
Efficient Byzantine Fault Tolerance

for Scalable Storage and Services

James Hendricks

CMU-CS-09-146

July 2009

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Gregory R. Ganger, Co-Chair

Michael K. Reiter, Co-Chair

Priya Narasimhan

Miguel Castro, Microsoft Research

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2009 James Hendricks

This material is based on research sponsored in part by the National Science Foundation, via grants CCR-0326453, DGE-

0750271, DGE-0234630, CNS-0326453, CCF-0424422, and CNS-0910483, the Army Research Office, under grant

number DAAD19-02-1-0389, and the Air Force Office of Scientific Research, under grant number F49620-01-1-0433

and GS00F0001P-GST004AJ0024. Support was also provided by a National Science Foundation Graduate Research

Fellowship and an NDSEG Fellowship, sponsored by the Department of Defense, and the member companies of the

CyLab Corporate Partners and PDL Consortium (including APC, Cisco, DataDomain, EMC, Facebook, Google, Hewlett-

Packard, Hitachi, IBM, Intel, LSI, Microsoft, NEC, NetApp, Oracle, Panasas, Seagate, Sun, Symantec, and VMware).

The views and conclusions contained in this document are those of the author and should not be interpreted as repre-

senting the official policies, either expressed or implied, of the CyLab Corporate Partners, PDL Consortium, or the U.S.

Government.

Keywords: Distributed Systems, Distributed Storage Systems, Fault Tolerance, Reliability, Se-

curity, Byzantine Fault Tolerance, Byzantine Fault-Tolerant Storage, Homomorphic Fingerprinting,

Byzantine Locking, Partial Encoding

For my beautiful wife.

iv

Abstract

Distributed systems experience and should tolerate faults beyond simple component crashes as such

systems grow in size and importance. Unfortunately, tolerating arbitrary faults, also known as

Byzantine faults, poses several challenges to system designers, often limiting performance, requir-

ing additional hardware, or both. This dissertation presents new protocols that provide substantially

better performance than previously demonstrated. The Byzantine fault-tolerant erasure-coded block

storage protocol proposed in this thesis provides 40% higher write throughput than the best prior

approach. The Byzantine fault-tolerant replicated state machine provides a factor of 2.2–2.9 times

higher throughput than the best prior approach. Furthermore, the protocols presented in this dis-

sertation require 25–33% fewer responsive servers than the nearest competitors. To enable these

results, this dissertation introduces several new techniques, including homomorphic fingerprinting,

partial encoding, and Byzantine Locking, that provide unprecedented scalability, higher throughput,

lower latency, and lower computational overhead. This dissertation also considers new methods for

analyzing the correctness of distributed systems in the presence of faulty clients. Distributed ser-

vices and storage systems built using these techniques can provide Byzantine fault tolerance in a

more efficient, higher performance, and more scalable manner than previously thought possible.

v

vi

Acknowledgments

I’d like to thank the members and alumni of the PDL and CyLab for their feedback, patience,

and friendship, including Michael Abd-El-Malek, James Hoe, Elie Krevat, Michael Mesnier,

Bryan Parno, Adrian Perrig, Brandon Salmon, Raja Sambasivan, Shafeeq Sinnamohideen, Matthew

Wachs, Theodore Wong, and Jay Wylie. I’d like to acknowledge Greg for providing support

throughout my tenure at Carnegie Mellon, Mike for his feedback on my proofs and arguments,

and Miguel and Priya for providing feedback, insight, and support throughout my dissertation. I’d

also like to thank the members and companies of the CyLab Corporate Partners and the PDL Con-

sortium (including APC, Cisco, DataDomain, EMC, Facebook, Google, Hewlett-Packard, Hitachi,

IBM, Intel, LSI, Microsoft, NEC, NetApp, Oracle, Panasas, Seagate, Sun, Symantec, and VMware)

for their interest, insights, feedback, and support.

vii

viii

Contents

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Verifying Distributed Erasure-Coded Data . 3

1.3 Correctness in the Presence of Faulty Clients . 3

1.4 Low-Overhead Byzantine Fault-Tolerant Storage 4

1.5 Scalable Fault Tolerance through Byzantine Locking 4

2 Homomorphic Fingerprinting: Verifying Distributed Erasure-Coded Data 7

2.1 Homomorphic Fingerprinting . 8

2.1.1 Fingerprinting . 8

2.1.2 Homomorphism . 10

2.1.3 Applications to Erasure Codes . 12

2.2 Fingerprinted Cross-checksum . 13

2.3 Example: Improving AVID . 15

2.3.1 AVID . 15

2.3.2 AVID-FP . 15

2.3.3 AVID-FP Pseudo-code . 16

2.3.4 AVID-FP Correctness . 17

2.4 Performance . 18

2.5 Other Protocols . 19

2.6 Related Work . 20

2.7 Conclusion . 20

3 The Correctness of Distributed Systems in the Presence of Faulty Clients 21

3.1 Background . 22

3.2 Safety in the Presence of Faulty Clients . 23

3.3 Stricter Extensions of Linearizability . 25

3.3.1 Invocation Criteria . 25

3.3.2 Recovery . 25

3.4 A Wait-free Storage Protocol with Immediate Recovery 27

3.4.1 Write . 27

3.4.2 Read . 28

3.4.3 Revoke . 28

ix

x CONTENTS

3.4.4 Linearizability and Immediate Recovery 29

3.5 Conclusion . 30

4 Low-Overhead Byzantine Fault-Tolerant Storage 31

4.1 Background . 32

4.1.1 Beyond Crash Faults . 32

4.1.2 The Cost of Byzantine Fault Tolerance . 33

4.1.3 Byzantine Fault-Tolerant Storage . 33

4.2 The FP Protocol . 34

4.2.1 Design . 35

4.2.2 System Model . 38

4.2.3 Detailed Pseudo-code . 39

4.2.4 Correctness . 43

4.3 Implementation . 48

4.4 Evaluation . 49

4.4.1 Competing Protocols . 49

4.4.2 Experimental Setup . 51

4.4.3 Write Throughput . 51

4.4.4 Read Throughput . 53

4.4.5 Response Time . 54

4.5 Conclusion . 55

5 Scalable Fault Tolerance through Byzantine Locking 57

5.1 Context and Related Work . 59

5.1.1 The Byzantine Efficiency Race . 59

5.1.2 How Zzyzx Fits In . 61

5.1.3 Prior Byzantine Fault-Tolerant Replicated State Machine Protocols 62

5.1.4 Additional Related Work . 62

5.2 Definitions and System Model . 63

5.3 Byzantine Locking and Zzyzx . 64

5.3.1 The Zyzzyva Interface and Locking . 66

5.3.2 The Log Interface . 67

5.3.3 Handling Contention . 68

5.4 Protocol Details . 70

5.4.1 Checkpointing and State Transfer . 71

5.4.2 Optimizations . 71

5.4.3 Scalability Through Log Server Groups 72

5.5 Evaluation . 72

5.5.1 Assumptions and Limitations . 73

5.5.2 Experimental Setup . 73

5.5.3 Scalability . 74

5.5.4 Throughput . 74

5.5.5 Latency . 75

5.5.6 Performance with f Slow Servers . 76

CONTENTS xi

5.5.7 Performance Under Contention . 76

5.5.8 Postmark and Trace-driven Execution . 77

5.6 Conclusion . 78

6 Conclusion 79

A The Correctness of Byzantine Locking 81

A.1 Sequential Specifications of Relevant Objects . 81

A.1.1 The Object-Based State Machine Object 82

A.1.2 The Log Object . 83

A.1.3 The Manager Object . 83

A.2 Linearizability . 84

A.2.1 The Reads-from Relation . 84

A.2.2 The Equivalence of Replayed Requests 84

A.2.3 Requests that are not Replayed . 87

A.2.4 Real-time precedence: Reads-from Strict 88

A.2.5 The Linearizability of EXEC and APPEND 89

A.3 The Client and The Primary . 89

A.3.1 Reads-from Valid and Reads-from Strict 90

A.3.2 The Primary . 90

A.3.3 The Client . 92

A.3.4 Liveness . 92

A.3.5 Obstruction-Free Variants . 94

B Zzyzx Optimizations 95

B.1 Faulty Client Isolation . 95

B.2 Separating UNLOCK from FETCH . 95

B.3 APPEND, UNLOCK, and FETCH . 96

B.4 IMPORT . 97

B.5 Retrying if APPEND Returns FAILURE . 98

B.6 State Transfer and NEXT VS . 99

B.6.1 missed reqs(. . .) . 99

B.6.2 NEXT VS and get view(. . .) . 99

B.6.3 Replaying Requests at the Log Object . 100

B.6.4 Avoiding Replay . 100

B.6.5 Garbage Collection . 101

B.7 Using MACs Instead of Signatures in APPEND 101

xii CONTENTS

List of Figures

2.1.1 Encoding a vector . 12

2.3.2 AVID-FP pseudo-code . 17

4.2.1 Pseudo-code outline . 38

4.2.2 Write pseudo-code . 40

4.2.3 Read pseudo-code . 42

4.4.4 Write throughput as a function of faults tolerated 52

4.4.5 Read throughput as a function of faults tolerated. 53

4.4.6 Write response time as a function of faults tolerated. 54

4.4.7 Write response time breakdown for f = 10. 54

4.4.8 Read response time as a function of faults tolerated. 55

4.4.9 Read response time breakdown for f = 10. 55

5.0.1 Scalability. 58

5.1.2 Comparison of protocols. 60

5.3.3 Zzyzx components. 65

5.3.4 Basic communication pattern of Zzyzx versus Zyzzyva. 67

5.3.5 Unlocking. 68

5.5.6 Throughput vs. clients. 74

5.5.7 Latency vs. Throughput . 75

5.5.8 Throughput under faults. 76

5.5.9 Throughput vs. contention. 77

5.5.10 File system evaluation. 78

A.3.1 Primary pseudo-code . 90

A.3.2 Client pseudo-code . 91

B.3.1 Log server pseudo-code . 96

xiii

xiv LIST OF FIGURES

Chapter 1

Introduction

As distributed systems grow in size and importance, they experience and should tolerate faults be-

yond simple component crashes. Distributed systems deployed in real environments experience a

variety of faults, such as network misbehavior, storage failures, and software faults. Network prob-

lems include message timeouts due to temporary overload, network partitions, or packet corruption.

Faulty physical storage may corrupt data or fail to make writes durable, such that a future read re-

turns stale data. Finally, race conditions in software, drivers, or firmware may result in transient

invalid results.

Though monolithic servers and simple redundancy are adequate for many applications, the

largest and most critical applications must survive in ever harsher environments. Less synchronous

networking delivers packets unreliably and unpredictably, and more faulty hardware and software

lose data, corrupt data, and provide stale data with greater frequency. In response to this deterio-

rating situation, distributed protocols have experienced a natural progression over the years, from

monolithic servers to replicated services, from requiring synchronous environments to allowing

asynchrony, and from tolerating crashes to tolerating some corruptions through ad-hoc consistency

checks. Ad-hoc consistency checks, however, may not capture important failure modes, providing

the impetus for a more formalized fault model.

Protocols that can tolerate arbitrarily faulty behavior by components of the system are said to

be Byzantine fault-tolerant. Ideally, systems should tolerate Byzantine faulty clients or servers.

Byzantine fault tolerance ensures that all bases are covered, protecting against misdirected writes,

soft errors, and other faults and corruptions found in modern hardware and software. Though Byzan-

tine fault tolerance can protect against obscure or unlikely faults, such as a malicious insider, it is

important to remember that Byzantine fault tolerance also protects against more mundane yet still

perplexing faults that ad-hoc consistency checks may miss.

Unfortunately, Byzantine fault-tolerance is generally believed to be too expensive to justify in

practice. This dissertation presents Byzantine fault-tolerant protocols for building storage systems

and distributed services that provide much better performance and scalability than prior approaches.

It develops new techniques to reduce the cost and improve the scalability and performance of Byzan-

tine fault-tolerant distributed systems. The techniques described in this dissertation can be used to

build Byzantine fault-tolerant storage systems and services that are more efficient, higher perfor-

mance, and more scalable than previously thought possible.

1

2 CHAPTER 1. INTRODUCTION

1.1 Thesis Statement

THESIS STATEMENT: Scalable cluster-based storage systems can tolerate Byzantine faults

with substantially lower overhead than previously demonstrated. In particular, an erasure-coded

Byzantine fault-tolerant block storage system can provide bandwidth on par with protocols that

tolerate only crashes, and a Byzantine fault-tolerant metadata service can provide scalability and

respond to most requests in a single round trip, even when only the minimal number of servers are

responsive.

To support this thesis statement, this disseration takes the following steps. First, it develops a new

cryptographic primitive, which shows that erasure-coded data can be efficiently verified in a dis-

tributed system. Second, it develops a new Byzantine fault-tolerant storage protocol and proves

its correctness, which showes that the performance of a Byzantine fault-tolerant block storage pro-

tocol can be competitive in theory. Third, this dissertation describes a prototype implementations

of the storage protocol and competing protocols, including protocols that tolerate only crashes. It

then measures and compares of the performance of the prototypes experimentally, which shows

that the performance of a Byzantine fault-tolerant protocol can be competitive in practice with pro-

tocols that tolerate only crashes. Fourth, this dissertation develops a new Byzantine fault-tolerant

replicated state machine protocol, proves its correctness, describes a prototype implementation, and

measures the prototype against competing prototypes to demonstrate its performance and scalability

properties.

Contributions: This dissertation makes four primary contributions. First, it introduces a new

cryptographic primitive, homomorphic fingerprinting, which can be used to verify that distributed

erasure-coded data was properly encoded. This technique allows many replication-based data stor-

age and distribution protocols to be modified to accept erasure-coded data. Second, this dissertation

proposes a correctness condition in the presence of faulty clients that allows reasoning about con-

current Byzantine-tolerant objects in terms of their sequential specification and encapsulates the

semantics of the protocol in the presence of faulty clients.

Third, this dissertation introduces several techniques to improve the performance of Byzantine

fault-tolerant erasure-coded storage systems, and it provides a protocol that substantially outper-

forms prior approaches. For example, the partial encoding optimization eliminates about half of the

necessary erasure coding in a distributed storage system. A prototype implementation demonstrates

experimentally that Byzantine fault-tolerant erasure-coded block storage protocols can provide sim-

ilar throughput and latency as protocols that tolerate only crashes.

Fourth, this dissertation proposes a new technique for building Byzantine fault-tolerant repli-

cated state machines, Byzantine Locking. Byzantine Locking provides unprecedented scalability

and efficiency for the common case of infrequent concurrent data sharing. Byzantine Locking is

used to build Zzyzx, a Byzantine fault-tolerant replicated state machine prototype that substan-

tially outperforms prior approaches. Experiments with Zzyzx demonstrate that Byzantine fault-

tolerant replicated state machines need only the minimal number of responsive servers to ensure

high throughput, provide single roundtrip latency, and provide scalability through workload parti-

tioning when the workload exhibits low object contention.

1.2. VERIFYING DISTRIBUTED ERASURE-CODED DATA 3

The next four sections provide an overview of these four contributions and the corresponding chap-

ter that describes each contribution in detail. Each of the chapters also discusses the background

and related work relevant to the corresponding contribution.

1.2 Verifying Distributed Erasure-Coded Data

Erasure coding can reduce the space and bandwidth overheads of redundancy in fault-tolerant data

storage and delivery systems. An m-of-n erasure code encodes a block of data into n fragments,

each 1/mth the size of the original block, such that any m can be used to reconstruct the original

block. Thus, (n−m) of the fragments can be unavailable (e.g., due to corruption or server failure)

without loss of access. But, it introduces the fundamental difficulty of ensuring that all erasure-

coded fragments correspond to the same block of data. Without such assurance, a different block

may be reconstructed from different subsets of fragments. Previous systems in which clients cannot

be trusted to encode and distribute data correctly use one of two approaches. In the first approach,

servers are provided the entire block of data, allowing them to agree on the contents and generate

their own fragments [18, 19]. Savings are achieved for storage, but bandwidth overheads are no

better than for replication. In the second approach, clients verify all n fragments when they perform

a read to ensure that no other client could observe a different value [44], a significant computational

overhead.

Chapter 2 proposes homomorphic fingerprinting, a new technique that provides this assurance

without the bandwidth and computational overheads associated with current approaches. The core

idea is to distribute homomorphic fingerprints with each fragment, which preserve the structure

of the erasure code and allow each fragment to be independently verified as corresponding to a

specific block. The key insight is that the coding scheme imposes certain algebraic constraints

on the fragments, and that there exist homomorphic fingerprinting functions that preserve these

constraints. Chapter 2 presents homomorphic fingerprinting functions that are secure, efficient, and

compact.

1.3 Correctness in the Presence of Faulty Clients

A distributed system is correct if it faithfully implements the desired protocol specification. Un-

fortunately, providing correctness arguments is difficult in the presence of faulty clients that may

disobey the protocol. Because faulty clients can affect the state of the system by following the pro-

tocol, their actions must be considered. But, because they may not follow the protocol, predicates

needed to prove correctness may not be well defined. There are several approaches to proving cor-

rectness with faulty clients in the literature, but prior approaches prohibit some protocols that are

sufficiently correct for real applications or allow protocols that may not be sufficient for some real

applications.

Many Byzantine fault-tolerant protocols tolerate Byzantine faulty clients as well as servers.

Most protocols are proven to guarantee some variant of linearizability [51]. In particular, in the

absence of faulty clients, the execution of such protocols should result in a linearizable history of

events. Unfortunately, the original definition of linearizability does not apply in the presence of

faulty clients, and there is no agreed-upon definition that applies in the presence of faulty clients.

4 CHAPTER 1. INTRODUCTION

Chapter 3 proposes a minimal correctness condition, as well as two stronger conditions that allow

for easier analysis and provide useful guarantees. This definition will prove useful in Chapter 4,

which uses invocation criteria, one of the two stronger conditions, to reason about the correctness

of a Byzantine fault-tolerant storage protocol.

1.4 Low-Overhead Byzantine Fault-Tolerant Storage

Unlike replicated state machine protocols, which inherently require more servers to tolerate Byzan-

tine rather than crash faults, erasure-coded storage protocols can tolerate Byzantine faults with the

same number of servers used to tolerate crashes. Given an erasure code where m fragments are

required to reconstruct a block, tolerating f crash faults or Byzantine faults in an asynchronous en-

vironment requires writing fragments to m+ f servers (assuming m > f) out of m+2 f total servers.

Real-world storage systems have recently begun to tolerate faults other than crashes, but it is un-

clear which faults such systems should tolerate. Thus, the Byzantine fault model would be of great

interest to the distributed storage community, if shown to be sufficiently efficient.

Chapter 4 presents an erasure-coded Byzantine fault-tolerant block storage protocol that is

nearly as efficient as protocols that tolerate only crashes. Previous Byzantine fault-tolerant block

storage protocols have either relied upon replication, which is inefficient for large blocks of data

when tolerating multiple faults, or a combination of additional servers, extra computation, and ver-

sioned storage. To avoid these expensive techniques, the protocol employs novel mechanisms to

optimize for the common case when faults and concurrency are rare. In the common case, a write

operation completes in two rounds of communication and a read completes in one round. The pro-

tocol requires a short checksum comprised of cryptographic hashes and homomorphic fingerprints.

It achieves throughput within 10% of the crash-tolerant protocol for writes and reads in failure-free

runs when configured to tolerate up to 6 faulty servers and any number of faulty clients.

1.5 Scalable Fault Tolerance through Byzantine Locking

Chapter 5 presents Zzyzx, a Byzantine fault-tolerant replicated state machine that outperforms prior

approaches and provides an unprecedented feature: near-linear scaling of throughput by adding

servers. Using a new technique called Byzantine Locking, Zzyzx allows a client to extract state

from an underlying replicated state machine and access it via a second protocol specialized for use

by a single client. This second protocol requires just one round-trip and 2 f +1 responsive servers—

compared to Zyzzyva, this results in 39–43% lower response times and a factor of 2.2–2.9× higher

throughput. More importantly, the extracted state can be transferred to other servers, allowing non-

overlapping sets of servers to manage Zzyzx allows throughput to be scaled by adding servers when

concurrent data sharing is not common. When data sharing is common, performance can match that

of the underlying replicated state machine protocol (e.g., Zyzzyva).

Byzantine fault-tolerant replicated state machine protocols require 3 f + 1 servers in an asyn-

chronous network environment, of which 2 f + 1 must be responsive and involved in each request.

Of recent proposals, only H/Q [32] and PBFT [24] achieve this minimum, while Q/U [2] requires

4 f + 1 servers to be responsive and Zyzzyva [55] requires 3 f + 1 servers to be responsive. The

ideal metadata protocol would requires only 2 f + 1 responsive replicas, as in H/Q and PBFT, but

1.5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING 5

could complete requests in as few roundtrips as possible in the common case, as in Q/U or Zyzzyva.

Zzyzx achieves both goals when contention is rare, which is the case for many important workloads,

such as metadata (e.g., see GPFS [92]). A detailed proof of the correctness of Byzantine Locking

in general, and Zzyzx in specific, is provided in Appendix A.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Homomorphic Fingerprinting: Verifying

Distributed Erasure-Coded Data

Erasure coding can reduce the space and bandwidth overheads of redundancy in fault-tolerant data

storage and delivery systems. An m-of-n erasure code encodes a block of data into n fragments, each

1/mth the size of the original block, such that any m can be used to reconstruct the original block.

Thus, (n−m) of the fragments can be unavailable (e.g., due to corruption or server failure) with-

out loss of access. Example erasure coding schemes with these properties include Reed-Solomon

codes [85] and Rabin’s Information Dispersal Algorithm [84].

Unfortunately, erasure coding creates a fundamental challenge: determining if a given fragment

indeed corresponds to a specific original block. If this is not ensured for each fragment, then recon-

structing from different subsets of fragments may result in different blocks, violating any reasonable

definition of data consistency.

Systems in which clients cannot be trusted to encode and distribute data correctly use one of two

approaches. In the first approach, servers are provided the entire block of data, allowing them to

agree on the contents and generate their own fragments [18, 19]. Savings are achieved for storage,

but bandwidth overheads are no better than for replication. In the second approach, clients verify

all n fragments when they perform a read to ensure that no other client could observe a different

value [44]. In this approach, each fragment is accompanied by a cross-checksum [43, 58], which

consists of a hash of each of the n fragments. A reader verifies the cross-checksum by reconstruct-

ing a block from m fragments and then recomputing the other (n−m) fragments and comparing

their hash values to the corresponding entries in the cross-checksum, a significant computational

overhead.

This chapter develops a new approach, in which each fragment is accompanied by a set of

fingerprints that allows each server to independently verify that its fragment was generated from

the original value. The key insight is that the coding scheme imposes certain algebraic constraints

on the fragments, and that there exist homomorphic fingerprinting functions that preserve these

constraints. Servers can verify the integrity of the erasure coding as evidenced by the fingerprints,

agreeing upon a particular set of encoded fragments without ever needing to see them. Thus, the

two common approaches described above could be used without the bandwidth or computation

overheads, respectively.

7

8 CHAPTER 2. VERIFYING DISTRIBUTED ERASURE-CODED DATA

The proposed fingerprinting functions belong to a family of universal hash functions [20], cho-

sen to preserve the underlying algebraic constraints of the fragments. A particular fingerprinting

function is chosen at random with respect to the fragments being fingerprinted. This “random” se-

lection can be deterministic with the appropriate application of a cryptographic hash function [12].

If data is represented carefully, the remainder from division by a random irreducible polynomial [83]

or the evaluation of a polynomial at a random point preserve the needed algebraic structure. The

resulting fingerprints are secure, efficient, and compact.

The rest of this chapter is organized as follows. Section 2.1 provides a formal definition of

homomorphic fingerprinting along with two such functions, the division fingerprinting and the eval-

uation fingerprinting functions. Section 2.2 describes a data structure called a fingerprinted cross-

checksum, against which the integrity of a fragment can be verified. Section 2.3 demonstrates how

homomorphic fingerprinting can improve distributed protocols by improving the bandwidth over-

head of the AVID protocol [18]. Section 2.4 measures the performance of this approach, Section 2.5

considers other protocols, and Section 2.6 surveys related work.

2.1 Homomorphic Fingerprinting

This section defines homomorphic fingerprinting and its applications to erasure codes. Section 2.1.1

defines fingerprinting, providing two examples: division and evaluation fingerprinting. Section 2.1.2

defines homomorphic fingerprinting and shows that both division and evaluation fingerprinting are

homomorphic fingerprinting functions. Section 2.1.3 explains the applications of homomorphic

fingerprinting functions to erasure codes.

Throughout this chapter, let F denote a finite field with operators “+” and “·”, and let Fqk denote

such a field of order qk where q is prime. Let t
R
← T denote selection of an element from T uniformly

at random and its assignment to t.

2.1.1 Fingerprinting

DEFINITION 2.1.1. An ε-fingerprinting function fingerprint : K ×F
δ→ F

γ satisfies

max
d,d′∈Fδ

d 6=d′

Pr
[

fingerprint(r,d) = fingerprint(r,d′) : r
R
← K

]

≤ ε

In words, the probability under random selection of r that fingerprint(r,d) = fingerprint(r,d′) is at

most ε.

Let Fqk [x] denote the set of polynomials with coefficients in Fqk , with “+” and “·” defined as in

normal polynomial arithmetic. A vector d ∈ F
δ
qk of δ elements of Fqk has a natural representation as

a polynomial d(x) ∈ Fqk [x] of degree less than δ with coefficients in Fqk where the jth element of d

is the coefficient in d(x) of degree j, where 0≤ j < δ. These notations will be used interchangeably,

denoting d as d(x) when it assumes this form.

EXAMPLE 2.1.2. [Rabin fingerprinting] Let F2 denote a field of order 2, let K = {2,3,4, . . . ,2γ},
and let P2 : K → F2[x] be a deterministic algorithm that outputs monic irreducible polynomials of

2.1. HOMOMORPHIC FINGERPRINTING 9

prime degree γ with coefficients in F2 such that

Pr
[

p(x) = P2(r) : r
R
← K

]

= Pr
[

p′(x) = P2(r) : r
R
← K

]

for all p(x), p′(x) ∈ F2[x] of degree γ. That is, P2 selects monic degree-γ irreducible polynomials

uniformly at random, where probabilities are taken with respect to the uniformly random selection

of r. Rabin showed that fingerprint : K ×F
δ
2→ F

γ
2 defined by

fingerprint(r,d(x)) : p(x)← P2(r);
return (d(x) mod p(x))

is an ε-fingerprinting function for ε = δ
2γ−2

[83].

THEOREM 2.1.3. [Division fingerprinting] Let Fqk denote a field of order qk, let the size of K

be the number of monic irreducible polynomials of degree γ with coefficients in Fqk , and let Pqk :

K → Fqk [x] be a deterministic algorithm that outputs monic irreducible polynomials of degree γ

with coefficients in Fqk chosen uniformly at random, with probabilities taken over the choice of

input r ∈ K uniformly at random. Then fingerprint(r,d) : K ×F
δ
qk → F

γ

qk defined by

fingerprint(r,d(x)) : p(x)← Pqk(r);

return (d(x) mod p(x))

is an ε-fingerprinting function for ε = δ

qkγ−q
kγ
2

≈ δ
qkγ .

Proof. As in [83], this is because there are at least
qkγ−q

kγ
2

γ monic degree-γ irreducible polynomials

with coefficients in Fqk [102], of which any nonzero degree-δ polynomial with coefficients in Fqk

may have at most ⌊ δ
γ ⌋ factors of degree-γ. Consider the difference of any two distinct polynomials

with matching fingerprints. Let d(x),d′(x) ∈ Fqk [x] and d(x) ≡ d′(x) mod p(x) but d(x) 6= d′(x).
Then (d(x)− d′(x)) ≡ 0 mod p(x), so p(x) is a factor of (d(x)− d′(x)). Because d(x) 6= d′(x),
(d(x)− d′(x)) 6= 0. But there are at most δ

γ different monic degree-γ irreducible polynomials with

coefficients in Fqk that are factors of a nonzero degree-δ polynomial (d(x)− d′(x)). Hence, the

probability that p(x) is one of these polynomials is at most δ

qkγ−q
kγ
2

.

Division fingerprinting is a generalization of Rabin fingerprinting. Both are fast due to fast

implementations of P2 [83] and Pqk [94].

Let Eqkγ = Fqk [x]/p(x) denote the extension field of polynomials with coefficients in Fqk of

degree less than γ, with “+” defined as normal and “·” defined modulo a constant monic degree-γ

irreducible polynomial p(x) ∈ Fqk [x]. Let Eqkγ [y] denote the set of polynomials with coefficients in

Eqkγ , with “+” and “·” defined as normal. It is convenient to consider d ∈ Eqkγ [y] as a polynomial in

two variables, d(y,x).

A vector d ∈ F
δ
qk of δ elements of Fqk has a natural representation as a polynomial d(y,x) ∈

Eqkγ [y] of degree less than δ
γ in variable y. The jth element of d is the coefficient in d(y,x) of degree

10 CHAPTER 2. VERIFYING DISTRIBUTED ERASURE-CODED DATA

⌊ j
γ⌋ in variable y and degree j mod γ in variable x. These notations will be used interchangeably,

denoting d as d(y,x) when it assumes this form.

THEOREM 2.1.4. [Evaluation fingerprinting] Let Eqkγ = Fqk [x]/p(x) denote a field of polynomials

with coefficients in Fqk of degree less than γ with “·” defined modulo p(x), a constant monic degree-γ

irreducible polynomial. Let K = {0, . . . ,qkγ−1}, and let S : K → Eqkγ be a deterministic algorithm

that outputs an element of Eqkγ chosen uniformly at random, with probabilities taken over the choice

of input r ∈ K uniformly at random. Then the function fingerprint(r,d) : K ×F
δ
qk → F

γ

qk defined by

fingerprint(r,d(y,x)) : s(x)← S(r);
return d(s(x),x)

is an ε-fingerprinting function for ε = δ/γ

qkγ .

Proof. As in [75], this is because any ⌈ δ
γ ⌉ points fully determine a polynomial of degree less than

δ
γ over a field. Hence, any two distinct polynomials of degree less than δ

γ share fewer than δ
γ points.

Because there are qkγ different points in Eqkγ , the probability that a randomly chosen point is shared

between two distinct polynomials is at most
δ/γ

qkγ .

A trivial implementation of S is to return the polynomial representation of r divided into γ

coefficients, where each coefficient is an element of Fqk .

Variants of division and evaluation fingerprinting known as the division and evaluation hashes

can be used for message authentication. They are two of the fastest hashes, producing the smallest

output and requiring the fewest bits of random input [79].

2.1.2 Homomorphism

Throughout this chapter, let b ·d denote the application of “·” by a scalar b ∈ F to each element in a

vector d ∈ F
σ of σ elements of F.

DEFINITION 2.1.5. A fingerprinting function fingerprint : K × F
δ → F

γ is homomorphic if

fingerprint(r,d)+fingerprint(r,d′) = fingerprint(r,d +d′) and b ·fingerprint(r,d) = fingerprint(r,b ·
d) for any r ∈ K and any d,d′ ∈ F

δ, b ∈ F.

THEOREM 2.1.6. The fingerprinting functions given in Example 2.1.2 and Theorem 2.1.3 are

homomorphic.

Proof. For any d,d′ ∈ F
δ
qk and any r ∈ K , p(x)← Pqk(r),

fingerprint(r,d(x))+fingerprint(r,d′(x)) = d(x) mod p(x)+d′(x) mod p(x)

= (d(x)+d′(x)) mod p(x)

= fingerprint(r,d(x)+d′(x))

2.1. HOMOMORPHIC FINGERPRINTING 11

Moreover, for any b ∈ Fqk ,

fingerprint(r,b ·d(x)) = (b ·d(x)) mod p(x)

= b · (d(x) mod p(x))

= b ·fingerprint(r,d(x))

THEOREM 2.1.7. The fingerprinting function given in Theorem 2.1.4 is homomorphic.

Proof. For any d,d′ ∈ F
δ
qk and any r ∈ K , s(x)← S(r),

fingerprint(r,d(y,x))+fingerprint(r,d′(y,x)) = d(s(x),x)+d′(s(x),x)

= (d +d′)(s(x),x)

= fingerprint(r,d +d′)

Moreover, for any b ∈ Fqk ,

fingerprint(r,b ·d) = fingerprint(r,(b ·d)(y,x))

= (b ·d)(s(x),x)

= b · (d(s(x),x))

= b ·fingerprint(r,d(y,x))

The following lemma restates the properties of a homomorphic fingerprinting function.

LEMMA 2.1.8. Let fingerprint : K ×F
δ→ F

γ denote a homomorphic ε-fingerprinting function. For

any fixed constants bi ∈ F, 1≤ i≤ m,

max
d,d1,...,dm∈Fδ

d 6=∑m
i=1

bi·di

Pr

[

fingerprint(r,d) =
m

∑
i=1

bi ·fingerprint(r,di) : r
R
← K

]

≤ ε

Proof. Suppose otherwise. That is, suppose that there are d,d′,d1, . . . ,dm ∈ F
δ such that d 6= d′ =

∑m
i=1 bi ·di and

Pr

[

fingerprint(r,d) =
m

∑
i=1

bi ·fingerprint(r,di) : r
R
← K

]

> ε

By homomorphism, for any r ∈ K ,

m

∑
i=1

bi ·fingerprint(r,di) =
m

∑
i=1

fingerprint(r,bi ·di) = fingerprint(r,
m

∑
i=1

bi ·di) = fingerprint(r,d′)

Then

Pr
[

fingerprint(r,d) = fingerprint(r,d′) : r
R
← K

]

> ε

in violation of Definition 2.1.1.

12 CHAPTER 2. VERIFYING DISTRIBUTED ERASURE-CODED DATA

Let encode(B j) output

d j1 . . . d jn

Then [encode(B1);encode(B2); · · · ;encode(Bσ)] outputs

d11 . . . d1n

d21 . . . d2n

.
dσ1 . . . dσn

Let di = (d1i,d2i, . . . ,dσi). That is, each di is a column vector from

above. Then encodeσ(B) outputs
d1 . . . dn

Figure 2.1.1: Encoding a vector.

2.1.3 Applications to Erasure Codes

DEFINITION 2.1.9. An m-of-n erasure coding scheme is a pair of deterministic algorithms

(encode,decode), where encode : F
m→ F

n and decode : (F×{1, . . . ,n})m→ F
m. If d1, . . . ,dn←

encode(B), then decode(di1 , . . . ,dim) = B for any distinct i1, . . . , im (1≤ i j ≤ n).

Each fragment provided to decode is accompanied by its index i ∈ {1, . . . ,n}. For notational sim-

plicity, let each index be implicitly provided to decode.

DEFINITION 2.1.10. An m-of-n erasure coding scheme (encode,decode) is linear if there exist

fixed constants bi j ∈ F for each 1 ≤ i ≤ n and 1 ≤ j ≤ m such that for any B ∈ F
m, if d1, . . . ,dn←

encode(B) then di = ∑m
j=1 bi j ·d j.

Examples of linear erasure coding schemes are Reed-Solomon codes [85] and Rabin’s Information

Dispersal Algorithm [84].

The following three shorthands will be useful for the next theorem. First, to consider

only the ith encoded fragment, define the shorthand di ← encodei(B). Second, abbreviate

encode(decode(di1 , . . . ,dim)) as encode(di1 , . . . ,dim). Third, to apply encode or decode to each

of the jth elements of m σ-length vectors for every j ∈ {1, . . . ,σ}, define the shorthands

encodeσ : (Fσ)m → (Fσ)n and decodeσ : (Fσ)m → (Fσ)m. Then d1, . . . ,dn ← encodeσ(B) and

B← decodeσ(di1 , . . . ,dim), where B ∈ (Fσ)m and di ∈ F
σ. See Figure 2.1.1 for illustration.

THEOREM 2.1.11. Let fingerprint : K ×F
δ→ F

γ be a homomorphic ε-fingerprinting function, and

let (encode,decode) be a linear erasure code with coefficients bi j ∈ F, for 1≤ i≤ n and 1≤ j ≤m.

If (d1, . . . ,dn)← encodeδ(B), then for any r ∈ K and any 1≤ i≤ n,

fingerprint(r,di) = encode
γ
i (fingerprint(r,d1), . . . ,fingerprint(r,dm))

2.2. FINGERPRINTED CROSS-CHECKSUM 13

Proof.

fingerprint(r,di) = fingerprint(r,encodeδ
i (B))

= fingerprint(r,
m

∑
j=1

bi j ·d j) (by Definition 2.1.10)

=
m

∑
j=1

bi j ·fingerprint(r,d j) (by Definition 2.1.5)

= encode
γ
i (fingerprint(r,d1), . . . ,fingerprint(r,dm))

(by Definition 2.1.10)

COROLLARY 2.1.12. Let fingerprint : K ×F
δ→ F

γ be a homomorphic ε-fingerprinting function,

and let (encode,decode) be a linear erasure code. If (d1, . . . ,dn)← encodeδ(B), then for any d 6= di,

Pr
[

fingerprint(r,d) = encode
γ
i (fingerprint(r,d1), . . . ,fingerprint(r,dm)) : r

R
← K

]

≤ ε

Proof. Follows from Theorem 2.1.11 and Lemma 2.1.8.

Theorem 2.1.11 and Corollary 2.1.12 state two useful facts about homomorphic fingerprinting

functions. First, the fingerprints from an encoding of a block are equal to the encoding of the

fingerprints of the block. That is, homomorphic fingerprinting functions are homomorphic. Second,

if the fingerprint of a fragment is equal to the encoding of the fingerprints of other fragments, the

fragment is, with high probability, the encoding of the other fragments. That is, homomorphic

fingerprinting functions are fingerprinting functions.

2.2 Fingerprinted Cross-checksum

The fault-tolerant data storage example given in Section 2.3 utilizes a data structure that called a

fingerprinted cross-checksum. Before considering the contents of a fingerprinted cross-checksum,

recall the following definition of a collision-resistant hash function (e.g., see [90]).

DEFINITION 2.2.1. A family of hash functions {hashK : {0,1}∗→{0,1}λ}K∈K ′ is (τ,ε′)-collision

resistant if for every probabilistic algorithm A that runs in time τ,

Pr

[

d′ 6= d ∧ hashK(d′) = hashK(d) :

K
R
← K ′, 〈d,d′〉 ← A(K)

]

≤ ε′

A fingerprinted cross-checksum then has the following form.

DEFINITION 2.2.2. An m-of-n fingerprinted cross-checksum fpcc consists of an array fpcc.cc[] of

n values in {0,1}λ and an array fpcc.fp[] of m values in F
γ.

14 CHAPTER 2. VERIFYING DISTRIBUTED ERASURE-CODED DATA

The name “fingerprinted cross-checksum” derives from the fact that the array fpcc.cc[] is a

cross-checksum [43, 58] and because fpcc.fp[] holds homomorphic fingerprints.

Let hash : {0,1}∗→ {0,1}λ denote a random instance of a (τ,ε′)-collision resistant hash func-

tion family, and let fingerprint : K ×F
δ → F

γ be a homomorphic ε-fingerprinting function. Let

random oracle : ({0,1}λ)n→ K denote a random oracle [12], which is a fixed, public function cho-

sen uniformly at random from all functions from the same domain to the same range. The following

definition specifies when a fragment is consistent with a fingerprinted cross-checksum.

DEFINITION 2.2.3. Let fpcc be a fingerprinted cross-checksum. A fragment d ∈ F
δ is consistent

with fpcc for index i, 1≤ i≤ n, if

fpcc.cc[i] = hash(d)

and

fingerprint(r,d) = encode
γ
i (fpcc.fp[1], . . . , fpcc.fp[m])

where r = random oracle(fpcc.cc[1], . . . , fpcc.cc[n]).

THEOREM 2.2.4. Let A be a probabilistic algorithm that runs in time τ, makes χ queries to

random oracle, and produces an m-of-n fpcc and fragments di1 , . . . , dim , and d′
i′1
, . . . , d′i′m

such that

each fragment is consistent with fpcc for its index. If

B ← decodeδ(di1 , . . . ,dim)

B′ ← decodeδ(d′i′1
, . . . ,d′i′m)

then the probability that B 6= B′ is at most ε′+M · ε for constant M = χ
(

n
m+1

)

.

Proof. Suppose that A, running in time τ, produces some fpcc and fragments di1 , . . . ,dim and

d′
i′1
, . . . ,d′i′m , each consistent with fpcc for its index, such that if B← decodeδ(di1 , . . . ,dim) and B′←

decodeδ(d′
i′1
, . . . ,d′i′m) then B 6= B′. B 6= B′ implies that for some j, 1≤ j≤m, di j

6= encodeδ
i j
(B′). Yet,

because each fragment is consistent with fpcc, for each d̂i ∈ {di j
,d′

i′1
, . . . ,d′i′m}, by Definition 2.2.3

fingerprint(r, d̂i) = encode
γ
i (fpcc.fp[1], . . . , fpcc.fp[m])

where r = random oracle(fpcc.cc[1], . . . , fpcc.cc[n]). By Definition 2.1.9, this can be rearrange to

fingerprint(r,di j
) = encode

γ
i j
(fingerprint(r,d′i′1

), . . . ,fingerprint(r,d′i′m))

Bound the probability with which A succeeds in producing such values, as follows. First

suppose that A fails to produce a collision in hash. Then, for any random oracle query r̂ ←
random oracle(h1, . . . ,hn), A possesses at most one d̂i such that hash(d̂i) = hi, for each 1 ≤ i ≤ n.

Of these n fragments d̂1, . . . , d̂n, consider each selection of m+1 of them, d̂i0 , d̂i1 , . . . , d̂im , such that

B̂← decodeδ(d̂i1 , . . . , d̂im) implies d̂i0 6= encodeδ
i0
(B̂). This selection satisfies fingerprint(r̂, d̂i0) =

encode
γ
i0
(fingerprint(r̂, d̂i1), . . . ,fingerprint(r̂, d̂im)) with probability at most ε, by Corollary 2.1.12.

Since there are at most
(

n
m+1

)

such selections per random oracle query, and since there are χ queries

to the random oracle, the probability with which A generates any such d̂i0 , . . . , d̂im without finding

a collision in hash is at most M · ε where M = χ
(

n
m+1

)

. Adding the probability ε′ that A finds a

collision in hash, the total probability of A’s success is bounded by ε′+M · ε.

2.3. EXAMPLE: IMPROVING AVID 15

2.3 Example: Improving AVID

This section illustrates how homomorphic fingerprinting can improve distributed protocols by mod-

ifying the AVID [18] protocol to make it more bandwidth efficient. Section 2.3.1 describes AVID.

Section 2.3.2 highlights the proposed modifications. Section 2.3.3 provides a complete description

along with pseudo-code of the modified protocol, AVID-FP. Section 2.3.4 proves that AVID-FP

satisfies the functional specification of an asynchronous verifiable information dispersal protocol

given in [18]. Both the AVID and AVID-FP protocols can be used to build a Byzantine fault-tolerant

distributed storage system using only 3 f +1 servers [19], where f is an upper bound on the number

of faulty servers.

This section assumes that there are n servers and that a data block is erasure coded into frag-

ments such that any m fragments suffice to decode it, where m≥ f +1 and n = m+2 f . The system

model is similar to that in [18]; there are authenticated, reliable, asynchronous point-to-point com-

munications channels between all servers and clients, and all servers and clients are computationally

limited so as to be unable to break the utilized cryptographic primitives.

2.3.1 AVID

AVID [18] is an asynchronous verifiable information dispersal protocol. In such a protocol, a client

disperses some block B, which can later be retrieved by any client. The verifiability of the protocol

ensures that any two clients retrieve the same block after dispersal.

For simplicity, the description of AVID in this section is restricted to m = f +1 and n = 3 f +1.

To write a block, a client encodes it into fragments and computes the hash of every fragment, cre-

ating a cross-checksum. The client sends to each server its fragment and the cross-checksum. Each

server then echoes the cross-checksum and its fragment to all other servers in an echo message.

After receiving 2 f +1 fragments and matching cross-checksums in echo messages, a correct server

decodes the block, re-encodes it, and verifies each component of the cross-checksum, aborting if

inconsistencies are found. A correct server then broadcasts this consistent cross-checksum and its

fragment from the re-encoding to all other servers in a ready message. A correct server does like-

wise if it receives f + 1 ready messages before it receives 2 f + 1 echo messages. After receiving

2 f +1 ready messages, a correct server can conclude that f +1 servers broadcast ready messages

that all correct servers will eventually receive. Hence, all correct servers will broadcast ready mes-

sages, and so all will receive at least 2 f +1 such messages and reach this point. The server can then

reconstruct its fragment if needed and store this value. The bandwidth required to store block B is

then O(n2 |B|
m

) = O(n 3 f+1
f+1
|B|) = O(n|B|), assuming the cross-checksum is of negligible size.

To read a block, a client retrieves a fragment and cross-checksum from each server until it

finds a matching cross-checksum from f + 1 servers and m fragments that are consistent with this

cross-checksum. These fragments are decoded and returned.

2.3.2 AVID-FP

This section modifies AVID to utilize homomorphic fingerprinting, creating a new protocol, AVID-

FP. AVID-FP differs from AVID in that servers agree upon a fingerprinted cross-checksum that

is consistent with a block rather than on the block itself; servers need not echo fragments. The

16 CHAPTER 2. VERIFYING DISTRIBUTED ERASURE-CODED DATA

bandwidth required to store block B in AVID-FP is then O(n |B|
m

) = O(m+2 f
m
|B|) = O(|B|), assuming

a fingerprinted cross-checksum is of negligible size.

In AVID-FP, each cross-checksum is replaced by the fingerprinted cross-checksum from Sec-

tion 2.2. Unlike a cross-checksum, a server can verify with a fingerprinted cross-checksum that its

fragment corresponds to a unique block without knowing the entire block. As a consequence, there

is no need to send a fragment along with each echo or ready message, which saves substantial

bandwidth. Furthermore, a server has nothing to re-encode and verify upon receiving an echo or

ready message, saving a substantial amount of computation.

A less welcome consequence is that a correct server cannot reconstruct its fragment if it is

not provided by the client. This is not a problem, however, because a server can still verify that

enough other correct servers received consistent fragments such that a consistent block will always

be retrievable in the future. Hence, after a block is dispersed, at least f + 1 correct servers will

know the agreed-upon fingerprinted cross-checksum and at least m will know their fragments. To

read a block, a client retrieves these f +1 matching fingerprinted cross-checksums and m consistent

fragments.

2.3.3 AVID-FP Pseudo-code

Pseudo-code for AVID-FP can be found in Figure 2.3.2. In order to disperse a value B in AVID-FP,

a client generates fragments (line 101) and the fingerprinted cross-checksum (lines 102–104). The

client then sends each server its fragment and the fingerprinted cross-checksum.

Each server verifies that the fragment it receives is consistent with the fingerprinted cross-

checksum (lines 600–606). If this is true, the server stores the fragment and sends an echo message

containing the fingerprinted cross-checksum to all other servers (lines 607–608).

Upon receiving m+ f echomessages with matching fingerprinted cross-checksums from unique

servers, a server can determine that at least m correct servers sent such messages and hence stored

fragments consistent with the fingerprinted cross-checksum (line 701). The server then sends a

ready message containing the fingerprinted cross-checksum to all other servers (line 702).

If a server receives f + 1 ready messages with matching fingerprinted cross-checksums from

unique servers (line 801), at least one must be from a correct server that determined that at least m

correct servers stored consistent fragments. Hence, such a server can determine likewise and send a

ready message to all other servers, if it has yet to do so (line 802).

If a server receives 2 f +1 ready messages with matching fingerprinted cross-checksums from

unique servers, at least f + 1 must be from correct servers (line 804). Hence, each correct server

will receive at least these f + 1 matching ready messages. Then each correct server will send a

ready message (lines 801–802), so each correct server will actually receive at least 2 f +1 matching

ready messages. Thus, a correct server can conclude upon receiving 2 f + 1 ready messages that

all correct servers will eventually receive 2 f +1 ready messages, as well. The server can then save

the agreed upon fingerprinted cross-checksum and respond to the client (line 806).

Upon receiving 2 f + 1 responses, the client is assured that f + 1 correct servers have saved

the same fingerprinted cross-checksums and that m correct servers have stored fragments consistent

with this fingerprinted cross-checksum. To retrieve a block, then, a client retrieves a fragment and

fingerprinted cross-checksum from each server, waiting for matching fingerprinted cross-checksums

2.3. EXAMPLE: IMPROVING AVID 17

c disperse(B): /∗ Client disperse protocol ∗/

100: store count← 0

101: d1, . . . ,dn← encodeδ(B)
102: for (i ∈ {1, . . . ,n}) do fpcc.cc[i]← hash(di)
103: r← random oracle(fpcc.cc[1], . . . , fpcc.cc[n])
104: for (i ∈ {1, . . . ,m}) do fpcc.fp[i]← fingerprint(r,di)
105: for (i ∈ {1, . . . ,n}) do send(disperse, fpcc,di) to Si

Upon receiving (stored) from Si for the first time

200: store count← store count+1

201: if (store count = 2 f +1) then return SUCCESS

c retrieve(): /∗ Client retrieve protocol ∗/

300: fpcc← NULL; State[∗]← 〈NULL, NULL, NULL〉
301: for (i ∈ {1, . . . ,n}) do send(retrieve) to Si

Upon receiving (retrieved, ˆfpcc,〈fpcc′,d〉) from Si

400: if (ˆfpcc 6= NULL) then

401: State[i]← 〈 ˆfpcc, NULL, NULL〉 /∗ Potential fpcc ∗/
402: if (|{ j : State[j] = 〈 ˆfpcc,∗,∗〉}|= f +1) then

403: fpcc← ˆfpcc /∗ Found fpcc ∗/
404:

405: if (NULL 6= fpcc′) then

406: h← hash(d)
407: r← random oracle(fpcc′.cc[1], . . . , fpcc′.cc[n])
408: fp← fingerprint(r,d)
409: fp′← encode

γ
i (fpcc′.fp[1], . . . , fpcc′.fp[m])

410: if (fp = fp′ ∧h = fpcc′.cc[i]) then

411: State[i]← 〈 ˆfpcc, fpcc′,d〉 /∗ Consistent fragment ∗/
412:

413: if (fpcc 6= NULL) then

414: Frags←{d j : State[j] = 〈∗, fpcc,d j〉}

415: if (|Frags|= m) then return decodeδ(Frags)

s init(): /∗ Initialize server state ∗/

500: echoed← 〈NULL, NULL〉; verified← NULL

501: EchoSet∗← /0; ReadySet∗← /0

/∗ Server i code to disperse data ∗/
Upon receiving (disperse, fpcc,di) from client

600: h← hash(di)
601: h′← fpcc.cc[i]
602: r← random oracle(fpcc.cc[1], . . . , fpcc.cc[n])
603: fp← fingerprint(r,di)
604: fp′← encode

γ
i (fpcc.fp[1], . . . , fpcc.fp[m])

605:

606: if (echoed = 〈NULL, NULL〉 ∧ fp = fp′ ∧ h = h′) then

607: echoed← 〈fpcc,di〉
608: for (j ∈ {1, . . . ,n}) do send(echo, fpcc) to S j

Upon receiving (echo, fpcc) from S j

700: EchoSetfpcc← EchoSetfpcc ∪ { j}
701: if (|EchoSetfpcc|= m+ f ∧ |ReadySetfpcc|< f +1) then

702: for (j ∈ {1, . . . ,n}) do send(ready, fpcc) to S j

Upon receiving (ready, fpcc) from S j

800: ReadySetfpcc← ReadySetfpcc ∪ { j}
801: if (|ReadySetfpcc|= f +1 ∧ |EchoSetfpcc|< m+ f) then

802: for (j ∈ {1, . . . ,n}) do send(ready, fpcc) to S j

803:

804: if (|ReadySetfpcc|= 2 f +1) then

805: verified← fpcc

806: send(stored) to client

/∗ Server i code to retrieve data ∗/
Upon receiving (retrieve) from client

900: send(retrieved,verified,echoed) to client

Figure 2.3.2: AVID-FP pseudo-code

from f + 1 servers (lines 402–403) and consistent fragments from m servers (line 415). These

fragments are then decoded and the resulting block is returned.

2.3.4 AVID-FP Correctness

To see why this is correct, recall the definition of an asynchronous verifiable information dispersal

scheme given in [18]:

DEFINITION 2.3.1. An (m,n)-asynchronous verifiable information dispersal scheme is a pair of

protocols (disperse, retrieve) that satisfy the following with high probability:

Termination: If disperse(B) is initiated by a correct client, then disperse(B) is eventually com-

pleted by all correct servers.

Agreement: If some correct server completes disperse(B), all correct servers eventually com-

plete disperse(B).

Availability: If f + 1 correct servers complete disperse(B), a correct client that initiates

retrieve() eventually reconstructs some block B′.

Correctness: After f + 1 correct servers complete disperse(B), all correct clients that initiate

retrieve() eventually retrieve the same block B′. If the client that initiated disperse(B) was correct,

then B′ = B.

18 CHAPTER 2. VERIFYING DISTRIBUTED ERASURE-CODED DATA

Termination is simple, as in the original AVID protocol. If a correct client initiates disperse, it

erasure codes the block and computes a valid fingerprinted cross-checksum before dispersing frag-

ments to each server (lines 101–105). Eventually, at least m + f correct servers receive disperse

messages, verify their fragments against the fingerprinted cross-checksum, and send echo messages

to all other servers (line 608). Each correct server eventually receives at least m+ f echo messages;

it will then send a ready message (line 702) unless it has already done so (line 802). Thus each

correct server will eventually receive at least 2 f + 1 ready messages, at which point it will send a

stored message to the client and complete. Hence, all correct servers eventually complete.

Agreement is simpler than in the original AVID protocol because a server in AVID-FP need

not reconstruct the block before returning a ready message. If some correct server completes

disperse(B), then it received 2 f +1 ready messages (line 804). At least f +1 must have come from

correct servers, so all correct servers will eventually receive ready messages from these servers.

Then the condition satisfied on either line 801 or line 701 will be met for all correct servers, so all

correct servers will send ready messages and receive at least 2 f +1 such messages, thus complet-

ing.

Availability is different than in the original AVID protocol. In AVID, fragments must be echoed

such that a correct server can reconstruct its fragment if needed; in AVID-FP, fragments are not

echoed. If any correct server completes disperse, it received 2 f +1 ready messages. Then at least

one correct server received m + f echo messages. If not, at most f ready messages would be

received by any correct server, because no correct server would meet the condition on line 701.

Hence, at least m correct servers stored consistent fragments (line 607). Then after f + 1 correct

servers complete disperse, a client that initiates retrieve will eventually receive f + 1 matching

fingerprinted cross-checksums (saved on line 805) along with m consistent fragments, which it will

decode and return as some block B′.

Correctness is similar to the original AVID protocol except that the properties of the homomor-

phic fingerprint are required. Suppose some correct server saves fpcc1 on line 805 and some other

correct server saves fpcc2 6= fpcc1. Then m + f servers echoed fpcc1, of which at least m were

correct, and m+ f servers echoed fpcc2, of which at least m were correct. Because a correct server

will only echo once (line 606 will never be satisfied after line 607 is reached), there are at least

m + m + f servers involved, which is a contradiction (there are only n < m + m + f servers in the

system). Hence, any block decoded during retrieve is consistent with the same fpcc. Furthermore,

if a correct client initiated disperse(B), this fpcc will be consistent with B. Then, by Theorem 2.2.4,

the probability that B 6= B′ is negligible, for appropriately chosen parameters.

2.4 Performance

Homomorphic fingerprinting is efficient, contributing little overhead to distributed protocols. To

demonstrate that homomorphic fingerprinting is not a substantial computational burden in protocols

such as the AVID-FP protocol given above, this section compares an implementation of the evalu-

ation fingerprinting function against cryptographic hashing. The evaluation fingerprinting function

implementation in this section is similar to the evaluation hash considered in [79] and [94].

A polynomial

d(y,x) = aσ(x) · yσ + . . .+a0(x) · y
0 ∈ Eqkγ [y]

2.5. OTHER PROTOCOLS 19

can be evaluated using Horner’s rule. To do so, let fp← 0, and for j = σ, . . . ,0, iteratively compute

fp← fp · y+a j(x). The efficiency of this implementation then depends on an efficient implementa-

tion of “+” and “·” for a j(x),y ∈ Eqkγ = Fqk [x]/p(x), where y, the point at which to evaluate, is the

fixed random value s(x)← S(r).

Given an implementation of “+” and “·” for Fqk , construct “+” and “·” for Fqk [x]/p(x) as

follows. Consider the representation of a(x) ∈ Fqk [x]/p(x) as a polynomial

a(x) = bγ−1 · x
γ−1 + . . .+b0

where bi ∈ Fqk . The “+” operator is defined as the addition of same-degree terms. The “·” operator

is defined as multiplication of two polynomials of degree less than γ modulo a constant monic

degree-γ irreducible polynomial p(x) ∈ Fqk [x].

For fixed s(x), compute a(x) · s(x) as follows. For 0≤ i < γ, build γ lookup tables mapping each

bi ∈ Fqk to bi · x
i · s(x) mod p(x); that is, compute the map bi 7→ bi · x

i · s(x) mod p(x). Each of these

γ tables will contain qk entries that are each ⌈log2 qkγ⌉ bits wide. A 128-bit fingerprint over F28 must

compute 16 such tables after the random value r is selected; each table is 4 kB, for a total of 64 kB.

Given these tables, one can compute a(x) · s(x) as the sum of γ lookups, Σ
γ−1
i=0 (bi ·x

i · s(x) mod p(x)).
For F28 , this requires a table lookup plus an exclusive-or per byte of input.

For F28 , building these tables is efficient: “+” is simply exclusive-or, and “·” can be imple-

mented using a 64 kB lookup table. The “mod” operator can be defined using “+” and “·”. Because

p(x) is constant, “mod” can be implemented with a lookup table for bi 7→ bi · x
γ mod p(x). This

table will contain 28 entries of γ bytes each, for a total of 4 kB for a 128-bit fingerprint, and it can

be computed before the random value r is selected.

Gladman’s implementation of SHA-1 [42] achieves a throughput of 110 megabytes per second

on a 3 GHz Intel Pentium D. On this machine, the time to compute lookup tables for the evalu-

ation fingerprint implementation presented here is 20 microseconds. After this computation, this

implementation achieves a throughput of 410 megabytes per second.

2.5 Other Protocols

m-of-n erasure coding is used in many distributed systems (e.g., [5, 19, 22, 44, 62, 91]), because it

reduces storage, network bandwidth, and I/O bandwidth. The savings approaches a factor of m when

compared to replication. The division and evaluation fingerprinting functions are homomorphic over

several popular erasure codes. Reed-Solomon codes [85] interpolate a polynomial over a field Fqk ,

and Rabin’s Information Dispersal Algorithm [84] encodes using an n×m matrix over a field Fqk

where every m×m submatrix is invertible. Both are linear erasure codes over Fqk . A common field

is F28 such that field elements are bytes. Rabin fingerprinting is homomorphic over many erasure

codes based solely on exclusive-or, such as Online Codes [74] and parity.

Homomorphic fingerprinting provides benefits to erasure-coded Byzantine fault-tolerant stor-

age systems [19, 44]. Section 2.3 demonstrated how the AVID protocol [18], used in [19], can

exploit homomorphic fingerprinting to be more bandwidth efficient. Variants of the PASIS proto-

col [44, 45] can also exploit homomorphic fingerprinting. In the “non-repairable” protocol a writer

sends fragments along with a cross-checksum to each server; a reader returns a block after finding

20 CHAPTER 2. VERIFYING DISTRIBUTED ERASURE-CODED DATA

sufficient servers with fragments and matching cross-checksums. Before accepting a value, a reader

must reconstruct all fragments and recompute the cross-checksum, a significant computational over-

head. This protocol can benefit directly by replacing the cross-checksum with a fingerprinted cross-

checksum, obviating the need for fragment reconstruction and cross-checksum recomputation. The

“repairable” protocol can also benefit, but requires further modifications.

Homomorphic fingerprinting may also provide benefits to erasure-coded broadcast [22], content

distribution [61], and similar applications, if the encoding is not trusted to be consistent without

verification.

2.6 Related Work

A common cryptographic application of universal hashing is for message authentication codes

(MACs) [79]. An early proposal by Krawczyk [59] included a MAC similar to Rabin’s fingerprints.

Shoup presented faster variants [94] along with implementation suggestions to optimize perfor-

mance. Nevelsteen compares several other variants [79].

Homomorphic fingerprinting functions share homomorphic properties with incremental hash-

ing functions [11]. Incremental hashing, however, is substantially slower because it is based on

number-theoretic primitives. The homomorphic properties of incremental hashing are exploited

in [61], which applies these homomorphic properties to Online Codes [74] in a peer-to-peer content

distribution network.

The algebraic properties of certain universal hashes has been examined before. Rabin used

these properties to update the fingerprint of a file [83]. In [93], a similar technique is used by a disk

scrubber to check the consistency of erasure-coded data in a benign environment. In [15], algebraic

properties are leveraged to permit fast updates of Rabin fingerprints of data structures such as trees.

More distantly related to this technique is verifiable secret sharing (e.g., [29, 39, 80, 98]), which

allows correct participants to verify that a secret was shared among them consistently. The secrecy

of the shared value, however, which must be preserved throughout the share distribution and verifi-

cation process, drives these protocols to employ number-theoretic techniques that are significantly

heavier-weight than considered here.

It is worth mentioning that a random oracle, as in Section 2.2, can be replaced with an evaluation

of a distributed pseudo-random function [78] in a protocol such as AVID-FP. This construction has

the benefit of requiring only standard cryptographic assumptions.

2.7 Conclusion

Homomorphic fingerprinting enables efficient verification that fragments have been correctly gen-

erated by an erasure-coding of a particular data block. A high level of security can be achieved

with small fingerprints, and fingerprint generation has lower computational overhead than crypto-

graphic hashing. This technique provides benefits to several distributed protocols. In particular,

distributed storage systems capable of tolerating Byzantine clients, which may attempt to write sets

of fragments that reconstruct different values depending upon which subset is used, can benefit

significantly from this mechanism.

Chapter 3

The Correctness of Distributed Systems

in the Presence of Faulty Clients

As the complexity and significance of distributed systems increases, ensuring that such systems op-

erate as expected becomes both more difficult and more important. Thus, proposals for systems that

depend on complex distributed protocols are often accompanied by arguments that such protocols

remain live under appropriate conditions and implement the expected operational semantics. Such

arguments are called liveness and safety arguments. There are several properties that a client-server

protocol may ensure to demonstrate liveness (e.g., wait-freedom [49] or obstruction-freedom [50]).

When the protocol model is a set of servers providing clients access to a concurrent object, safety

is often described in terms of linearizability [51], which allows a concurrent object to be reasoned

about in terms of its sequential specification.

As distributed systems grow in size and importance, they must also tolerate faults other than

crashes. Unfortunately, safety conditions such as linearizability do not apply when clients may

disobey the protocol specification because predicates needed to demonstrate such conditions may

not be well defined. Linearizability relates potential real-time precedence to the invocations and

responses of operations as issued and seen by clients, but a faulty client may not properly invoke

an operation. Though a protocol need not provide guarantees about responses provided to faulty

clients, it must account for the effect of invocations by faulty clients. After all, a faulty client can

always invoke an operation, if only by following the protocol correctly.

This chapter considers the correctness of distributed systems that tolerate Byzantine-faulty

clients, which may exhibit arbitrary or even malicious behavior, and require a safety condition

similar to linearizability. Byzantine fault tolerance [65] has become increasingly important in the

distributed systems community. Safety conditions similar to linearizability define the correct behav-

ior of Byzantine fault-tolerant systems such as replicated state machines [2, 24, 32, 55] and storage

systems [19, 44, 48, 66, 68].

Of course, definitions of safety in the presence of faulty clients have been previously consid-

ered; after all, one must define correctness before arguing that a protocol is correct. Two common

approaches are to extend linearizability to apply in the presence of faulty clients and to define a

new safety condition, possibly arguing its similarity to linearizability. Section 3.3.2 considers prior

extensions to linearizability, but prior extensions may not ensure the expected operational semantics

21

22 CHAPTER 3. CORRECTNESS IN THE PRESENCE OF FAULTY CLIENTS

for some applications, and prior extensions may preclude some protocols that provide operational

semantics that suffice for many applications. Defining a new safety condition is even worse, as it

obfuscates the operational semantics of a protocol. A non-standard safety condition complicates

protocol comparison, obscures which faults are tolerated, and may fail to ensure the expected oper-

ational semantics.

This chapter proposes a minimal correctness condition that is restrictive enough to prevent

anomalies but permissive enough to allow all prior protocols. For applications that require stricter

semantics, this chapter provides a mechanism to strengthen this condition. By separating basic cor-

rectness requirements from additional protocol features, this chapter strives to facilitate comparison

of protocol guarantees. Furthermore, explicit delineation of protocol features ensures that a protocol

provides adequate operational semantics when deployed in a real system without unduly restricting

the design of the protocol.

This rest of this chapter is organized as follows. Section 3.2 presents a formal definition of

linearizability in the presence of faulty clients that does not preclude previous protocols that appear

correct to correct clients. Section 3.3 provides techniques to ensure stricter operational semantics

as needed, but notes that such semantics are not always possible. In particular, Section 3.3.2 defines

immediate recovery, which ensures a faulty client cannot affect a block storage or atomic register

protocol after the client has been revoked. Section 3.3.2 then proves that entirely wait-free protocols

cannot provide immediate recovery. In contrast to Section 3.3.2, Sections 3.4 presents the first

block storage protocol that provides wait-free reads and writes and ensures immediate recovery. By

necessity, revocation is not wait-free.

3.1 Background

This chapter is concerned with distributed systems in which a set of clients perform concurrent

operations on objects controlled by a set of servers. The standard definition of safety for such dis-

tributed systems is linearizability as defined by Herlihy and Wing [51], which defines safety from

the perspective of correct clients. For reference, this chapter restates the definition of linearizability

in Section 3.2 as Definition 3.2.2. Proofs of safety ensure that a protocol adheres to a particular

specification. This chapter argues that previous attempts to define safety conflate safety with addi-

tional protocol features. Additional features may be necessary for a particular application, but are

not required to ensure safety in the traditional sense. Section 3.3 describes features that may be

useful but go beyond safety.

When might traditional notions of safety be insufficient? Consider an accounting firm with

a shared distributed storage system in an asynchronous environment. As is necessary in many

practical storage protocols, the read subprotocol includes a write back step, in which the client

writes the block read back into the system to ensure subsequent reads are up-to-date [28]. A faulty

client—for example, a computer operated by a malicious employee that is subsequently fired—may

partially complete a write, such that a subsequent read operation may or may not return the value

written. (For example, PASIS would classify the read as either repairable or incomplete [44].) For

many days, weeks, or years, reading the block may not return the partially-written value. But, at

some distant point in the future, a different subset of servers may cause a client to read and hence

3.2. SAFETY IN THE PRESENCE OF FAULTY CLIENTS 23

write back the partial write, wreaking havoc. For example, the faulty client could overwrite all

blocks with zeroes, with the consequence only discovered long after the client has left the system.

The Byzantine fault-tolerant storage community has struggled with this problem for several

years. Malkhi, Reiter, and Lynch [70] extended the concept of linearizability to distributed stor-

age systems with Byzantine-faulty clients. Their proposal requires that the number of operations

issued by faulty clients is finite if all faulty clients eventually leave the system. A notable draw-

back of this approach is that it only applies to infinite executions of a system, because all clients

issue finite operations in finite executions, system executions are finite in practice. Liskov and Ro-

drigues [66] defined two safety conditions for Byzantine fault-tolerant storage, BFT-linearizable and

BFT-linearizable+. Unfortunately, several reasonable storage protocols meet neither safety condi-

tion, and neither condition precludes certain anomalies, such as a write from a faulty client taking

effect years after the client was removed from the system. The benefits and drawbacks of these

extensions are considered in Section 3.3.2. Aguilera and Swaminathan described a property called

limited effect, which is similar in intention to immediate recovery, but they achieve their property

by implementing a weaker primitive (an abortable register) to allow wait-freedom [6].

There have been several recent protocols that tolerate faulty clients in some form. Castro and

Liskov [24], Abd-el-Malek et al. [2], Cowling et al. [32], and Kotla et al. [55] all consider Byzantine-

faulty clients in replicated state machines. Malkhi and Reiter [68], Goodson et al. [44], Liskov and

Rodrigues [66], Cachin and Tessaro [19], and Hendricks et al. [48] all consider Byzantine-faulty

clients in storage systems. Because there is no agreed upon definition of correctness in the presence

of faulty clients, protocol designers often create their own definition. Choosing the right definition

of correctness in such an ad-hoc manner is difficult if not perilous, and one could easily imagine

the process going awry. To state the problem another way, using formal methods to prove ad-hoc

criteria burdens the protocol designer without ensuring traditional notions of correctness.

3.2 Safety in the Presence of Faulty Clients

This section proposes the minimal requirements for safety. Informally, for a protocol to be correct

in the presence of faulty clients, from the perspective of the correct clients, any execution of the

protocol could have happened if all clients were correct. Before restating this more formally, define

a few terms following the terminology of Herlihy and Wing [51, Section 2.1]. A client (or process)

issues operations in sequence. An operation consists of two events: an invocation and a matching

response. The execution of a distributed system is modeled by a history, which is an ordered se-

quence of invocation and response events by clients. Each event is associated with the client that

invoked the operation. A protocol is said to be correct if any execution of the protocol will result in

a history that satisfies the correctness condition. Consider the following definition of an extension

that accounts for faulty clients to a correctness condition that does not:

DEFINITION 3.2.1. A history H comprised of events from all correct clients satisfies a faulty-client

extension to a correctness condition if and only if there exists history Ĥ such that

1. Ĥ satisfies the correctness condition and

2. The subsequence of Ĥ consisting of each event from every correct client is equal to H.

24 CHAPTER 3. CORRECTNESS IN THE PRESENCE OF FAULTY CLIENTS

This definition satisfies two important properties. First, in the absence of faulty clients, a pro-

tocol will satisfy the traditional notion of correctness. This is because if all clients are correct, H is

identical to Ĥ and thus H satisfies the correctness condition. Thus, an extension to linearizability

will imply linearizability in the absence of faulty clients. Second, this definition prevents anomalies.

For example, a state machine protocol cannot transition to an unreachable state from the perspective

of correct clients. An execution of a protocol is only correct if, from the perspective of each correct

client, the execution could have resulted from a set of clients correctly executing the protocol. In

other words, any effects of faulty clients can be explained away as though such faulty clients were

correct.

For a particular correctness condition such as linearizability in the presence of Byzantine-faulty

clients, Definition 3.2.1 can be specialized as a Byzantine-faulty-client extension of linearizability.1

Linearizability relates the sequential specification of a protocol to the correctness of its distributed

variant. The benefit of linearizability is that the sequential specification of a protocol is often simpler

than its distributed equivalent because operations may not be totally ordered in a distributed system;

for example, the sequential specification of a storage register is that a read returns the current value

and a write sets the value to the argument of the write.

Before continuing, define a few more terms following Herlihy and Wing [51]. Two histories

are equivalent if, for each client, the ordered subsequences of events associated with that client

from either history are the same. A history is sequential if the first event is an invocation; every

invocation, except possibly the last, is followed by a matching response; and every response is

preceded by a matching invocation. A legal sequential history is a sequential history that conforms

to the sequential specification. A history H can be extended by including a matching response for

some of its unmatched invocations, and it can be completed by omitting unmatched invocations.

Recall the definition of a linearizable history [51, Section 2.2]:

DEFINITION 3.2.2. A history H is linearizable if

1. H can be extended to some history H ′ such that complete(H ′) is equivalent to some legal

sequential history S and

2. for each response that precedes some invocation in H, the response also precedes that invoca-

tion in S.

A Byzantine extension to linearizability is then defined as follows:

DEFINITION 3.2.3. A history H comprised of events from all correct clients satisfies a Byzantine-

faulty-client extension to linearizability if there exists some history Ĥ such that

1. Ĥ can be extended to some history H ′ such that complete(H ′) is equivalent to some legal

sequential history S,

2. For each response that precedes some invocation in H, the response also precedes that invo-

cation in S, and

3. The subsequence of Ĥ consisting of each event from every correct client is equal to H.

Definition 3.2.3 is a direct application of Definition 3.2.1 to Definition 3.2.2, making Definition 3.2.3

the natural extension of linearizability in the presence of faulty clients. The first and second terms

1Or a Byzantine extension of linearizability, or just Byzantine linearizability, for short.

3.3. STRICTER EXTENSIONS OF LINEARIZABILITY 25

restate Definition 3.2.2. The first term corresponds to Definition 3.2.1. The second term is simplified

by using H rather than Ĥ. The second term can use H rather than Ĥ because any Ĥ that satisfies

the first and third term would still satisfy these terms if reordered such that responses to faulty

clients do not precede any invocations and invocations by faulty clients precede all responses. Thus,

invocations and responses from faulty clients need not apply to the second term, so H is equivalent

to Ĥ for this purpose.

3.3 Stricter Extensions of Linearizability

A protocol that tolerates faulty clients must ensure that all protocol executions satisfy Defini-

tion 3.2.3, but Definition 3.2.3 may not ensure sufficient operational semantics for some applica-

tions. This section considers additional protocol features that restrict the ability of faulty clients to

invoke operations. Protocol designers should describe such features when specifying what seman-

tics a protocol implementation provides. This section considers invocation criteria and recovery.

Most protocols should at least consider invocation criteria, which describes when an invocation

from a faulty (or correct) client is allowed to appear in a history.

3.3.1 Invocation Criteria

Recall that history Ĥ in Definition 3.2.3 includes events associated with both correct and faulty

clients. A faulty-client invocation criteria defines the conditions under which invocations from

faulty clients may be present into Ĥ. By including invocation criteria when describing protocol

semantics, the effects of faulty clients can be made obvious and application designers can determine

if a protocol provides acceptable semantics.

DEFINITION 3.3.1. The faulty-client invocation criteria is a set of requirements that must be satis-

fied for each invocation associated with a faulty client.

A useful invocation criteria is that a faulty client must successfully complete a remote procedure

call at a correct server for each invocation in Ĥ associated with that client. This ensures that a

faulty client must perform a particular action in order to affect the state of the system. Specifying

invocation criteria is a useful sanity check in the design of storage protocols, and allows application

designers to choose an appropriate protocol.

3.3.2 Recovery

The notion of recovery from faulty clients has been proposed as a desirable or necessary property

of storage protocols that tolerate Byzantine-faulty clients. Recovery can also apply to non-storage

protocols. Recovery is usually described in relation to a special STOP event in an execution history.

After a STOP event is issued for a client, the client can issue only a limited number of operations.

In practice, a STOP event is issued when a faulty client is repaired or removed from the system,

perhaps after being detected as faulty. The least restrictive variant of recovery is eventual recovery.

DEFINITION 3.3.2. A distributed protocol eventually recovers from faulty clients if each faulty

client issues only a finite number of operations after a STOP event is issued for all faulty clients.

26 CHAPTER 3. CORRECTNESS IN THE PRESENCE OF FAULTY CLIENTS

Eventual recovery was proposed by Malkhi et al. [70] as “Byznearizability.” It ensures that

faulty clients cannot affect the state of the system after all faulty clients are removed and enough

time has passed. Unfortunately, eventual recovery provides few guarantees in practice—any finite

history trivially satisfies eventual recovery, and all histories encountered in practice are, of course,

finite.

Despite this criticism, demonstrating that a protocol eventually recovers is useful because pro-

tocols that do not eventually recover exhibit strange semantics: even after removal from the system,

faulty clients continuously change the state of the system. Eventual recovery is often implied by

a reasonable faulty-client invocation criteria. For example, if a client must communicate with a

correct server to invoke an operation, the protocol will eventually recover from faulty clients. A

slightly more restrictive property is bounded recovery:

DEFINITION 3.3.3. A distributed protocol recovers after bounded operations if for some finite

constant b, after a STOP event is issued for a faulty client the client issues at most b operations.

Bounded recovery was proposed by Liskov and Rodrigues [66] as “BFT-linearizability.” Liskov

and Rodrigues further refined the definition to ensure that operations cannot be issued by a faulty

client after a STOP event is issued for the client and the state of the system is overwritten k

times. They call this stricter definition “BFT-linearizability+.” Storage protocols that satisfy BFT-

linearizability or BFT-linearizability+ bound the number of “lurking writes” [66], which are writes

by a client that occur after the client has left the system.

Unfortunately, bounded recovery may be too restrictive—most recent storage protocols do not

ensure bounded recovery with no apparent ill consequences [19, 44, 48, 68]. Augmenting a storage

protocol to ensure bounded recovery may be a sizable undertaking. Furthermore, for large values of

b, faulty clients can issue many operations after a STOP event, as in eventual recovery—perhaps too

many. Yet, the benefits of even small b for b > 0 are not clear; in the hypothetical accounting firm

of Section 3.1, bounded recovery ensures only that data is lost a bounded number of times, which is

b times too many. Thus, bounded recovery may be too restrictive but also not restrictive enough in

practice.

The most restrictive variant of recovery is immediate recovery:

DEFINITION 3.3.4. A distributed protocol immediately recovers from faulty clients if after a STOP

event is issued for a client the client issues no more operations.

Immediate recovery is useful in practice because it allows for the standard access control

semantics—once a client’s access has been revoked, the client cannot issue any more operations.

Revoking the access rights of a client can be modeled as issuing a STOP event for that client. Un-

fortunately, immediate recovery may restrict the liveness properties of a protocol.

THEOREM 3.3.5. Suppose a protocol using n processes implements an object in an asynchronous

environment that tolerates at least one crash-fault with operations read, write, and revoke. Read

returns the current value, write updates the value, and revoke removes write permission for a specific

process. Then this protocol is not wait-free [49].

Proof. Let each process begin with write access. Each process will attempt to write its proposed

value to the object, revoke write access to every other process, and then read the current value of

the object. Because reading comes after revoking, and because immediate recovery ensures that no

3.4. A WAIT-FREE STORAGE PROTOCOL WITH IMMEDIATE RECOVERY 27

writes complete after revocation, this algorithm implements n-process consensus, where the value

read is the value agreed upon. Thus, by the FLP impossibility result [40], the protocol cannot always

be live.

Though Theorem 3.3.5 precludes distributed objects with wait-free read, write, and revoke opera-

tions that tolerate even a single crash, Section 3.4 will describe a protocol that offers immediate re-

covery with wait-free read and write operations, but a revoke operation that is not wait-free. In other

words, a storage object can provide wait-free read and write operations, with the liveness penalty of

immediate recovery only experienced when a revoke operation makes the penalty unavoidable.

3.4 A Wait-free Storage Protocol with Immediate Recovery

This section presents a protocol that offers immediate recovery with wait-free read and write op-

erations (revoke operations are not wait-free). The protocol reads and writes from a single block.

An array of blocks can be formed by running multiple instances of the protocol in parallel. The

protocol requires 3 f + 1 total servers to tolerate f Byzantine faulty servers, and it tolerates any

number of Byzantine faulty clients. The network is assumed to be asynchronous. The client retries

sending requests across the network until it receives enough responses to continue, but this retry

pattern is not shown. The client has access to a replicated state machine subprotocol, such as PBFT

or Zyzzyva [24, 55] which will be used for the revoke operation.

The protocol is comprised of three operations: Write, Read, and Revoke. The protocol is based

on the timestamp paradigm found in many prior protocols (e.g., [44, 48, 66]), and is similar to that of

Liskov and Rodrigues [66]. For a write, a client chooses a timestamp higher than the most recently

completed write, and is said to write its block at that timestamp. A reader finds the block with the

highest timestamp. If two blocks share the same timestamp, the tie is broken deterministically. In

particular, in this protocol the block value that would represent the greater binary number is chosen.

If the two block values are the same, either block is returned.

The protocol is designed for simplicity, as to prove that storage protocols can offer immediate

recovery and wait-free read and write operations. The protocol was not designed for efficiency, and

there are a number of optimizations that are not considered. Because the protocol is so similar to

prior protocols (e.g.,the protocol of Liskov and Rodrigues [66]), the protocol presentation is kept as

informal as possible.

3.4.1 Write

The write subprotocol is comprised of three rounds: First, the client finds the highest ts. Second,

the client sends a prepare request, which includes the block value. Third, the client sends a commit

request, which includes proof that prepare requests were received by 2 f + 1 servers. In the first

round, the client requests the highest ts value from each server. Each correct server returns with the

greatest ts of any commit request processed. After receiving 2 f +1 responses, the client chooses a

ts one greater than the greatest ts value returned.

The client then sends a signed prepare request to all servers, which consists of the chosen ts and

the block. Each correct server stores the signed prepare request if it has the greatest 〈ts,block〉 pair

from this client so far, and returns with a signed response which consists of a tag denoting this is

28 CHAPTER 3. CORRECTNESS IN THE PRESENCE OF FAULTY CLIENTS

a prepare response, the ts, and the block (in practice, only a collision-resistant hash of the block is

required). If a client’s write privileges have been revoked, a server may return a FAILURE message,

which includes the signed revocation request, in which case the write fails, the write protocol returns

FAILURE to the application, and a correct client no longer issues write operations.

After receiving 2 f +1 prepare responses, the client forms a prepare certificate, which is just the

pair 〈ts,block〉 and the 2 f + 1 signed prepare responses. The client sends a commit request to all

servers, which consists of the prepare certificate. Each correct server stores the prepare certificate as

the new most recent write if the pair 〈ts,block〉 is the greatest received from any client so far, even

if the client has had its write privileges revoked. A correct server then sends an acknowledgment to

the client. Upon receiving 2 f + 1 acknowledgments of the commit request, the write is complete,

and the write protocol returns SUCCESS to the application.

Liveness: The write subprotocol is wait-free. Each round consists of the client sending a request

to 3 f + 1 servers and waiting for responses from 2 f + 1 servers. Eventually, the 2 f + 1 correct

servers will return some response, and the client will continue.

3.4.2 Read

The read subprotocol is comprised of two rounds. First, the client asks each server for the prepare

certificate provided by a commit request with the highest timestamp. (Or some default block if

no block has been committed.) After receiving 2 f + 1 prepare certificates, the client chooses the

prepare certificate with the highest timestamp. Second, the client writes back a commit request

consisting of the prepare certificate to each server and waits for 2 f +1 acknowledgments. The read

subprotocol then returns the block from that prepare certificate to the application.

Liveness: The read subprotocol is wait-free for the same reasons that the write subprotocol is

wait-free.

3.4.3 Revoke

The revoke subprotocol has three rounds, in which a client called the revoker revokes write privi-

leges for another client. First, the revoker asks each server for the prepare request with the greatest

〈ts,block〉 pair for the client being revoked in a signed revocation request (or a default block).

Each server promises to not accept future prepare requests from this client (though a client can still

complete a commit request if it already has a prepare certificate), and each server stores the signed

revocation request. The revoker gathers 2 f +1 such prepare requests and such promises not to allow

further prepares.

Second, the revoker sends these 2 f + 1 non-matching prepare requests to the replicated state

machine subprotocol. If this is the first revocation request for the client being revoked, the replicated

state machine protocol returns the prepare request with the greatest 〈ts,block〉 pair, along with a

signed message that allows the prepare request to be used as a prepare certificate. If this is not the

first revocation request for the client being revoked, the replicated state machine protocol returns

the prepare request it sent for the first revocation.

Third, the revoker uses the signed message and the prepare request to write back a commit

request to each server. After 2 f +1 acknowledgments, the revoker is done and returns SUCCESS to

the application.

3.4. A WAIT-FREE STORAGE PROTOCOL WITH IMMEDIATE RECOVERY 29

An agreement subprotocol, as implied by Theorem 3.3.5, is provided in the second round by the

replicated state machine. The agreement subprotocol ensures that a unique prepare request is the

final prepare request committed during write back. Otherwise, two concurrent revoke operations

could write back different values, which would allow a write for the client being revoked to appear

after the first revoke operation completes.

Liveness: The revoke subprotocol inherits the liveness properties of the underlying replicated

state machine subprotocol. The non-state-machine requests consist of the revoker sending a request

to 3 f + 1 servers and waiting for 2 f + 1 responses, as in the write and read subprotocols, so the

revoker will continue once the 2 f +1 correct servers respond.

3.4.4 Linearizability and Immediate Recovery

To see why this protocol is linearizable from the perspective of correct clients, consider the sequence

of read and write operations from correct clients ordered by 〈ts,block〉 pairs, where operations

with the same 〈ts,block〉 value are ordered by real-time precedence, with writes preceding reads

whenever possible. Insert revoke operations by correct revoking clients as late as possible while

respecting real-time precedence, but before any subsequent FAILURE for a write by a correct client

being revoked. Finally, if the value of block for the write that immediately precedes a read does

not match the value of block read, insert a write by a faulty client that is not yet revoked for the

〈ts,block〉 pair that is read. Insert the write immediately after the preceding read or write for a

different 〈ts,block〉 pair, but before any revoke for the faulty client. Call this sequence of operations

sequential history S.

It is always possible to insert a write for a faulty client as described above. Suppose a correct

client reads a 〈ts,block〉 pair, but that the read response precedes the invocation any write by a

correct client for that pair. The read returns a signed prepare certificate, which means that a signed

prepare request must have been generated for some client for the pair 〈ts,block〉. If the prepare

request was not signed by a correct client, it must correspond to a faulty client.

Note that if a read or write precedes another read or write, the 〈ts,block〉 pair will not decrease

because write back ensures that the 〈ts,block〉 pair committed to at least 2 f + 1 servers is at least

as great as that of the first read or write. Thus, the subsequence of S consisting of each event for

any correct client is the same as the the subsequence of events for that correct client in history H,

the sequence of events from all correct clients. Each read, write, and revoke is present, and their

relative ordering is consistent with real-time precedence.

By construction, the write that immediately precedes a read writes a matching value of block.

Furthermore, if a revoke for a correct client precedes a write by that client, one of the 2 f +1 servers

that promised to reject future prepare requests will return FAILURE, so the write will return failure.

Also, if a write by a correct client returns failure, then the client received a revocation request that

must have been signed by a client prior to the write invocation. Thus, S is a legal sequential history.

Also, each response that precedes some invocation in H precedes that invocation in S. Thus, the

protocol satisfies the natural Byzantine extension to linearizability.

Immediate recovery: Immediate recovery follows from Definition 3.3.4, the definition of the

revoke operation in this protocol, and because the read, write, and revoke protocol described in this

section satisfies the natural Byzantine extension to linearizability.

30 CHAPTER 3. CORRECTNESS IN THE PRESENCE OF FAULTY CLIENTS

3.5 Conclusion

Distributed protocols use correctness arguments to ensure that applications experience the expected

operational semantics. Unfortunately, correctness arguments are challenging in the presence of

faulty clients because traditional notions of correctness, such as linearizability, assume that all nodes

are correct. This chapter presented the natural extension to linearizability in environments with

faulty clients. It also proposed immediate recovery, a new correctness criterion that ensures that

faulty clients cannot affect the state of a storage system after being removed. Furthermore, the

chapter demonstrated that a Byzantine fault-tolerant storage protocol can provide wait-free reads

and writes yet still ensure immediate recovery.

Chapter 4

Low-Overhead Byzantine Fault-Tolerant

Storage

Distributed storage systems must tolerate faults other than crashes as such systems grow in size

and importance. Protocols that can tolerate arbitrarily faulty behavior by components of the system

are said to be Byzantine fault-tolerant [65]. Most Byzantine fault-tolerant protocols are used to

implement replicated state machines, in which each request is sent to a server replica and each

non-faulty replica sends a response. Replication does not introduce unreasonable overhead when

requests and responses are small relative to the processing involved, but for distributed storage, large

blocks of data are often transferred as a part of an otherwise simple read or write request. Though

a single server can return the block for a read request, the block must be sent to each server for a

write request.

A storage protocol can reduce the amount of data that must be sent to each server by using an

m-of-n erasure code [84, 85]. Each block is encoded into n fragments such that any m fragments

can be used to decode the block. Unfortunately, existing protocols that use erasure codes struggle

with tolerating Byzantine faulty clients. Such clients can write inconsistently encoded fragments,

such that different subsets of fragments decode into different blocks of data.

Existing protocols that use erasure codes either provide each server with the entire block of data

or introduce expensive techniques to ensure that fragments decode into a unique block. In the first

approach, the block is erasure-coded at the server [18], which saves disk bandwidth and capacity but

not network bandwidth. The second approach [44] saves network bandwidth but requires additional

servers and a relatively expensive verification procedure for read operations. Furthermore, in this

approach, all writes must be versioned because clients may need to read several versions of a block

before read verification succeeds, and a separate garbage collection protocol must be run to free old

versions of a block [3].

This chapter takes a different approach. It proposes novel mechanisms to optimize for the com-

mon case when faults and concurrency are rare. These optimizations minimize the number of rounds

of communication, the amount of computation, and the number of servers that must be available at

any time. Also, this chapter employs the homomorphic fingerprinting primitive developed in Chap-

ter 2, to ensure that a block is encoded correctly. Homomorphic fingerprinting eliminates the need

31

32 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

for versioned storage and a separate garbage collection protocol, and it minimizes the verification

performed during read operations.

Analysis and measurements of a distributed block storage prototype demonstrate throughput

close to that of a system that tolerates only benign crash faults and well beyond the throughput

realized by competing Byzantine fault-tolerant approaches. The protocol achieves within 10% of

the throughput of an ideal crash fault-tolerant system when reading or writing 64 kB blocks of data

and tolerating up to 6 faulty servers and any number of faulty clients. Across a range of values for

the number of faulty servers tolerated, the protocol outperforms competing approaches during write

or read operations by more than a factor of two.

4.1 Background

Reliability has long been a primary requirement of storage systems. Thus, most non-personal stor-

age servers (whether disk arrays or file servers) are designed to tolerate faults of at least some com-

ponents. Until recently, tolerance of any single component fault was considered sufficient by many,

but larger systems have pushed developers toward tolerating multiple component faults [31, 41].

Faults are tolerated via redundancy. In the case of storage systems, data is stored redundantly

across multiple disk drives in order to tolerate faults in a subset of them. Two common forms of

data redundancy are replication and m-of-n erasure coding, in which a block of data is encoded

into n fragments such that any m can be used to reconstruct the original block. For disk arrays, the

trade-off between the two has been extensively explored for two-way mirroring (i.e., two replicas)

versus RAID-5 (i.e., (n−1)-of-n erasure coding) or RAID-6 ((n−2)-of-n erasure coding). Mirroring

performs well when the number of faults tolerated is small or when writes are small, RAID-5 and

RAID-6 perform better for large writes, and all three perform well for reads [27, 106]. The Google

File System (GFS) [41], for example, uses replication for a mostly-read workload and by default

tolerates two faults.

For distributed storage, as the number of faults tolerated grows beyond two or three, erasure

coding provides much better write bandwidth [100, 105]. A few distributed storage systems support

erasure coding. For example, Zebra [47], xFS [8], and PanFS [77] support parity-based protection

of data striped across multiple servers. FAB [91], Ursa Minor [1], and RepStore [108] support more

general m-of-n erasure coding.

4.1.1 Beyond Crash Faults

A common assumption is that tolerance of crash faults is sufficient for distributed storage systems,

but an examination of a modern centralized storage server shows this assumption to be invalid. Most

such servers integrate various checksum and scrubbing mechanisms to detect non-crash faults. One

common approach is to store a checksum with every block of data and then verify that checksum

upon every read (e.g., ZFS [14] and GFS [41]). This checksum can be used to detect problems such

as when the device driver silently corrupts data [14, 41] or when the disk drive writes data to the

wrong physical location [1, 14].

For example, if a disk drive overwrites the wrong physical block, a checksum may be able to

detect this corruption, but only if the checksum is not overwritten as well. To prevent the checksum

4.1. BACKGROUND 33

from being incorrect along with the data, the checksum is often stored separately (e.g., with the

metadata [14, 41]).

In short, various mechanisms are applied to detect and recover from non-crash faults in modern

storage systems. These mechanisms are chosen and combined in an ad hoc manner based on the

collective experience of the organizations that design storage systems. Such mechanisms are inher-

ently ad hoc because no fault model can describe just the types of faults that must be handled in

distributed storage; as systems change, the types of faults change. In the absence of a more specific

fault model, general Byzantine fault tolerance [65] can be used to cover all possibilities.

4.1.2 The Cost of Byzantine Fault Tolerance

Byzantine fault-tolerant m-of-n erasure-coded storage protocols require at least m + 2 f servers to

tolerate f faulty servers. Requiring this many servers is less imposing than it sounds; modern non-

Byzantine fault-tolerant erasure-coded storage arrays already use a similar number of disk drives.

A typical storage array will have several primary disk drives that store unencoded data (e.g., m = 5)

and a few parity drives for redundancy (e.g., f = 2). Beyond these drives, however, an array will

often include a pool of hot spares with f or more drives (sometimes shared with neighboring arrays).

The reason for this setup is that once a drive fails or becomes otherwise unresponsive, the storage

array must either halt or decrease the number of faults that it tolerates unless it replaces that drive

with a hot spare. This setup is similar to providing m + f responsive drives to a Byzantine fault-

tolerant protocol but making an additional f drives available as needed (for a similar approach, see

Rodrigues et al. [89]). In other words, the specter of additional hardware should not scare developers

away from Byzantine fault tolerance.

Byzantine fault-tolerant protocols often require additional computational overhead. For exam-

ple, the protocol proposed in this chapter requires data to be cryptographically hashed for each write

and read operation. This overhead, however, is less significant than it appears for two reasons. First,

data must be hashed anyway if it is to be authenticated when sent over the network. Of course,

data must be structured properly to use a hash for both authentication and fault tolerance. Second,

many modern file systems hash data anyway. For example, ZFS supports hashing all data with

SHA-256 [99], and EMC’s Centera hashes all data with either MD5 or a concatenation of MD5 and

SHA-256 to provide content addressed storage [82].

4.1.3 Byzantine Fault-Tolerant Storage

Many Byzantine fault-tolerant protocols are used to implement replicated state machines. Imple-

mentations of recent protocols can be quite efficient due to several optimizations. For example,

Castro and Liskov eliminate public-key signatures from the common case by replacing signatures

with message authentication codes (MACs) and lazily retrieving signatures in cases of failure [23].

Abd-El-Malek et al. use aggressive optimistic techniques and quorums to scale as the number of

faults tolerated is increased, but their protocol requires 5 f +1 servers to tolerate f faulty servers [2].

Cowling et al. use a hybrid of these two protocols to achieve good performance with only 3 f + 1

servers [32]. Kotla and Dahlin further improve performance by using application-specific informa-

tion to allow parallelism [57]. Though a Byzantine fault-tolerant replicated state machine protocol

34 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

can be used to implement a block storage protocol, doing so requires writing data to at least f + 1

replicas.

When writing large blocks of data and tolerating multiple faults, a Byzantine fault-tolerant stor-

age protocol should provide erasure-coded fragments to each server to minimize the bandwidth

overhead of redundancy. Writing erasure-coded fragments has been difficult to achieve because

servers must ensure that a block is encoded correctly without seeing the entire block. Goodson et al.

introduced PASIS, a Byzantine fault-tolerant erasure-coded block storage protocol [44]. In PASIS,

servers do not verify that a block is correctly encoded during write operations. Instead, clients verify

during read operations that a block is correctly encoded.

This technique avoids the problem of verifying erasure-coded fragments but introduces a few

new ones. First, fragments must be kept in versioned storage [97] because clients may need to

read several versions of a block before finding a version that is encoded correctly. Second, the read

verification process is computationally expensive. Third, PASIS requires 4 f +1 servers to tolerate f

faults. Fourth, a separate garbage collection protocol must eventually be run to free old versions of a

block. A lazy verification protocol, which also performs garbage collection, was proposed to reduce

the impact of read verification by performing it in the background [3], but this protocol consumes

significant bandwidth.

Cachin and Tessaro introduced AVID [18], an asynchronous verifiable information dispersal

protocol, which they used to build a Byzantine fault-tolerant block storage protocol that requires

only 3 f + 1 servers to tolerate f faults [19]. In AVID, a client sends each server an erasure-coded

fragment. Each server sends its fragment to all other servers such that each server can verify that

the block is encoded correctly. This all-to-all communication, however, consumes slightly more

bandwidth in the common case than a typical replication protocol. Chapter 2 provides a protocol

that reduces this overhead but still requires all-to-all communication and the encoding and hashing

of 3 f +1 fragments (Section 2.3). These shortcomings are addressed in Section 4.2.1.

Many of the problems in PASIS are caused by the need to handle Byzantine faulty clients. Faulty

clients should be tolerated in a Byzantine fault-tolerant storage system to prevent such clients from

forcing the system into an inconsistent state. For example, though a faulty client can corrupt blocks

for which it has write permissions, it must not be allowed to write a value that is read as two

different blocks by two different correct clients; if not, a faulty client at a bank, e.g., could provide

one account balance to the auditors but another to the ATM. Liskov and Rodrigues [66] propose

that servers provide public-key signatures to vouch for the state of the system. This technique can

be used to tolerate Byzantine faulty clients in a quorum system. In the next section, this technique

is adapted as to use only MACs and pseudo-random nonce values in a PASIS-like protocol.

4.2 The FP Protocol

This section describes the block storage protocol, which is called the FP protocol to reflect its usage

of homomorphic fingerprinting. A separate instance is executed for each block, so this section does

not discuss block numbers. Section 4.2.1 describes the design of the protocol, including how it

builds on prior protocols. Section 4.2.2 describes the system model. Section 4.2.3 provides pseudo-

code for write and read operations. Section 4.2.4 discusses liveness and linearizability.

4.2. THE FP PROTOCOL 35

4.2.1 Design

Consider the following replication-based protocol [66], which requires 3 f + 1 servers to tolerate f

faults. To write a block, a client hashes the block and sends the hash to all servers (the prepare

phase). The servers respond with a signed message containing the hash and a logical timestamp,

which is always greater than any timestamp that the server has seen. If there are not at least 2 f +1

matching timestamps, the client requests that each server sign a new message using the greatest

timestamp found. The client commits the write by sending the entire block along with 2 f +1 signed

messages with matching timestamps to each server. The server verifies that the signatures are valid

and that the hash of the block matches the hash in the signed message. Because this protocol uses

public-key signatures, the client can verify the responses from the prepare phase before it attempts

to commit the write.

To read the block, the client queries all servers for their most recent timestamp and the 2 f + 1

signatures generated in the prepare phase. The client reads the block with the greatest timestamp

and 2 f + 1 correctly signed messages. The signatures allow the the client to verify that 2 f + 1

servers provided signatures in the prepare phase, which ensures that some client invoked a write of

this block at this timestamp (at least one of these servers is correct and, hence, would only provide

signatures to a client in the prepare phase). To ensure that other clients see this block, the client

writes it back to any servers with older timestamps.

Sending the entire block causes overhead that could be eliminated by sending erasure-coded

fragments instead. Writing erasure-coded fragments, however, poses a problem, in that servers

can no longer agree on what is being written. A faulty or malicious client can write fragments

that decode to different blocks depending upon which subset of fragments is decoded. PASIS [44]

uses a cross-checksum [43], which is a set of hashes of the erasure-coded fragments, to detect

such inconsistencies. To write a block, a client requests the most recent logical timestamp from

all servers in the first round. In the second round, the client sends each server its fragment, the

cross-checksum, and the greatest timestamp found. Unfortunately, PASIS requires 4 f +1 servers to

tolerate f faults, so 4 f + 1 fragments must be encoded and hashed, which is a significant expense.

To read a block, the client reads fragments and cross-checksums from each server, starting with

the most recent timestamp, until it finds m fragments whose hashes correspond to their respective

locations in the cross-checksum. From these fragments, the client decodes the block, re-encodes

n fragments, and recomputes the cross-checksum. If this cross-checksum does not match the one

provided by the servers, then the write operation for that timestamp was invalid and the client must

try reading fragments at an earlier timestamp. If cross-checksums match, the client writes fragments

back to servers as needed.

Improvements

The replication-based protocol requires only 3 f +1 servers but relies on public-key signatures and

replication. PASIS improves write bandwidth but has a number of drawbacks, as discussed in Sec-

tion 4.1.3. The protocol proposed in this paper improves on these approaches with the following

four techniques.

No public-key cryptography: As in the replication-based protocol [66], the response to a

prepare request in the protocol includes an authenticated timestamp and checksum that allows the

36 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

client to progress to the commit phase once enough timestamps match. Castro and Liskov [23] avoid

using signatures for authentication by using message authentication codes (MACs) in the common

case but lazily retrieving signatures when needed. This lazy retrieval technique does not work for

the Liskov and Rodrigues protocol, however, because signatures are stored for later use to vouch for

the state of the system [66, Section 3.3.2].

Instead, signatures are avoided altogether and rely entirely on MACs and random nonce values.

All servers share pairwise MAC keys (clients do not create or verify MACs). Each server provides

MACs to the client in the prepare phase, which the client sends in the commit phase to prove that

enough servers successfully completed prepare requests at a given timestamp. Of course, a faulty

server may provide faulty MACs during the prepare phase, or it may reject valid MACs during the

commit phase. To recover from this, a client may need to gather more MACs from the prepare phase

after it has entered the commit phase, but a commit eventually completes.

The replication-based protocol also uses signatures to allow servers to prove to a reader that

a block was written by some client; that is, to prevent a server from returning fabricated data.

Instead of signatures, each server provides a pseudo-random nonce value in the prepare phase of the

protocol. The client aggregates these values and provides them to each server in the commit phase.

During a read operation, a server provides the client with these nonce values to prove that some

client invoked a write at a specific timestamp, as will be described in Section 4.2.3 and Lemma 4.2.5

of Section 4.2.4.

Early write: Before committing a write, a correct server must ensure that enough other correct

servers have fragments for this write, such that a reader will be able to reconstruct the block. The

replication-based protocol does not face this problem because each server stores the entire block.

The protocol proposed in this paper could solve this problem with another round of communication

for servers to confirm receipt of a fragment. Instead, in the protocol and unlike previous protocols,

clients send erasure-coded fragments in the first round of the prepare phase, which saves a round of

communication. With this approach, a faulty client may send a fragment in the first phase without

committing the write. As in PASIS [3], a server may limit this by rejecting a write from a client with

too many uncommitted writes.

Partial encoding: PASIS encodes and hashes fragments for all n servers. Encoding this many

fragments is wasteful because f servers may not be involved in a write operation. Instead, the pro-

tocol encodes and hashes fragments for only the first n− f servers, which lowers the computational

overhead. This technique is called partial encoding because the block is only partially encoded for

most write operations. The computational savings are significant: for m = f + 1, the protocol en-

codes only 2 f +1 fragments, which is the same number encoded by a non-Byzantine fault-tolerant

erasure-coded protocol. Many m-of-n erasure codes encode the first m fragments by dividing a

block into m fragments (such codes are said to be systematic), which takes little if any computation.

Hence, encoding 2 f +1 fragments requires computing f values, whereas encoding 4 f +1 fragments

(as in PASIS) requires computing 3 f values.

The drawback of this approach is that if one of the first m+ f servers is non-responsive or faulty,

the client may need to send the entire block to convince another server that its fragment corresponds

to the checksum. This procedure is expensive: not only does it consume extra bandwidth, but the

server must verify the block against the checksum. To verify a block, the server encodes the block

into m + f fragments, hashes each fragment, and compares these hashes to the checksum provided

4.2. THE FP PROTOCOL 37

by the client. If the hashes match the checksum, the server encodes its fragment from the block.

Fortunately, the first m+ f servers should rarely be non-responsive or faulty.

Distributed verification of erasure-coded data: One problem in PASIS is that each server

knows only the cross-checksum and its fragment, and so it is difficult for a server to verify that

its fragment together with the corresponding fragments held by other servers form a valid erasure

coding of a unique block. Chapter 2 solves this problem using a fingerprinted cross-checksum.

The fingerprinted cross-checksum includes a cross-checksum, as used in PASIS, along with a set of

homomorphic fingerprints of the first m fragments of the block. The fingerprints are homomorphic

in that the fingerprint of the erasure coding of a set of fragments is equal to the erasure coding of

the fingerprints of those fragments. The overhead of computing homomorphic fingerprints is small

compared to the cryptographic hashing for the cross-checksum.

The ith fragment is said to be consistent with a fingerprinted cross-checksum if its hash matches

the ith index in the cross-checksum and its fingerprint matches the ith erasure coding of the homo-

morphic fingerprints. Thus, a server can determine if a fragment is consistent with a fingerprinted

cross-checksum without access to any other fragments. Furthermore, any two blocks decoded from

any two sets of m fragments that are consistent with the fingerprinted cross-checksum are identical

with all but negligible probability (Theorem 2.2.4). A server can check that a fragment is consistent

with a fingerprinted cross-checksum shared by other servers on commit, allowing it to overwrite

old fragments. Thus, only fragments that are in the process of being written must be versioned,

obviating the need for on-disk versioning. This technique also eliminates most of the computational

expense of validating the cross-checksum during a read operation.

Protocol Overview

This section provides an overview of the protocol. The protocol provides wait-free [49] writes and

obstruction-free [50] reads of constant-sized blocks while tolerating a fixed number of Byzantine

servers and an arbitrary number of Byzantine clients in an asynchronous environment. Figure 4.2.1

provides an outline of the pseudo-code for both write operations and read operations. The line

numbers in Figure 4.2.1 match those of Figures 4.2.2 and 4.2.3. Figure 4.2.2 provides detailed

pseudo-code for a write operation and is described line-by-line in Section 4.2.3. Figure 4.2.3 pro-

vides detailed pseudo-code for a read operation and is described line-by-line in Section 4.2.3.

To write a block, a client encodes the block into m + f fragments, computes the finger-

printed cross-checksum, and sends each server its fragment and the fingerprinted cross-checksum

(lines 1000–1106). The server responds with a logical timestamp, a nonce, and a MAC for each

server of the timestamp, fingerprinted cross-checksum, and nonce (line 1405). If timestamps do

not match, the client requests new MACs at the greatest timestamp found (line 1114). Unlike the

signatures in the Liskov and Rodrigues protocol, the client cannot tell if these MACs are valid.

The client then commits this write by sending the timestamp, fingerprinted cross-checksum,

nonces, and MACs to each server (line 1128). A correct server may reject a commit with MACs from

faulty servers or a faulty server may reject a commit with MACs from correct servers. Faults should

be uncommon, but when they occur, the client must contact another server. The client can either

try the commit at another server or it can send the entire block to another server in order to garner

another prepare response. A write operation returns after at most three rounds of communication

with correct servers. Because faults and concurrency are rare, the timestamps received in the first

38 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

c write(B):
1000: d1, . . . ,dm+ f ← encode1,...,m+ f (B) /∗ Partial encoding ∗/
1001: for (i ∈ {1, . . . ,m+ f}) do fpcc.cc[i]← hash(di)
1002: for (i ∈ {1, . . . ,m}) do fpcc.fp[i]← fingerprint(hash(fpcc.cc),di)
. . . : for (i ∈ {1, . . . ,m+ f}) do

1106: Prepare[i]← Si.s rpc prepare frag(di,ts, fpcc)
1405: /∗ Server returns 〈ts,nonce,〈MACi, j(〈ts, fpcc,nonce〉)〉1≤ j≤n〉 ∗/
1114: if (Prepare[i].ts 6= ts) then /∗ Retry prepare ∗/
. . . : . . . /∗ See lines 1109-1117 ∗/
. . . : for (i ∈ {1, . . . ,m+ f}) do

1128: Si.s rpc commit(ts, fpcc,Prepare)

c read():
. . . : for (i ∈ {1, . . . ,2 f +1}) do

1605: 〈ts, fpcc〉 ← Si.s rpc find timestamp()
. . . : for (i ∈ {1, . . . ,m}) do

1620: di← Si.s rpc read(ts, fpcc)
1817: B← decode(d1, . . . ,dm)
. . . : /∗ Client verifies the consistency of block B in c find block ∗/
1626: return B

Figure 4.2.1: Pseudo-code outline. Line numbers match Figures 4.2.2 and 4.2.3.

round of prepare will often match, which allows most write operations to complete in only two

rounds.

To read a block, a client requests timestamps and fingerprinted cross-checksums from 2 f + 1

servers (line 1605) and fragments from the first m servers (line 1620). If the m fragments are

consistent with the most recent fingerprinted cross-checksum, and if the client can determine that

some client invoked a write at this timestamp (using nonces as described in Section 4.2.3), a block is

decoded (line 1817) and returned (line 1626). (In Figure 4.2.3, the client verifies read responses and

decodes a block in c find block.) Most read operations return after one round of communication

with correct servers. If a concurrent write causes a fragment to be overwritten, however, the client

may be redirected to a later version of the block, as described in Section 4.2.3.

4.2.2 System Model

The point-to-point communication channel between each client and server is authenticated and in-

order, which can be achieved in practice with little overhead. Communication channels are reliable

but asynchronous, i.e., each message sent is eventually received, but there is no bound assumed

on message transmission delays. Reliability is assumed for presentational convenience only; the

protocol can be adapted to unreliable channels as discussed by Martin et al. [73, Section 4.3].

Up to f servers and an arbitrary number of clients are Byzantine faulty, behaving in an arbitrary

manner. An adversary can coordinate all faulty servers and clients. To bound the amount of storage

used to stage fragments for in-progress writes, there is a fixed upper bound on the number of clients

in the system and on the number of prepare requests from each client that are not followed by

subsequent commits.

It is assumed that there is a negligible probability that a MAC can be forged or that a hash col-

lision or preimage can be found. The fingerprinted cross-checksum requires that the hash function

acts as a random oracle [12]. All servers share pairwise MAC keys. The value labeled nonce must

4.2. THE FP PROTOCOL 39

not be disclosed to parties except as prescribed by the protocol, in order to prove Lemma 4.2.5 in

Section 4.2.4. This value is small and can be encrypted at little cost.

The protocol tolerates f Byzantine faulty servers and any number of faulty clients given an

m-of-n erasure code and n = m + 2 f servers, where m ≥ f + 1. As in PASIS, the protocol may be

deployed with m > f +1 to achieve higher bandwidth for fixed f .

4.2.3 Detailed Pseudo-code

This section provides detailed pseudo-code for write and read operations. Pseudo-code for a write

operation is described line-by-line in Section 4.2.3. Pseudo-code for a read operation is described

line-by-line in Section 4.2.3. Presentation simplicity of the pseudo-code is chosen over optimiza-

tions that may be found in an actual implementation.

Notation

The protocol relies on concurrent requests that are described in the pseudo-code by remote proce-

dure calls and coroutines. The cobegin and parallel bars represent the forking of parallel threads

of execution. Such threads stop at end cobegin. The main thread continues to execute after fork-

ing threads; that is, the main thread does not wait to join forked threads at end cobegin. Threads

are not preempted until they invoke a remote procedure call or wait on a semaphore. Semaphores

are binary and default to zero. A WAIT operation waits on a semaphore, and SIGNAL releases all

waiting threads. A return statement halts all threads and returns a value.

Each operation is assigned a logical timestamp, represented by the pair 〈ts, fpcc〉. Timestamps

are ordered according to the value of the integer ts or, if they share the same ts, by comparison

of the binary value fpcc. Timestamps that share the same ts and fpcc are equal. The most recent

commit at a server is represented as latest commit; this value is initialized to 〈0, NULL〉 before the

protocol starts. Each server stages fragments for concurrent writes and stores committed fragments;

both staged and committed fragments are kept in the store table.

A block is represented as B and a fragment as d in the pseudo-code. A cross-checksum, ab-

breviated to cc in the pseudo-code, contains n hashes, cc[1], . . . ,cc[n]. The fingerprinted cross-

checksum, abbreviated to fpcc, contains m fingerprints, fpcc.fp[1], . . . , fpcc.fp[m], and m+ f hashes,

fpcc.cc[1], . . . , fpcc.cc[m+ f].

The encode j(B) function encodes block B into its jth erasure-coded fragment. The decode(. . .)
function will decode the first m fragments provided in its arguments, and the index of each frag-

ment is passed implicitly. Abbreviate encode j(decode(di1 , . . . ,dim)) to encode j(di1 , . . . ,dim). The

fingerprint(h,d) function fingerprints fragment d given random value h. The random value in the

protocol is provided by a hash of the cross-checksum, which is secure so long as the hash func-

tion acts as a random oracle [12]. The homomorphism of the fingerprints provides the follow-

ing property (Theorem 2.1.11): if d1, . . . ,dn ← encode1,...,n(B) and fpi ← fingerprint(h,di), then

fpi0
= encodei0(fpi1

, . . . , fpim
) for any set of indices i0, . . . , im.

40 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

c write(B): /∗Wrapper function for c dowrite ∗/

1000: d1 , . . . ,dm+ f ← encode1,...,m+ f (B)
1001: for (i ∈ {1, . . . ,m+ f}) do fpcc.cc[i]← hash(di)
1002: for (i ∈ {1, . . . ,m}) do fpcc.fp[i]← fingerprint(hash(fpcc.cc),di)
1003: c dowrite(B, NULL, fpcc)

c dowrite(B,ts, fpcc): /∗ Do a write ∗/

1100: Prepare[∗]← NULL

1101: cobegin

1102: ||i∈{1,...,n} /* Start worker threads */

1103: /∗ Send fragment and fpcc to server, get MAC of fpcc and latest ts ∗/
1104: di ← encodei(B)
1105: if (fpcc.cc[i] = hash(di)) then

1106: Prepare[i]← Si.s rpc prepare frag(di,ts, fpcc)
1107: else Prepare[i]← Si.s rpc prepare block(B,ts, fpcc) /∗ Bad fpcc.cc[i] ∗/
1108:

1109: /∗ Choose latest ts, if needed ∗/
1110: if (ts = NULL ∧ |{ j : Prepare[j] 6= NULL}|= 2 f +1) then

1111: ts←max{ts′ : 〈ts′ ,∗〉 ∈ Prepare}
1112: SIGNAL(found largest ts)
1113: if (ts = NULL) then WAIT(found largest ts) /∗Wait for chosen ts ∗/
1114: if (Prepare[i].ts 6= ts) then /∗ Need new prepare for chosen ts ∗/
1115: if (fpcc.cc[i] = hash(di)) then

1116: Prepare[i]← Si.s rpc prepare frag(di,ts, fpcc)
1117: else Prepare[i]← Si.s rpc prepare block(B,ts, fpcc)
1118:

1119: /∗ Attempt commit ∗/
1120: if (|{ j : Prepare[j].ts = ts}| ≥ m+ f) then SIGNAL(prepare ready)
1121: end cobegin

1122:

1123: UnwrittenSet←{1, . . . ,n}
1124: while (TRUE) do

1125: WAIT(prepare ready)
1126: cobegin

1127: ||i∈UnwrittenSet /* Start worker threads */

1128: if (SUCCESS = Si.s rpc commit(ts, fpcc,Prepare)) then

1129: UnwrittenSet← UnwrittenSet \{i}
1130: if (|UnwrittenSet| ≤ f) then return SUCCESS

1131: end cobegin

Si.s rpc prepare frag(d,ts, fpcc): /∗ Grant permission to write fpcc at ts ∗/

1200: fp← fingerprint(hash(fpcc.cc),d); h← hash(d)
1201: fp′ ← encodei(fpcc.fp[1], . . . , fpcc.fp[m])
1202: if (fp = fp′ ∧h = fpcc.cc[i]) then /∗ Fragment is consistent with fpcc ∗/
1203: return Si.s prepare common(ts, fpcc,d, NULL)
1204: else return FAILURE /∗ Faulty client ∗/

Si.s rpc prepare block(B,ts, fpcc): /∗ Grant permission to write fpcc at ts ∗/

1300: /∗ Called when partial encoding fails or when writing back fragments ∗/
1301: cnt← 0

1302: for (j ∈ {1, . . . ,m+ f}) do /∗ Validate block ∗/
1303: d j ← encode j(B)
1304: fp← fingerprint(hash(fpcc.cc),d j); cc[j]← hash(d j)

1305: fp′ ← encode j(fpcc.fp[1], . . . , fpcc.fp[m])

1306: if (fp = fp′ ∧cc[j] = fpcc.cc[j]) then cnt← cnt+1

1307: if (cnt≥ m) then /∗ Found m fragments consistent with fpcc ∗/
1308: for (j ∈ {m+ f +1, . . . ,n}) do cc[j]← hash(encode j(B))
1309: return Si.s prepare common(ts, fpcc,encodei(B),cc)
1310: else return FAILURE /∗ Faulty client ∗/

Si.s prepare common(ts, fpcc,d,cc): /∗ Create the prepare response ∗/

1400: if (ts = NULL) then ts← latest commit.ts+1

1401: nonce←MACi,i(〈ts, fpcc〉)
1402: if (〈ts, fpcc〉> latest commit) then

1403: nonce hash← hash(nonce)
1404: store[〈ts, fpcc〉]← 〈d,cc,nonce hash, NULL〉
1405: return 〈ts,nonce,〈MACi, j(〈ts, fpcc,nonce〉)〉1≤ j≤n〉

Si.s rpc commit(ts, fpcc,Prepare): /∗ Commit write of fpcc at ts ∗/

1500: if (〈ts, fpcc〉 ≤ latest commit) then return SUCCESS /∗ Overwritten ∗/
1501: Nonces←{〈 j,nonce〉 : Prepare[j] = 〈ts,nonce,〈tagk〉1≤k≤n〉 ∧
1502: tagi = MAC j,i(〈ts, fpcc,nonce〉)}
1503: if (|Nonces| ≥ m+ f) then

1504: 〈d,cc,nonce hash,∗〉 ← store[〈ts, fpcc〉]
1505: store[〈ts, fpcc〉]← 〈d,cc,nonce hash,Nonces〉
1506: for (〈ts′ , fpcc′〉< 〈ts, fpcc〉) do store[〈ts′, fpcc′〉]← NULL

1507: latest commit← 〈ts, fpcc〉
1508: return SUCCESS

1509: else return FAILURE

Figure 4.2.2: Detailed write pseudo-code.

Write

Pseudo-code for write is provided in Figure 4.2.2. A write operation is invoked with a block of

data as its argument and returns SUCCESS as its response. Write is divided into prepare and com-

mit phases. The pseudo-code breaks write into a wrapper function, c write, and a main function,

c dowrite, such that the main function can be reused for writing back fragments during a read oper-

ation. The wrapper function encodes the block into m + f fragments and computes a fingerprinted

cross-checksum (lines 1000–1002). It then calls c dowrite (line 1003).

Prepare, lines 1100–1121: The prepare phase is described in the top half of c dowrite. The

client invokes s rpc prepare frag at each of the first m+ f servers with its fragment and the finger-

printed cross-checksum (line 1106); ts will be NULL. A correct server Si verifies that this fragment

is consistent with the fingerprinted cross-checksum. To do so, it first computes the fingerprint and

the hash of the fragment (line 1200). It then computes the ith erasure coding of the homomorphic

fingerprints in the fingerprinted cross-checksum (line 1201). Finally, it ensures that this erasure

coding is equal to the fingerprint of this fragment, and that the hash is equal to the ith hash in

the cross-checksum (line 1202). If the fragment is consistent, the server prepares a response in

s prepare common (line 1203).

Because of partial encoding, there are only m + f erasure-coded fragments, so if one of

the first m + f servers is not responsive or if commit fails, the client may need to invoke

s rpc prepare block with the entire block (line 1107). A correct server Si verifies that the era-

4.2. THE FP PROTOCOL 41

sure coding of the block contains at least m fragments that are consistent with the fingerprinted

cross-checksum. To do so, it encodes the block into each of m+ f fragments (line 1303), computes

the fingerprint and the hash of each fragment (line 1304), and computes the appropriate erasure

coding of the homomorphic fingerprints in the fingerprinted cross-checksum (line 1305). It counts

the number of fragments for which the fingerprint is equal to the erasure coding of the homomor-

phic fingerprints and the hash is equal to the appropriate hash in the fingerprinted cross-checksum

(line 1306). If there are at least m such consistent fragments, server Si computes the ith fragment di

and the rest of the cross-checksum of all n fragments and prepares a response in s prepare common

(lines 1307–1309).

Invoking s rpc prepare block allows a client to write a fragment that is not consistent with

the fingerprinted cross-checksum, so long as this fragment can be erasure-coded from a block with

m erasure-coded fragments that are consistent with the fingerprinted cross-checksum. This will be

useful in the read protocol to ensure that any fragment can be written back as needed.

The response prepared in s prepare common consists of a ts, a nonce, and n MACs (one for

each server). The ts may be provided by the client; if not, it is assigned to one greater than the

ts portion of the logical timestamp used in the most recent commit (line 1400). The nonce is a

pseudo-random value that is unique for each timestamp (line 1401); a MAC of the timestamp can be

used to ensure this property. An array of n MACs is computed with the shared pairwise MAC keys

(line 1405). The MACs are used in the commit phase to authenticate the timestamp and nonce, as

well as to prove that enough correct servers stored consistent fragments.

If this timestamp is more recent than the most recently committed timestamp (line 1402), the

nonce hash, a preimage-resistant hash of the nonce, is computed (line 1403), and the fragment

and nonce hash are stored for future reads (line 1404). If s prepare common was called by

s rpc prepare block, the correct cross-checksum of all n fragments is also stored. (The NULL value

on line 1404 is a placeholder that will be filled in s rpc commit.) The nonces and nonce hashes

are used to prove that a client invoked a write at this timestamp. Other protocols ensure this prop-

erty in ways that would require more communication [18], public-key signatures [66], or 4 f + 1

servers [44]; nonces are used here to avoid these mechanisms.

The client must wait for 2 f +1 responses before assigning a timestamp to this write. (The first

2 f threads wait on line 1113 until a timestamp is assigned.) The timestamp is the pair 〈ts, fpcc〉,
where ts is the greatest ts value from the 2 f + 1 responses. If a server provides a response with a

different timestamp, the client must retry that request (lines 1114–1117).

Commit, lines 1123–1131: After m+ f servers have provided MACs in responses with matching

timestamps, commit may be attempted (line 1120). The commit may fail if a faulty server provided

one of these MACs or rejects a MAC from a correct server. But, eventually, at least m + f correct

servers will return responses with MACs that will be accepted by at least m + f servers in commit.

As prepare responses arrive, they are forwarded to all servers (line 1128). Thus, the threads from

the prepare phase do not stop until all servers return responses or the commit phase completes. The

commit phase completes and the client can return once m + f servers (all but f) return SUCCESS

(line 1130).

If a write has a lower timestamp than a previously committed write, a server can ignore it

(line 1500). A correct server aggregates nonces from valid prepare responses (lines 1501–1502).

A prepare response is valid if the MAC included for this server is a MAC of the timestamp and

42 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

c read(): /∗ Read a block ∗/

1600: Timestamp[∗]← NULL; State[∗]← /0
1601:

1602: /∗ Search for write timestamps ∗/
1603: cobegin

1604: ||i∈{1,...,3 f +1} /* Start worker threads */

1605: Timestamp[i]← Si.s rpc find timestamp()
1606: SIGNAL(found timestamp)
1607: end cobegin

1608:

1609: while (TRUE) do

1610: WAIT(found timestamp)
1611: /∗ Try any timestamp greater or equal to 2 f +1 timestamps ∗/
1612: for (〈ts, fpcc〉 : 〈ts, fpcc〉= Timestamp[i] ∧ 〈ts, fpcc〉 /∈ Tried ∧
1613: |{ j : 〈ts, fpcc〉 ≥ Timestamp[j]}| ≥ 2 f +1) do

1614: Tried← Tried ∪ {〈ts, fpcc〉}
1615: if (ts = 0) then return NULL /∗ No writes yet ∗/
1616:

1617: cobegin

1618: ||i∈{1,...,n} /* Start worker threads */

1619: 〈ts, fpcc〉 ← 〈ts, fpcc〉 /∗ Thread local copy of variables ∗/
1620: 〈data,gc redirect〉 ← Si.s rpc read(ts, fpcc)
1621: B← c find block(i,State,ts, fpcc,data)
1622:

1623: /∗Write back fragments as needed and return the block ∗/
1624: if (B 6= NULL) then

1625: c dowrite(B,ts, fpcc)
1626: return B

1627:

1628: /∗ Follow garbage collection redirection ∗/
1629: if (gc redirect 6= NULL ∧ gc redirect > 〈ts, fpcc〉) then

1630: Timestamp[i]← gc redirect

1631: SIGNAL(found timestamp)
1632: end cobegin

Si .s rpc find timestamp(): /∗ Return the latest commit ∗/

1700: return latest commit

c find block(i,State,ts, fpcc,〈d,cc,nonce hash,Nonces〉): /∗ Classify read ∗/

1800: if (d 6= NULL ∧ cc = NULL) then /∗ Verify fragment-encoded arguments ∗/
1801: fp← fingerprint(hash(fpcc.cc),d)
1802: fp′ ← encodei(fpcc.fp[1], . . . , fpcc.fp[m])
1803: if (fp 6= fp′ ∨hash(d) 6= fpcc.cc[i]) then return NULL

1804:

1805: if (d 6= NULL ∧ cc 6= NULL) then /∗ Verify block-encoded arguments ∗/
1806: if (hash(d) 6= cc[i]) then return NULL

1807:

1808: /∗ Update state and count preimages ∗/
1809: State[〈ts, fpcc〉]← State[〈ts, fpcc〉] ∪ {〈i,d,cc,nonce hash,Nonces〉}
1810: npreimages← |{ j : 〈 j,∗,∗,nonce hash′,∗〉 ∈ State[〈ts, fpcc〉] ∧
1811: 〈∗,∗,∗,∗,{∗,〈 j,nonce′〉,∗}〉 ∈ State[〈ts, fpcc〉] ∧
1812: nonce hash′ = hash(nonce′)}|
1813: if (npreimages < f +1) then return NULL

1814:

1815: /∗ Try to decode ∗/
1816: Frags←{d′ 6= NULL : 〈∗,d′ , NULL,∗,∗〉 ∈ State[〈ts, fpcc〉]}
1817: if (|Frags| ≥ m) then return decode(Frags)
1818: else for (cc′ 6= NULL : 〈∗,∗,cc′ ,∗,∗〉 ∈ State[〈ts, fpcc〉]}) do

1819: Frags′ ←{d′ 6= NULL : 〈∗,d′ ,cc′,∗,∗〉 ∈ State[〈ts, fpcc〉]}
1820: if (|Frags ∪ Frags′| ≥ m) then

1821: cnt← 0; B← decode(Frags ∪ Frags′)
1822: for (j ∈ {1, . . . ,m+ f}) do /∗ Validate block ∗/
1823: d j ← encode j(B)
1824: fp← fingerprint(hash(fpcc.cc),d j); h← hash(d j)

1825: fp′ ← encode j(fpcc.fp[1], . . . , fpcc.fp[m])

1826: if (fp = fp′ ∧h = fpcc.cc[j]) then cnt← cnt+1

1827: if (cnt≥ m) then /∗ Found m fragments consistent with fpcc ∗/
1828: return B

1829:

1830: return NULL /∗ No block found ∗/

Si.s rpc read(ts, fpcc): /∗ Read the fragment at 〈ts, fpcc〉 ∗/

1900: if (store[〈ts, fpcc〉] = NULL∧ latest commit > 〈ts, fpcc〉) then

1901: return 〈〈NULL, NULL, NULL, NULL〉, latest commit〉
1902: else return 〈store[〈ts, fpcc〉], NULL〉

Figure 4.2.3: Detailed read pseudo-code.

nonce computed with the proper pairwise key. If there are at least m+ f nonces from valid prepare

requests, then at least m correct servers stored a fragment, so commit will succeed. The NULL

value from line 1404 is filled in with these nonces (lines 1504–1505). This will become the new

most recent write (line 1507). If a client tries to read a fragment with a lower timestamp, it can be

redirected to this write, so earlier fragments can be garbage collected (line 1506). Hence, a server

must stage fragments for concurrent writes but store only the most recently committed fragments.

Read

Pseudo-code for a read operation is provided in Figure 4.2.3. A read operation is invoked with no

arguments and returns a block as its response. A read operation is divided into two phases, “find

timestamps” and “read timestamp.” The client searches for the timestamps of the most recently

committed write at each server. As timestamps arrive, the client tries reading at any timestamp

greater than or equal to 2 f +1 other timestamps.

Find timestamps, lines 1600–1615: The client queries each of the first 3 f + 1 servers for the

timestamp of its most recently committed write (lines 1602–1607). As timestamps arrive, the client

tries reading at any timestamp that it has yet to try already and that is greater than or equal to 2 f +1

other timestamps (lines 1610–1614). If no writes have been committed, the value latest commit

(line 1700) defaults to 〈0, NULL〉; if 2 f +1 or more servers return 〈0, NULL〉, no writes have returned

yet so a NULL block is returned (line 1615).

4.2. THE FP PROTOCOL 43

Read timestamp, lines 1617–1632: To read a fragment, the client invokes s rpc read at each

server (line 1620). A correct server returns the fragment along with the other data stored during

write (line 1902). The client processes each response from s rpc read with the helper function

c find block (line 1621). This function verifies that the fragment is valid (lines 1800–1806), de-

termines whether a client invoked this write (lines 1810–1813), and decodes a block if possible

(lines 1815–1828). If a correct server has no record of this fragment but knows of a more recent

write, it returns the timestamp of the more recent write (line 1901). The client follows such garbage

collection redirections if a block is not found (lines 1628–1631).

If a correct server received a fragment in a successful call to s rpc prepare frag, the value cc

will be set to NULL and the client will verify that the fragment is consistent with the fingerprinted

cross-checksum (lines 1801–1803). If a correct server received a fragment in a successful call to

s rpc prepare block, the value cc will be the cross-checksum of all n fragments. The client verifies

that the cross-checksum cc matches at least this fragment (line 1806). If either verification fails, the

response is ignored (lines 1803 and 1806). Otherwise, the client records this fragment in the state

for this timestamp (line 1809) and tries to determine whether a client invoked this write (lines 1810–

1813). If there are at least f +1 nonces that are the preimages of nonce hashes, one was generated

by a correct server, which implies that a client invoked a write with this timestamp (i.e., the write

was not fabricated by faulty servers) and so it is eligible to be examined further. Otherwise, the

client waits for more nonces before trying to decode a block.

If enough nonces are found, the client tries to reconstruct the block. A block can always be

decoded given m fragments consistent with the fingerprinted cross-checksum (line 1817). If any

fragments were provided with an additional cross-checksum value cc, the client can reconstruct

a block and check if the erasure-coding of that block includes m fragments consistent with the

fingerprinted cross-checksum. Since all correct servers will produce the same cross-checksum in

s rpc prepare block, it suffices to check each value of cc in turn (line 1818). If m fragments were

returned with the same value cc or are consistent with the fingerprinted cross-checksum, the client

decodes a block (line 1821). If at least m fragments in the erasure-coding of this block are consistent

with the fingerprinted cross-checksum (lines 1822-1827), this block will be returned. Note that the

check in c find block (lines 1822-1827) is identical to that in s rpc prepare block (lines 1302–

1307).

If a block is found, it is returned as the response of the read (line 1626). To ensure that this block

is seen by subsequent reads, the client writes back fragments as needed (line 1625). In practice, the

client can skip write back if any 2 f + 1 of the first 3 f + 1 servers claim to have committed this

timestamp or a more recent one.

4.2.4 Correctness

This section provides arguments for the safety and liveness properties of the protocol.

Liveness

This section argues the liveness properties of write and read operations. Two notions of liveness

are considered, namely wait freedom [49] and obstruction freedom [50]. Informally, an operation

is wait-free if the invoking client can drive the operation to completion in a finite number of steps,

44 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

irrespective of the behavior of other clients. An operation is obstruction-free if the invoking client

can drive the operation to completion in a finite number of steps once all other clients are inactive for

sufficiently long. That is, an obstruction-free operation may not complete, but only due to continual

interference by other clients.

THEOREM 4.2.1. Write operations are wait-free.

Proof. c dowrite invokes s rpc prepare frag (line 1106) or s rpc prepare block (line 1107) at

each server. Each such call at a correct server returns successfully (line 1203 or 1309), implying

that the client receives at least n− f ≥ 2 f + 1 responses. Consequently, if ts as input to c dowrite

is NULL then the largest ts returned by servers is chosen (line 1111) and found largest ts is signaled

(line 1112). An s rpc prepare frag (line 1116) or s rpc prepare block (line 1117) call is then

placed at each server that did not return this ts. If ts as input to c dowrite is not NULL, all correct

servers will return this ts. By the time the last of the threads that will reach line 1120 does so (if

not sooner), all correct servers have contributed a response for the same timestamp to Prepare from

s rpc prepare frag or s rpc prepare block, causing prepare ready to be signaled. The collected

set of prepare responses in Prepare is then sent to all servers in an s rpc commit (line 1128).

Because at least m + f of the prepare responses in Prepare are from correct servers, at least m + f

of the prepare responses contain correct MAC values (line 1501) and so Nonces will include at

least m+ f tuples (line 1503). Hence, these s rpc commit calls to correct servers return SUCCESS

(line 1508), and so the write operation completes (line 1130).

DEFINITION 4.2.2. If Si.s rpc commit(ts, fpcc,Prepare) returns SUCCESS, then this commit at Si

is said to rely on S j if Prepare[j] = 〈ts,nonce,〈tagk〉1≤k≤n〉 and tagi = MAC j,i(〈ts, fpcc,nonce〉).

LEMMA 4.2.3. In a correct client’s c read, suppose that for a fixed 〈ts, fpcc〉 the following occurs:

From some correct Si that previously returned SUCCESS to s rpc commit(ts, fpcc, ∗), and from

each of m correct servers S j on which the first such commit at Si relies, the client receives 〈data, ∗〉
in response to an s rpc read(ts, fpcc) call on that server (line 1620) where data 6= 〈NULL, NULL,

NULL, NULL〉. Then, the call to c find block (line 1621) including the last such response returns a

block B 6= NULL.

Proof. Consider such a data = 〈d,cc,nonce hash,Nonces〉 received from a correct server S j. d

either is consistent with fpcc as verified by S j in s rpc prepare frag (lines 1200–1202) and verified

by the client in c find block (lines 1800–1803), or cc matches this fragment, as generated by S j in

s rpc prepare block (lines 1304 and 1308) and verified by the client in c find block (line 1806).

In the latter case, the fact that S j reached line 1404 (where it saved 〈d,cc,nonce hash,∗〉) implies

that previously cnt ≥ m in line 1307, and so by the properties of fingerprinted cross-checksums

(Theorem 2.2.4), all such servers received the same input block B in calls s rpc prepare block(B,

ts, fpcc) and so constructed the same cc in s rpc prepare block.

Now consider the response data = 〈d,cc,nonce hash,Nonces〉 from the correct server Si. Recall

that Si previously returned SUCCESS to s rpc commit(ts, fpcc, ∗), and that the first such commit

relied on the m correct servers S j. Since the focus is on the first such commit at Si, and since data

6= 〈NULL, NULL, NULL, NULL〉, the SUCCESS response was generated in line 1508, not 1500. In

this case, Nonces 6= NULL by lines 1503 and 1505, and in fact includes 〈 j,nonce〉 pairs for the m

4.2. THE FP PROTOCOL 45

correct servers S j on which this commit relies. When the last data from Si and these m servers S j is

passed to c find block (line 1621), each nonce hash present in each S j’s data will have a matching

nonce in Si’s Nonces, i.e., such that nonce hash = hash(nonce). Hence, npreimages ≥ m ≥ f + 1

(lines 1810–1813), and so the client will try to decode a block in lines 1815–1828.

If the responses from the m servers S j on which the commit at Si relies have cc = NULL, a block

is decoded and returned (line 1817). Otherwise, the client eventually tries to decode these fragments

accompanied by cc = NULL (the set Frags) together with those accompanied by cc 6= NULL provided

by these correct servers S j (the set Frags′); see line 1821. Each S j contributing a fragment of the

latter type verified that fpcc was consistent with m fragments derived from the block B input to

s rpc prepare block (lines 1302–1307), and generated its fragment to be a valid fragment of B.

Each fragment of the former type was verified by S j to be consistent with fpcc (lines 1200–1202),

and so is a valid fragment of B (with overwhelming probability by Corollary 2.1.12). Consequently,

upon decoding any m of these fragments, the client obtains B, will find m fragments of the resulting

block to be consistent with fpcc (lines 1822–1827), and so will return B (line 1828).

THEOREM 4.2.4. The read protocol is obstruction-free.

Proof. In c read, a call to s rpc find timestamp is made to servers 1, . . . ,3 f + 1 (line 1605), to

which each of at least 2 f + 1 correct servers responds with its value of latest commit (line 1700).

Consider the greatest timestamp 〈ts, fpcc〉 returned by a correct server, say Si. This timestamp

is greater than or equal to the timestamp from at least the 2 f + 1 correct servers that responded

(checked in lines 1612–1613), so the client tries to read fragments via s rpc read at this time-

stamp (line 1620). This timestamp was previously committed by Si, as a correct server updates

latest commit only in s rpc commit at line 1507. Moreover, this commit relies on at least m cor-

rect servers S j; see line 1503. Now consider the following two possibilities for each of these correct

servers S j on which the commit relies:

• S j assigned to store[〈ts, fpcc〉] in line 1404 because the condition in line 1402 evaluated to

true, and has not subsequently deleted store[〈ts, fpcc〉] in line 1506. In this case, S j returns

the contents of store[〈ts, fpcc〉] in response to the s rpc read call (line 1902).

• S j either did not assign to store[〈ts, fpcc〉] in line 1404 because the condition in line 1402

evaluated to false, or deleted store[〈ts, fpcc〉] in line 1506. In this case, store[〈ts, fpcc〉] =
NULL and latest commit > 〈ts, fpcc〉 in line 1900 (due to lines 1402 and 1507), and so S j

returns latest commit in response to the s rpc read call (line 1901).

If all m correct servers S j fall into the first case above, then one of the client’s calls to

c find block (line 1621) returns a non-NULL block (Lemma 4.2.3). The client writes this with a

c dowrite call (line 1625), which is wait-free (Theorem 4.2.1), and then completes the c read. If

some S j falls into the second case above, then the timestamp it returns (or a higher one returned by

another correct server) satisfies the condition in lines 1612–1613 and so the client will subsequently

read at this timestamp (line 1620) if a non-NULL block is not first returned from c find block

(line 1621).

Consequently, for the client to never return a block in a c read, correct servers must contin-

uously return increasing timestamps in response to s rpc read calls. If there are no concurrent

46 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

commits, then the client must reach a timestamp at which it returns a block. Hence, the read proto-

col is obstruction-free.

Linearizability

Informally, linearizability [51] requires that the responses to read operations are consistent with

an execution of all reads and writes in which each operation is performed at a distinct moment

in real time between when it is invoked and when it completes. Only reads by correct clients

need be considered, because no guarantees are provided to faulty clients. Since writes by faulty

clients can be read by correct clients, however, such writes cannot be ignored. Consequently, the

execution of s rpc prepare frag or s rpc prepare block by a faulty client at a correct server that

returns 〈ts,nonce,∗〉 (i.e., returns a value on line 1405 rather than returning FAILURE on line 1204

or 1310) is defined as to instantiate a write invocation at the beginning of time. The timestamp of

the invocation is the pair 〈ts, fpcc〉 used to generate a nonce (line 1401). Each operation by a correct

client also gets an associated timestamp 〈ts, fpcc〉. For a write operation, the timestamp is that sent

to s rpc commit. For a read operation, the timestamp is that of the write operation from which it

read.

Proving that faulty write operations and correct write and read operations are linearizable shows

that the protocol guarantees a natural extension to linearizability, limiting faulty clients to invoking

writes that they could have invoked anyway at similar expense had they followed the protocol. The

following five lemmas are used to prove that such a history is linearizable.

LEMMA 4.2.5. A read will share a timestamp with a write that has been invoked by some client.

Proof. Per line 1813, a call to c find block(∗, State, ts, fpcc, ∗) returns a non-NULL value only

if State[〈ts, fpcc〉], possibly modified per line 1809, includes a nonce hash from some correct S j

such that some Si.s rpc read(ts, fpcc) returned data = 〈∗, ∗, ∗, Nonces〉, Nonces ∋ 〈 j, nonce〉 and

hash(nonce) = nonce hash (data was passed to this or a previous c find block(∗, State, ts, fpcc,

∗) call, see lines 1620–1621, and then added to State[〈ts, fpcc〉] in line 1809). This nonce was

created by S j on line 1401 with 〈ts, fpcc〉. Since a correct writer keeps each nonce secret unless it is

returned from s rpc prepare frag or s rpc prepare block for the timestamp on which it settles for

its write timestamp, this nonce shows that the writer, if correct, adopted 〈ts, fpcc〉 as its timestamp;

consequently, the write with this timestamp was invoked, satisfying the lemma. If no correct writer

performed a write with timestamp 〈ts, fpcc〉, then the creation of nonce by S j in line 1401 with 〈ts,
fpcc〉 implies that the write with timestamp 〈ts, fpcc〉 was invoked by a faulty client.

LEMMA 4.2.6. Consider two invocations

B ← c find block(∗,∗, ts, fpcc,∗)

B′ ← c find block(∗,∗, ts, fpcc,∗)

at correct clients for the same timestamp 〈ts, fpcc〉. If B 6= NULL and B′ 6= NULL, then B = B′ with

all but negligible probability.

4.2. THE FP PROTOCOL 47

Proof. A block B 6= NULL is returned by c find block(∗, ∗, ts, fpcc, ∗) at either line 1817 or

line 1828. B is returned at line 1828 only if at least m erasure-coded fragments produced from B

are consistent with fpcc, as checked in lines 1822–1827. Similarly, B is returned at line 1817 only

after it is reconstructed from at least m fragments d′ such that 〈∗, d′, cc, ∗, ∗〉 ∈ State[〈ts, fpcc〉]
and cc = NULL; each such d′ was confirmed to be consistent with fpcc in lines 1800–1803, in either

this or an earlier invocation of the form c find block(∗, ∗, ts, fpcc, ∗). In either case, B has at least

m erasure-coded fragments consistent with fpcc. If blocks B and B′ each have at least m erasure-

coded fragments that are consistent with the same fpcc, they are the same with all but negligible

probability (Theorem 2.2.4).

Lemma 4.2.6 states that two correct clients who read blocks at the same timestamp read the same

block, since the block returned from c read is that produced by c find block (lines 1621–1626).

Lemmas 4.2.7–4.2.9 show that timestamp order for operations is consistent with real-time prece-

dence.

LEMMA 4.2.7. Consider two write operations performed by correct clients. If the response to one

precedes the invocation of the other, then the timestamp of the former is less than the timestamp of

the latter.

Proof. Before the earlier write returns a response in line 1130, at least n− f servers returned

SUCCESS from s rpc commit(ts, fpcc, Prepare), where 〈ts, fpcc〉 is the timestamp of this write. In

doing so, at least m = n− 2 f correct servers record latest commit← 〈ts, fpcc〉 (line 1507) if not

greater (line 1500). Consequently, the ts value returned in the prepare phase for the later write by

these servers will be greater than the ts value for the earlier write (line 1400). Because there are

n = m + 2 f total servers, any 2 f + 1 servers will include one of these m correct servers, so the ts

chosen (line 1111) will be greater than the ts value in the timestamp for the earlier write.

LEMMA 4.2.8. Consider a write operation and a read operation, both performed by correct clients.

If the response to the write precedes the invocation of the read, then the timestamp of the write is at

most the timestamp of the read.

Proof. Before the write returns a response in line 1130, at least n− 2 f correct servers returned

SUCCESS from s rpc commit(ts, fpcc, Prepare), where 〈ts, fpcc〉 is the timestamp of this write. In

doing so, at least n−2 f correct servers record latest commit← 〈ts, fpcc〉 (line 1507) if not greater

(line 1500). These n− 2 f = m correct servers include at least f + 1 of the servers 1, . . . ,3 f + 1,

and so in the read operation at most 2 f of servers 1, . . . ,3 f + 1 respond to s rpc find timestamp

at line 1700 with a lower timestamp than 〈ts, fpcc〉. Because a read considers only timestamps that

are at least as large as those returned by 2 f + 1 of the first 3 f + 1 servers (line 1613), the read will

be assigned a timestamp at least as large as 〈ts, fpcc〉.

LEMMA 4.2.9. If the response of a read operation by a correct client precedes the invocation of

another (write or read) operation by a correct client, then the timestamp of the former operation is

at most the timestamp of the latter.

48 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

Proof. A read calls c dowrite at its timestamp before returning a response (line 1625). This will

have the same affect as completing a write at that timestamp. Consequently, the later operation will

have a higher timestamp if it is a write (Lemma 4.2.7) and a timestamp at least as high if it is a read

(Lemma 4.2.8).

THEOREM 4.2.10. Write and read operations are linearizable.

Proof. To show linearizability, construct a linearization (total order) of all read operations by correct

clients and all write operations that is consistent with the real-time precedence between operations

such that each read operation returns the block written by the preceding write operation. First, order

all writes in increasing order of their timestamps. By Lemma 4.2.7, this ordering does not violate

real-time precedence. Next, place all read operations with the same timestamp immediately follow-

ing a write operation with that timestamp, ordered consistently with real-time precedence (i.e., each

read is placed somewhere after all other operations with the same timestamp that completed before

it was invoked). By Lemma 4.2.5, each read is placed after some write operation. This placement

does not violate real-time precedence with the next (or any) write operation in the linearization,

since if the next write had completed before this read began, then by Lemma 4.2.8 this read op-

eration could not have the timestamp it does. Real-time precedence between reads with different

timestamps cannot be violated by this placement, by Lemma 4.2.9. Since all reads with the same

timestamp read the same block (Lemma 4.2.6)—which is the block written in the write with that

timestamp if the writer was correct—write and read operations are linearizable.

4.3 Implementation

The prototype is evaluated and compared to competing approaches using a distributed storage pro-

totype. The low-overhead fault-tolerant prototype consists of a client library, linked to directly by

client applications, and a storage server application. The prototype supports the protocol described

in Section 4.2 as well as several competing protocols, as described in Section 4.4.1.

The client library interface consists of two functions, “read block” and “write block.” In addition

to the parameters described in Section 4.2, read and write accept a block number as an additional

argument, which can be thought of as running an instance of the protocol in parallel for every

block in the system. Each server in a pool of storage servers runs the storage server application,

which accepts incoming RPC requests and executes as described in Section 4.2. Clients and servers

communicate with remote procedure calls over TCP sockets. Each server has a large NVRAM

cache, where non-volatility is provided by battery backup. This allows most writes and many reads

to return without disk I/O.

The prototype uses 16 byte fingerprints generated with the evaluation homomorphic fingerprint-

ing function (Section 2.4). Fingerprinting is fast, and only the first m fragments are fingerprinted

(the other fingerprints can be computed from these fingerprints). Homomorphic fingerprinting re-

quires a small random value for each distinct block that is fingerprinted. This random value is

provided by a hash of the cross-checksum in the protocol. After computing this random value, the

implementation precomputes a 64 kB table, which takes about 20 microseconds. After computing

4.4. EVALUATION 49

this table, fingerprinting each byte requires one table lookup and a 128-bit XOR. This implementation

can fingerprint about 410 megabytes per second on a 3 GHz Pentium D processor.

The client library uses Rabin’s Information Dispersal Algorithm [84] for erasure coding. The

first m fragments consist of the block divided into m equal fragments (that is, a systematic encoding

is used). Since m > f and only m+ f fragments must be encoded, this cuts the amount of encoding

by more than half.

The SHA-1 and HMAC implementations from the Nettle toolkit [76] is used, which can hash

about 280 megabytes per second on a 3 GHz Pentium D processor. Each hash value is 20 bytes,

and each MAC is 8 bytes. Due to ongoing advances in the cryptanalysis of SHA-1 [33], a storage

system with a long expected lifetime may benefit from a stronger hash function. The performance

of SHA-512 on modern 64-bit processors has been reported as comparable to that of SHA-1 [42].

Hence, though not measured, the prototype should achieve similar performance if the hash were

upgraded on such systems.

The prototype implements a few simple optimizations for the protocol. For example, during

commit, only the appropriate pairwise MAC is sent to each server. The client tries writing at the

first m+ f servers, considering other servers only if these servers are faulty or unresponsive. Simi-

larly, the client requests timestamps from the first 2 f +1 servers and reads fragments from the first m

servers, which allows most reads to return in a single round of communication without requiring any

decoding beyond concatenating fragments. Furthermore, if f + 1 or more servers return matching

timestamps, the client does not request nonces because it can conclude that a correct server com-

mitted this write and hence some client invoked a write at this timestamp, satisfying Lemma 4.2.5.

Also, the client limits the amount of state required for a read operation by considering only the

most recent timestamp proposed by each server. It does not consider more timestamps until all but

f servers have returned a response for all timestamps currently under consideration. Servers delay

garbage collection by a few seconds, thus obviating the need for fast clients to ever follow garbage

collection redirection.

4.4 Evaluation

This section evaluates the protocol proposed in this chapter (the FP protocol) on a distributed storage

prototype. Three competing protocols that are described in Section 4.4.1 were also implemented

and evaluated. The experimental setup is described in Section 4.4.2. Single client write throughput,

read throughput, and response time are evaluated in Sections 4.4.3, 4.4.4, and 4.4.5, respectively.

An analysis of the protocol presented in Section 4.2 suggests that the protocol should perform

similarly to a benign erasure-coded protocol with the additional computational expense of hashing

and the extra bandwidth required for the fpcc, MACs, and nonces. The experimental results confirm

that the FP protocol is competitive with the benign erasure-coded protocol and that it significantly

outperforms competing approaches.

4.4.1 Competing Protocols

To enable fair comparison, the distributed storage prototype supports multiple protocols. Protocols

are compared within the same framework to ensure that measurements reflect protocol variations

50 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

rather than implementation artifacts. The following three protocols are evaluated in addition to the

FP protocol.

Benign erasure-coded protocol: The prototype implements an erasure-coded storage protocol

that tolerates crashes but not Byzantine faulty clients or servers. This protocol uses the same erasure

coding implementation used for the FP protocol. A write operation encodes a block into m + f

fragments and sends these fragments to servers. A read operation reads from the first m servers,

avoiding the need to decode. Both complete in a single round of communication. This protocol

assumes concurrency is handled by some external locking protocol; a real implementation would

require more rounds of communication for some writes, but this overhead is ignored. Hence, this

protocol provides an upper bound for the performance of any erasure-coded fault-tolerant storage

protocol (Byzantine or not).

Benign replication-based protocol: The prototype implements a replication-based storage pro-

tocol that tolerates crashes but not Byzantine faulty clients or servers. A write operation sends

the block to f + 1 servers, and a read operation reads from a single server. As in the benign

erasure-coded protocol, this protocol assumes concurrency is handled by an external locking pro-

tocol. Hence, though this protocol does not tolerate Byzantine faults, it represents an upper bound

for the performance of any replication-based Byzantine (or not) fault-tolerant storage protocols.

It is worth noting, however, that this implementation is substantially faster than most replication-

based Byzantine fault-tolerant storage protocols found in the literature, which often require all-to-all

broadcasts [18, 23], public-key signatures [19, 66], or writing to 2 f +1 or more replicas [18, 23].

Replication-based protocols are excellent for reads, but write performance is reduced due to

bandwidth limitations. One method to overcome the network bandwidth limitation between the

client and the switch for a single client is to use network-level multicast. The replication-based

protocol does not use multicast for several reasons. Multicast is unavailable, unsuitable, or unstable

in many network environments [44], and retransmissions due to congestion cannot take advantage

of multicast. Also, multicast does nothing to reduce disk bandwidth and network bandwidth be-

tween the switch and the servers. Though each server could encode its own block to reduce disk

bandwidth [18], a multicast-based protocol would not scale when multiple clients are writing to the

same storage servers.

m+3f Byzantine fault-tolerant erasure-coded protocol: An alternative to Byzantine fault-

tolerant replication-based storage is Byzantine fault-tolerant erasure-coded storage. The prototype

implements a protocol similar to PASIS [44]. PASIS was engineered to improve server throughput

by offloading work to clients. This protocol uses the same erasure coding implementation and

SHA-1 library used for the FP protocol. The protocol implemented by the prototype, however, only

emulates a PASIS-like protocol. It does not implement the versioning storage required by PASIS,

nor does it run a garbage collection protocol, and, hence, it would not be suitable for storing data in

a Byzantine environment. This implementation does, however, provide a comparison point against

the approach most similar to the FP protocol.

To write a block, the client requests the most recent timestamp from each server. It then encodes

the block into m + 3 f fragments and hashes each fragment to create a cross-checksum. (Because

a systematic encoding is used, “encoding” the first f fragments does not require computation.) By

comparison, the FP protocol encodes and hashes m+ f fragments; f fewer because there are f fewer

servers and another f fewer due to the partial encoding optimization, described in Section 4.2.1. To

4.4. EVALUATION 51

complete the write, the m + 3 f protocol sends fragments to the first m + 2 f servers, considering

other servers only if some servers are unresponsive. By comparison, the FP protocol and the benign

erasure-coded protocol send f fewer fragments because they need f fewer servers. To read a block,

the client requests fragments from the first m servers along with timestamps from the first 3 f + 1

servers. Assuming all timestamps match, the client must then verify the cross-checksum, which is

embedded in the timestamp. This requires repeating the write computation: the client must encode

and hash m+3 f fragments to recompute the cross-checksum.

4.4.2 Experimental Setup

All experiments are measured using a single client and a collection of servers. Each machine has

a dual-core 3 GHz Pentium D processor, 2 GB of RAM, and an Intel PRO/1000 Gigabit Ethernet

controller, and machines run Linux kernel version 2.6.18. Measurements are taken in the absence

of concurrency and faults, which is expected to be the normal mode of operation in such a storage

system. The client and the servers are connected to the same HP ProCurve Switch 2848 with QoS

passthrough mode set to one-queue and flow control enabled for each port. Each experiment was run

10 times for 60 seconds, with the average performance reported in the figures. Standard deviations

are all within 2% of the average, and performance matches analytical expectations.

The working set of data for each experiment is chosen to fit within the server caches, and the

client does not cache data. The data gets loaded before measurements, ensuring 100% read hits, and

the servers use write-back with synchronizing to disk disabled. The systems are battery-backed,

but the experimental reason for this setup is to allow the measurement of protocol overhead rather

than disk latency. Avoiding disk accesses makes performance dependent on the network and com-

putational behavior of the protocols. If the working set does not fit in server caches, or if durability

requirements prevent using NVRAM for write-back, the choice of protocol matters less because sys-

tem performance will be limited by disk performance. In such a scenario, there is an even stronger

argument for using a Byzantine fault-tolerant protocol rather than a protocol that tolerates only crash

faults.

The client benchmark program is run on a single machine. It generates a synthetic workload.

For throughput measurements, the client spawns several parallel threads, each of which issues a read

or write request for a randomly selected 64 kB block, waits for the response, and then issues another

request. For response time measurements, a single thread issues a single write request, waits for a

response, and then repeats. For erasure-coded protocols (all but replication), m = f + 1. Because

the block size is fixed, the fragment size for erasure-coded protocols decreases as m increases (i.e.,

fragment size is 64/m kB).

4.4.3 Write Throughput

Figure 4.4.4 shows the write throughput achieved by a single client executing each of the four pro-

tocols as a function of the number of faults tolerated. The FP protocol significantly outperforms the

Byzantine fault-tolerant m+3 f erasure-coded protocol as well as the crash fault-tolerant replication-

based protocol, and it nearly matches the performance of the benign erasure-coded protocol. For

example, at f = 4, the FP protocol achieves a factor of 2.6 higher throughput than replication, a

52 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

2 4 6 8 10
0

20

40

60

80

100

120

FP protocol

16 kB fragments

Erasure−coded

Replication−based

m+3f erasure−coded

Number of faults tolerated (f)

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Figure 4.4.4: Write throughput for each protocol as a function of faults tolerated. The lines report the

performance of each protocol when writing 64 kB blocks. The four circles report the performance

of the FP protocol when writing 16 kB fragments (rather than 64/m kB).

factor of 1.4 higher throughput than the m + 3 f protocol, and is within 5% of the performance of

the erasure-coded protocol that does not tolerate Byzantine faulty servers or clients.

Each protocol requires a different number of servers to tolerate the same number of faults. The

benign erasure-coded protocol and the FP protocol require m+ f responsive servers, the replication-

based protocol requires f + 1 servers, and the m + 3 f protocol requires m + 2 f responsive servers.

(Both Byzantine fault-tolerant protocols must be able to reach an additional f servers if some of

these servers are not responsive.) For example, for f = 4 and m = 5, the benign erasure-coded pro-

tocol and the FP protocol write data to 9 servers, the replication-based protocol writes to 5 servers,

and the m+3 f protocol writes to 13 servers.

Throughput is the amount of useful data written, which is less than the amount of data sent over

the network. The FP protocol and the benign erasure-coded protocol both send
|B|
m

(m + f) bytes

when writing a block of |B| bytes. Replication must send |B|(f +1) bytes, and the m+3 f protocol

must send
|B|
m

(m+2 f) bytes. The erasure-coded protocols could increase throughput for constant f

by increasing m beyond f +1.

The benign erasure-coded protocol performs well, as expected, achieving a write throughput

close to m
m+ f

of the total network bandwidth available. The FP protocol performs almost as well.

When tolerating up to 6 Byzantine faulty servers, it performs within 10% of the benign protocol that

only tolerates server crashes. As the number of servers in the system grows, however, the additional

network overhead in the FP protocol becomes noticeable for two reasons. First, because block size is

constant, the size of the fragment written at each server decreases as the number of servers increases.

Second, the sizes of the fpcc, MACs, and nonces increase as the number of servers increases. For

f = 6, fragment size is over 9 kB and fpcc, MAC, and nonce overhead is under 700 bytes (overhead

is under 7% of data sent). For f = 10, fragment size is under 6 kB and fpcc, MAC, and nonce

overhead is over 1100 bytes (overhead is over 15% of data sent).

4.4. EVALUATION 53

2 4 6 8 10
0

20

40

60

80

100

120

FP protocol

Erasure−coded

Replication−based

m+3f erasure−coded

Number of faults tolerated (f)

R
ea

d
th

ro
u
g
h
p
u
t

(M
B

/s
)

Figure 4.4.5: Read throughput as a function of faults tolerated.

One solution to this problem is to increase the block size. For example, the four circles in

Figure 4.4.4 show the throughput of the FP protocol when fragment size is 16 kB. The FP protocol

performs within 10% of the benign protocol when the fragment size is increased to 16 kB for both

protocols, even when tolerating 10 faults. (The benign protocol performs less than 3% better when

the fragment size is increased to 16 kB.)

The replication-based protocol performs poorly for all but the smallest number of faults tol-

erated, as expected, because it writes (f + 1)/(m+ f
m

) > (f + 1)/2 times as much data as the be-

nign erasure-coded protocol. The m + 3 f Byzantine fault-tolerant erasure-coded protocol writes
m+2 f
m+ f

≈ 1.5 times as much data as the benign erasure-coded protocol, and up until about f = 4 it

is only a factor of 1.5 times worse. The m + 3 f protocol, however, must encode and hash m + 3 f

fragments to generate the cross-checksum even though it only writes to m + 2 f servers because

it does not include the partial encoding optimization. Hence, for f > 4, the m + 3 f protocol is

computationally bound by the client.

4.4.4 Read Throughput

Figure 4.4.5 shows the read throughput achieved by a single client executing each of the four proto-

cols as a function of the number of faults tolerated. The FP protocol achieves read throughput within

10% of the two benign protocols and significantly outperforms the m+3 f protocol. The slight drop

for the FP protocol and the benign erasure-coded protocol as the number of faults tolerated increases

is due to network congestion caused by the increasing number of servers providing responses.

All four protocols read the same amount of data. The replication-based protocol reads an entire

64 kB block from a single server, and the other protocols read fragments from m servers. The

erasure-coded protocols read from the first m servers to avoid the need to decode. In addition to

fragments, the Byzantine fault-tolerant protocols must read timestamps from more servers to check

for concurrency. The FP protocol reads timestamps from 2 f + 1−m = f more servers, while the

54 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

2 4 6 8 10
0

1

2

3

4

5

6

7

FP protocol

Erasure−coded

Replication−based

m+3f

Number of faults tolerated (f)

W
ri

te
re

sp
o
n
se

ti
m

e
(m

s)

Figure 4.4.6: Write response time as a function of faults tolerated.

RPC Encode Hashing Fingerprinting

Erasure coded 1.46 ms 0.79 ms – –

Replication 6.65 ms – – –

FP protocol 2.17 ms 0.79 ms 0.45 ms 0.18 ms

m+3 f 2.80 ms 2.54 ms 0.88 ms –

Figure 4.4.7: Write response time breakdown for f = 10.

m + 3 f protocol reads timestamps from 3 f + 1−m = 2 f more servers. Assuming all timestamps

match, read completes in a single round of communication.

Once fragments are read, the Byzantine fault-tolerant protocols must verify data. The FP pro-

tocol requires just a hash and a fingerprint of the fragments. The m + 3 f protocol, however, must

recompute the cross-checksum, which requires encoding and hashing m+3 f fragments and is quite

expensive for large values of f .

4.4.5 Response Time

Figure 4.4.6 shows the response time of a single write for each of the four protocols as a function

of the number of faults tolerated. The FP protocol requires on average 1.04 ms more to complete a

write operation than the benign erasure-coded protocol, which is on average 1.65 times worse. This

is, however, a substantial improvement over the m+3 f protocol and the replication-based protocol,

which both scale worse than the FP protocol.

Figure 4.4.7 provides a breakdown of the average latency of each operational component of

a write for f = 10 as seen by the client. The table lists the time each protocol spent encoding,

hashing, and fingerprinting fragments (other computational contributions were negligible); it also

lists the time spent waiting for the network, which includes time spent in the kernel. As seen in the

table, about half of the additional latency for a write by the FP protocol as compared to the benign

erasure-coded protocol is due to hashing and fingerprinting, and the other half is due to the extra

4.5. CONCLUSION 55

2 4 6 8 10
0

1

2

3

4

5

6

7

FP protocol

Erasure−coded

Replication−based

m+3f erasure−coded

Number of faults tolerated (f)

R
ea

d
re

sp
o
n
se

ti
m

e
(m

s)

Figure 4.4.8: Read response time as a function of faults tolerated.

RPC Encode Hashing Fingerprinting

Erasure coded 0.86 ms – – –

Replication 0.80 ms – – –

FP protocol 0.97 ms – 0.24 ms 0.20 ms

m+3 f 1.10 ms 2.54 ms 0.90 ms –

Figure 4.4.9: Read response time breakdown for f = 10.

round of communication. The additional latency for the replication-based protocol is, of course, due

to the extra bandwidth required to write f replicas. The additional latency for the m + 3 f protocol

is due to the encoding of 2 f more fragments, the extra round of communication, the sending of

1.5 times as many fragments, and the hashing of m+3 f fragments.

Read response time (Figure 4.4.8) is as expected. Table 4.4.9 provides a breakdown of the

average latency of each operational component of a read for f = 10 as seen by the client. The

benign erasure-coded protocol and the replication protocol require on average 0.84 ms and 0.80 ms

respectively to read a single block when tolerating between one and ten faults. The FP protocol

requires on average 1.29 ms, the difference being the time needed to hash and fingerprint fragments.

Each of these protocols requires about the same amount of time to read a block when tolerating

one fault as when tolerating ten faults. The m + 3 f protocol requires 3.05 ms on average, and it

requires 1.58 ms to read a single block when tolerating one fault but 4.54 ms when tolerating ten

faults. It scales worse than the other protocols because it must encode and hash m + 3 f fragments

to recompute the cross-checksum.

4.5 Conclusion

Distributed block storage systems can tolerate Byzantine faults in asynchronous environments with

little overhead over systems that tolerate only crashes. Replication-based block storage protocols

56 CHAPTER 4. LOW-OVERHEAD BYZANTINE FAULT-TOLERANT STORAGE

are effective for workloads that are mostly reads or when tolerating a single fault, but exhibit low

throughput and high latency for large writes. Erasure-coded protocols provide higher throughput

writes and can increase m for fixed f to realize even higher throughput. Previous Byzantine fault-

tolerant erasure-coded protocols, however, exhibit low client throughput for reads and high com-

putational overheads for both reads and writes. This chapter presents the FP protocol, a Byzantine

fault-tolerant erasure-coded protocol that performs well for both reads and large writes. Measure-

ments of a prototype implementation demonstrate that this protocol exhibits throughput within 10%

of the ideal crash fault-tolerant erasure-coded protocol for reads and sufficiently large writes. Fur-

thermore, the FP protocol has little computational overhead other than a cryptographic hash and a

homomorphic fingerprint of the data.

Chapter 5

Scalable Fault Tolerance through

Byzantine Locking

As distributed systems grow in size and importance, they must tolerate complex software bugs and

hardware misbehaviors in addition to simple crashes and lost messages. Byzantine fault-tolerant

protocols can tolerate arbitrary problems, making them an attractive building block—in theory. But,

in practice, system designers continue to worry that their performance overheads and scalability

limitations are too great. Recent research has improved performance by exploiting optimism to

improve common cases, but a significant gap still exists.

The Zzyzx replicated state machine protocol bridges that gap with a new technique called

Byzantine Locking. Layered atop a Byzantine fault-tolerant replicated state machine protocol (e.g.,

PBFT [24] or Zyzzyva [55]), Byzantine Locking can be used to temporarily give a client exclu-

sive access to state in the replicated state machine. It uses the underlying Byzantine fault-tolerant

replicated state machine to extract the relevant state and, later, to re-integrate it. Unlike locking

in non-Byzantine fault-tolerant systems, Byzantine Locking is only a performance tool. To ensure

liveness, locked state is kept on servers, and a client that tries to access objects locked by another

client can request that the locks be revoked, forcing both clients back to the underlying replicated

state machine to ensure consistency.

Byzantine Locking provides unprecedented scalability and efficiency for the common case of

infrequent concurrent data sharing. Most notably, the server processes to which locked state is

extracted for servicing operations by the locking client—in the parlance of Byzantine Locking, log

servers—can execute on distinct physical computers from the replicas for the underlying replicated

state machine. Thus, multiple log server groups, each running on distinct physical computers, can

be used for independently locked state, allowing throughput to be scaled by adding computers, as

shown in Figure 5.0.1. Even when running the log servers on the same computers as the underlying

replicated state machine, exclusive access allows clients to execute a sequence of operations much

more efficiently (just one round-trip with only 2 f +1 responses, where f if the number of faulty

servers tolerated), because concurrency is explicitly precluded. This performance benefit can be

seen in Figure 5.0.1 by comparing the 4-server throughputs of Zyzzyva and Zzyzx—Byzantine

Locking enables the factor of 2.9× higher throughput shown.

57

58 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

4 5 6 7 8 9
0

50

100

150

200

Number of responsive servers

T
h
ro

u
g
h
p
u
t

(k
O

p
s/

se
c)

Zzyzx

Zyzzyva

Figure 5.0.1: Throughput vs. servers. Zzyzx’s throughput scales nearly linearly as servers are

added. Zyzzyva does not use additional servers to improve throughput, so the dashed line repeats its

4-server throughput for reference. Even with the minimum number of servers (4), Zzyzx significantly

outperforms Zyzzyva. The measured workload includes no faults or data sharing among clients. All

configurations measured tolerate one Byzantine fault (f =1). Section 5.5 describes the experimental

setup and results in detail.

Zzyzx implements Byzantine Locking on top of Zyzzyva [55], a state-of-the-art Byzantine fault-

tolerant replicated state machine, to improve performance while providing the same correctness

and liveness guarantees as Zyzzyva. Experiments, described in Section 5.5, show that Zzyzx can

provide 39–43% lower latency and a factor of 2.2–2.9× higher throughput when using the same

servers, compared to Zyzzyva, for operations on locked objects. Postmark [52] completed 60%

more transactions on a Zzyzx-based file system than one based on Zyzzyva, and Zzyzx provided

a factor of 1.6× higher throughput for a trace-based metadata workload. The benefits of locking

outweigh the cost of unlocking after as few as ten operations. Operations on concurrently shared

data objects do not use the Byzantine Locking layer—clients just execute the underlying Zyzzyva

protocol directly. Thus, except when transitioning objects from unshared to shared, the common

case (unshared) proceeds with maximal efficiency and the uncommon case is no worse off than the

underlying Byzantine fault-tolerant replicated state machine.

Although it will provide correct behavior under any workload, the benefits of Byzantine Locking

will be realized most in services whose state consist of many objects that are rarely shared. This

characterization fits many critical services for which both scalability and Byzantine fault tolerance

is desirable. For example, the metadata service of most distributed file systems contains a distinct

object for each file or directory, and concurrent sharing is rare [10]. Similarly, a distributed key-

value store for website personalization [26] or e-commerce shopping carts [34] may have many

concurrent writers that access distinct keys.

This chapter makes three primary contributions. First, it introduces Byzantine Locking as a

means of realizing unprecedented scalability and efficiency for Byzantine fault-tolerant replicated

state machines when concurrent data sharing is uncommon. Second, it describes Zzyzx, a Byzan-

5.1. CONTEXT AND RELATED WORK 59

tine fault-tolerant replicated state machine protocol that layers Byzantine Locking atop Zyzzyva

to demonstrate the performance and scalability features of Byzantine Locking. Third, it uses the

Zzyzx prototype to evaluate the performance characteristics of Byzantine Locking and shows that

Byzantine Locking provides the expected scaling and significant performance improvements for

collections of usually-independent objects.

5.1 Context and Related Work

Large distributed systems exhibit more faults and more types of faults than traditional fault-tolerance

techniques can manage. For example, a single misdirected write can corrupt data in protocols such

as Paxos. In response, many practitioners use more robust protocols. Modern systems include a

variety of checksums and consistency checks, but ad-hoc robustness mechanisms do not capture

some real failure modes [9, 25, 60]. Efficient protocols that survive the fuller range of failure

modes are important for the critical services needed by cloud computing, data centers, and clustered

storage systems, where the higher frequency of faults, wider diversity of corruptions and faults seen

in practice, and asynchronous network behavior break traditional techniques.

As fault tolerance has grown more important and techniques to achieve fault tolerance less

expensive, there has been a natural progression of distributed protocols used by practitioners, from

unreplicated to replicated, synchronous to asynchronous, and crash-tolerant to ad-hoc consistency

checks. The next step is from ad-hoc consistency to full Byzantine fault tolerance.

Byzantine fault-tolerant protocols tolerate any number of faulty or malicious clients and a frac-

tion of faulty or malicious servers. Byzantine fault tolerance ensures that all bases are covered,

protecting against misdirected writes, soft errors, and other faults and corruptions found in modern

hardware and software. A Byzantine fault-tolerant replicated state machine protocol can be used

to implement any deterministic service. Given the growth in size and importance of many dis-

tributed services, one would like to use Byzantine fault-tolerant replicated state machines to make

such services more robust. Toward that end, much recent research has focused on designing Byzan-

tine fault-tolerant replicated state machine protocols with improved performance and scalability,

especially during fault-free periods of operation.

5.1.1 The Byzantine Efficiency Race

Recent years have seen something of an arms race among researchers seeking to provide applica-

tion writers with efficient Byzantine fault-tolerant substrates. Perhaps unintentionally, Castro and

Liskov [24] initiated this race in proposing a new protocol and labeling it “practical,” because it

demonstrated performance considerably better than most expected could be achieved with Byzan-

tine fault-tolerant systems. Their protocol replaces the digital signatures common in previous proto-

cols with message authentication codes (MACs) and also increases efficiency with request batching,

link-level broadcast, and agreement-free optimistic reads [21]. Still, the protocol requires four mes-

sage delays and all-to-all communication, for all mutating operations, leaving room for improve-

ment. Castro and Liskov called their protocol “BFT”. To avoid confusion with the acronym for

Byzantine fault tolerance, this paper follows the convention of calling their protocol PBFT.

60 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

PBFT Q/U HQ Zyzzyva Zzyzx RSM

Lower Bound

Total servers required 3f+1 5f+1 3f+1 3f+1 3f+1 3f+1 [101]

Responsive servers required 2f+1 4f+1 2f+1 3f+1 2f+1 2f+1

Bottleneck MAC ops per req. 2+(8f+1)/B 2+8f 4+4f 2+3f/B 2 1

Message delays per req. 4 2 4 3 2 2

Throughput scales with # servers No Some∗ Some∗ No Yes –

Figure 5.1.2: Comparison of Byzantine fault-tolerant replicated state machine protocols in

the absence of faults and contention, along with commonly accepted lower bounds. Data for

PBFT, Q/U, HQ, and Zyzzyva are taken from [55]. Bold entries identify best-known values. f

denotes the number of server faults tolerated, and B denotes the request batch size (see Section 5.5).

“Responsive servers needed” refers to the number of servers that must respond in order to achieve

good performance. ∗The throughput scalability provided by quorum protocols is limited by the

requirement for overlap between valid quorums [69, 71].

Abd-el-Malek et al. [2] proposed Q/U, a quorum-based Byzantine fault-tolerant protocol that

exploits speculation and quorum constructions to provide throughput that can increase somewhat

with addition of servers. Q/U provides Byzantine fault-tolerant operations (including multi-object

operations) on a collection of objects comprised of state and associated operations. Operations are

optimistically executed in just one round-trip, and object histories are used to resolve issues created

by concurrency or failures. Fortunately, both are expected to be rare in many important usages. One

example of this is the file servers that have been used as concrete examples in papers on this topic

(e.g., [24]). Matching conventional wisdom, analysis of NFS traces from a departmental server [38]

confirms that most files are used by a single client and that, when a file is shared, there is almost

always only one client using it at a time. For example, in the traces examined, fewer than one in

one thousand operations would experience any contention in a replicated state machine protocol. If

one discounts the two most contentious file handles, less than one in ten thousand operations would

experience contention on average.

Cowling et al. [32] proposed HQ, which uses a hybrid approach to achieve the benefits of Q/U

without the increased minimum number of servers (3 f +1 for HQ vs. 5 f +1 for Q/U). Optimistically,

an efficient quorum protocol executes operations unless concurrency or failures are detected. Each

operation that encounters such issues then executes a second protocol to achieve correctness. In

reducing the number of servers, HQ increases the common case number of message delays for

mutating operations to four (two roundtrips).

Most recently, Kotla et al. [55] proposed Zyzzyva, which avoids all-to-all communication with-

out additional servers, performs better than HQ under contention, and requires only three message

delays. Unlike other protocols, however, Zyzzyva requires that all 3 f +1 nodes are responsive in or-

der to achieve good performance; timeouts trigger a second protocol phase. Unfortunately, whether

by misfortune or by design, some servers in many distributed systems will sometimes respond more

slowly than others. Furthermore, requiring that all 3 f + 1 servers respond to avoid extra work pre-

cludes techniques that reduce the number of servers needed in practice. For example, if only 2 f +1

servers need be responsive, the f “non-responsive” servers can be shared by neighboring Byzantine

5.1. CONTEXT AND RELATED WORK 61

fault-tolerant clusters or used to fill other needs without being burdened under normal operation.

Non-responsive servers could even be turned off to save power, at the cost of higher latency when

faults occur.

In a recent study of several Byzantine fault-tolerant replicated state machine protocols, Singh

et al. concluded that “one-size-fits-all protocols may be hard if not impossible to design in prac-

tice” [96]. They note that “different performance trade-offs lead to different design choices within

given network conditions.” Indeed, there are several parameters to consider, including the total

number of replicas, the number of replicas that must be responsive for good performance, the num-

ber of message delays in the common case, the performance under contention, and the throughput,

which is roughly a function of the numbers of cryptographic operations and messages per request.

Unfortunately, none of the above protocols score well on all of these metrics, as shown in Fig-

ure 5.1.2. PBFT requires four message delays and all-to-all communication, Q/U requires additional

replicas, HQ requires four message delays and performs poorly under contention, and Zyzzyva per-

forms poorly unless all nodes are responsive. (Zyzzyva5, a variant of Zyzzyva, performs well even

when some nodes are not responsive, but requires additional replicas [55].)

5.1.2 How Zzyzx Fits In

Like the systems above, Zzyzx is optimized to perform well in environments where faults are rare

and concurrency is uncommon, while providing correct operation under harsher conditions. During

benign periods, Zzyzx outperforms and scales better than all of the prior approaches, requiring

the minimum possible numbers of message delays (two, which equals one round-trip), responsive

servers (2 f +1), and total servers (3 f +1). Zzyzx provides unprecedented scalability, because it does

not require overlapping quorums as in prior protocols (HQ and Q/U) that provide any scaling; non-

overlapping server sets can be used for frequently unshared state. When concurrency is common,

Zzyzx performs similarly to its underlying protocol (e.g., Zyzzyva).

Zzyzx takes inspiration from the locking mechanisms used by many distributed systems to

achieve high performance in benign environments. For example, GPFS uses distributed locking

to provide clients byte-range locks that enable its massive parallelism [92]. In benign fault-tolerant

environments, where lockholders may crash or be unresponsive, other clients or servers must be

able to break the lock. To tolerate Byzantine faults, the protocol must additionally ensure that lock

semantics are not violated by faulty servers or clients and that a broken lock is always detected by

correct clients. Section 5.3 details how this is accomplished for Byzantine Locking.

By allowing clients to acquire locks, and then only allowing clients that have the lock on given

state to execute operations on it, Zzyzx achieves much higher efficiency for sequences of operations

from that client. Each replica can proceed on strictly local state, given evidence of lock ownership,

thus avoiding all inter-replica communication. Also, locked state can be can be transferred to other

servers, allowing non-overlapping sets of servers to handle independently locked state.

Zzyzx handles concurrency in a similar, though reverse, manner to HQ. In particular, clients are

not required to use the Byzantine Locking, but they can do so when concurrency is not expected.

So, whereas HQ falls back on a protocol such as PBFT or Zyzzyva that handles concurrency well

each time concurrency is discovered, Zzyzx can use PBFT or Zyzzyva natively until concurrency is

determined to be uncommon, at which point clients begin using Byzantine Locking. Thus, Zzyzx

62 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

can avoid performance losses under concurrency, if good policy decisions are made, while gaining

performance and scalability for rarely-shared state.

5.1.3 Prior Byzantine Fault-Tolerant Replicated State Machine Protocols

Recent Byzantine fault-tolerant replicated state machine protocols, such as PBFT, Q/U, HQ,

Zyzzyva, and Zzyzx built upon several years of prior distributed systems research [17, 36, 54, 63, 69,

86, 87]. For example, Reiter [86] proposed the Rampart toolkit, which implements an asynchronous

Byzantine fault-tolerant replicated state machine. Rampart uses an atomic multicast protocol and

a secure membership protocol. The atomic multicast protocol is similar to PBFT, except the pri-

mary in PBFT is called the sequencer in Rampart. Public-key cryptographic overhead limits the

performance of Rampart.

Rampart’s membership protocol highlights the importance of the system model. In Reiter’s

model, there are an unbounded number of servers, any number can be faulty, but only a subset are

group members, and correctness depends upon fewer than a third of the group members being faulty.

Castro and Liskov fix group membership [24], and correctness depends upon fewer than a third of

servers total being faulty. Castro and Liskov note that if too many correct servers are incorrectly re-

moved from the group in Rampart, the remaining faulty servers may violate correctness [24, Section

8]. One benefit of a group membership model is that such protocols can perform well and ensure

correctness in an environment with many faulty and non-responsive servers so long as the group

invariant is maintained. To emulate the fixed group membership in Castro and Liskov’s model,

Rampart can simply lower the ranking of group members that would be removed (i.e., remove and

rejoin suspected members).

Several protocols use unreliable failure detectors [36, 53, 54, 67], which allow for a modular

protocol design. For example, the SecureRing protocol uses an unreliable failure detector to pro-

vide an asynchronous Byzantine fault-tolerant group communication abstractiong [54], which can

be used to build a replicated state machine. As in Rampart, SecureRing uses a secure group member-

ship protocol. Rampart [87] and SecureRing [54] also batch operations to minimize cryptographic

and network overhead (SecureRing calls batching packing).

5.1.4 Additional Related Work

There has been similar progress on Byzantine fault-tolerant read/write protocols, which can be used

to build robust block storage systems. Recent protocols have included PASIS [44] and AVID [18].

Most recently, Hendricks et al. [48] proposed a protocol that demonstrates <10% overhead for the

large data objects that characterize high-bandwidth storage applications.

Farsite [4, 35] uses a Byzantine fault-tolerant replicated state machine to manage metadata in a

distributed file system. Farsite issues leases to clients for metadata such that clients can update meta-

data locally, which can increase scalability. Upon conflict or timeout, leases are recalled, but updates

may be lost if the client is unreachable. Leasing schemes do not provide the strong consistency guar-

antees expected of replicated state machines (linearizability [51]), so leasing is not acceptable for

some applications. Also, choosing lease timeouts presents an additional challenge: a short timeout

increases the probability that a client will miss a lease recall or renewal, but a long timeout may

5.2. DEFINITIONS AND SYSTEM MODEL 63

stall other clients needlessly in case of failure. Farsite expires leases after a few hours [35], which

is acceptable only because Farsite is not designed for large-scale write sharing [13].

To scale metadata further, Farsite hosts metadata on multiple independent replicated state ma-

chines called directory groups. To ensure namespace consistency, Farsite uses a special-purpose

subprotocol to support Windows-style renames across directory groups [35]. This subprotocol al-

lows Farsite to scale, but it is inflexible and does not generalize to other operations. For example,

the subprotocol cannot handle POSIX-style renames [35]. Byzantine Locking would allow Farsite

and similar protocols to maintain scalability without resorting to a special-purpose protocol.

Yin et al. [107] describe an architecture in which agreement on operation order is separated

from operation execution, allowing execution to occur on distinct servers. But, the replicated state

machine protocol is never relieved of the task of ordering operations, and as such, it remains a

bottleneck to performance.

Recent research has provided techniques for improved uncommon case performance, which

would complement Zzyzx’s improvement of common case performance. Clement et al. [30] im-

prove the performance of Byzantine fault-tolerant systems under attack. Singh et al. [95] propose

using a pre-serializer to mask conflicts in quorum-based protocols, which can improve performance

in the presence of contention.

Dividing the state machine into objects, as is required to achieve the benefits of Zzyzx, has

been used in many previous replicated state machine systems. (Quorum systems frequently use

this technique as well, as discussed above.) For example, in their work preceding Zyzzyva, Kotla

et al. [57] describe CBASE, which partitions a state machine into objects and allows concurrent

execution of operations known to involve only independent state. Rodrigues et al. [88] describe

BASE, which partitions a state machine into objects to allow independent recovery of (abstract

views of) state across non-identical replicas.

Much progress has also been made on improving non-Byzantine fault-tolerant replicated state

machine protocols, such as Paxos [64]. Chandra et al. [25] hardened a production Paxos imple-

mentation with ad-hoc consistency checks to tolerate some corruptions. Mao et al. [72] proposed

Mencius, a Paxos-like protocol in which the leader rotates to improve throughput.

5.2 Definitions and System Model

This chapter makes the same assumptions about network asynchrony and the security of crypto-

graphic primitives (e.g., MACs, signatures, and hash functions), and offers the same guarantees of

liveness and correctness (linearizability), as the most closely related prior works [2, 24, 32, 55].

Zzyzx tolerates up to f Byzantine faulty servers and any number of Byzantine faulty clients, given

3 f +1 servers. As will be discussed, Zzyzx allows physical servers to take on different roles in the

protocol, namely as log servers or state machine replicas. A log server and replica can be co-located

on a single physical server, or each can be supported by separate physical servers. Regardless of the

mapping of roles to physical servers, the presentation here assumes that there are 3 f +1 log servers,

at most f of which fail, and 3 f +1 replicas, at most f of which fail.

To model the strong guarantees provided by Byzantine fault tolerance, faulty nodes are assumed

to be controlled and coordinated by a malicious adversary. The adversary also controls the net-

work, deciding if and when messages are delivered and corrupting messages at will. Cryptographic

64 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

message authentication codes (MACs) and signatures are used to ensure the integrity of messages

between correct nodes.

Of course, such a powerful adversary could prevent progress by refusing to deliver messages.

In general, a replicated state machine may not be live in an asynchronous network environment,

even if only a single benign fault might occur [40]. Zzyzx implements Byzantine Locking on

top of Zyzzyva, and it provides the same liveness guarantee [55]: Zzyzx is live if the network is

eventually synchronous [37], i.e., there is a fixed (though potentially unknown) delay bound and

some (unknown) point in time after which all messages are delivered within that bound. In general,

Byzantine Locking inherits the liveness properties of the underlying protocol. For example, an

obstruction-free Byzantine Locking protocol could be built on top of Q/U [2].

As in prior protocols [2, 24, 32, 55], Zzyzx satisfies linearizability [51] from the perspective of

correct clients. Linearizability requires that correct clients issue operations sequentially, leaving at

most one operation outstanding at a time, as assumed in this chapter, but this requirement can be

relaxed. Each operation applies to one or more objects, which are individual components of state

within the state machine.

Two operations are concurrent if each operation’s response does not precede the other’s invoca-

tion. This chapter makes a distinction between concurrency and contention. An object experiences

contention if distinct clients submit concurrent requests to the object or interleave requests to it

(even if those requests are not concurrent). For example, an object experiences frequent contention

if two clients alternate writing to it. Low contention can be characterized by long contention-free

runs on an object, comprised of multiple operations on the object by a single client.

It is precisely such contention-free runs on objects for which Byzantine Locking is beneficial,

since it provides exclusive access to those objects and enables an optimized protocol to be used to

invoke operations on them. As such, it is important for performance that objects be defined so as to

minimize contention for them. HQ [32] and Q/U [2] divide the state machine into objects for similar

reasons. CBASE [57] divides the object space to exploit request parallelism within a single state

machine. Of course, the granularity depends on the application and the workload. In the extreme, if

only one client is active much of the time, the state need not be partitioned at all.

Because Byzantine Locking ensures good performance in fault- and contention-free runs, the

replicated state machine protocol design can focus on other goals, such as efficiently handling

faults [30] or contention [24, 55], or even in simplifying the protocol. Many replication protocols

elect a server as a leader, calling it the primary [24, 55], coordinator [72], or sequencer [95]. For

simplicity and concreteness, this chapter assumes Byzantine Locking on top of Zyzzyva, so certain

activities can be relegated to the primary to simplify the protocol. Take note, however, that Byzan-

tine Locking is not dependent on a primary-based protocol, but can build on a variety of underlying

replicated state machine protocols.

5.3 Byzantine Locking and Zzyzx

This section describes Byzantine Locking and Zzyzx at a high level. A more formal treatment of

Byzantine Locking, including a proof of correctness and liveness, is provided in Appendix A.

Byzantine Locking provides a client an efficient mechanism to modify replicated objects by pro-

viding the client temporary exclusive access to the object. A client that holds temporary exclusive

5.3. BYZANTINE LOCKING AND ZZYZX 65

Client

B) Log
interface

A) Zyzzyva
interface

C
)

U
n
lo

ck

op1, op2, …

op1, op2, …

op1, op2, …

Per-client request logs

Zyzzyva

Log

servers

hemptyi

Figure 5.3.3: Zzyzx components. The execution of Zzyzx can be divided into three subprotocols,

described in Section 5.3. A) If a client has not locked the objects needed for an operation, the client

uses a substrate protocol such as Zyzzyva (Section 5.3.1). B) If a client holds locks for all objects

touched by an operation, the client uses the log interface (Section 5.3.2). C) If a client tries to

access an object for which another client holds a lock, the unlock subprotocol is run (Section 5.3.3).

access to an object is said to have locked the object. Zzyzx implements Byzantine Locking on top

of Zyzzyva [55], as illustrated in Figure 5.3.3. In Zzyzx, objects are unlocked by default. At first,

each client sends all operations through the Zyzzyva interface (Figure 5.3.3A). Upon realizing that

there is little contention, the client sends a request through Zyzzyva to lock a set of objects. The

Zyzzyva interface and the locking operation are described in Section 5.3.1.

For subsequent operations that touch only locked objects, the client uses the log interface (Fig-

ure 5.3.3B). The excellent performance of Zzyzx derives from the simplicity of the log interface,

which is little more than a replicated append-only log. To issue a request, a client increments a

sequence number and sends the request to 3 f +1 log servers, which may or may not be physically

co-located with the Zyzzyva replicas. Each log server appends the operation to its per-client request

log if the operation is in order, and then executes the operation on its local state before returning a

response to the client. If 2 f +1 log servers provide matching responses, the operation is complete.

The log interface is described further in Section 5.3.2.

If another client attempts to access a locked object through the Zyzzyva interface, the primary

initiates the unlock subprotocol (Figure 5.3.3C). The primary sends a message to each log server to

unlock the object. The log servers reach agreement on their state using the Zyzzyva interface, mark

the object as unlocked, and copy the updated object back into the Zyzzyva replicas. If the client

that locked the object subsequently attempts to access the object through the log interface, the log

server replies with an error code, and the client retries its request through the Zyzzyva interface.

The unlock subprotocol is described further in Section 5.3.3.

66 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

5.3.1 The Zyzzyva Interface and Locking

In Zzyzx, each client maintains a list of locked objects that is the client’s current best guess as to

which objects it has locked. The list may be inaccurate without impacting correctness. Each replica,

including the primary, maintains a special state machine object called the lock table. The lock table

provides an authoritative description of which client, if any, has currently locked each object. The

lock table also provides some per-client state, including a variable vs. Each object is initially marked

unlocked in the lock table, vs is set to 1 for each client, and each client’s list of its locked objects is

empty.

Upon invoking an operation in Zzyzx, a client checks if any object touched by the operation is

not in its list of locked objects, in which case the client uses the Zyzzyva interface. As in Zyzzyva,

the client sends its request to the primary replica. The primary checks if any object touched by the

request is locked. If not, the primary resumes the standard Zyzzyva protocol, batching requests as

needed and sending ordering messages to the other replicas as usual.

If an object touched by the request is locked, the primary initiates the unlock subprotocol, de-

scribed in Section 5.3.3. The request is enqueued until all touched objects are unlocked. Any

subsequent request to lock an object touched by an enqueued request is enqueued as well (or, alter-

natively, denied). As objects are unlocked, the primary dequeues each enqueued request for which

all objects touched by the request have been unlocked, and resumes the standard Zyzzyva protocol

as above.

Note that a client can participate in Zzyzx using only the Zyzzyva protocol, and in fact does not

need to be aware of the locking mechanism at all. In general, a replicated state machine protocol

can be upgraded to support Byzantine Locking without affecting legacy clients.

A client can attempt to lock its working set to improve its performance. To do so, the client sends

a lock request for each object using the Zyzzyva protocol. The replicas evaluate a deterministic

locking policy to determine whether to grant the lock. If granted, the client adds the object to its

list of locked objects. The replicas also return the value of the per-client vs variable, which is

incremented upon unlock. The variable vs stands for view-stamp, but this chapter will refer to it

as vs to prevent confusion with the view-stamp in PBFT and Zyzzyva. The vs variable is used to

synchronize state between the log servers and Zyzzyva replicas.

If there is little concurrency across a set of objects, the entire set can be locked in a single

operation. For example, each file in a file system could be represented by an object, and a client’s

entire home directory subtree could be locked upon login, using the efficient log interface for nearly

all operations.

The Zzyzx prototype uses a simple policy to decide when to lock an object: each replica counts

how often a single client accesses an object without contention. The client sets a flag in its request

stating that it would like to lock touched objects. If the count reaches a threshold and the flag is

set, the client locks the object. (The evaluation in Section 5.5 uses a threshold of ten.) Counters

are only kept for recently accessed objects. Every few thousand operations, each counter is reset,

which allows any client to lock the object. Reseting the counters makes locking multiple objects as

above more likely. Thus, a client will only lock an object if no other client has recently accessed the

object.

5.3. BYZANTINE LOCKING AND ZZYZX 67

Client
Primary

Server 2
Server 3
Server 4

Zzyzx Zyzzyva

Figure 5.3.4: Basic communication pattern of Zzyzx versus Zyzzyva. Operations on locked

objects in Zzyzx complete in a single round-trip with 2 f + 1 log servers. Zyzzyva requires three

message delays, if all 3 f + 1 replicas are responsive, or more message delays, if some replicas are

unresponsive.

5.3.2 The Log Interface

Upon invoking an operation in Zzyzx, a client may find that all objects touched by the operation are

in its list of locked objects, in which case the client uses the log interface. The client increments its

request number, which is a local counter used for each operation issued through the log interface,

and builds a message containing the request, the request number, and the vs. It then computes a

MAC of the message for each log server, as in prior protocols. Unlike prior protocols, the client then

computes another MAC of the message and the first set of MACs for each log server. The inner MACs

are used in the unlock subprotocol. The client then sends the message along with the inner MACs

and the appropriate outer MAC to each log server. Thus, the outer MAC is a standard authenticator.

The layered set of MACs is called a layered authenticator.

Upon receiving a request, each log server verifies the outer MAC. The log server then verifies

that the request is in order as follows: If the request number is lower than the most recent request

number for the client, the request is a duplicate and is ignored. If the request number matches

the most recent number, the most recent response is re-sent. If the request number is greater than

the next in sequence, or if the vs value is greater than the log server’s value, the log server must

have missed a request so it initiates state transfer (described in Section 5.4.1). If the log server has

promised not to access an object touched by the request (since the object is in the process of being

unlocked, as described in Section 5.3.3), it returns failure.

If the request number is next in sequence, the log server tries to execute the request. It lazily

fetches objects from replicas as needed by invoking the Zyzzyva interface. Of course, if a log server

is co-located with a Zyzzyva replica, pointers to objects may be sufficient. If fetching an object fails

because the object is no longer locked by the client, the log server returns failure. Otherwise, the

log server has a local copy of each object that is touched by the request. It executes the request on

its local copy, appends the request, vs, request number, and the inner set of MACs to its request log,

and returns a response. Upon receiving 2 f +1 non-failure responses, the client returns the majority

response.

If some log server returns failure, the client sends a special retry request through the Zyzzyva

interface, which includes both the request and the request number. Each replica checks if the request

completed at the log servers before the last execution of the unlock subprotocol, in which case the

replicas tell the client to wait for a response from a log server. Otherwise, the replicas execute the

request as a normal Zyzzyva request.

68 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

Client
Log Server 1
Log Server 2
Log Server 3
Log Server 4

Primary
Replica 2
Replica 3
Replica 4

{Request { Try
unlock {Issue

request { Try
unlock {Break

lock {Validate
logs {Unlock {Issue

request

A) Fast unlock B) Full unlock

Figure 5.3.5: Unlock message diagram. A) In the absence of faults and concurrency, the fast

unlock subprotocol is executed (Section 5.3.3). The primary fetches a hash of the request log at

2 f + 1 log servers (labeled “Try Unlock”). If hashes match, the primary sends the hash values,

which unlock the object, and the conflicting request through Zyzzyva in a batch (“Issue request”).

B) Otherwise, the full unlock subprotocol is executed (Section 5.3.3). The primary fetches request

logs from 2 f +1 log servers (“Break lock”). It then asks each log server to validate the inner client

MACs in the request logs (“Validate logs”). Log servers agree on the longest valid request log using

Zyzzyva (“Unlock”), and they replay that request log to reach a consistent state. Finally, as above,

the log servers send the primary matching hashes, which the primary sends with the conflicting

request through Zyzzyva (“Issue request”).

Figure 5.3.4 shows the basic communication pattern of the log interface in Zzyzx versus

Zyzzyva. Zyzzyva requires 50% more network hops than Zzyzx, and Zyzzyva requires all 3 f + 1

servers to be responsive to perform well, f more than the 2 f + 1 responsive servers that Zzyzx re-

quires. Zzyzx improves upon Zyzzyva further, though, by removing the bottleneck primary and re-

quiring less cryptography at servers. The latter improvement obviates the need for batching, improv-

ing latency without cost to throughput. Batching is a technique used in previous protocols [21, 55]

where the primary accumulates a batch of requests before sending them to other replicas. Batch-

ing allows the cryptographic overhead of the agreement subprotocol to be amortized over many

requests, but waiting for a batch of requests before execution can increase latency. Because Byzan-

tine Locking provides clients temporary exclusive access to objects, each client can order its own

requests for locked objects, avoiding the need for an agreement or even a speculative agreement [55]

subprotocol.

5.3.3 Handling Contention

The protocol, as described so far, is a simple combination of operations issued to Zyzzyva (Sec-

tion 5.3.1) and requests appended to a log (Section 5.3.2). The magic of Byzantine Locking is found

in the unlock subprotocol, which differentiates Byzantine Locking from prior lease- and lock-like

mechanisms found in systems such as Farsite [4] and Chubby [16].

A client that does not hold a lock on an object uses the Zyzzyva interface, as described in

Section 5.3.1. Similarly, a client that receives a failure response from a log server retries that

request through the Zyzzyva interface, as described in Section 5.3.2. Either way, the client sends its

5.3. BYZANTINE LOCKING AND ZZYZX 69

request to the primary, which checks if any objects touched by the request are locked, as described

in Section 5.3.1. If an object is locked, the primary initiates the unlock subprotocol, described

in this section. Though this section describes unlocking a single object, implementations can, of

course, unlock multiple objects in a single execution of the unlock subprotocol. The primary is

well-positioned to initiate the unlock subprotocol, because it knows which objects are locked and it

controls the order in which operations are issued.

The unlock subprotocol consists of a fast path and a slower path, described below in Sec-

tions 5.3.3 and 5.3.3, respectively. Figure 5.3.5 shows the communication pattern for both types

of unlock. As shown in Figure 5.3.5A, the fast unlock is quite efficient, requiring just a single

round-trip between the primary and 2 f + 1 log servers. The full unlock protocol, shown in Fig-

ure 5.3.5B, requires additional communication, but is required only when a client or log server is

faulty, or when request logs do not match.

Fast Unlock

In the fast unlock path, shown in Figure 5.3.5A, the primary sends a “Try unlock” message to each

log server, describing the object (or set of objects) being unlocked. Each log server constructs a

message containing the hash of its request log and the hash of the current value of the object. A

designated replier includes the value of the object in its message (as in replies for PBFT [24]). Once

again, if log servers are co-located with Zyzzyva replicas, only a pointer to the object may need to

be sent. Each log server sends its response to the primary formatted as a Zyzzyva request. Unlike

other Zyzzyva requests, however, the log server does not wait for a response, but rather the primary

resends its “Try unlock” message until enough log servers provide responses.

Upon receiving 2 f + 1 responses with matching object and request log hashes and at least one

object that matches the hashes, the primary sends the responses through the standard Zyzzyva proto-

col, batched with any requests enqueued due to object conflicts (see Section 5.3.1). Before sending

a response to the primary, each log server adds the object to a list of objects it promises not to touch

until the next instantiation of the full unlock subprotocol, described in Section 5.3.3 below.

Making matching logs more likely: The fast path requires that request logs match, which

may not be the case if the messages for a request from the client and the messages for a “Try

unlock” from the primary arrive in a different order at different log servers, such that the primary’s

message precedes the client’s request on some log servers but vice-versa on others. Fortunately,

concurrent requests are less common than in other protocols, because only two nodes are involved

(a single client and the primary). The window of vulnerability for interleaving is the jitter between

client requests divided by the round-trip time (the client has at most one outstanding request). This

window is similar to the one in Q/U [2], and better than the one in HQ [32] (HQ’s window spans

two write phases). Furthermore, depending on network topology, multicast may enforce a de facto

ordering, allowing concurrency only if a packet is dropped between the last switch before the log

servers.

To further increase the likelihood that request logs match, each log server can send a hash for the

request log up to the most recent request that touched the object (or set of objects) being unlocked.

Thus, a client request concurrent with an unlock operation only forces a full unlock if an object is

needed by both the request and the unlock.

70 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

The Full Unlock Subprotocol

If the request logs do not match in “Try unlock” from the fast path, the full unlock subprotocol

(Figure 5.3.5B) must be initiated. The primary fetches signed request logs from 2 f +1 log servers.

(Signatures can be avoided using standard techniques, but full unlock is rare, so signatures are used

to simplify the protocol description.) Before sending its request log, a log server adds the object

(or set of objects) being unlocked to its list of objects that it promises not to touch until the next

full unlock, as in a fast unlock. The primary then sends these request logs to each log server, which

validates its MAC from the inner layer of MACs stored with each request in the request log (see

Section 5.3.2). Log validation can be skipped if the longest request log matches at f +1 log servers.

The log servers then vote on which request logs contain valid MACs by issuing a Zyzzyva re-

quest. The longest request log for which f +1 log servers found valid MACs is returned to each log

server, which then replays the log as needed to reach a consistent state that matches the state at other

correct log servers. The log server then marks the object being unlocked as unlocked, increments

vs, and clears the list of objects it promised not to touch until the next full unlock. Finally, as in

fast unlock in Section 5.3.3, correct log servers send the primary matching hash values describing

their state and the object to be unlocked. The primary sends these hash values, along with any re-

quests enqueued due to object conflicts (see Section 5.3.1), in a batch through the standard Zyzzyva

protocol.

Figure 5.3.5B illustrates a few optimizations over the complete pseudo-code for the full unlock

subprotocol. In particular, several sequential Zyzzyva requests can be issued in parallel, as shown

in the “Unlock” phase in Figure 5.3.5B. The full unlock subprotocol is similar to view change in

PBFT or Zyzzyva, and is not needed in fault- and concurrency-free executions.

5.4 Protocol Details

The log servers use checkpointing and state transfer mechanisms, similar to mechanisms found in

PBFT [24], HQ [32], and Zyzzyva [55], described in Section 5.4.1. As in Q/U [2] and HQ [32],

Zzyzx takes advantage of preferred quorums. Section 5.4.2 describes optimizations for read-only

requests, more aggressive locking, lower contention, and preferred quorums. Zzyzx can provide

near-linear scalability by deploying additional replicas, discussed in Section 5.4.3. Such scalability

is unprecedented—the throughput of most Byzantine fault-tolerant protocols cannot be increased

by adding additional replicas, because all requests flow through a bottleneck node (e.g., the pri-

mary in PBFT [24] and Zyzzyva [55]) or overlapping quorums (which provides limited scalability).

Appendix B provides further details.

Though this paper assumes that at most f servers (log servers or replicas) fail, Byzantine Lock-

ing (and many other Byzantine fault-tolerant protocols) can support a hybrid failure model that

allows for different classes of failures. As in Q/U [2], suppose that at least n− t servers are correct,

and that at least n− b are honest, i.e., either correct or fail only by crashing; as such, t ≥ b. Then,

the total number of servers is b + 2t + 1 rather than 3 f + 1, and the quorum size is b + t + 1 rather

than 2 f +1. Of course, when f = b = t, it is the case that b+2t +1 = 3 f +1 and b+ t +1 = 2 f +1.

The benefit of such a hybrid model is that one additional server can provide the benefits of Byzan-

tine fault-tolerance. (Or, more generally, b additional servers can tolerate b simultaneous Byzantine

5.4. PROTOCOL DETAILS 71

faults.) A hybrid model suits deployments where arbitrary faults, such as faults due to soft errors,

are less common than crash faults.

5.4.1 Checkpointing and State Transfer

Log servers should checkpoint their state periodically both to truncate their request logs and to limit

the amount of work needed for a full unlock. The full unlock operation acts as a checkpointing

mechanism, because log servers reach an agreed-upon state. Thus, upon full unlock, requests prior

to the unlock can be purged. The simplest checkpoint protocol is for log servers to execute the full

unlock subprotocol for a null object at fixed intervals. Zzyzx can also use standard checkpointing

techniques found in Zyzzyva [56] and similar protocols, which may be more efficient.1

If a correct client sends a request number greater than the next request number in order, the log

server must have missed a request. The log server sends a message to all 3 f other log servers, asking

for missed requests. Upon receiving matching values for the missing requests and the associated

MACs from f + 1 log servers, the log server replays the missed requests on its local state to catch

up. Since 2 f + 1 log servers must have responded to each of the client’s previous requests, at least

f +1 correct log servers must have these requests in their request logs. A log server may substitute

a stable checkpoint in place of prior requests.

5.4.2 Optimizations

Read-only requests: A client can read objects locked by another client if all 3 f + 1 log servers

return the same value, as in Zyzzyva. Thus, read-only operations perform no worse. If 2 f + 1 log

servers return the same value and the object was not modified since the last checkpoint, the client

can return that value. If the object was modified, the client can force a checkpoint, which may be

less expensive than the unlock subprotocol.

Aggressive locking: If an object is locked but never fetched by log servers through the Zyzzyva

interface, there is no need to run the unlock subprotocol under contention. The primary can just

send the conflicting request through the standard Zyzzyva protocol, which will deny future fetch

requests pertaining to the previous lock. Thus, aggressively locking a large set of objects does not

lower performance.

Pre-serialization: Section 5.5.7 finds that Zzyzx outperforms Zyzzyva for contention-free runs

as short as ten operations. The pre-serializer technique of Singh et al. [95] could make the break-

even point even lower.

Preferred quorums: Rather than send requests to all 3 f + 1 log servers for every operation, a

client can send requests to 2 f +1 log servers if all 2 f +1 servers provide matching responses. This

optimization limits the amount of data sent over the network, which is useful when the network is

bandwidth- or packet-limited, or when the remaining f replicas are slow. It also frees f servers to

1Such protocols operate as follows. A log server computes a tentative checkpoint at fixed request intervals, which

consists of the log server’s current state. Each log server sends a MACed hash of its tentative checkpoint to every other

log server. Upon accumulating 2 f +1 such messages that match, a log server sends a checkpoint message to every other

log server, which includes the hash from the tentative checkpoint. Upon accumulating 2 f + 1 checkpoint messages, the

checkpoint is stable and prior state can be purged.

72 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

process other tasks or operations in the common case, thus allowing a factor of up to
3 f+1
2 f+1

higher

throughput.

Performance under attack: Byzantine fault-tolerant prototypes often perform poorly, if at all,

in malicious environments [30]. The protocol description in Section 5.3 does not address perfor-

mance under attack in the interest of clarity and simplicity, but standard techniques to detect, isolate,

and mitigate faulty behavior can be applied (e.g., [30, 46], [21, Section 3.2.2]).

5.4.3 Scalability Through Log Server Groups

There is nothing in Section 5.3 that requires the group of replicas used in the Byzantine fault-tolerant

replicated state machine protocol to be hosted on the same servers as the log servers. Thus, a system

can deploy replicas and log servers on distinct servers. Similarly, the protocol can use multiple

distinct groups of log servers. An operation that spans multiple log server groups can always be

completed through the Zyzzyva interface. The benefit of multiple log server groups is near linear

scalability in the number of servers, which far exceeds the scalability that can be achieved by adding

servers in prior protocols.

For example, given 4 f + 2 replicas and assuming cross-group operations are rare, the replicas

can be divided into two log server groups with non-overlapping preferred quorums of size 2 f + 1.

Thus, the protocol can scale by roughly a factor of 2× given an additional f + 1 servers. The first

2 f + 1 servers would comprise the preferred quorum of the first log server group, and the second

2 f +1 servers would comprise the preferred quorum of a second log server group. The state machine

replicas would be hosted on any subset of 3 f +1 servers.

Because most operations would touch only half of the servers, the achievable system throughput

would be double that of a typical implementation. Furthermore, this technique may allow log servers

in a wide-area distributed system to be located geographically closer to clients. For example, 2 f +1

log servers could be deployed in each of the California, Massachusetts, Texas, and Washington

offices of a company. Most operations would operate efficiently on local copies of the data in

request logs. Operations that spanned sites could be completed through the replicated state machine

protocol run over 3 f +1 replicas.

An application can benefit from multiple log server groups only if many operations execute

on disjoint subsets of objects and if objects do not need to be transferred often. Though not all

applications can benefit, several important applications in most need of Byzantine fault tolerance

meet these requirements. For example, many distributed storage and database applications are em-

barrassingly parallelizable. In fact, Zzyzx was designed in the course of architecting large-scale,

high-performance Byzantine fault-tolerant storage systems [1, 48]. In such a system, Zzyzx would

manage metadata, and data would be accessed through a Byzantine fault-tolerant block storage

protocol (e.g., [18, 44, 48]).

5.5 Evaluation

This section evaluates the performance of Zzyzx and compares it with that of Zyzzyva and that of

an unreplicated server. Zzyzx is implemented as a module on top of Zyzzyva, which in turn is a

modified version of the PBFT library [24]. MD5 was replaced with SHA1 in Zyzzyva and Zzyzx,

5.5. EVALUATION 73

because MD5 is no longer considered secure [104]. (Zyzzyva also uses AdHash, which is known to

be insecure [103].) Zyzzyva is the only other Byzantine fault-tolerant protocol measured, because

it outperforms prior Byzantine fault-tolerant protocols [55, 96].

Because Zyzzyva does not utilize Byzantine Locking, replicas must agree on the order of re-

quests before a response is returned to the client (rather than the client ordering requests on locked

objects). Order agreement requires that the primary generates MACs for each of the 3 f + 1 other

servers, which would prove expensive if done for every operation. Thus, the primary in Zyzzyva

(like in PBFT) orders multiple operations at once. The primary accumulates a batch of size B of

requests. It then orders all B operations and computes a single set of MACs, amortizing the cryp-

tographic cost over several requests. Though important for high throughput in Zyzzyva, batching

increases latency in Zyzzyva. This section considers Zyzzyva using batch sizes of one (B=1) and

ten (B=10).

5.5.1 Assumptions and Limitations

Zzyzx always ensures correctness, but it was not designed to perform well in a malicious environ-

ment. There are two reasons for this design choice. First, in many environments, corruptions are

relatively rare. Thus, performance only matters in the common case, when there are no corruptions.

Second, the design did not consider performance in malicious environments to avoid additional

complexity. Most Byzantine fault-tolerant replicated state machine protocols perform poorly in ma-

licious environments, but some recent proposals introduce techniques that Zzyzx could adopt to

ensure reasonable performance even in the presence of malicious attackers [7, 30].

Zzyzx requires that the state machine can be partitioned into objects. As discussed in Sec-

tion 5.1, many other protocols impose similar requirements, and many important systems are

amenable to partitioning into objects. Furthermore, the scalability of Zzyzx depends upon the abil-

ity to partition the workload into log server groups. Fortunately, as discussed in Section 5.4.3, many

important workloads, such as distributed storage workloads, are easily partitionable.

5.5.2 Experimental Setup

All experiments are performed on a set of computers that each have a 3.0 GHz Intel Xeon processor,

2 gigabytes of memory, and an Intel PRO/1000 network card. All computers are connected to a HP

ProCurve Switch 2848, which has a specified internal bandwidth of 96 Gbps (69.3 Mpps). Each

computer runs Linux kernel 2.6.28-7 (the most recent at the time of writing) with default networking

parameters. Experiments use the Zyzzyva code released by the protocol’s authors [55], configured

to use all optimizations [55, 56]. Both Zyzzyva and Zzyzx use UDP multicast. After accounting for

the performance difference between SHA1 and MD5, the evaluation of Zyzzyva agrees with that of

Kotla et al. [55].

A Zyzzyva replica process runs on each of 3 f + 1 server computers. For Zzyzx, except where

noted, one Zyzzyva replica process and one log server process run on each of 3 f + 1 server com-

puters. Zzyzx is measured both with the preferred quorum optimization of Section 5.4.2 enabled

(labeled “Zzyzx ”) and with preferred quorums disabled (labeled “Zzyzx-noPQ”).

The micro-benchmark workload used in Sections 5.5.3 through 5.5.5 consists of each client

process performing a null request and receiving a null reply. This workload is the same as the

74 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

0 20 40 60 80 100 120
0

50

100

150

Number of clients

T
h
ro

u
g
h
p
u
t

(k
O

p
s/

se
c)

No Redundancy

Zzyzx-noPQ

Zzyzx

Zyzzyva (B=10)

Zyzzyva (B=1)

Zzyzx +f+1

Figure 5.5.6: Throughput vs. client processes when f = 1 and all servers are responsive.

workload measured by Kotla et al. [55], which is based on the 0/0 micro-benchmark of Castro and

Liskov [24]. Each client accesses an independent set of objects, avoiding contention. A client run-

ning Zzyzx locks each object on first access. The workload is meant to highlight the overhead found

in each protocol, as well as to provide a basis for comparison by reproducing prior experiments.

Each physical client computer runs 10 instances of the client process. This number was chosen

so that the client computer does not become processor-bound. All experiments are run for 90 sec-

onds, with measurements taken from the middle 60 seconds. The mean of at least 3 runs is reported,

and the standard deviation for all results is within 3% of the mean.

5.5.3 Scalability

Figure 5.0.1 on page 58 shows the throughput of Zzyzx and Zyzzyva as the number of servers

increases when tolerating one fault. The first 3 f + 1 log servers are co-located with the Zyzzyva

replicas. Additional log servers run on dedicated computers. Unlike prior protocols, including

Zyzzyva, the performance of Zzyzx improves as more servers are utilized. Since only 2 f + 1 log

servers are involved in each operation and independent log server sets do not need to overlap, the

increase in usable quorums results in nearly linear scalability. Zyzzyva and previous protocols do

not support scaling in this fashion. Although data is only shown for f = 1, the general shape of the

curve applies when tolerating more faults.

5.5.4 Throughput

Figure 5.5.6 shows the throughput achieved, while varying the number of clients, when tolerating a

single fault and when all servers are correct and responsive. Throughput is not noted for B=10 when

using fewer than 10 clients. Zzyzx significantly outperforms all Zyzzyva configurations. Zzyzx’s

maximum throughput is 2.9× that of Zyzzyva with B=10, and higher still compared to Zyzzyva

without batching. When Zzyzx is run on f +1 additional servers (6 total), it’s maximum throughput

5.5. EVALUATION 75

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Throughput (kOps/sec)

L
at

en
cy

p
er

re
q
u
es

t
(m

s)

No Redundancy

Zzyzx-noPQ

Zzyzx

Z
y
z
z
y
va

(B
=

1
0

)

Z
yz

zy
va

(B
=
1
)

Figure 5.5.7: Latency vs. throughput when f = 1 and all servers are responsive.

is 3.9× that of Zyzzyva with B=10. Even without preferred quorums, Zzyzx’s maximum throughput

is 2.2× that of Zyzzyva with B=10, due to Zzyzx’s lower network and cryptographic overhead.

Due to the preferred quorums optimization, Zzyzx provides higher maximum throughput than

the unreplicated server, which simply generates and verifies a single MAC, because each log server

processes only a fraction (
2 f+1
3 f+1

) of the requests. With preferred quorums disabled (ZZYZX-NOPQ),

Zzyzx provides lower throughput than the unreplicated server due to checkpoint, request log, and

network overheads.

5.5.5 Latency

Figure 5.5.7 shows the average latency for a single operation as the applied load is varied. When

serving a single request, Zzyzx exhibits 39–43% lower latency than Zyzzyva, and Zzyzx continues

to provide lower latency as load increases. The lower latency is because Zzyzx requires only 2 one-

way message delays (33% fewer than Zyzzyva), each server computes fewer MACs, and log servers

in Zzyzx never wait for a batch of requests to accumulate before executing the request and returning

a response.

Figure 5.5.7 also illustrates the problem with batching in Zyzzyva. Unless replicas are satu-

rated, Zyzzyva provides lower latency when batching is disabled, but batching allows substantially

higher maximum throughput.2 Whereas batching forces a choice between low latency and a high

throughput in Zyzzyva, Zzyzx can provide both low latency and high throughput.

2PBFT uses feedback from subsequent protocol phases to tune the batch window, avoiding the latency increase seen in

Zyzzyva. Zyzzyva eliminates subsequent protocol phases from PBFT and so cannot use this technique. But, Zyzzyva still

exhibits lower latency than PBFT because requests complete after fewer message delays and require less cryptography.

76 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

0 20 40 60 80 100 120
0

50

100

150

Number of clients

T
h
ro

u
g
h
p
u
t

(k
O

p
s/

se
c)

No Redundancy

Zzyzx

Zzyzx-noPQ

Zyzzyva (B=10)

Zyzzyva (B=1)

Figure 5.5.8: Throughput vs. client processes when f = 1 and one server is unresponsive.

5.5.6 Performance with f Slow Servers

Figure 5.5.8 shows the throughput achieved while varying the number of clients when configured to

tolerate a single fault and when a single server is unresponsive though not malicious (e.g., crashed).

The performance of an unreplicated server is included for comparison.

Zzyzx throughput decreases approximately 33%, to the unaffected level of Zzyzx-noPQ, be-

cause all requests now use the same 2 f +1 servers. Once clients detect that a server in a preferred

quorum of the log server group is unresponsive, they send requests to all servers in the log server

group and stay on the fast path. With or without preferred quorums, when one server is unrespon-

sive, Zzyzx provides 55% higher throughput than Zyzzyva.

Figure 5.5.8 for Zyzzyva with B=10 reports substantially better throughput than reported by

Kotla et al. at SOSP [55], because the released Zyzzyva code uses the “commit optimization” de-

scribed in their extended technical report [56]. The commit optimization, however, requires an extra

message delay in the form of an all-to-all round of communication. Due to this all-to-all commu-

nication, Zyzzyva with the commit optimization may not be as “fault scalable” [2] as the Zyzzyva

protocol reported by Kotla et al. at SOSP [55].

5.5.7 Performance Under Contention

Figure 5.5.9 shows the performance of Zzyzx under contention. For this workload, each client

accesses an object a fixed number of times before the object is unlocked. The client then procures a

new lock and resumes accessing the object. The experiment is designed to identify the break-even

point of Zzyzx, which is the length of the shortest contention-free run for which Zzyzx outperforms

Zyzzyva.

When batching in Zyzzyva is disabled to improve latency, Zzyzx outperforms Zyzzyva for

contention-free runs that average 10 or more operations. Zzyzx outperforms Zyzzyva when batch-

ing is enabled (B=10) for contention-free runs that average 20 or more operations. Zzyzx achieves

5.5. EVALUATION 77

10
0

10
1

10
2

10
3

0

20

40

60

80

100

120

Operations between contention

T
h
ro

u
g
h
p
u
t

(k
O

p
s/

se
c)

Zzyzx-noPQ

Zzyzx

Zzyzx-noPQ max

Zzyzx max

Zyzzyva max (B=10)

Zyzzyva max (B=1)

Figure 5.5.9: Throughput vs. number of consecutive contention-free ops when f = 1 and all

servers are responsive. The horizontal lines show the throughput of Zyzzyva and Zzyzx in the

absence of contention.

85–90% of its maximum throughput for contention-free runs of 160 operations—as noted in Sec-

tion 5.1.1, contention-free runs often average in the thousands.

5.5.8 Postmark and Trace-driven Execution

Figure 5.5.10 compares the execution of Zzyzx and Zyzzyva on a file system workload. Zzyzx

outperforms prior replicated state machines for both data and metadata due to its minimal com-

munication, but custom block transport protocols can use erasure coding to outperform replicated

state machines [44, 48]. Thus, this evaluation focuses on difference in the performance between

protocols when managing the metadata of a distributed file system.

To test a metadata workload, a memory-backed file system using FUSE was implemented

that interfaces with Zyzzyva, Zzyzx, and an unreplicated server for metadata operations. Zzyzx

completed 60% more transactions per second (TPS) than Zyzzyva in the default Postmark bench-

mark [52], where a transaction may consist of multiple Zzyzx or Zyzzyva operations plus some

processing time. Zzyzx completes 22% fewer transactions per second than the unreplicated server.

Postmark produces a workload with many small files, similar to the workload found in a mail server.

Postmark performance depends primarily upon request response time.

Metadata operations were extracted from NFS traces of a large departmental server. Over

14 million metadata operations were considered from the Harvard EECS workload between Mon-

day 17–Friday 21 of February 2003 [38]. A matching workload mix was then executed on Zyzzyva

and Zzyzx. Zzyzx used the lock policy described in Section 5.3.1 to determine when to lock an

object.

The operations in the trace were 55% read-only, for which Zyzzyva used its one round-trip

read optimization. Because read-only operations in Zyzzyva avoid the primary, they perform sim-

ilarly to the Zzyzx-noPQ line. Zzyzx used the log interface for 82% of operations, with an av-

78 CHAPTER 5. SCALABLE FAULT TOLERANCE THROUGH BYZANTINE LOCKING

Postmark Trace-based

transactions throughput

Zzyzx 590 TPS 97.7 kOps/sec

Zyzzyva 369 TPS 51.0 kOps/sec

Unreplicated 757 TPS

Figure 5.5.10: Performance of Zzyzx and Zyzzyva for a file system workload.

erage contention-free run length of 4926 operations. Of the 18% of operations executed through

the Zyzzyva interface, 56% were read-only and used Zyzzyva’s one round-trip read optimization.

Overall, Zzyzx provided a factor of 1.6× higher throughput than Zyzzyva.

5.6 Conclusion

Byzantine Locking allows creation of efficient and scalable Byzantine fault-tolerant services. Com-

pared to the state-of-the-art (Zyzzyva), Zzyzx delivers a factor of 2.2×–2.9× higher throughput

during concurrency-free and fault-free operation, given the minimum number of servers (3 f +1).

Moreover, unlike previous Byzantine fault-tolerant replicated state machine protocols, Zzyzx offers

near-linear scaling of throughput as additional servers are added.

Chapter 6

Conclusion

This dissertation makes a number of contributions to the field of Byzantine fault-tolerant distributed

system design, both in overall protocol design and in techniques that should be useful in other future

protocols. It offers the following three conclusions and a few suggestions for future work:

Byzantine fault-tolerant erasure-coded storage systems can provide similar latency and

throughput as systems that tolerate only crashes: This dissertation demonstrates that Byzantine

fault-tolerant erasure-coded storage systems can be implemented using similar hardware resources

as systems that tolerate only crashes (only m+2 f ≥ 3 f +1 servers) without introducing much com-

putational overhead beyond a checksum of the data or much network overhead beyond an additional

roundtrip when writing large blocks of data.

Byzantine fault-tolerant replicated state machines can service requests in a single roundtrip

to t+b+1 responsive servers with minimal cryptographic overhead: Applications such as a dis-

tributed metadata service require the richer semantics of a state machine. Prior Byzantine fault-

tolerant replicated state machine protocols either required that 3 f + 1 or more nodes participate in

each request or provided lower throughput and higher latency. Zzyzx provides higher throughput

and lower latency than prior protocols, and only 2 f + 1 servers need participate in a request in

the common case. More precisely, when tolerating b Byzantine faulty servers and t crash faults

(t ≥ b), Zzyzx requires t +b+1 servers to participate in each request, out of 2t +b+1 total servers.

Thus, when b = 1, Zzyzx can provide many of the benefits of Byzantine fault tolerance with just

a single additional server. To achieve this result, Zzyzx requires that the workload exhibit low ob-

ject contention. Fortunately, many important application, such metadata services, experience low

contention.

Byzantine fault-tolerant replicated state machines can scale through workload partitioning:

Block storage protocols can scale by distributing blocks of data across a larger set of servers, but

more general services such as a metadata cluster face more challenging scalability. Many prior pro-

tocols could not scale by partitioning the workload because requests were ordered through a single,

centralized server. Zzyzx provides scalable fault tolerance through Byzantine Locking, which al-

lows the workload of a distributed system to be partitioned across distinct sets of If an operation

interacts with state partitioned across different servers, the state is aggregated such that the opera-

79

80 CHAPTER 6. CONCLUSION

tion remains atomic. Thus, in addition to providing higher throughput and lower latency than prior

Byzantine fault-tolerant replicated state machines, Zzyzx introduces unprecedented scalability.

Future work: This dissertation could be extended in a number of ways. Homomorphic fingerprint-

ing uses Reed-Solomon codes [85], Rabin’s Information Dispersal Algorithm [84], and other linear

erasure coding schemes. Some recent erasure coding schemes are more efficient (e.g.. [81]), but

may generate fewer fragments, and may not be linear and hence not compatible with homomorphic

fingerprinting. A potential extension could consider efficient linear erasure coding schemes that

generate many fragments.

Byzantine fault-tolerant replicated state machine protocols are perceived as complicated, but

most share common features. For example, clients can either access servers directly, or clients can

send messages through a pre-serializer [95] or primary. The direct approach improves latency but

suffers under contention (e.g., Kursawe [63], Q/U [2], HQ [32], and Byzantine Locking). The pre-

serializer approach increases latency, but avoids contention (e.g., PBFT [24] and Zyzzyva [55]).

Singh et al. considered adding a pre-serializer to direct-access protocols and found similarities to

primary-based protocols [95]. A potential extension could continue to modularize such concepts.

Appendix A

The Correctness of Byzantine Locking

This appendix provides a proof of the safety and liveness properties of Byzantine Locking and

Zzyzx. Zzyzx can be divided into two types of objects, the manager object and the log object.

The manager object manages lock state and processes requests on objects that experience high

concurrency. It is implemented using a Byzantine fault-tolerant replicated state machine protocol

such as Zyzzyva [55] or PBFT [24]. There is a log object for each client, and each log object

processes requests for objects that have been locked by its client. Zzyzx achieves better performance

through an optimized implementation of the log object.

Section A.1 provides specifications of object types. Section A.1.1 defines the object-based state

machine, which describes the type of applications that Zzyzx can efficiently implement. Zzyzx

can implement state machines similar to those considered by PBFT [24], Q/U [2], HQ [32], and

Zyzzyva [55]. As in some of these protocols, Zzyzx divides application state into objects to ensure

efficiency. Section A.1.2 and Section A.1.3 provide the sequential specification of the log object

and the manager object. Section A.2 describes how a manager object and a set of log objects can

be combined to form a linearizable Byzantine fault-tolerant replicated state machine. Section A.3

describes how a client would submit requests in such a system and demonstrates that such a system

is live.

A.1 Sequential Specifications of Relevant Objects

This section provides the sequential specification of the object-based state machine, the log object,

and the manager object. The term “object” is used in more than one context. In the distributed

systems community, a distributed protocol is used to implement an object, such as a log object,

manager object, or state machine object. But, in a different context, the implementation of a state

machine is often broken into small chunks of state called objects [2, 24, 32, 55], either as a practical

matter or for protocol reasons. This chapter will differentiate between the two by always referring

to the log object, the manager object, or the state machine object in full. Other references to the

word object correspond to portions of state for a state machine implementation.

81

82 APPENDIX A. THE CORRECTNESS OF BYZANTINE LOCKING

A.1.1 The Object-Based State Machine Object

An object-based state machine object consists of object state for a bounded number of objects

and the execute request operation. Each object is referred to by its object identifier, denoted

oid, and the value of an object is denoted state[oid]. Each state[oid] is initialized to a de-

fault value. The execute request operation takes as input the current state and a request, ap-

plies the request to the current state, and returns the new state and a response. In summary,

〈response,state′〉 ← execute request(req,state).
An identifier for the client that submitted the request is often included in the request.

For notational simplicity, the pseudo-code will use the function execute request, which dif-

fers from execute request in two ways. First, the client identifier cid is written ex-

plicitly. Second, execute request modifies state, so it need not return state′ (i.e., state

is passed by reference). Thus, in the pseudo-code, the state machine is called as fol-

lows: response ← execute request(cid, req,state), which is equivalent to 〈response,state〉 ←
execute request(req,state) if req includes cid.

Byzantine Locking requires a compact representation of the set of objects that a request may

touch, denoted oids touched(req), and an efficient mechanism to check whether an object may

be touched by a request before executing the request, denoted oid ∈ oids touched(req). The ap-

plication of requests is deterministic. Thus, the application of requests on disjoint sets of objects

commutes. That is, the relative order of requests that touch non-overlapping sets of objects does not

matter. For example, suppose

〈response1,state1〉 ← execute request(req1,state0)

〈response2,state2〉 ← execute request(req2,state1)

and

〈response′2,state
′
1〉 ← execute request(req2,state0)

〈response′1,state
′
2〉 ← execute request(req1,state

′
1)

If req1 and req2 operate on disjoint sets of objects (that is,

oids touched(req1) ∩ oids touched(req2) = /0), then the order of the requests does not

matter, and so response1 = response′1, response2 = response′2, and state2 = state′2.

Note the difference between state machine interfaces that require objects to be specified in

advance (as in Zzyzx, HQ [32], and Q/U [2]) and interfaces that do not (as in Zyzzyva [55]

and PBFT [24]). That is, some state machines do not require an efficient and compact function

oids touched(req) that can be used to specify which objects are touched in advance. In practice,

specifying a working set of objects in advance is easy in many important systems, such as file sys-

tems. Furthermore, state machine implementations often already divide the state into objects to

allow efficient checkpointing and state transfer. But, interfaces that do not require advance descrip-

tions of objects touched can easily support some applications that are challenging to support in an

efficient manner using interfaces that require advance descriptions (e.g., consider dereferencing a

pointer within an object). Of course, oids touched(. . .) can be conservative, perhaps even reporting

that all objects may be touched for each operation, so both interfaces can implement the same set of

applications, though an overly conservative implementation of oids touched(. . .) may impact the

performance of Zzyzx, HQ [32], and Q/U [2].

A.1. SEQUENTIAL SPECIFICATIONS OF RELEVANT OBJECTS 83

A.1.2 The Log Object

A log object consists of object state, denoted by the array state[]; the request log and its position,

denoted request log and reqno; and a nondecreasing value vs for synchronization with the manager

object. Initially, state[∗] = NULL, request log[∗] = NULL, reqno = 0, and vs = 1. A log object

supports three operations: APPEND, IMPORT, and FETCH+UNLOCK. If state[oid] = NULL, then

oid is said to be unlocked; otherwise, oid is locked. Operations are associated with message tags for

remote procedure calls in the pseudo-code, and so each request is written out as 〈TAG,args〉. The

sequential specification of each operation is as follows:

〈APPEND,cid, req〉 If each object touched by req is locked, then let reqno ← reqno + 1,

request log[reqno]← req, and perform execute request(cid, req,state) and return its result.

Otherwise, return FAILURE.

〈IMPORT,vs′,oid,obj〉 If vs′ = vs and state[oid] = NULL, then let state[oid]← obj.

〈FETCH+UNLOCK,oid〉 Let state[oid] ← NULL, let vs ← vs + 1, and return the triplet

〈vs,oid, request log〉.

In a typical execution, a client will IMPORT several objects and APPEND several requests. If

FAILURE is returned, the client retries the request at the manager object. If object oid is needed at

the manager object, a client can invoke FETCH+UNLOCK and replay request log at the manager

object, which unlocks oid. In Zzyzx, each log object is associated with a single designated client

(denoted cid) that invokes operations APPEND and IMPORT, such that the argument to APPEND is

always cid.

A.1.3 The Manager Object

A manager object consists of object state, denoted by the array state[]; nondecreasing values vscid
for synchronizing with the log object for designated client cid; an array locktable[], such that

locktable[oid] = NULL if oid is unlocked or locktable[oid] = cid if oid is locked by the log ob-

ject for designated client cid; and reqnocid describing the most recently replayed request for cid.

It supports three operations: EXEC, LOCK, and REPLAY+UNLOCK. Initially, state[oid] is set to

a default value for each oid, vscid = 1, locktable[∗] = NULL, and reqnocid = 0. A client identifier

cid uniquely identifies the designated client. For any designated client, there is at most one log

object. A client can be the designated client for multiple log objects by using multiple client iden-

tifiers. Variable reqnocid counts the requests replayed for client cid, not all executed requests. The

sequential specification of each operation is as follows:

〈EXEC,cid, req〉 If each oid touched by req is unlocked (locktable[oid] = NULL), then perform

execute request(cid, req,state) and return its result. Otherwise, return FAILURE.

〈LOCK,cid,oid〉 If locktable[oid] = NULL, then locktable[oid] ← cid and return

〈vscid,oid,state[oid]〉. Otherwise, return FAILURE.

84 APPENDIX A. THE CORRECTNESS OF BYZANTINE LOCKING

〈REPLAY+UNLOCK,cid,vs′,oid, request log〉 If vs′ < vscid +1, return FAILURE. Otherwise, do as

follows. First, let vscid← vs′. Second, while request log[reqnocid +1] 6= NULL let reqnocid←
reqnocid + 1 and perform execute request(cid, request log[reqnocid],state). Third, if oid 6=
NULL and locktable[oid] = cid, set locktable[oid]← NULL. Fourth, return SUCCESS.

In a typical execution, a client invokes EXEC and may LOCK its working set of objects. To

allow access to an object locked by a log object, a client invokes FETCH+UNLOCK at the log

object before invoking REPLAY+UNLOCK to reconcile state between the log object and the manager

object, which unlocks the object.

A.2 Linearizability

This section describes how a manager object and a set of log objects can be combined to form a

linearizable Byzantine fault-tolerant replicated state machine.

A.2.1 The Reads-from Relation

DEFINITION A.2.1. A REPLAY+UNLOCK operation reads from a FETCH+UNLOCK opera-

tion if the cid passed to REPLAY+UNLOCK is the designated cid for the log object at which

FETCH+UNLOCK was invoked and if FETCH+UNLOCK returns the 〈vs,oid, request log〉 triplet that

matches the arguments to REPLAY+UNLOCK.

DEFINITION A.2.2. An IMPORT operation reads from a LOCK operation if the cid passed to LOCK

is the designated cid for the log object at which IMPORT was invoked and the 〈vs,oid,obj〉 triplet

returned by LOCK matches the arguments to IMPORT.

DEFINITION A.2.3. An operation history of a manager object and a set of log objects is reads-from

valid if each REPLAY+UNLOCK reads from a FETCH+UNLOCK operation and each IMPORT reads

from a LOCK operation.

A.2.2 The Equivalence of Replayed Requests

In this section, consider a reads-from valid operation history. Consider the call to

execute request(. . .) during a REPLAY+UNLOCK for some reqnocid such that req =
request log[reqnocid]:

retval← execute request(cid, req,state) (A.2.4)

Consider the call to execute request(. . .) during an APPEND at the log object with designated client

cid for some reqno′ such that req′ = request log[reqno′]:

retval′← execute request(cid, req′,state′) (A.2.5)

A.2. LINEARIZABILITY 85

This section will show that the retval← execute request(cid, req,state) for reqnocid in Equa-

tion A.2.4 at the manager object during a REPLAY+UNLOCK corresponds to some retval′ ←
execute request(cid, req′,state′) for reqno′ in Equation A.2.5 at the log object during an APPEND.

Lemma A.2.6 shows that req = req′ and reqnocid = reqno′. Lemma A.2.8 shows that retval = retval′,

and that, after execute request(. . .) at the manager object and log object, for each oid such that

state′[oid] 6= NULL, it is the case that state[oid] = state′[oid] and locktable[oid] = cid.

LEMMA A.2.6. For each call to execute request(cid, req,state) in Equation A.2.4 for reqnocid

by operation 〈REPLAY+UNLOCK,cid,∗,∗,∗〉 at the manager object, there exists a call to

execute request(cid, req′,state′) in Equation A.2.5 by operation 〈APPEND,cid, req′〉 for reqno′ at

the log object, such that req = req′ and reqno′ = reqnocid.

Proof. Because the operation history is reads-from valid, the REPLAY+UNLOCK reads from a

FETCH+UNLOCK that returned request log such that request log[reqnocid] = req. Because only

APPEND appends requests to the request log, an APPEND for reqno′ must have appended req′ to

request log such that reqno′ = reqnocid and req′ = req.

Lemma A.2.7 will form the base case of the induction in Lemma A.2.8. In particular, Lemma A.2.7

shows that, after execute request(. . .) at the manager object and log object, for each oid such that

state′[oid] 6= NULL, it is the case that state[oid] = state′[oid] and locktable[oid] = cid, but only

when the last operation to modify oid at the log object was an IMPORT. Lemma A.2.8 removes the

restriction that the last operation to modify oid was an IMPORT.

LEMMA A.2.7. Let state′[oid] be the value of oid at the log object before the call to

execute request(. . .) by an APPEND in Equation A.2.5 for reqno′. Suppose state′[oid] 6= NULL

and the last operation to modify oid at the log object was 〈IMPORT,vs,oid,obj〉. Then, it is the

case that state′[oid] = state[oid] and locktable[oid] = cid, where state[oid] and locktable[oid] are

the values at the manager object either at the end of the operation history if reqno′ is not replayed, or

before the call to execute request(. . .) in Equation A.2.4 for reqnocid = reqno′ if reqno′ is replayed.

Proof. Because the operation history is reads-from valid, IMPORT reads from a LOCK that

sets locktable[oid] = cid and returns 〈vs,oid,obj〉 such that obj = state[oid]. IMPORT then sets

state′[oid]← obj, which is not modified until the APPEND (the IMPORT was the last operation to

modify oid). The remainder of this proof shows that oid is not modified at the manager object after

the LOCK until reqnocid is replayed, if ever, so state[oid] = obj and thus state′[oid] = state[oid].
There are two cases: it must be shown that, after the lock but before reqnocid is replayed, no request

in an EXEC operation and no replayed request modifies oid.

No EXEC modifies oid after the LOCK until reqnocid is replayed because oid remains locked in

that period, as follows. Only FETCH+UNLOCK can set state′[oid] = NULL. Because state′[oid] 6=
NULL before the APPEND, any such FETCH+UNLOCK either precedes the IMPORT, such that the

value vs′ before FETCH+UNLOCK is less than vs (less than because FETCH+UNLOCK increments

vs′), or follows the APPEND. A REPLAY+UNLOCK for vs′ must precede a LOCK for vs if vs′ < vs,

and a REPLAY+UNLOCK that reads from a FETCH+UNLOCK that follows the APPEND for reqno′=

86 APPENDIX A. THE CORRECTNESS OF BYZANTINE LOCKING

reqnocid will replay reqnocid if reqnocid has yet to be replayed. Thus, after the LOCK but before any

replay of reqnocid, it is the case that locktable[oid] = cid, and thus no EXEC modifies oid.

Similarly, no replayed request modifies oid after the LOCK until reqnocid is replayed, because

the APPEND is the first APPEND to modify oid after the IMPORT. Any request replayed before

reqnocid must precede not only APPEND but also IMPORT (otherwise, the last operation to modify

oid would not be the IMPORT). Furthermore, because state[oid] = NULL before the IMPORT, any

prior request that modified oid must have preceded a FETCH+UNLOCK
′ that incremented vs′ < vs

and set state[oid] = NULL. Because state[oid] 6= NULL when the prior request modifies oid, the

prior request follows an 〈IMPORT
′,vs′′,oid,obj〉, where vs′′ ≤ vs′ < vs. Because IMPORT

′ reads

from a LOCK
′ that returns vs′′ (by reads-from valid) and because vs′′ < vs, LOCK

′ precedes LOCK.

Because locktable[oid] = NULL when LOCK succeeds, a REPLAY+UNLOCK
′ that reads from a

FETCH+UNLOCK
′ that follows the prior request must have executed, replaying the prior request if

it has yet to be replayed. Thus any request that modifies oid before reqnocid is replayed would be

replayed before the LOCK for vs.

The following lemma ties the state of the log object together with that of the manager object

before and after the execution of each request.

LEMMA A.2.8. For each call to retval← execute request(cid, req,state) in Equation A.2.4 for

reqnocid at the manager object, there exists a call to retval′ ← execute request(cid, req′,state′)
in Equation A.2.5 for reqno′ at the log object such that reqno′ = reqnocid and retval = retval′.

Furthermore, for each oid such that state′[oid] 6= NULL during the call at the log object, during the

call at the manager object it is the case that locktable[oid] = cid, and after both calls it is the case

that state′[oid] = state[oid].

Proof. That each execute request(. . .) at the manager object during a REPLAY+UNLOCK is

matched by one at the log object is proven in Lemma A.2.6. The remainder of the lemma is proven

by induction over the value of reqno:

Inductive Hypothesis: Consider the call to execute request(∗,∗,state′) at the log object for reqno′

by an APPEND in Equation A.2.5. Consider the corresponding call to execute request(∗,∗,state)
at the manager object for reqnocid in Equation A.2.4. For each oid such that state′[oid] 6= NULL

during the call at the log object, it is the case that locktable[oid] = cid during the call at the manager

object and that state′[oid] = state[oid] before the calls at both the log object and the manager object.

Corollary to Inductive Hypothesis: Suppose the inductive hypothesis holds. APPEND fails if any

modified object is unlocked, so, for each modified object, it is the case that state′[oid] 6= NULL and

thus state′[oid] = state[oid]. Hence, because req′ = req (by Lemma A.2.6) and by determinism, it

is the case that retval = retval′ and that state′[oid] = state[oid] after the calls at the log object and

the manager object, as required by the lemma.

Base Case: Consider the first call to execute request(cid,∗,∗) in a REPLAY+UNLOCK at the man-

ager object, which sets reqnocid = 1, and the corresponding first call to execute request(cid,∗,∗)
in the first successful APPEND at the log object, which sets reqno′ = 1. For each oid such

that state′[oid] 6= NULL, the last operation to modify oid must have been an IMPORT. Thus, by

Lemma A.2.7, it is the case that locktable[oid] = cid and state′[oid] = state[oid].

A.2. LINEARIZABILITY 87

Inductive Step: Consider the call to execute request(∗,∗,state′) at the log object by an APPEND in

Equation A.2.5, which sets reqno′, and the call to execute request(∗,∗,state) at the manager object

in Equation A.2.4, which sets reqnocid = reqno′. Consider each oid such that state′[oid] 6= NULL

during the call at the log object. The last operation to modify oid at the log object was either an

IMPORT or an APPEND
′. If the last such operation was an IMPORT, then, by Lemma A.2.7, it is the

case that locktable[oid] = cid and state′[oid] = state[oid].

If the last operation to modify oid at the log object was an APPEND
′ for some reqno′′, then

reqno′′ < reqno′ = reqnocid (because APPEND
′ precedes APPEND). Because the manager object

replays requests in sequence from 1 to reqnocid, there is a corresponding execute request(. . .) at

the manager object that replays reqno′′. By the inductive hypothesis at reqno′′ < reqno′ = reqnocid,

and its corollary, after the corresponding execute request(. . .) replays reqno′′ at the manager object,

locktable[oid] = cid and state′[oid] = state[oid]. Because no other APPEND modifies oid between

reqno′′ and reqno′, no request that modifies oid is replayed between reqno′′ and reqno′. Other than

replayed requests, only EXEC operations modify objects. Because locktable[oid] = cid, an EXEC

will not modify oid unless oid is unlocked. Thus, if locktable[oid] remains cid at the manager object,

then state′[oid] = state[oid] before the calls to execute request(. . .) for reqno′, and the lemma is

proven.

Suppose oid is unlocked by REPLAY+UNLOCK
′ at the manager object after reqno′′ is re-

played but before reqno′ is replayed. Thus, REPLAY+UNLOCK
′ must have read from some

FETCH+UNLOCK
′ at the log object that unlocked oid and followed APPEND

′ but preceded APPEND.

This is a contradiction, because either oid will be unlocked for APPEND and APPEND will fail, or

an IMPORT will lock oid, in which case the previous operation was not APPEND
′.

A.2.3 Requests that are not Replayed

A client will invoke APPEND operations at the log object, and each successful APPEND will be

appended to the request log in order at positions {1, . . . , reqno}. The manager object replays some

of these requests in order, requests {1, . . . , reqnocid}. Lemma A.2.8 shows that for each reqno′cid
replayed by the manager object, there exists reqno′ executed by the log object such that reqno′ =
reqno′cid and the request and return values match. But, it may be the case that reqnocid < reqno,

in which case one or more APPEND operations execute requests {reqnocid + 1, . . . , reqno} at the

log object that are never replayed by the manager object. This section shows that the return values

from such requests match the return values that would have been generated had the requests been

replayed at the manager object. This fact should come as no surprise, because, if the requests were

replayed in the future, their return values must match.

LEMMA A.2.9. Consider any operation history of a manager object and a set of log objects that is

reads-from valid. Consider the sequence of requests in calls to execute request(. . .) by the EXEC

and REPLAY+UNLOCK operations at the manager object, and consider the sequence of requests

in calls to execute request(. . .) by the successful APPEND operations at each log object that are

not replayed at the manager object. Construct a request history by concatenating the sequence of

requests from the manager object followed by the sequence from each log object (in any order), and

placing each return value after its request. This request history forms a legal sequential history for

an object-based state machine object.

88 APPENDIX A. THE CORRECTNESS OF BYZANTINE LOCKING

Proof. Section A.1.1 defines an object-based state machine object by the execute request(. . .)
function and the current object state, such that a sequential history is legal if the sequence of re-

quests provided to execute request(∗,∗,state) would produce the matching return values. Thus,

the sequence of requests and return values found in calls to execute request(∗,∗,state) by EXEC

and REPLAY+UNLOCK operations at the manager object forms a legal sequential history for an

object-based state machine object.

If a request that is not replayed modifies oid at the log object with designated client cid, then

locktable[oid] = cid and state[oid] = state′[oid] at the manager object at the end of the operation

history, such that state′[oid] is the value at the log object before the first request that is not replayed

modifies oid, as follows. Consider the first request that is not replayed that modifies oid. If the

prior request to modify oid was an IMPORT, then, by Lemma A.2.7, it is the case that state′[oid] =
state[oid] and locktable[oid] = cid. If the prior request to modify oid was an APPEND, then, by

Lemma A.2.8, it is the case that state′[oid] = state[oid] and locktable[oid] = cid.

Because state[oid] = obj = state′[oid], and because the return value of execute request(. . .)
depends only on the request and the current object state, any sequence of requests and return values

from each log object can be appended to the sequence of requests from the manager object while

remaining a legal history. Because locktable[oid] = cid, the sequences from each log object op-

erate on disjoint sets of objects, and thus can be appended in any order (see Section A.1.1) while

remaining a legal sequential history.

A.2.4 Real-time precedence: Reads-from Strict

For any history, operation o is said to precede operation o′ if the response to operation o precedes the

invocation of operation o′ in the history. Thus, a history imposes a partial ordering on its operations

according to this precedence relationship. The precedence relationship of a history of events from

the execution of a distributed system is called real-time precedence.

REMARK A.2.10. The partial order imposed by a history can be represented as a directed acyclic

graph (a DAG on operations). Consider the operation history of a manager object and a set of log

objects. Choose a linearization of each log object and the manager. The linearization provides

additional edges to the DAG such that the operations on each object are totally ordered. The DAG

remains acyclic because linearization respects the real-time precedence reflected in the operation

history.

DEFINITION A.2.11. A reads-from edge is an edge 〈o,o′〉 from operation o to operation o′ such

that operation o′ reads from operation o.

DEFINITION A.2.12. An operation history is reads-from strict if, for each reads-from edge 〈o,o′〉,
operation o precedes operation o′ in the operation history.

REMARK A.2.13. If operation o precedes operation o′, then there is an edge from o to o′ in the

operation history. Thus, the DAG of a reads-from strict operation history includes each reads-from

edge. (If edge 〈o,o′〉 is a reads-from edge, then edge 〈o,o′〉 is in the DAG.)

A.3. THE CLIENT AND THE PRIMARY 89

A.2.5 The Linearizability of EXEC and APPEND

THEOREM A.2.14. Consider any operation history of a manager object and a set of log objects that

is reads-from valid and reads-from strict. The request history consisting of the requests and return

values from each EXEC and successful APPEND operation in the operation history is linearizable.

Proof. Lemma A.2.9 proves that the request history consisting of the requests and return val-

ues from each EXEC and REPLAY+UNLOCK operation concatenated with the requests and re-

turn values by successful APPEND operations that are not replayed forms a legal sequential his-

tory. Lemma A.2.8 proves that each request and return value in a REPLAY+UNLOCK operation is

matched by a request and return value in an successful APPEND operation. Thus, there is a request

history consisting of the requests and return values from each EXEC and APPEND operation in the

operation history that is a legal sequential history. The remainder of this proof, then, must prove

that there is such a history that respects real-time precedence.

Consider the legal sequential history from Lemma A.2.9, formed by concatenating EXEC and

REPLAY+UNLOCK operations and appending un-replayed APPEND operations. Replace each RE-

PLAY+UNLOCK by the corresponding sequence of APPEND operations that are replayed to form

a sequence of all of the successful EXEC and APPEND operations. Note that the subsequence of

EXEC operations at the manager object and the subsequence of APPEND operations for each log

object are in the order executed by the manager object and each log object. Furthermore, note that

each APPEND operation can be moved earlier, so long as it follows the LOCK of each object that it

touches and remains in the same order relative to other APPENDs at that log object.

This order is precisely the order constraint imposed by the DAG in Remark A.2.10 if the op-

eration history is reads-from strict: the EXEC and APPEND operations are in the relative order

imposed by the linearization of the manager object and each log object, each APPEND follows the

IMPORT that follows the LOCK for each object that it modifies, and each APPEND precedes the

FETCH+UNLOCK that precedes the REPLAY+UNLOCK that replays the APPEND. Thus, total or-

dering of the DAG in Remark A.2.10 for a reads-from valid and reads-from strict operation history

produces a linearization of the request history consisting of the requests and return values from each

EXEC and APPEND operation.

Thus, to build a linearizable replicated state machine from a manager object and a set of log

objects, each client should issue a request and return its result through an EXEC operation or a

successful APPEND operation. If an APPEND operation fails at a log object, the request can be

retried in an EXEC operation at the manager object. If an EXEC operation fails at the manager

object, the locked objects that are causing the failure can be unlocked and the EXEC operation can

be retried. The next section considers the implementation of the client so as to ensure liveness.

A.3 The Client and The Primary

For any reads-from valid and reads-from strict operation history of a manager object and a set of

log objects, Section A.2 shows that the request history consisting of the requests and return values

found in the successful EXEC and APPEND operations is linearizable. This section describes how

90 APPENDIX A. THE CORRECTNESS OF BYZANTINE LOCKING

pid.primary(op):

2000: if (op = 〈EXEC,cid, req〉) then

2001: for (oid ∈ oids touched(req) : locktable[oid] 6= NULL) do

2002: cid← locktable[oid]
2003: 〈vs′,oid′, request log〉 ← logobjcid(〈FETCH+UNLOCK,oid〉)
2004: mgr order(〈REPLAY+UNLOCK,cid,vs′,oid′, request log〉)
2005:

2006: if (op 6= 〈REPLAY+UNLOCK,∗,∗,∗,∗〉) then

2007: mgr order(op)

Figure A.3.1: Primary pseudo-code. A correct primary unlocks objects that are touched by an

EXEC operation before the EXEC operation is ordered.

a client would operate in such a system as to ensure liveness as well as the reads-from valid and

reads-from strict properties.

A.3.1 Reads-from Valid and Reads-from Strict

Reads-from valid and reads-from strict properties can be ensured as follows. To invoke an

IMPORT or a REPLAY+UNLOCK, a client must first provide proof in the invocation of IM-

PORT or REPLAY+UNLOCK that the LOCK or FETCH+UNLOCK from which the IMPORT

or REPLAY+UNLOCK reads has completed. Thus, each REPLAY+UNLOCK reads from a

FETCH+UNLOCK operation and each IMPORT reads from a LOCK operation, satisfying reads-from

valid (Definition A.2.3). Furthermore, consider each reads-from edge from a LOCK to an IMPORT

or from a FETCH+UNLOCK to a REPLAY+UNLOCK. Because the LOCK or FETCH+UNLOCK

completes before the IMPORT or REPLAY+UNLOCK is invoked, the LOCK or FETCH+UNLOCK

precedes the IMPORT or REPLAY+UNLOCK in the operation history, satisfying reads-from strict

(Definition A.2.12).

In Zzyzx, the manager object that executes the LOCK or the log object that executed the

FETCH+UNLOCK provide cryptographic proof of their completion to the client. The client must

provide this cryptographic proof before an IMPORT or REPLAY+UNLOCK can be invoked that reads

from the LOCK or FETCH+UNLOCK. Even if the client is faulty, the existence of the proof of the

response to the LOCK or FETCH+UNLOCK in the invocation of IMPORT or REPLAY+UNLOCK

ensures that the response preceded the invocation.

A.3.2 The Primary

Some replicated state machine protocols elect a temporary designated leader, known as the primary,

from the set of servers, known as replicas. All operations are then ordered through the primary,

which allows efficient operation under contention. If the primary orders an operation correctly, the

protocol ensures that the operation completes. Because a faulty primary may not properly order

operations, such protocols must ensure either that the primary orders each operation, such that the

operation completes, or that a new primary is elected.

Such protocols elect a new primary based on timeouts, as follows. If a client does not get

a response quickly enough, it broadcasts the operation to all replicas. The replicas forward the

operation to the primary and start a timer. If the timer runs out before the operation is ordered, each

A.3. THE CLIENT AND THE PRIMARY 91

LockedOids← /0 /∗ Initialize client’s list of locked objects ∗/

cid.issue(req): /∗ Issue a request ∗/

2100: for (oid : /*oid meets lock criteria*/) do

2101: retval←mgrobj(〈LOCK,cid,oid〉)
2102: if (retval 6= FAILURE) then

2103: 〈vs,oid,obj〉 ← retval

2104: logobjcid(〈IMPORT,vs,oid,obj〉)
2105: LockedOids← LockedOids ∪ {oid}
2106: end for

2107: if (6 ∃ oid∈ oids touched(req) : oid 6∈ LockedOids) then

2108: retval← logobjcid(〈APPEND,cid, req〉)
2109: if (retval 6= FAILURE) then

2110: return retval

2111: end if

2112:

2113: /∗ Couldn’t use logobj, so use mgrobj ∗/
2114: LockedOids← LockedOids\oids touched(req)
2115: return mgrobj(〈EXEC,cid, req〉)

Figure A.3.2: Client pseudo-code. The client tries to lock its working set of objects. If it believes

it has locked all objects that are touched, it invokes APPEND at the log object. If APPEND fails or a

touched object is locked, it invokes EXEC at the manager object.

replica votes to elect a new primary. After enough votes, a new primary is chosen (often in round-

robin fashion among the replicas). For each new primary, the timeout value is increased (often by a

small multiplicative factor). It must be the case that, given an infinite number of elections, a correct

primary is elected an infinite number of times (e.g., by choosing among f +1 or more replicas in a

round-robin fashion).

Zzyzx uses the primary at the manager object to invoke FETCH+UNLOCK and RE-

PLAY+UNLOCK operations. Because the primary orders all operations, it can ensure that an EXEC

operation never returns FAILURE, as shown in Figure A.3.1. When a client invokes an operation

on the manager object (e.g., mgrobj(op = 〈EXEC, req〉)), the protocol provides the operation to

the primary (pid.primary(op) in Figure A.3.1), which must order the operation (mgr order(op)
on line 2007). Upon receiving an 〈EXEC,cid, req〉 operation that touches one or more locked oids

(line 2000), each oid is unlocked as follows. For each oid that is touched and locked (line 2001), a

correct primary invokes a FETCH+UNLOCK (line 2003) followed by a matching REPLAY+UNLOCK

(line 2004) to unlock the object. Only the primary invokes REPLAY+UNLOCK (line 2006), so RE-

PLAY+UNLOCK will succeed. The FETCH+UNLOCK is invoked at the log object with the des-

ignated client that locked the oid (line 2002). Once any touched objects are unlocked, the EXEC

operation is ordered (line 2007).

Thus, if the primary is correct, EXEC never returns FAILURE. To ensure these semantics, replicas

that implement the manager object reject EXEC operations that touch locked objects (not shown),

because such messages must be from a faulty primary. If not ordered correctly, the EXEC operation

will time out, and a new primary will be elected, until eventually the EXEC operation is ordered

properly such that it completes. Hence, either the current primary will order each operation cor-

rectly, or a new primary will be elected until the operation is ordered.

Figure A.3.1 describes the unlocking process as progressing sequentially (lines 2001–2004), but

implementations should unlock multiple objects concurrently both by invoking FETCH+UNLOCK

for log objects with different designated clients, and for modifying FETCH+UNLOCK to unlock

multiple oids at once. Furthermore, there is no reason to block REPLAY+UNLOCK operations,

EXEC operations that touch only unlocked oids, or LOCK operations that do not lock oids touched

by a pending EXEC.

92 APPENDIX A. THE CORRECTNESS OF BYZANTINE LOCKING

A.3.3 The Client

The client implementation is shown in Figure A.3.2. The client tries to lock whatever objects it

believes it may find useful (lines 2100–2106), perhaps based on recent usage. If locking succeeds

at the manager object (line 2101), the client imports the object into its log object (line 2104) and

updates its list of locked objects (line 2105). It is important to note that the client’s list of locked

objects is its best guess as to which objects are locked, but the primary may unlock objects without

notifying the client. If the client believes each object touched by the request is locked (line 2107), it

invokes APPEND at the log object (line 2108). If APPEND succeeds, the client returns the response

(line 2110). If the client has not locked an object that is touched by a request, or if APPEND fails,

the client invokes EXEC at the manager object (line 2115). Because the manager object must unlock

all objects touched by the request, the client marks all touched objects as unlocked (line 2114).

In Figure A.3.2, the request history for Zzyzx clients consists of requests and return values

from EXEC operations (line 2115) and successful APPEND operations (line 2110), as required by

Theorem A.2.14, which ensures that Zzyzx is linearizable. Also, locking objects is shown as an

explicit action (line 2101), but it could just as well be implicit. If a client accesses an object many

times in a row without other clients accessing the same object, the manager could lock object for

the client by default. Similarly, objects can be locked in batches rather than one at a time. And, of

course, a more compact representation of the set of objects than a list could be used (e.g., “all files

under the client’s home directory except those under subdirectory temp”).

A.3.4 Liveness

Because a consensus protocol cannot ensure liveness in an asynchronous environment [40], live-

ness must depend on assumptions about synchrony. To ensure eventual progress, primary-based

protocols typically assume that, after some period of time, message delays are bounded. If message

delays are bounded, then the time a correct primary needs to order operations will be bounded, as

well, because it is proportional to message delay. Suppose an operation does not complete. Then,

a new primary will be elected and the timeout increased. Given infinitely many elections, a correct

primary will be elected an infinite number of times, and the timeout will approach infinity. But, this

is a contradiction, because the time needed by a correct primary to order operations is bounded and

will thus eventually be less than the timeout, allowing the correct primary to order the operation.

In short, liveness depends upon the timeout eventually increasing to a larger value than the time

needed to order operations.

More formally, let ∆ be a bound on message delay (accounting for needed retransmissions), let

t represent elapsed time, let δ be the amount of time a correct primary needs to order an operation

(δ is proportional to ∆), and let timeout be the current value of the timeout. A common synchrony

assumption is partial synchrony [37], which states that, for possibly unknown values of ∆ and τ,

after time τ, message delay is bound by ∆. If δ < timeout, a correct primary will be able to order

operations such that they complete. If δ < timeout continues to hold when t > τ for some time τ,

then any correct primary can order operations after time τ. So long as the timeout increases and

a new primary is elected when an operation is not ordered, then, under partial synchrony, it is the

case that each operation will be ordered correctly or that a correct primary will eventually be elected

A.3. THE CLIENT AND THE PRIMARY 93

with timeout > δ and t > τ, such that the correct primary will order the operation. Either way, each

operation will be ordered such that it completes, ensuring liveness.

Let ε be a bound on the response time for any invocation on the log object after time τ.1 Suppose

the primary for the manager object invokes FETCH+UNLOCK on log objects bounded by ε at most

k times before ordering an operation (where k is bounded for a bounded number of objects). Then,

if ε · k+ δ < timeout, the primary will not time out and the operation will be ordered such that it

completes. Because timeout increases when a new primary is elected, it will be the case that either

operations are being ordered correctly, avoiding new elections, or that timeout will increase until

ε ·k+δ < timeout, such that the next correct primary can order operations, ensuring liveness. The

following lemma states this fact more formally.

LEMMA A.3.1. The manager object, modified such that the primary orders operations and invokes

FETCH+UNLOCK and REPLAY+UNLOCK as to prevent EXEC from returning FAILURE, remains

live under partial synchrony.

Proof. Because the primary is responsible for invoking REPLAY+UNLOCK, each client invokes

only EXEC and LOCK operations. If an operation is a LOCK operation or if it is an EXEC operation

that does not touch any locked objects, then a correct primary can order the operation in time

bounded by δ. If the EXEC operation touches one or more locked objects, a correct primary must

unlock each locked object by invoking FETCH+UNLOCK. Each FETCH+UNLOCK will complete

in time ε. Because there are a bounded number of objects, FETCH+UNLOCK is invoked a bounded

number of times, less than some constant k. Thus, a correct primary will be able to order the

operation in time bounded by ε ·k+δ.

If an operation is not ordered, replicas will time out, forcing the election of a new primary and

increasing the timeout. Because timeout increases upon leader election, but ∆ is fixed but unknown

for partial synchrony, and because ε and δ are proportional to ∆, the sum ε · k+ δ is bounded and

will thus be less than timeout after enough elections. Given infinitely many elections, a correct

primary is elected infinitely many times. Thus, either operations will be ordered by the current

primary such that they complete, or after enough elections, a correct primary will be elected and

ε ·k+δ < timeout such that the correct primary can order each operation.

The liveness theorem follows immediately from the preceding lemma.

THEOREM A.3.2. The Zzyzx protocol is live, such that each request issued by a correct client is

executed and returns a return value.

Proof. Consider the request flow in Figure A.3.2. The client calls logobj(. . .) (line 2104 and

line 2108), which is implemented by some replicated state machine protocol that is live by assump-

tion. The client also calls mgrobj(. . .) (line 2101 and line 2115), which is live by Lemma A.3.1.

Both are called a finite number of times, ensuring that the Zzyzx protocol is live.

1Note that completing an operation in PBFT or Zyzzyva when the primary is correct requires a small, bounded amount

of computation and a few message delays, taking time proportional to ∆. A faulty primary will order the operation before

timeout or a new primary will be elected at most a fixed number of times before a correct node is primary. Thus, the time

required to complete an operation on a log object if implemented by such a protocol can be bounded by some ε.

94 APPENDIX A. THE CORRECTNESS OF BYZANTINE LOCKING

A.3.5 Obstruction-Free Variants

Zzyzx is built on top of PBFT or Zyzzyva, so it is natural to ensure similar liveness semantics.

But, it is worth mentioning that Byzantine Locking has a natural implementation in an obstruction-

free [50] framework such as Q/U [2]. As in Zzyzx, each client issues EXEC, APPEND, LOCK,

and possibly IMPORT operations. But, instead of the primary handling FETCH+UNLOCK and RE-

PLAY+UNLOCK, each client issues such commands to unlock objects. Thus, a client may find itself

repeatedly unlocking an object in the face of interference from another client, but, as required under

obstruction freedom, a client can complete any request when there is no such interference.

Appendix B

Zzyzx Optimizations

The log object operations are constructed as to enable the optimized implementation in this section

and in Sections 5.3 through 5.4. This chapter provides details to bridge the implementation from

Chapter 5 with the formal model from Appendix A.

B.1 Faulty Client Isolation

Since each log object accepts requests from a single designated client, Byzantine locking provides

isolation between faulty clients. If a client is faulty, the REPLAY+UNLOCK operation need only

ensure that a correct client could have issued the operations found in the request log. To do so,

REPLAY+UNLOCK stops replaying requests upon encountering a request that touches an object that

the client has not locked. Isolating faulty clients provides significant design flexibility with which

to implement the log object. For example, if the client is faulty, FETCH+UNLOCK can return an

arbitrary request log, and APPEND and IMPORT need not even always return a response.

B.2 Separating UNLOCK from FETCH

This section splits the FETCH+UNLOCK operation into three operations, UNLOCK, FETCH, and

NEXT VS, which enables the optimizations in Section B.3. To support UNLOCK, FETCH, and

NEXT VS, the log object keeps two additional data structures: an unlocking list, which is a list of

oids, and log, which is the request log that FETCH returns for the current vs. If oid∈ unlocking, IM-

PORT cannot import oid, and any APPEND that touches oid returns FAILURE. Initially, unlocking = /0

and log = NULL. The sequential specification of each operation is as follows:

〈UNLOCK,oid〉 Add oid to unlocking.

〈FETCH,oid〉 If log 6= NULL, return log. If log = NULL and oid ∈ unlocking, let log ←
〈vs,oid, request log〉 and return log. Otherwise, return FAILURE.

〈NEXT VS,vs′,oid〉 If vs′ = vs+1, let vs← vs+1, state[oid]← NULL, unlocking← /0, and log←
NULL.

95

96 APPENDIX B. ZZYZX OPTIMIZATIONS

lsid.logobjcid(〈APPEND,vs′, reqno′, req〉σcid
):

2300: if (vs′ > vs) then get view(vs′) /∗ Implicit NEXT VS ∗/
2301: if (reqno′ = reqno) then return response

2302: if (reqno′ > reqno+1) then missed reqs(reqno+1)
2303: if (reqno′ 6= reqno+1) then return

2304: if ((oids touched(req) ∩ unlocking) 6= /0) then

2305: return FAILURE

2306: else /∗ Execute, append to log, and return ∗/
2307: return try request(req)

lsid.logobjcid(〈UNLOCK,vs′,oid〉):

2400: if (vs′ > vs) then get view(vs′) /∗ Implicit NEXT VS ∗/
2401:

2402: /∗ Process the UNLOCK operation ∗/
2403: unlocking← unlocking ∪ {oid}
2404:

2405: /∗ Implicit FETCH ∗/
2406: mgrobj(〈FETCH,cid,vs,oid, request log〉)

Figure B.3.1: Log server pseudo-code.

To unlock an object, the primary issues UNLOCK followed by FETCH at the log object, then RE-

PLAY+UNLOCK at the manager object. The primary issues NEXT VS to clear log and the unlocking

list before unlocking the next object.1 Because FETCH does not increment vs, the manager object

ensures during 〈REPLAY+UNLOCK,cid,vs′,∗,∗〉 that vs′ = vscid, and it sets vscid← vscid +1 (rather

than ensuring that vs′ ≥ vscid and setting vscid← vs′, as in Section A.1.3).

B.3 APPEND, UNLOCK, and FETCH

In Zzyzx, a collection of 3 f + 1 log servers implement a log object that tolerates f faults. The

primary goal of the optimizations in this chapter is to enable APPEND operations to complete in a

single round-trip (two one-way message delays) to 2 f + 1 log servers, which improves upon prior

results: Zyzzyva requires three one-way message delays to 3 f +1 replicas, and PBFT requires four

one-way message delays to 2 f +1 replicas. The basic technique is as follows. A client will append

its request to a request log at each of 2 f +1 log servers. To unlock an oid, the primary will tell each

of 2 f + 1 log servers to add oid to the unlocking list. To fetch, the primary will query 2 f + 1 log

servers for the most recent request log.

Because a successful APPEND will append req to request log at 2 f +1 log servers, a subsequent

FETCH at any 2 f + 1 log servers will overlap on at least one correct log server, which will include

req in its request log. As described below, the manager object will choose the longest of 2 f + 1

request logs, which will include req. Because UNLOCK for oid will complete at 2 f +1 log servers,

a subsequent APPEND at 2 f + 1 log servers that touches oid will overlap on at least one correct

log server, which will return FAILURE.2 If two or more log servers receive UNLOCK and APPEND

messages in a different order, the primary will use the manager object to agree upon a canonical

request log that log servers can replay to reach a consistent state.

Figure B.3.1 provides log server pseudo-code for the APPEND and UNLOCK operations. To

invoke APPEND, a client sends a signed request to the log servers (the signature is denoted σcid in

Figure B.3.1).3 Each correct log server verifies that the request is next in sequence (lines 2301–

1Recall from Section A.3 that Zzyzx uses the primary to invoke FETCH+UNLOCK and REPLAY+UNLOCK. In other

systems, clients could issue UNLOCK, FETCH, and NEXT VS directly, without impacting correctness.
2Note that an UNLOCK may precede an APPEND that precedes a FETCH, such that the APPEND returns FAILURE

but req is found in request log. This operation order would not be possible without logically separating UNLOCK from

FETCH in Section B.2.
3To handle requests that are dropped or corrupted by the network, the client periodically retransmits a request until it

gets a response.

B.4. IMPORT 97

2303; see Section B.6.1 for an explanation of missed reqs(. . .)). If the request is next in sequence,

the log server verifies that each object touched by the request is locked (not shown) and not on the

unlocking list (line 2304). If not, FAILURE is returned (line 2305). Otherwise, the signed request is

appended to request log and reqno is incremented (not shown). The request is then executed and

the response is returned (line 2307). Upon receiving 2 f +1 successful responses, the client returns

the majority response.

The primary invokes the UNLOCK operation by sending a request to all log servers, which add

the oid being unlocked to the unlocking list (line 2403). UNLOCK completes when 2 f + 1 log

servers respond. The primary could separately fetch the request log from 2 f + 1 log servers, but,

instead, FETCH is issued concurrently with UNLOCK, ensuring that oid ∈ unlocking. To ensure that

subsequent invocations of FETCH return the same value log for a particular vs, each log server calls

the manager object directly with its request log (line 2406).4 The manager object uses its replicated

state machine protocol to choose a canonical logcid, as follows. Upon seeing 2 f + 1 request logs

from distinct log servers for cid, vscid, and matching oid, the manager object chooses the longest

such request log with correctly signed requests and sets logcid← 〈oid, request log〉.5 Upon setting

logcid, the manager object can immediately execute 〈REPLAY+UNLOCK,cid,vs,oid, request log〉.

B.4 IMPORT

Rather than performing IMPORT explicitly, the IMPORT operation can be implicit by allowing the

log object to lazily fetch objects that it is missing from the manager object. Lazily fetching objects

provides two main benefits. First, objects are copied directly from the manager to the log object

without passing through the client. Avoiding copying through the client is of particular benefit if

the servers that implement the manager object and log object are co-located. Second, lazily fetching

objects allows a client to lock a large number of objects (e.g., the range of metadata objects that

describe each file under a directory subtree), but only objects that are used are copied.

To enable implicit import, upon locking oid, the manager object stores vscid in addition to cid

(locktable[oid]← 〈cid,vscid〉). The value of vscid represents the earliest vs at which an IMPORT

is allowed. Upon receiving an APPEND request that touches an object oid that has not been im-

ported, a log server queries the manager object with 〈vs,oid〉 to see if the client has locked the

object. If locktable[oid] = 〈cid,vs′〉 for some vs′ ≤ vs, the manager object and can infer that oid

was locked and could have been imported at vs′. Thus, the manager object returns the value of oid,

and the log server imports oid. Because NEXT VS sets state[oid]← NULL at the log server after

REPLAY+UNLOCK sets locktable[oid]← NULL at the manager object, at most one implicit IMPORT

matches each LOCK. To ensure that vs′′ ≤ vs for locktable[oid] = 〈cid,vs′′〉 at the manager object

and vs at the log server, upon locking an object, the manager returns vscid, which the client propa-

gates as argument vs′ to APPEND. If vs′ > vs at the log server, the log server updates vs (line 2300),

described in Section B.6.

4To avoid circular dependencies, the primary must order operations from log objects immediately, unlike operations

from clients in Section A.3.2.
5logcid need not include vscid because the manager knows vscid

98 APPENDIX B. ZZYZX OPTIMIZATIONS

B.5 Retrying if APPEND Returns FAILURE

As APPEND is constructed above, a log server may return FAILURE for a request that a different log

server includes in its request log. Thus, if any log server returns FAILURE, the client must determine

whether req will be replayed at the manager object or not. The client does so using a new operation

at the manager object: 〈RETRY,cid, req, reqno,nonce〉. RETRY requires the manager object to store

a new variable, noncecid, which is initialized to 0. If req has already been replayed at the manager

object, the manager object’s response to RETRY tells the client to wait for successful APPEND

responses at the log object. If req cannot be replayed at the manager object, the RETRY operation

acts like an 〈EXEC,cid, req〉 operation. In order to prevent a RETRY operation from executing an

operation that will subsequently be replayed, the primary provides proof to the manager object that

it has fetched all the most recent request logs, and the manager object sets reqnocid← reqno. The

nonce serves as an inexpensive proof that the most recent request logs have been fetched. The rest

of this section steps through an invocation of the RETRY operation.

During an APPEND operation, if any log server returns FAILURE before 2 f + 1 log servers re-

turn successfully, the client invokes mgrobj(〈RETRY,cid, req, reqno,nonce〉) at the manager object,

where nonce is an unpredictable random nonce chosen by the client. The RETRY invocation is au-

thenticated like any other mgrobj(. . .) invocation. Before ordering the RETRY operation, a correct

primary ensures that either reqnocid ≥ reqno or noncecid = nonce, as follows. If reqnocid < reqno,

the primary invokes 〈UNLOCK,vscid, NULL,nonce〉 at the log object, which is a special form of

UNLOCK that does not add anything to unlocking but passes nonce through to FETCH. Log servers

respond by invoking mgrobj(〈FETCH,cid,vs, NULL, request log,nonce〉). The manager object ex-

ecutes REPLAY+UNLOCK upon seeing 2 f + 1 request logs from distinct log servers for cid, vscid,

and matching oid and matching nonce, and it sets noncecid ← nonce. If reqnocid < reqno even

after REPLAY+UNLOCK, the primary unlocks objects touched by req, as it would before ordering

〈EXEC,cid, req〉.

The primary then orders 〈RETRY,cid, req, reqno,nonce〉. There are three cases for handling the

RETRY at the manager object. First, if reqnocid < reqno and noncecid 6= nonce, or if reqnocid <
reqno and noncecid = nonce but an oid that is touched by req is locked, the primary is faulty

and a new primary will be elected. Second, if reqnocid ≥ reqno, then the request was replayed

at the manager object, so the manager object returns vscid. Upon receiving vscid, the client in-

fers that the request completed at the log object. The client sets vs← vscid and retries invoking

〈APPEND,vs, reqno, req〉 at the log object. Propagating vscid in APPEND ensures that each correct

log server will issue NEXT VS (line 2300), which will ensure that reqno completes. Thus, the client

can and does wait for f +1 such correct log servers to provide matching responses.

Third, if reqnocid < reqno and noncecid = nonce, the manager object sets reqnocid ← reqno,

vscid← vscid + 1, and logcid .request log[reqno′]← NO-OP for reqno′ ∈ {reqnocid + 1, . . . , reqno}.
Because noncecid = nonce, the primary has proven that it fetched the most recent request logs from

2 f + 1 log servers after the 〈RETRY,cid,∗, reqno,nonce〉 operation was invoked. (Assuming the

primary could not guess the nonce value, the UNLOCK requests and FETCH responses that included

reqnocid must have followed the RETRY invocation.) An 〈APPEND,∗, reqno′,∗〉 that succeeded at

2 f + 1 log servers will overlap on at least one correct log server, so reqno′ will be replayed. Thus,

the manager object can pad request log with NO-OP requests, which do nothing other than advance

B.6. STATE TRANSFER AND NEXT VS 99

reqno, such that the log servers will advance to reqno upon the next NEXT VS. The manager object

then executes retval← execute request(cid, req,state), as it would when invoking 〈EXEC,cid, req〉,
and returns 〈vscid, retval〉. The client sets vs← vscid and returns retval to the application. The

manager object returns vscid such that the client can propagate vscid in its next APPEND request,

ensuring the log object will execute NEXT VS and advance to reqno.

B.6 State Transfer and NEXT VS

If a log server falls behind, such that the value of vs or reqno is less that the values vs′ or reqno′ sent

in APPEND and UNLOCK, then it transfers state from other servers. If reqno < reqno′ during an

〈APPEND,∗, reqno′,∗〉, the log server fetches requests from other log servers (missed reqs(reqno+
1) on line 2302). If vs < vs′ during 〈APPEND,vs′,∗,∗〉 or 〈UNLOCK,vs′,∗〉, then the log server

fetches a checkpoint of the state at vs′ from other log servers (get view(vs′) on lines 2300 and 2400).

B.6.1 missed reqs(. . .)

Upon receiving 〈APPEND,∗, reqno′,∗〉, a log server may find that reqno′ > reqno+ 1 (line 2302)

because it missed an APPEND. If the client is correct, it completed APPEND for each of reqno+
1, . . . , reqno′− 1, so f + 1 correct log servers appended request reqno+ 1 to their request logs. In

missed reqs(reqno+1), the log server queries each log server for request reqno+1. Upon finding

f + 1 matching responses, the log server replays reqno + 1.6 The log server repeats this process

until reqno′ = reqno+1. Of course, in practice, log servers fetch multiple missed requests at once.

If the client is not correct, missed reqs(reqno + 1) may not find f + 1 matching request log

entries for request reqno + 1, which will prevent a faulty client from making progress. But, it

will not block the primary from completing UNLOCK operations or other clients from completing

APPEND operations on their log servers.

B.6.2 NEXT VS and get view(. . .)

This section describes how a log server could fetch checkpoints from the manager object, but it is

merely a bridge into Section B.6.3, which describes how to transfer state from other log servers.

The NEXT VS operation is issued implicitly by propagating vscid as vs′ in UNLOCK and

APPEND requests. Upon receiving 〈APPEND, v̂s,∗,∗〉 or 〈UNLOCK, v̂s,∗〉, a log server may

find that v̂s > vs (lines 2300 and 2400), in which case it calls get view(v̂s) to request

〈NEXT VS,vs′, reqno′,state′〉 from the manager object. Checkpoint 〈vs′, reqno′,state′〉 is gener-

ated after REPLAY+UNLOCK by setting vs′← vscid and reqno′← reqnocid, and processing each oid

as follows. If locktable[oid] = 〈cid,∗〉, state′[oid]← state[oid]. Otherwise, state′[oid]← NULL.

Upon receiving a checkpoint 〈vs′, reqno′,state′〉, if vs ≥ vs′, the checkpoint is ignored. Oth-

erwise, the log server sets vs← vs′ and does the following. If reqno′ < reqno, then for each oid

such that state′[oid] = NULL, state[oid]← NULL (that is, objects unlocked at the manager object

are unlocked at the log server). If reqno′ ≥ reqno, then reqno← reqno′ and state← state′.

6During replay, an implicit import may fail if an object is unlocked at the manager object, increasing, vscid. Thus, if

replay fails, the log server calls get view(vs+1).

100 APPENDIX B. ZZYZX OPTIMIZATIONS

B.6.3 Replaying Requests at the Log Object

Rather than replaying the request log at the manager object, Zzyzx replays the request log at the

log object, which is often inexpensive because log servers may have already computed the result.

This section describes replaying the request log at the log object rather than at the manager object.

It does not consider re-using results that the log servers have already computed, which is left for

Section B.6.4.

During REPLAY+UNLOCK, the manager object chooses the longest request log and stores it

and the oid being unlocked in logcid, as in Section B.3, but the manager object does not replay

request log or unlock oid. Instead, upon choosing request log, the primary sends each log server a

REPLAY request, which tells the log server to fetch 〈vs′,oid, request log′〉 from the manager object.7

The manager object returns vscid and the values of oid and request log found in logcid. (The manager

object may also be able to provide 〈vs′,oid, request log′〉 directly to log servers in its response to

FETCH, as in Section 5.3.3.)

Upon receiving 〈vs′,oid, request log′〉 from the manager object, a log server does as follows. If

vs > vs′, the request is stale and is ignored. If vs′ > vs, the log server fetches checkpointvs′ from

f +1 other log servers with matching checkpoints.8 Otherwise, it is the case that vs = vs′, so the log

server lets 〈state′, reqno′〉 ← checkpointvs and replays request log′, starting at reqno′, on state′.9

When replay completes, the log server lets vs← vs+ 1, obj← state′[oid] and state′[oid]← NULL,

and it creates a new checkpoint for the new value of vs, checkpointvs ← 〈state
′, reqno′′〉, where

reqno′′ is the last replayed request. The log server sets state[oid]← NULL, and, if reqno′′ ≥ reqno,

it sets state← state′ and reqno← reqno′′. Finally, the log server sends obj to the manager object,

which, upon receiving 2 f + 1 matching values, sets locktable[oid]← NULL, state[oid]← obj, and

vscid← vscid +1.

B.6.4 Avoiding Replay

This section considers how to avoid executing requests twice at each log server, now that

Section B.6.3 has moved replay to the log object. Two request logs, request log′ and

request log, are said to be consistent after request reqno′ if, for ˆreqno > reqno′, it is

the case that request log′[ˆreqno] = request log[ˆreqno] when request log′[ˆreqno] 6= NULL and

request log[ˆreqno] 6= NULL. Section B.6.3 replays request log′ to compute checkpointvs and obj.

Suppose at some log server that the request log being replayed to reach the next vs, request log′,

is consistent with request log after reqno′, where request log is the log server’s request log and

reqno′ = checkpointvs−1.reqno.10

Let reqno′′ be the last request in request log′. If reqno′′ ≥ reqno, request log′ contains re-

quests missing in request log, so the log server executes reqno + 1, . . . , reqno′′ from request log′

on state, lets vs ← vs + 1, obj ← state[oid], state[oid] ← NULL, and creates checkpointvs ←

7Similarly, a newly elected primary sends log servers REPLAY requests for each logcid that has not been replayed.
8Because 2 f +1 log servers will generate a new checkpoint for vs before the manager object advances vscid to vs, the

log server will always find f +1 log servers with matching checkpoints. Also, note that standard techniques apply, such

as finding f +1 log servers with matching hash trees of state before fetching state in chunks.
9During replay, an implicit import may fail, but only if 2 f + 1 other log servers completed REPLAY, unlocking a

required oid at the manager object. Thus, if implicit import fails, the log server can abandon state′ and stop replaying.
10request log and request log′ may be inconsistent if the client is faulty or if RETRY padded request log′ with NO-OPs.

B.7. USING MACS INSTEAD OF SIGNATURES IN APPEND 101

〈state, reqno′′〉. If reqno′′ < reqno, then the log server computes checkpointvs as follows. It com-

putes checkpoint ˆreqno←〈state, ˆreqno〉 upon executing request ˆreqno in request log. Then, because

executing requests is deterministic, checkpointvs = checkpointreqno′′ . Because executing requests

is deterministic, computing checkpointreqno for each request need not be expensive. A checkpoint

can be computed from three items: the previous checkpoint, objects that have since been imported,

and requests that have since been executed. As in Section 5.4.1, full checkpoints can be computed

at fixed intervals to bound replay. Furthermore, if state[oid] has not been touched since reqno′′, the

log server lets obj← state[oid], obviating the need for replaying request log′.

B.6.5 Garbage Collection

As described, the request log and checkpoints at the log server can grow to consume a substan-

tial amount of memory. This section describes how to reclaim this memory. If checkpointvs =
〈∗, reqno′〉, then for ˆreqno ≤ reqno′ the log server can let request log[ˆreqno] ← NULL. If

request log[ˆreqno] is ever requested by missed reqs(ˆreqno) at another log server, this log server can

tell the other log server to fetch the checkpoint for vs. Similarly, upon computing a full checkpoint

checkpointvs, all prior checkpoints can be discarded. If another log server requests checkpointvs′

for vs′ < vs, this log server can tell the other log server to fetch the checkpoint for vs.

If vscid is increasing at the manager object, a log server may fetch several checkpoints without

finding f + 1 matching values. Note that this problem will never block UNLOCK, because, if it

does, vscid will stop increasing at the manager object, such that the log server will eventually find

f + 1 matching checkpoint. A log server may find several non-matching checkpoints, however,

during an APPEND. If APPEND is blocked, vscid may increase, but reqnocid will not increase. Thus,

checkpoints from correct log servers will be the same except that checkpoints for higher vs values

will have fewer locked objects. More formally, checkpointvs = 〈state, reqno〉 and checkpointvs′ =
〈state′, reqno′〉 are said to be consistent if reqno = reqno′ and for each oid such that state[oid] 6=
NULL and state′[oid] 6= NULL, it is the case that state[oid] = state′[oid].

Upon receiving f + 1 consistent checkpoints, a log server queries the manager object for vscid
and a list of oids locked by cid. If reqnocid matches the value of reqno in each checkpoint, vscid
is greater than or equal to the value of vs for each checkpoint, and if, for each oid locked by cid,

the value of oid matches in each checkpoint, the client constructs a checkpoint for vs← vscid as

follows: checkpointvs ← 〈reqno′,state′〉, where reqno′ is the matching value in each checkpoint,

state′[oid] is the matching value for locked oids, and state′[oid]← NULL for unlocked oids. A log

server will eventually find f + 1 such correct log servers and advance to vs, which will allow the

APPEND operation to continue.

B.7 Using MACs Instead of Signatures in APPEND

The pseudocode in Figure B.3.1 requires that APPEND requests are signed, such that the manager

object can authenticate request logs when choosing the longest request log to store in logcid. This

section describes how to avoid signatures. Suppose the client replaced the signature with an authen-

ticator, which is a vector of MACs, one for each log server. The authenticator will allow each log

server to verify the authenticity of an APPEND request, but it cannot also be verified by the manager

102 APPENDIX B. ZZYZX OPTIMIZATIONS

object. If the longest request log is proposed by f +1 log servers, the manager can trust that it was

authenticated (at least one correct log server proposed request log and authenticated each request),

but the manager must also be able to choose a request log when fewer than f + 1 match. To do so,

log servers implement the following voting scheme.

To invoke APPEND, the client generates a layered authenticator, which is a second vector of

MACs computed over the authenticator. The outer vector of MACs is the outer authenticator, while

the inner vector is the inner authenticator. Upon receiving an APPEND request, a correct log server

authenticates the request and the inner authenticator using the outer authenticator. The outer au-

thenticator is discarded, but the inner authenticator is appended to request log in place of the signa-

ture. Upon receiving UNLOCK, each log server sends its authenticated request log to the primary,11

which accumulates a set of 2 f + 1 request logs that it sends to each log server. Upon receiving

authenticated request logs from 2 f + 1 distinct log servers, each log server tests whether the inner

MACs properly authenticate the request in a request log. Each log server votes on the request logs

by invoking FETCH at the manager object, voting in favor for each request log where all requests

are properly authenticated, and voting against each request log where any request is not properly

authenticated. The manager object chooses the longest request log with f +1 votes in favor, or the

empty log if no request log achieves f +1 votes.

Further optimization: The outer authenticator is used by the log server to ensure that a request

is authentic before executing it and appending it to the request log, but the isolation property dis-

cussed in Section B.1 enables the client to avoid generating the outer authenticator in mostly benign

environments. If the client does not generate an outer authenticator, the log server can include the

entire inner authenticator in its authenticated response to the client. If the inner authenticator is

corrupted during invocation, the MAC in the response will not check, so the client will generate the

outer authenticator and try again. Upon receiving different requests for the same reqno, the log

server verifies the MAC in the outer authenticator, possibly undoing operation reqno. In its next

request, the client includes the prior inner authenticator or its hash, such that the log server can

authenticate the prior inner authenticator.

Upon receiving authenticated responses from 2 f + 1 log servers, a correct client can infer that

at least 1 correct log server that has appended req and the inner authenticator to its request log will

participate in the next FETCH. Thus, if each reqno is voted on independently (rather than as part of a

request log), at least f +1 correct log servers will vote in favor for the request, so the request will be

reflected in the next REPLAY+UNLOCK. Similarly, if a correct log server calls missed reqs(reqno),
then f +1 correct log servers will return req.

Even further optimization: The log server need not authenticate the prior inner authenticator

until FETCH or missed reqs(. . .). Thus, if the client sends a cumulative MAC as the inner authen-

ticator of the entire request log (or its hash), only the cumulative MAC need be verified. Thus, the

lower bound replicated state machine bottleneck MACs per request in Figure 5.1.2 is 1, just a single

MAC. This technique is primarily of theoretical interest. To prevent a long sequence of speculative

requests (and potential undos), the log server may wish to verify the inner MAC before executing

a request, or at least every few requests. The implementation evaluated in Section 5.5 verifies the

inner MAC for each request.

11request log could be signed, or log servers could generate authenticators, using signatures on failure.

Bibliography

[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R. Ganger, J. Hendricks, A. J. Kloster-

man, M. Mesnier, M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamohideen, J. D. Strunk,

E. Thereska, M. Wachs, and J. J. Wylie. Ursa Minor: versatile cluster-based storage. In

Proceedings of the 4 th USENIX Conference on File and Storage Technologies, pages 59–72.

USENIX Association, 2005.

[2] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie. Fault-scalable

Byzantine fault-tolerant services. In Proceedings of the 20 th ACM Symposium on Operating

Systems Principles, pages 59–74. ACM Press, 2005.

[3] M. Abd-El-Malek, G. R. Ganger, M. K. Reiter, J. J. Wylie, and G. R. Goodson. Lazy verifica-

tion in fault-tolerant distributed storage systems. In Proceedings of the 24 th IEEE Symposium

on Reliable Distributed Systems, pages 179–190. IEEE Computer Society, 2005.

[4] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.

Lorch, M. Theimer, and R. P. Wattenhofer. FARSITE: federated, available, and reliable stor-

age for an incompletely trusted environment. In Proceedings of the 5th USENIX Symposium

on Operating Systems Design and Implementation, pages 1–14. USENIX Association, 2002.

[5] M. K. Aguilera, R. Janakiraman, and L. Xu. Using erasure codes efficiently for storage in a

distributed system. In Proceedings of the International Conference on Dependable Systems

and Networks, pages 336–345. IEEE Computer Society, 2005.

[6] M. K. Aguilera and R. Swaminathan. Brief Announcement: Remote storage with Byzantine

servers. In Proceedings of the 26 th ACM Symposium on Principles of Distributed Computing,

pages 312–313. ACM Press, 2007.

[7] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Byzantine replication under attack. In Proceedings

of the International Conference on Dependable Systems and Networks, pages 197–206. IEEE

Computer Society, 2008.

[8] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and R. Y. Wang.

Serverless network file systems. In Proceedings of the 15 th ACM Symposium on Operating

Systems Principles, pages 109–126. ACM Press, 1995.

[9] L. N. Bairavasundaram, G. Goodson, B. Schroeder, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. An analysis of data corruption in the storage stack. In Proceedings of the 6 th

103

104 BIBLIOGRAPHY

USENIX Conference on File and Storage Technologies, pages 223–238. USENIX Associa-

tion, 2008.

[10] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout. Measure-

ments of a distributed file system. In Proceedings of the 13 th ACM Symposium on Operating

Systems Principles, pages 198–212. ACM Press, 1991.

[11] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: The case of hashing

and signing. In Advances in Cryptology – CRYPTO ’94, pages 216–233. Springer-Verlag,

1994.

[12] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient

protocols. In Proceedings of the 1st ACM Conference on Computer and Communications

Security, pages 62–73. ACM Press, 1993.

[13] W. J. Bolosky, J. R. Douceur, and J. Howell. The Farsite project: a retrospective. SIGOPS

Operating Systems Review, 41(2):17–26, 2007.

[14] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M. Shellenbaum. The Zettabyte File

System. Technical report, Sun Microsystems.

[15] A. Z. Broder. Some applications of Rabin’s fingerprinting method. Sequences II: Methods in

Communications, Security, and Computer Science, pages 143–152, 1993.

[16] M. Burrows. The Chubby lock service for loosely-coupled distributed systems. In Proceed-

ings of the 7 th USENIX Symposium on Operating Systems Design and Implementation, pages

335–350. USENIX Association, 2006.

[17] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantipole: practical asyn-

chronous Byzantine agreement using cryptography (extended abstract). In Proceedings of

the 19th ACM Symposium on Principles of Distributed Computing, pages 123–132. ACM

Press, 2000.

[18] C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal. In Proceedings

of the 24th IEEE Symposium on Reliable Distributed Systems, pages 191–202. IEEE Press,

2005.

[19] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded Byzantine distributed storage.

In Proceedings of the International Conference on Dependable Systems and Networks, pages

115–124. IEEE Computer Society, 2006.

[20] J. L. Carter and M. N. Wegman. Universal classes of hash functions (extended abstract).

In Proceedings of the 9 th ACM Symposium on Theory of Computing, pages 106–112. ACM

Press, 1977.

[21] M. Castro. Practical Byzantine Fault Tolerance. PhD thesis, MIT Laboratory for Computer

Science, January 2001. Technical Report MIT/LCS/TR-817.

BIBLIOGRAPHY 105

[22] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Splitstream:

High-bandwidth multicast in cooperative environments. In Proceedings of the 19 th ACM

Symposium on Operating Systems Principles, pages 298–313. ACM Press, 2003.

[23] M. Castro and B. Liskov. Authenticated Byzantine fault tolerance without public-key cryp-

tography. Technical Memo MIT-LCS-TM-589, MIT, June 1999.

[24] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proceedings of the 3rd

USENIX Symposium on Operating Systems Design and Implementation, pages 173–186.

USENIX Association, 1999.

[25] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering perspective.

In Proceedings of the 26 th ACM Symposium on Principles of Distributed Computing, pages

398–407. ACM Press, 2007.

[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. E. Gruber. Bigtable: a distributed storage system for structured data. In Pro-

ceedings of the 7 th USENIX Symposium on Operating Systems Design and Implementation,

pages 15–28. USENIX Association, 2006.

[27] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: high-

performance, reliable secondary storage. ACM Computing Surveys, 26(2):145–185, 1994.

[28] G. Chockler, R. Guerraoui, and I. Keidar. Amnesic distributed storage. In Proceedings of the

21st International Symposium on Distributed Computing, pages 139–151. Springer-Verlag,

2007.

[29] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving

simultaneity in the presence of faults. In Proceedings of the 26 th Annual Symposium on the

Foundations of Computer Science, pages 383–395. IEEE Press, 1985.

[30] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin. Making byzantine fault

tolerant systems tolerate byzantine faults. In Proceedings of the 6 th USENIX Symposium on

Networked Systems Design and Implementation. USENIX Association, 2009.

[31] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar. Row-

diagonal parity for double disk failure correction. In Proceedings of the 3rd USENIX Confer-

ence on File and Storage Technologies, pages 1–14. USENIX Association, 2004.

[32] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ replication: a hybrid

quorum protocol for Byzantine fault tolerance. In Proceedings of the 7 th USENIX Symposium

on Operating Systems Design and Implementation, pages 177–190. USENIX Association,

2006.

[33] C. De Cannière and C. Rechberger. Finding SHA-1 characteristics: General results and

applications. In Advances in Cryptology – ASIACRYPT, pages 1–20. Springer-Verlag, 2006.

106 BIBLIOGRAPHY

[34] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-

subramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value

store. In Proceedings of the 21st ACM Symposium on Operating Systems Principles, pages

205–220. ACM Press, 2007.

[35] J. R. Douceur and J. Howell. Distributed directory service in the Farsite file system. In Pro-

ceedings of the 7 th USENIX Symposium on Operating Systems Design and Implementation,

pages 321–334. USENIX Association, 2006.

[36] A. Doudou, R. Guerraoui, and B. Garbinato. Abstractions for devising Byzantine-resilient

state machine replication. In Proceedings of the 19 th IEEE Symposium on Reliable Dis-

tributed Systems, pages 144–153. IEEE Computer Society, 2000.

[37] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.

Journal of the ACM, 35(2):288–323, 1988.

[38] D. Ellard and M. Seltzer. New NFS tracing tools and techniques for system analysis. In

Proceedings of the 17 th USENIX Large Installation System Administration Conference, pages

73–86. USENIX Association, 2003.

[39] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In Proceedings

of the 28 th Annual Symposium on the Foundations of Computer Science, pages 427–437.

IEEE Press, 1987.

[40] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with

one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[41] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In Proceedings of the

19 th ACM Symposium on Operating Systems Principles, pages 29–43. ACM Press, 2003.

[42] B. Gladman. SHA1, SHA2, HMAC and key derivation in C.

http://fp.gladman.plus.com/cryptography technology/sha.

[43] L. Gong. Securely replicating authentication services. In Proceedings of the 9 th International

Conference on Distributed Computing Systems, pages 85–91. IEEE Computer Society, 1989.

[44] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient Byzantine-tolerant

erasure-coded storage. In Proceedings of the International Conference on Dependable Sys-

tems and Networks, pages 135–144. IEEE Computer Society, 2004.

[45] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. The safety and liveness properties

of a protocol family for versatile survivable storage infrastructures. Technical Report CMU–

PDL–03–105, Parallel Data Laboratory, Carnegie Mellon University, 2004.

[46] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical accountability for

distributed systems. In Proceedings of the 21st ACM Symposium on Operating Systems Prin-

ciples, pages 175–188. ACM Press, 2007.

BIBLIOGRAPHY 107

[47] J. H. Hartman and J. K. Ousterhout. The Zebra striped network file system. ACM Transac-

tions on Computer Systems, 13(3):274–310, 1995.

[48] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead Byzantine fault-tolerant storage.

In Proceedings of the 21st ACM Symposium on Operating Systems Principles, pages 73–86.

ACM Press, 2007.

[49] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and

Systems, 13(1):124–149, 1991.

[50] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended

queues as an example. In Proceedings of the 23rd International Conference on Distributed

Computing Systems, pages 522–529. IEEE Computer Society, 2003.

[51] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.

ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

[52] J. Katcher. Postmark: a new file system benchmark. Technical report TR3022, Network

Appliance, October 1997.

[53] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Solving consensus in a Byzantine en-

vironment using an unreliable fault detector. In Proceedings of the International Conference

on Principles of Distributed Systems, pages 61–75, 1997.

[54] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The SecureRing protocols for securing

group communication. In Proceedings of the 31st Annual Hawaii International Conference

on System Sciences, pages 317–326. IEEE Computer Society, 1998.

[55] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: speculative Byzantine

fault tolerance. In Proceedings of the 21st ACM Symposium on Operating Systems Principles,

pages 45–58. ACM Press, 2007.

[56] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative Byzantine

fault tolerance. Technical Report TR-07-40, The University of Texas at Austin, Department

of Computer Sciences, August 2007.

[57] R. Kotla and M. Dahlin. High throughput byzantine fault tolerance. In Proceedings of the

International Conference on Dependable Systems and Networks, pages 575–584. IEEE Com-

puter Society, 2004.

[58] H. Krawczyk. Distributed fingerprints and secure information dispersal. In Proceedings of

the 12 th ACM Symposium on Principles of Distributed Computing, pages 207–218. ACM

Press, 1993.

[59] H. Krawczyk. LFSR-based hashing and authentication. In Advances in Cryptology –

CRYPTO ’94, pages 129–139. Springer-Verlag, 1994.

108 BIBLIOGRAPHY

[60] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srinivasan, R. Thelen, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. Parity lost and parity regained. In Proceedings of

the 6 th USENIX Conference on File and Storage Technologies, pages 127–141. USENIX

Association, 2008.

[61] M. N. Krohn, M. J. Freedman, and D. Mazieres. On-the-fly verification of rateless erasure

codes for efficient content distribution. In Proceedings of the IEEE Symposium on Security

and Privacy. IEEE Press, 2004.

[62] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale per-

sistent storage. In Proceedings of the 9 th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 190–201. ACM Press, 2000.

[63] K. Kursawe. Optimistic Byzantine agreement. In Proceedings of the 21st IEEE Symposium

on Reliable Distributed Systems, pages 262–267. IEEE Computer Society, 2002.

[64] L. Lamport. Paxos made simple. ACM SIGACT News, pages 18–25, Dec 2001.

[65] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions

on Programming Languages and Systems, 4(3):382–401, 1982.

[66] B. Liskov and R. Rodrigues. Tolerating Byzantine faulty clients in a quorum system. In

Proceedings of the 26 th International Conference on Distributed Computing Systems, pages

34–43. IEEE Computer Society, 2006.

[67] D. Malkhi and M. Reiter. Unreliable intrusion detection in distributed computations. In

Proceedings of the 10th IEEE workshop on Computer Security Foundations, pages 116–124.

IEEE Computer Society, 1997.

[68] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):201–

213, 1998.

[69] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11:203–213,

1998.

[70] D. Malkhi, M. Reiter, and N. Lynch. A correctness condition for memory shared by byzantine

processes. http://groups.csail.mit.edu/tds/papers/Lynch/lynch-malk-reit.html as retrieved on 16

March 2008.

[71] D. Malkhi, M. K. Reiter, and A. Wool. The load and availability of Byzantine quorum

systems. SIAM Journal of Computing, 29(6):1889–1906, 2000.

[72] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building efficient replicated state ma-

chine for WANs. In Proceedings of the 8 th USENIX Symposium on Operating Systems Design

and Implementation, pages 369–384. USENIX Association, 2008.

http://groups.csail.mit.edu/tds/papers/Lynch/lynch-malk-reit.html

BIBLIOGRAPHY 109

[73] J.-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine quorum systems. In Proceedings of

the International Conference on Dependable Systems and Networks, pages 374–388. IEEE

Computer Society, 2002.

[74] P. Maymounkov. Online codes. Technical Report TR2002–833, Secure Computer Systems

Group, New York University, 2002.

[75] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by par-

allel machines with restricted granularity of parallel memories. Acta Informatica, 21(4):339–

374, 1984.

[76] N. Möller. Nettle Manual, 1.15 edition, 2006.

[77] D. Nagle, D. Serenyi, and A. Matthews. The Panasas ActiveScale storage cluster: Delivering

scalable high bandwidth storage. In Proceedings of the ACM/IEEE SC2004 Conference,

page 53. IEEE Computer Society, 2004.

[78] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and KDCs. In

Advances in Cryptology – EUROCRYPT ’99, pages 327–346. Springer-Verlag, 1999.

[79] W. Nevelsteen and B. Preneel. Software performance of universal hash functions. In Ad-

vances in Cryptology – EUROCRYPT ’99, pages 24–41. Springer-Verlag, 1999.

[80] T. Pedersen. Distributed provers with applications to undeniable signatures. In Advances in

Cryptology – EUROCRYPT ’91, pages 221–242. Springer-Verlag, 1991.

[81] J. S. Plank. The RAID-6 liberation codes. In Proceedings of the 6th USENIX Conference on

File and Storage Technologies, pages 1–14. USENIX Association, 2008.

[82] R. Primmer and C. D. Halluin. Collision and preimage resistance of the Centera content

address. Technical report, EMC2 Corporation, 2005.

[83] M. O. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-81, Center

for Research in Computing Technology, Harvard University, 1981.

[84] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault toler-

ance. Journal of the ACM, 36(2):335–348, 1989.

[85] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. SIAM Journal of

Applied Mathematics, 8:300–304, 1960.

[86] M. K. Reiter. Secure agreement protocols: reliable and atomic group multicast in Rampart. In

Proceedings of the 2nd ACM Conference on Computer and Communications Security, pages

68–80. ACM Press, 1994.

[87] M. K. Reiter. The Rampart toolkit for building high-integrity services. In Selected Papers

from the International Workshop on Theory and Practice in Distributed Systems, pages 99–

110. Springer-Verlag, 1995.

110 BIBLIOGRAPHY

[88] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using abstraction to improve fault tolerance.

In Proceedings of the 18 th ACM Symposium on Operating Systems Principles, pages 15–28.

ACM Press, 2001.

[89] R. Rodrigues, P. Kouznetsov, and B. Bhattacharjee. Large-scale Byzantine fault tolerance:

Safe but not always live. In Proceedings of the 3rd Workshop on Hot Topics in System De-

pendability. USENIX Association, 2007.

[90] P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, implications,

and separations for preimage resistance, second-preimage resistance, and collision resistance.

In Proceedings of the 11 th International Workshop on Fast Software Encryption. Springer-

Verlag, 2004.

[91] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence. FAB: Building distributed

enterprise disk arrays from commodity components. In Proceedings of the 11 th International

Conference on Architectural Support for Programming Languages and Operating Systems,

pages 48–58. ACM Press, 2004.

[92] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters.

In Proceedings of the 1st USENIX Conference on File and Storage Technologies, pages 231–

244. USENIX Association, 2002.

[93] T. Schwarz. Verification of parity data in large scale storage systems. In Proceedings of the

International Conference on Parallel and Distributed Processing Techniques and Applica-

tions. CSREA Press, 2004.

[94] V. Shoup. On fast and provably secure message authentication based on universal hashing.

In Advances in Cryptology – CRYPTO ’96, pages 313–328. Springer-Verlag, 1996.

[95] A. Singh, P. Maniatis, P. Druschel, and T. Roscoe. Conflict-free quorum based BFT protocols.

Technical Report TR-2007-2, Max Planck Institute for Software Systems, August 2007.

[96] A. Singh, P. Maniatis, P. Druschel, and T. Roscoe. BFT protocols under fire. In Proceedings

of the 5 th USENIX Symposium on Networked Systems Design and Implementation, pages

189–204. USENIX Association, 2008.

[97] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger. Metadata efficiency in

versioning file systems. In Proceedings of the 2nd USENIX Conference on File and Storage

Technologies, pages 43–58. USENIX Association, 2003.

[98] M. A. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology – EUROCRYPT

’96, pages 190–199. Springer-Verlag, 1996.

[99] Sun Microsystems. ZFS On-Disk Specification Draft, 2006.

[100] E. Thereska, M. Abd-El-Malek, J. J. Wylie, D. Narayanan, and G. R. Ganger. Informed

data distribution selection in a self-predicting storage system. In Proceedings of the 3rd In-

ternational Conference on Autonomic Computing, pages 187–198. IEEE Computer Society,

2006.

BIBLIOGRAPHY 111

[101] S. Toueg. Randomized Byzantine agreements. In Proceedings of the 3rd ACM Symposium

on Principles of Distributed Computing, pages 163–178, 1984.

[102] D. Travis. On irreducible polynomials in Galois fields. The American Mathematical Monthly,

70(10):1089–1090, 1963.

[103] D. Wagner. A generalized birthday problem. In Advances in Cryptology – CRYPTO ’02,

pages 288–304. Springer-Verlag, 2002.

[104] X. Wang and H. Yu. How to break MD5 and other hash functions. In Advances in Cryptology

– EUROCRYPT ’05, pages 19–35. Springer-Verlag, 2005.

[105] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. replication: a quantitative ap-

proach. In International Workshop on Peer-to-Peer Systems, pages 328–337. Springer-Verlag,

2002.

[106] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID hierarchical storage

system. ACM Transactions on Computer Systems, 14(1):108–136, 1996.

[107] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating agreement from

execution for Byzantine fault tolerant services. In Proceedings of the 19 th ACM Symposium

on Operating Systems Principles, pages 253–267. ACM Press, 2003.

[108] Z. Zhang, S. Lin, Q. Lian, and C. Jin. RepStore: A self-managing and self-tuning storage

backend with smart bricks. In Proceedings of the 1st International Conference on Autonomic

Computing, pages 122–129. IEEE Computer Society, 2004.

	Introduction
	Thesis Statement
	Verifying Distributed Erasure-Coded Data
	Correctness in the Presence of Faulty Clients
	Low-Overhead Byzantine Fault-Tolerant Storage
	Scalable Fault Tolerance through Byzantine Locking

	Homomorphic Fingerprinting: Verifying Distributed Erasure-Coded Data
	Homomorphic Fingerprinting
	Fingerprinting
	Homomorphism
	Applications to Erasure Codes

	Fingerprinted Cross-checksum
	Example: Improving Avid
	Avid
	Avid-fp
	Avid-fp Pseudo-code
	Avid-fp Correctness

	Performance
	Other Protocols
	Related Work
	Conclusion

	The Correctness of Distributed Systems in the Presence of Faulty Clients
	Background
	Safety in the Presence of Faulty Clients
	Stricter Extensions of Linearizability
	Invocation Criteria
	Recovery

	A Wait-free Storage Protocol with Immediate Recovery
	Write
	Read
	Revoke
	Linearizability and Immediate Recovery

	Conclusion

	Low-Overhead Byzantine Fault-Tolerant Storage
	Background
	Beyond Crash Faults
	The Cost of Byzantine Fault Tolerance
	Byzantine Fault-Tolerant Storage

	The fp Protocol
	Design
	System Model
	Detailed Pseudo-code
	Correctness

	Implementation
	Evaluation
	Competing Protocols
	Experimental Setup
	Write Throughput
	Read Throughput
	Response Time

	Conclusion

	Scalable Fault Tolerance through Byzantine Locking
	Context and Related Work
	The Byzantine Efficiency Race
	How Zzyzx Fits In
	Prior Byzantine Fault-Tolerant Replicated State Machine Protocols
	Additional Related Work

	Definitions and System Model
	Byzantine Locking and Zzyzx
	The Zyzzyva Interface and Locking
	The Log Interface
	Handling Contention

	Protocol Details
	Checkpointing and State Transfer
	Optimizations
	Scalability Through Log Server Groups

	Evaluation
	Assumptions and Limitations
	Experimental Setup
	Scalability
	Throughput
	Latency
	Performance with f Slow Servers
	Performance Under Contention
	Postmark and Trace-driven Execution

	Conclusion

	Conclusion
	The Correctness of Byzantine Locking
	Sequential Specifications of Relevant Objects
	The Object-Based State Machine Object
	The Log Object
	The Manager Object

	Linearizability
	The Reads-from Relation
	The Equivalence of Replayed Requests
	Requests that are not Replayed
	Real-time precedence: Reads-from Strict
	The Linearizability of Exec and Append

	The Client and The Primary
	Reads-from Valid and Reads-from Strict
	The Primary
	The Client
	Liveness
	Obstruction-Free Variants

	Zzyzx Optimizations
	Faulty Client Isolation
	Separating Unlock from Fetch
	Append, Unlock, and Fetch
	Import
	Retrying if Append Returns failure
	State Transfer and Next_Vs
	missed_reqs(…)
	Next_Vs and get_view(…)
	Replaying Requests at the Log Object
	Avoiding Replay
	Garbage Collection

	Using MACs Instead of Signatures in Append

