reasons for selecting protocol family members

how the system is expected to be deployed impacts which
members ought to be selected. With a protocol family, a
deployed system using the “wrong” member could even
migrate to the “right” member without changing the stor-
age infrastructure.

Table 1 summarizes the properties that distinguish pro-
tocol family members, and lists example reasons for se-
lecting certain member parameters. Synchronous mem-
bers may be appropriate in isolated LAN environments,
whereas in open environments, or in a WAN, asyn-
chronous members may be preferred. There are many
reasons to want to tolerate Byzantine storage-nodes; of
equal interest though, is how many Byzantine faults (b)
to tolerate and how many additional crash-recovery fail-
ures (t — b) to tolerate. If the goal is solely fault tolerance,
b=1andt > b may make sense, whereas if security is
the over-riding goal, b =t may be preferred. Deciding
whether or not to tolerate Byzantine clients could depend
on either the type of data being stored or the client en-
vironment. The application domain of a given dataset is
most likely the major factor in determining whether or not
to employ a repairable member.

3 Related work and concepts

We describe and evaluate our protocol family in [6]
and [8]. The performance and scalability of the asyn-
chronous, repairable, Byzantine protocol member is eval-
uated in [7]. In a wholly Byzantine failure model, servers
in the “Listeners” protocol of Martin et al. [11] broad-
cast new versions of data to clients that are listening; in
our protocol clients ask for past versions of data. Frglund
et al. have also developed a decentralized storage consis-
tency protocol that accommodates erasure-coded data [4];
it operates in the crash-recovery failure model and does
not tolerate Byzantine failures of clients or storage-nodes.

Previous researchers have explored configurable proto-
cols and logically related protocol families, but we are not
aware of prior protocol families that use a common infras-
tructure. Cristian et al. [2] systematically derive a logical
set of atomic broadcast protocols for a range of fault mod-
els (from crash faults to a subset of Byzantine faults) in
a synchronous environment. Cristian et al. use the term

“family” to refer to the logical construction of the proto-
cols (by layering protocols on top of one another) rather
than their implementation. In our storage access protocol
family, different members are realized in a common im-
plementation (i.e., they share the common storage infras-
tructure) as well as being logically related. Hiltunen et al.
developed a framework for building distributed services
that are easily configured to handle different failures [9].
Again, the focus is logical modularity.

4 Summary

Replacing “niche” protocols suitable for a single purpose
with protocol families allows a single implementation to
be used in many environments and a single deployment
to serve distinct requirements efficiently. The implemen-
tation of our read/write access protocol family for surviv-
able storage demonstrates the concept’s feasibility. We
have also had early successes developing a read-modify-
write protocol family. Our promising initial results indi-
cate that the protocol family approach to constructing sur-
vivable infrastructures is worthy of further exploration.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in
the crash-recovery model. Distributed Computing, 13(2):99-125. Springer-
Verlag, 2000.

[2] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: from
simple message diffusion to Byzantine agreement. Information and Compu-
tation, 118(1):158-179, April 1995.

[3] S.Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. FAB: enterprise
storage systems on a shoestring. Hot Topics in Operating Systems, pages
133-138. USENIX Association, 2003.

[4] S. Frelund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. A De-
centralized Algorithm for Erasure-Coded Virtual Disks. Dependable Sys-
tems and Networks, June 2004.

[5] G. R. Ganger, J. D. Strunk, and A. J. Klosterman. Self-* Storage: brick-
based storage with automated administration. Technical Report CMU-CS-
03-178. Carnegie Mellon University, August 2003.

[6] G.R.Goodson,J.J. Wylie, G. R. Ganger, and M. K. Reiter. A protocol fam-
ily for versatile survivable storage infrastructures. Technical report CMU-
PDL-03-103. CMU, December 2003.

[7] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient
Byzantine-tolerant erasure-coded storage. Dependable Systems and Net-
works, June 2004.

[8] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. The safety
and liveness properties of a protocol family for versatile survivable storage
infrastructures. CMU-PDL-03-105. Parallel Data Laboratory, Carnegie
Mellon University, Pittsburgh, PA, March 2004.

[9] M. A.Hiltunen, V. Immanuel, and R. D. Schlichting. Supporting customized
failure models for distributed software. Distributed Systems Engineering,
6(3):103-111, September 1999.

[10] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382-401.
ACM, July 1982.

[11] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. Interna-
tional Symposium on Distributed Computing, 2002.

[12] R. Morris. Storage: from atoms to people. Keynote address at Conference
on File and Storage Technologies, January 2002.

[13] K.J.Perryand S. Toueg. Distributed agreement in the presence of processor
and communication faults. 1EEE Transactions on Software Engineering,
SE-12(3):477-482, March 1986.

[14] P. Thambidurai and Y.-K. Park. Interactive consistency with multiple failure
modes. Symposium on Reliable Distributed Systems, pages 93-100. IEEE,
1988.

