
Reducing the Trusted Computing Base for Applications

on Commodity Systems

Jonathan M. McCune

January 13, 2009

School of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Prof. Adrian Perrig, Co-Chair (Carnegie Mellon University)

Prof. Michael K. Reiter, Co-Chair (University of North Carolina)

Prof. Gregory R. Ganger (Carnegie Mellon University)

Dr. Leendert van Doorn (Advanced Micro Devices)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2009 Jonathan M. McCune

2

This research was supported in part by CyLab at Carnegie Mellon under grants DAAD19-

02-1-0389 and MURI W 911 NF 0710287 from the Army Research Office, and grants CCF-

0424422, CNS-0509004, CNS-0627357, CT-0433540 and CT-0756998 from the National

Science Foundation, and by the iCAST project, National Science Council, Taiwan under

the Grants No. (NSC95-main) and No. (NSC95-org), and by gifts from AMD and Intel.

The views and conclusions contained here are those of the author and should not be

interpreted as necessarily representing the official policies or endorsements, either express

or implied, of AMD, ARO, CMU, iCast, NSF, or the U.S. Government or any of its

agencies.

Keywords: Software Security, Trusted Computing Base, Dynamic Root

of Trust for Measurement, Remote Attestation, Trusted Path, User Input,

Trusted Platform Module, Human-Verifiable, Authentication, Visual Chan-

nel, Camera Phone, Trusted Mobile Device

To honor the memory and character of Judge Barron Patterson McCune.

Abstract

Today we have powerful, feature-rich computer systems plagued by pow-

erful, feature-rich malware. Current malware exploit the vulnerabilities that

are endemic to the huge computing base that needs to be trusted to se-

cure our private information. This thesis presents an architecture called

Flicker that alleviates security-conscious developers from the burden of mak-

ing sense out of this code base, allowing them to concentrate on the security

of their own code. Since today’s legacy operating systems will likely be used

for the foreseeable future, we design Flicker to coexist with these systems.

Flicker allows code to execute in complete isolation from other software

while trusting as few as 250 lines of additional code – orders of magnitude

smaller than even minimalist virtual machine monitors. Flicker also enables

more meaningful attestation of the code executed and its inputs and outputs

than previous proposals, since only measurements of the security-sensitive

portions of an application need to be included. Flicker leverages hardware

support provided by commodity processors from AMD and Intel that are

widely available today, and does not require a new OS or a VMM. Flicker’s

properties hold even if the BIOS, OS and DMA-enabled devices are all

malicious. We evaluate a full implementation of Flicker on an AMD system

and apply Flicker to four server-side applications.

We also perform a detailed case study of the use of Flicker to reduce the

trusted computing base to which users’ input events are exposed on their own

computers, circumventing entire classes of malware such as keyloggers and

screen scrapers. This case study involves the development of a system called

Bumpy that allows the user to specify strings of input as sensitive when she

enters them, and ensures that these inputs reach the desired endpoint in a

protected state. The inputs are processed in a Flicker-isolated code module

on the user’s system, where they can be encrypted or otherwise processed

for a remote webserver. A trusted mobile device can provide feedback to the

user that her inputs are bound for the intended destination. We describe the

design, implementation, and evaluation of Bumpy, with emphasis on both

usability and security issues.

6

Flicker depends on attestations composed of cryptographic hashes and

digital signatures to allow a remote verifier to ascertain the identity of code

that executes with Flicker’s protections. We propose a mechanism called

Seeing-is-Believing to allow the computer’s owner to authenticate the phys-

ical identity of her computer, in addition to its digital identity represented

in the attestation. This rules out the possibility of successful man-in-the-

middle or proxy attacks, and reduces the need for trusted third parties that

are unavailable today.

Attestation technologies potentially pose a risk to users’ privacy. Flicker

protects users’ privacy by including only the code executed during a Flicker

session in an attestation, instead of providing information about all software

loaded for execution during the current boot cycle.

Motivated by our experience with Flicker on today’s hardware, we offer

suggestions to improve Flicker’s performance that leverage existing processor

technology, retain security, and improve performance.

Acknowledgements

Though my name is printed on the cover of this thesis, the word “I”

does not appear within its chapters. I do this to pay tribute to the myriad

contributions of my advisors and collaborators, and the support of my family

and friends.

Kathleen, thank you for believing in me and for your patience during

so many late nights, many of them unanticipated. To my parents: Thank

you for giving me the freedom and opportunity to pursue my own interests,

even when they appeared incomprehensible or dangerous. I also thank my

grandfather for teaching me that there is no substitute for honest hard work.

Mike and Adrian, the research environment you created for me is without

match. Your dedication, encouragement, support, and hard work constantly

inspired me to better myself and aim higher. I am at a loss for words.

Bryan and Arvind, Flicker would not have happened without you. Bryan,

I am particularly grateful for your analytical and writing skills, and for let-

ting me spend so much time buried in the details of these systems. Arvind,

each lunch at Phipps Conservatory left me with new ideas and fresh energy.

To Reiner Sailer, Stefan Berger, Ramón Cáceres, Trent Jaeger, Ron

Perez, Leendert van Doorn, and the rest of the IBM System Security Group

circa 2005: The technical skills I learned during my summer in your research

group made it possible for me to implement this thesis. Leendert van Doorn

and Elsie Wahlig provided additional support for AMD SVM, without which

I could not have implemented Flicker.

Lujo Bauer offered much advice and encouragement that was a great

source of comfort to a new graduate student. Lujo’s encouragement to

persist with Mobile phone programming was my first foray into alpha release

systems – an activity which has been very fruitful for this thesis.

Many of my fellow students and collaborators took time away from their

own over-extended lives to provide feedback on this thesis, and for this I

am extremely grateful. I hesitate to include such a list, as I will surely omit

some who deserve mention. Unrestrained comments from many anonymous

reviewers provided equal parts useful feedback, entertainment, and disbelief.

8

As an undergraduate at UVA, Dave Evans enthusiastically shared his

passion for academia, provided me with support and encouragement, and

helped me make the decision to begin the journey that has lead to this thesis.

To CMU Crew: My heart was and shall always remain in the work.

HOTO and LiveStrong are on my calendar indefinitely.

To Josh, Andy, and Lenny: Thanks for helping me learn what is possible

by leaving one’s comfort zone, and for being ready for anything. To the

WashPa crowd: I could not do the things I have done without your loyalty

and friendship.

Finally, I want to thank all of my friends who made life in Pittsburgh

enjoyable and sociable. Mike A., I will always aspire to match your level

of optimism, clarity of purpose, and general zest for life. Scott, Jim and

Bonnie, Bryan and Diana, Dave and Natalie, Ahren and Casey, and Ellery

and Alexa, thanks for all the good times.

All errors and limitations remaining in this thesis are mine alone.

Contents

Table of Contents 9

List of Tables 15

List of Figures 16

1 Introduction 17

1.1 TCB Minimization Infrastructure 19

1.2 TCB Reduction for Sensitive User Input 20

1.3 Human-Verifiable Authentication 21

1.4 Architectural Recommendations 22

2 Background 23

2.1 Integrity Measurement and Static Root of Trust 23

2.2 Late Launch / Dynamic Root of Trust 24

2.2.1 AMD Secure Virtual Machine (SVM) 25

2.2.2 Intel Trusted Execution Technology (TXT) 26

2.3 Attestation . 26

2.3.1 Certifying Platform Identity 27

2.4 TPM-Based Sealed Storage 28

3 TCB Minimization Infrastructure 30

3.1 Problem Definition . 33

3.1.1 Adversary Model . 33

3.1.2 Goals . 34

9

CONTENTS 10

3.2 Flicker Architecture . 35

3.2.1 Flicker Overview . 35

3.2.2 Isolated Execution . 37

3.2.3 Multiple Flicker Sessions 41

3.2.3.1 TPM Sealed Storage 42

3.2.3.2 Replay Prevention for Sealed Storage 42

3.2.4 Interaction With a Remote Party 44

3.2.4.1 Attestation and Result Integrity 44

3.2.4.2 Establishing a Secure Channel 45

3.3 Developer’s Perspective . 47

3.3.1 Creating a PAL . 47

3.3.1.1 A “Hello, World” Example PAL 49

3.3.1.2 Building a PAL 49

3.3.2 Automation . 52

3.4 Flicker Applications . 53

3.4.1 Stateless Applications 54

3.4.2 Integrity-Protected State 54

3.4.3 Secret and Integrity-Protected State 56

3.4.3.1 SSH Password Authentication 56

3.4.3.2 Certificate Authority 59

3.5 Performance Evaluation . 60

3.5.1 Experimental Setup 60

3.6 End-to-End Application Macrobenchmarks 61

3.6.1 Stateless Applications 61

3.6.2 Integrity-Protected State 63

3.6.3 Secret and Integrity-Protected State 64

3.6.4 Summary of High-Level Flicker Overheads 66

3.6.5 Impact on Suspended Operating System 68

3.7 Microbenchmarks . 69

3.7.1 Late Launch with an AMD Processor 70

3.7.2 Late Launch with an Intel Processor 72

3.7.3 Trusted Platform Module (TPM) Operations 73

3.7.4 Major Sources of Performance Problems 74

CONTENTS 11

3.8 Summary . 75

4 TCB Reduction for Sensitive User Input 76

4.1 Overview . 78

4.1.1 Goals and Assumptions 79

4.1.2 User Experience . 79

4.1.3 Technical Overview . 81

4.2 Identifying and Isolating Sensitive Input 81

4.2.1 Steady-State User Input Protection 83

4.2.2 Associating the PreP and Input Device(s) 88

4.2.3 PreP State Freshness 90

4.3 Input Post-Processing and Attestation 90

4.3.1 Post-Processing Sensitive Input 91

4.3.1.1 Example Forms of Post-Processing 91

4.3.1.2 Activating a PoPr 92

4.3.2 Attestation and Verifying Input Protections 93

4.3.2.1 Establishing Platform Identity 93

4.3.2.2 The Attestation Protocol 94

4.3.2.3 Processing Attestation Results 95

4.4 The Trusted Monitor . 96

4.4.1 Feedback for the User 96

4.4.2 Protocol Details . 97

4.5 Security Analysis . 99

4.5.1 Trusted Computing Base 99

4.5.2 Compromised Browser 100

4.5.3 Phishing . 101

4.5.4 Usability . 102

4.6 Implementation . 103

4.6.1 Bumpy Components 104

4.6.2 Secure Communication with the PreP 106

4.6.2.1 PreP Authentication 107

4.6.2.2 Symmetric Key Generation for Communica-

tion with the PreP 108

CONTENTS 12

4.6.2.3 Long-Term State Protection 109

4.6.3 The Life of a Keystroke 110

4.6.4 The Webserver’s Perspective 112

4.7 Evaluation . 112

4.8 Discussion . 116

4.8.1 Trusted Monitor as Input Proxy 116

4.8.2 Bumpy Design Alternatives 118

4.8.3 Other Interesting Features 119

4.9 Summary . 120

5 Human-Verifiable Authentication 121

5.1 Seeing-is-Believing (SiB) . 123

5.1.1 2D Barcodes as a Visual Channel 124

5.1.2 Pre-Authentication and the Visual Channel 124

5.1.3 Device Configurations 126

5.2 Bidirectional Authentication 127

5.3 Unidirectional Authentication 129

5.4 Presence Confirmation . 131

5.5 Implementation Details . 133

5.5.1 Series 60 Phone Application 133

5.5.2 Visual Channel Bandwidth 135

5.5.2.1 Cycling Multiple Barcodes 135

5.5.2.2 Tiling Multiple Barcodes 136

5.6 Applications of Seeing-is-Believing 138

5.6.1 Applications in Trusted Computing 138

5.6.2 Seeing-is-Believing and the Grey Project 139

5.6.3 Group Key Establishment 139

5.7 Security Analysis . 140

5.7.1 Cryptography . 141

5.7.2 Selecting an Authentication Channel 141

5.7.3 Attacks Against Seeing-is-Believing 143

5.7.4 Sticker-based Attacks 145

5.8 Summary . 145

CONTENTS 13

6 Architectural Recommendations 147

6.1 Security Properties . 148

6.2 Overview of Recommendations 149

6.3 Launching a PAL . 150

6.3.1 Recommendation . 150

6.3.2 Suggested Implementation 151

6.4 Hardware Memory Isolation 152

6.4.1 Recommendation . 152

6.4.2 Suggested Implementation 153

6.5 Hardware Context Switch . 153

6.5.1 Recommendation . 154

6.5.2 Suggested Implementation 155

6.6 TPM Support for Flicker . 155

6.6.1 sePCR Assignment and Communication 157

6.6.2 sePCR Access Control 158

6.6.3 sePCR States and Attestation 159

6.6.4 Sealing Data Under a sePCR 159

6.6.5 TPM Arbitration . 160

6.7 PAL Exit . 160

6.8 PAL Life Cycle . 161

6.9 Expected Impact . 164

6.10 Extensions . 167

7 Related Work 169

7.1 Isolation . 169

7.2 Attestation and Trusted Computing 172

7.3 Protecting User Input and Output 174

7.3.1 Mobile Devices . 174

7.3.2 Secure Window Managers 177

7.4 Browser Security . 179

7.5 Authentication without Prior Context 179

7.5.1 Barcode Recognition with Camera Phones 182

CONTENTS 14

8 Conclusions and Future Work 183

8.1 Conclusions . 183

8.2 Future Work . 184

8.2.1 User Studies . 185

8.2.2 Automatic Privilege Separation 185

8.2.3 User-Observable Verification 185

Bibliography 187

List of Tables

3.1 Replay protection for sealed storage. 43

3.2 Flicker external communication protocol. 48

3.3 “Hello, world” PAL. 48

3.4 Modules that can be included in the PAL. 49

3.5 Protocol for the second Flicker session for our SSH implemen-

tation. 57

3.6 Breakdown of Rootkit Detector Overhead. 61

3.7 Performance impact of the Rootkit Detector. 62

3.8 Operations for Distributed Computing. 63

3.9 SKINIT and SENTER benchmarks. 70

4.1 Lines of code for trusted Bumpy components. 113

4.2 TPM Quote overhead. 118

5.1 Can a device of type X authenticate a device of type Y? . . . 127

5.2 Latency of mutual authenticated key exchange with SiB. . . . 137

5.3 Characteristics of various channels proposed for authentication.142

6.1 VM entry and exit overheads. 156

6.2 SLAUNCH pseudocode. 165

15

List of Figures

3.1 TCB comparison between Flicker and a traditional architecture. 33

3.2 PAL execution timeline. 36

3.3 Memory layout of the SLB. 39

3.4 Flicker vs. Replication Efficiency. 64

3.5 SSH Overhead. 65

3.6 Unavoidable Flicker overheads. 67

3.7 TPM benchmarks. 74

4.1 Major components of the Bumpy system. 78

4.2 Acquiring user input with Bumpy. 82

4.3 States of the PreP. 84

4.4 Screen shots of the Trusted Monitor. 105

4.5 Latencies for 500 individual keystrokes. 114

5.1 Pre-authentication over the visual channel. 125

5.2 Phone running SiB scanning a barcode on an 802.11 access

point. 131

5.3 Phone running SiB scanning a barcode on the LCD of another.134

5.4 Screen shot showing the SiB application recognizing multiple

tiled barcodes. 137

6.1 Chipset configuration for a modern x86 computer. 148

6.2 Legacy OS and multiple PALs. 149

6.3 Proposed states of a memory page. 154

6.4 Life cycle of a PAL. 164

16

Chapter 1

Introduction

The size and complexity of modern operating systems makes them diffi-

cult to analyze and vulnerable to attack. Applications built on these OSes

inherit their vulnerabilities, as the hierarchical privilege structure of these

OSes yields total control of applications to the OS. Thus, even the simplest

application function operates with a trusted computing base (TCB) con-

sisting of the union of all operating system and device driver code. Other

applications running with super-user privileges can readily modify the OS

on which they run, thus adding their codebase to the TCB. If the OS is

running on top of a virtual machine monitor, then it too must be trusted.

Regardless of how a computer system is designed, the security of a given

application remains intimately tied to the user who is operating it. Security

is a holistic property, and user errors can render even the best-designed

security systems useless [93]. Security remains a secondary objective for

most users, even if they are interested in protecting sensitive data such as

their bank account numbers. Unfortunately, a security-conscious user who

wants to dedicate some of her scarce time to verify that her input is not

observed by malicious code during a sensitive online financial transaction

faces an impasse. Keyloggers can capture a user’s typed input and screen

scrapers can process the content displayed to the user to obtain sensitive

information such as credit card numbers [68, 119, 145, 170]. We lack the

technology to give the user a definitive indication that her input is safe.

17

CHAPTER 1. INTRODUCTION 18

There are numerous ongoing projects to build a new “secure” OS [66, 153,

159], and there have been many attempts in the past [16, 86, 148, 149]. While

we applaud these efforts, the reality is that computer systems are not always

chosen for their technical merits. The availability of essential applications,

network effects, and economies of scale apply tremendous pressure to retain

legacy software. The size of the installed base of today’s popular commodity

OSes renders a clean-slate approach infeasible. Rather, we must coexist with

these systems, while adhering to the axioms of isolation, small code size, and

user-friendly design.

Trusted Computing technologies based on a Trusted Platform Module

(TPM) security chip such as remote attestation and sealed storage have

been proposed with the goal of improving the resilience of commodity com-

puting platforms against software-based attacks [172]. These technologies

have received criticism for their ability to erode users’ privacy because (1)

they require trusted third parties that uniquely identify the user’s platform

and then possibly the user through product registration information [7].

Additionally, (2) integrity measurement and remote attestation based on a

static root of trust [143] leak information about all software loaded during

the current boot cycle, even if a remote challenger is only interested in a

single application on the user’s computing platform. This thesis presents

mechanisms that eliminate concern (2) and partially relieve concern (1).

Designing new systems while maintaining compatibility with old systems

has been standard practice since the computing industry burgeoned in the

1970s [89]. Today, however, there exists a mountain of software that is rid-

dled with security vulnerabilities. Unfortunately, the number of vulnerabil-

ities tends to be proportional to code size [117]. In this thesis, we will show

how to execute sensitive code in isolation despite the presence of untrusted

legacy code, thereby opening up the opportunity for security-conscious de-

velopers to create applications without including the entire software stack

in each application’s TCB.

Thesis Statement. Security-sensitive code can be verifiably executed

in isolation on commodity hardware without a persistent layer of trusted

system software, and without breaking compatibility with legacy operating

CHAPTER 1. INTRODUCTION 19

systems and applications. This architecture can be realized with a software

trusted computing base that is orders of magnitude smaller than even today’s

minimalist virtual machine monitors.

We now provide an overview of each technical chapter of this thesis.

Background material is presented in Chapter 2, and additional related work

is discussed in Chapter 7 following the primary technical content. The re-

sults of this thesis have been documented in a number of publications [107,

108, 109, 111, 112, 113, 114, 115].

1.1 TCB Minimization Infrastructure

We develop Flicker, a secure execution architecture that allows security-

sensitive code to execute in complete isolation from all other software (in-

cluding the operating system and VMM, if present). Flicker’s properties hold

even if the BIOS, OS and DMA-enabled devices are all malicious. This dra-

matic reduction in the size of the TCB for an application enables meaningful

software attestation and facilitates formal security analysis of the software

remaining in the TCB. Flicker provides these guarantees without requiring a

reboot, a change of OS, or a VMM. Indeed, in its most minimal configuration

Flicker adds fewer than 250 lines of code to the mandatory software TCB.

Yet Flicker’s isolation also allows more complex configurations to include

more code without forcing its inclusion in the TCB for minimized configura-

tions. Flicker coexists with existing systems by imposing no computational

overhead at all when Flicker is inactive.

Flicker leverages hardware support for secure virtualization provided by

AMD’s Secure Virtual Machine (SVM) architecture [3] or Intel’s Trusted

Execution Technology (TXT) [75]. These technologies provide a hardware-

based dynamic root of trust, as well as new forms of memory protection.

They are designed to atomically measure and launch a VMM or security

kernel without requiring a reboot [61]. In contrast, we propose using this

technology to securely execute sensitive application code in complete isola-

tion and then return to the user’s legacy operating system. By doing so, we

eliminate the OS from the application’s TCB. Furthermore, our architecture

CHAPTER 1. INTRODUCTION 20

can be deployed today, and need not await the development of a perfectly

secure VMM. SVM- and TXT-equipped processors are currently shipping

in commodity servers and PCs.

Remote attestation technology based on the TPM [172] can be used to

convince a remote party that precisely this code module and nothing else

executed during a Flicker session. This design protects the user’s privacy

and relieves the verifier from having to make sense out of the user’s entire

software stack. Flicker supports protocols for establishing authentic com-

munication between a PAL and a remote entity, and it is architected such

that the code that generates attestations need not be trusted.

Flicker allows application developers to focus on the security of their

code without blindly trusting an unverifiable quantity of code executing

below. We describe the design, implementation, and analysis of Flicker on

commodity hardware in Chapter 3. Chapter 3 also shows how we use Flicker

to improve the security of four different server applications.

1.2 TCB Reduction for Sensitive User Input

We have already described how a vulnerability in any part of a system’s OS

renders users’ sensitive data insecure regardless of what application they may

be running. On top of this untrustworthy OS sits a complex and monolithic

web browser, which faces protection and assurance challenges similar to

those of the OS [33]. It is not surprising that trusting this software stack

for the protection of private data in web transactions often leads to data

compromise.

In Chapter 4, we provide a detailed case study where we develop Bumpy,

a system that builds on Flicker for protecting user input to web pages. This

case study is more thorough than our server-side Flicker applications, and

illustrates many of the challenges arising from the use of Flicker to secure

client-side applications.

Bumpy leverages encryption-capable input devices to process all user

input in a Flicker-protected environment. We employ the secure attention

sequence @@ to enable users to specify forthcoming input as sensitive, so

CHAPTER 1. INTRODUCTION 21

that far more than just passwords can be protected. A trusted mobile de-

vice can also receive updates from Bumpy’s Flicker-protected module to

provide definitive feedback to the user as to the status of input protections

on her system. Bumpy enables the remote webserver to specify how sensi-

tive input is processed once it has been entered, with TPM-based remote

attestation to convince the webserver that the desired processing is active.

Thanks to Flicker, the attestation covers only such input-processing code,

and protects the users’ privacy since no information is leaked about other

(security-irrelevant) code. We explore end-to-end encryption and password

hashing [52, 51, 138] as two possibilities for processing input.

1.3 Human-Verifiable Authentication

Trusted computing technology depends on a third party to certify a com-

puting platform and its TPM as complying with the relevant specifications

without leaking the exact identity of the platform. Unfortunately, the result-

ing certificates do not provide strong physical identification of the relevant

computing platform to the platform owner. This limitation is particularly

egregious when a user wants to verify the security properties of a public

computer, e.g., in an Internet cafe. In Chapter 5, we develop Seeing is Be-

lieving (SiB), a technique leveraging two-dimensional barcodes and camera

phones to create a visual channel that provides demonstrative identifica-

tion of communicating devices to the human user(s). SiB works even when

devices share no prior context, or when the prerequisite of a trusted third

party or public key infrastructure (PKI) may undesirably inflate the user’s

TCB, if such an authority exists at all.

These devices may be components in one person’s computing environ-

ment, such as her keyboard, display, mobile phone, laptop or digital camera,

or they may be devices belonging to two different people. The most relevant

use of SiB for this thesis is to ascertain the identity of the TPM in a user’s

computer. This enables one to bind a third-party certificate to the physical

identity of a particular platform, thereby allowing users or administrators

who take an interest in security to effectively manage their own systems.

CHAPTER 1. INTRODUCTION 22

1.4 Architectural Recommendations

One result of our performance evaluation of Flicker is that we use the avail-

able secure-virtualization hardware features far more frequently than in-

tended during their original design. In Chapter 6, we summarize the primary

sources of overhead for Flicker and make architectural recommendations for

next-generation hardware to better support Flicker.

Chapter 2

Background on Trusted

Computing Technology

This thesis leverages a suite of technologies known as trusted computing

and specified by the Trusted Computing Group (TCG). The TCG is an

organization that promotes open standards to strengthen computing plat-

forms against software-based attacks [172]. The purpose of this chapter is

to provide background information on TCG technologies, as leveraged by

this thesis. We discuss the static and dynamic roots of trust for measure-

ment (Sections 2.1 and 2.2), remote attestation (Section 2.3), and sealed

storage (Section 2.4). Both AMD and Intel are shipping chips with these

capabilities; they can be purchased in commodity computers.

2.1 Integrity Measurement and Static Root of Trust

The v1.2 Trusted Platform Module (TPM) chip contains an array of 24 or

more Platform Configuration Registers (PCRs), each capable of storing a

160-bit hash. These PCRs can be Extended with a Measurement (crypto-

graphic hash) of data, such as a program binary. Given a measurement m

← SHA-1(data), extend performs: PCRnew ← SHA-1(PCRold ||m).

TPMs include two kinds of PCRs: static and dynamic. Static PCRs

reset to 0160 when the TPM itself resets (generally during a full platform

23

CHAPTER 2. BACKGROUND 24

reset or power-cycle, although physical TPM-reset attacks have been demon-

strated [88, 94, 140]), and can only have their value updated via an Extend

operation. This is known as a Static Root of Trust because it persists for

an entire boot cycle. These PCRs can be used to keep a record of measure-

ments for all software loaded since the last reboot, as in IBM’s Integrity

Measurement Architecture [143]. Dynamic PCRs are present in v1.2 TPMs,

and are relevant when the platform supports Dynamic Root of Trust.

Once measurements have accumulated in the PCRs, they can be at-

tested to a remote party to demonstrate what software has been loaded on

the platform. They can also be used to seal data to a particular platform

configuration. We discuss each of these in Sections 2.3 and 2.4, respectively.

2.2 Late Launch / Dynamic Root of Trust

AMD’s Secure Virtual Machine (SVM) extensions [3] and Intel’s Trusted

eXecution Technology (TXT, formerly LaGrande Technology (LT)) [75] pro-

vide support for a late launch operation to bootstrap a Dynamic Root of

Trust. This primary difference is that a dynamic root of trust can be estab-

lished without requiring a full platform reset.

The TPM v1.2 specification [171] allows for static and dynamic PCRs.

Only a system reboot can reset the value in a static PCR, but under the

proper conditions, the dynamic PCRs 17–23 can be reset to 0160 without a

reboot. A reboot sets the value of PCRs 17–23 to 1160, so that a remote

verifier can distinguish between a reboot and a dynamic reset. Only a hard-

ware command from the CPU can reset PCR 17, and the CPU will issue

this command only after executing the late launch instruction to bootstrap

a Dynamic Root of Trust (SKINIT on AMD systems and SENTER on In-

tel systems). Thus, software cannot reset PCR 17, though PCR 17 can be

read and extended by software before calling SKINIT or after SKINIT has

completed.

In addition to resetting the dynamic PCRs, late launch resets the CPU

to a known trusted state without rebooting the rest of the system. This

includes configuring the system’s memory controller to prevent access to the

CHAPTER 2. BACKGROUND 25

launching code from DMA-capable devices. One of the newly reset dynamic

PCRs is then automatically extended with a measurement of the software

that will get control following the late launch [3]. This enables software to

bootstrap without including the BIOS or any system peripherals in the TCB.

The Open Secure LOader (OSLO) performs a late launch on AMD systems

to remove the BIOS from the TCB of a Linux system [88]. Trusted Boot1

from Intel performs similarly for Intel hardware, though it adds the ability to

enforce a Launch Control Policy (LCP). The Flicker system (Chapter 3) uses

late launch to briefly interrupt the execution of a legacy OS and execute a

special-purpose code module in isolation from all other software and devices

on the platform, before returning control to the legacy OS.

2.2.1 AMD Secure Virtual Machine (SVM)

To perform a late launch on a system with AMD SVM, software in CPU pro-

tection ring 0 (e.g., kernel-level code) invokes the new SKINIT instruction,

which takes a physical memory address as its only argument. The memory

at this address is known as the Secure Loader Block (SLB). The first two

words (16-bit values) of the SLB are defined to be its length and entry point

(both must be between 0 and 64 KB).

To protect the SLB launch against software attacks, the processor in-

cludes a number of hardware protections. When the processor receives an

SKINIT instruction, it disables direct memory access (DMA) to the phys-

ical memory pages composing the SLB by setting the relevant bits in the

system’s Device Exclusion Vector (DEV). It also disables interrupts to pre-

vent previously executing code from regaining control. Debugging access is

also disabled, even for hardware debuggers. Finally, the processor enters flat

32-bit protected mode and jumps to the provided entry point.

SVM also includes support for attesting to the proper invocation of the

SLB. As part of the SKINIT instruction, the processor first causes the TPM

to reset the values of PCRs 17–23 to zero, and then transmits the (up to

64 KB) contents of the SLB to the TPM so that it can be measured (hashed)

1http://sourceforge.net/projects/tboot

http://sourceforge.net/projects/tboot

CHAPTER 2. BACKGROUND 26

and extended into PCR 17. Note that software cannot reset PCR 17 without

executing another SKINIT instruction. Thus, future TPM attestations can

include the value of PCR 17 and hence attest to the use of the SKINIT

instruction and the identity of the SLB loaded.

2.2.2 Intel Trusted Execution Technology (TXT)

Intel’s TXT is comprised of processor support for virtualization (VT-x) and

Safer Mode Extensions (SMX) [75]. SMX provides support for the late

launch of a VMM in a manner similar to AMD’s SVM, so we focus pri-

marily on the differences between the two technologies. Instead of SKINIT ,

Intel introduces a new “leaf” instruction called GETSEC , which can invoke

various leaf operations, including SENTER.

A late launch invoked with SENTER is comprised of two phases. First,

an Intel-signed code module—called the Authenticated Code Module, or

ACMod—must be loaded into memory. The platform’s chipset verifies the

signature on the ACMod using a built-in public key, extends a measurement

of the ACMod into PCR 17, and finally executes the ACMod. The ACMod

is then responsible for measuring the equivalent of AMD’s SLB, extending

the measurement into PCR 18, and then executing the code. Analogous

to AMD’s DEV, Intel protects the memory region containing the ACMod

and the SLB from outside memory access using a DMA Remapping table

provided by their Virtualization Technology for Directed I/O (VT-d) [76].

2.3 Attestation

A computing platform containing a Trusted Platform Module (TPM) can

provide an attestation of the current platform state to an external entity.

The platform state is detailed in a log of software events, such as applications

started or configuration files used. The log is maintained by an integrity

measurement architecture (e.g., IBM IMA [143]). Each event is reduced

to a measurement, m, using the SHA-1 cryptographic hash function. For

example, program a.out is reduced to a measurement by hashing its binary

CHAPTER 2. BACKGROUND 27

executable: m←SHA-1(a.out). Each measurement is extended into one of

the TPM’s PCRs.

The attestation process involves a challenge-response protocol, where

the challenger sends a cryptographic nonce (for replay protection) and a

list of PCR indexes, and requests a TPM Quote over the listed PCRs. A

Quote is a digital signature computed over an aggregate of the listed PCRs

using an Attestation Identity Key (AIK). An AIK is an asymmetric signing

keypair generated on the TPM. We discuss certification of AIKs shortly.

The messages exchanged between a challenger C and an untrusted system

U to perform an attestation are:

C → U: nonce, PCRindexes

U → C: PCRvals, {PCRvals, nonce}AIK−1

Once the challenger receives the attestation response, it must (1) verify

its nonce is part of the reply, (2) check the signature with the public AIK

obtained via an authentic channel, (3) verify that the list of PCR values

received corresponds to those in the digital signature, and (4) verify that

the PCR values themselves represent an acceptable set of loaded software.

Note that since the sensitive operations for a TPM Quote take place entirely

within the TPM chip, the TPM Quote operation can safely be invoked from

untrusted software. The only attack available to malicious software is denial-

of-service. In the context of the Flicker system (Chapter 3), this removes the

code that causes the TPM Quote to be generated from the system’s TCB.

2.3.1 Certifying Platform Identity

The Attestation Identity Keypair (AIK) used to perform the TPM Quote

effectively represents the identity of the attesting host. While we discuss the

use of Seeing-is-Believing to authenticate a system’s AIK in Chapter 5, this

is only useful for learning the AIK of physically nearby systems. We now

discuss options for certifying an AIK (i.e., authenticating the public AIK for

a particular physical host) that are viable across the Internet.

Multiple credentials are provided by TPM and host manufacturers that

are intended to convince a remote party that they are communicating with

CHAPTER 2. BACKGROUND 28

a valid TPM installed in a host in conformance with the relevant speci-

fications [172]. These are the TPM’s Endorsement Key (EK) Credential,

Platform Credential, and Conformance Credential. One option is to use

these credentials directly as the host’s identity, but the user’s privacy may

be violated. Motivated by privacy concerns, the TCG has specified Privacy

Certificate Authorities (Privacy CAs). Privacy CAs are responsible for cer-

tifying that an AIK generated by a TPM comes from a TPM and host with

valid Endorsement Key, Platform, and Conformance Credentials.

Attestation Identity Keys and Privacy CAs were proposed in v1.1b of

the TCG specification [172]. Direct Anonymous Attestation (DAA) has

also been proposed as an alternative to Privacy CAs for protecting platform

identity [23, 26]. To the best of our knowledge, no systems are available

today that include TPMs supporting DAA. Note that the design of Flicker

(Chapter 3) is orthogonal to the choice of authentication method.

2.4 TPM-Based Sealed Storage

All TPMs generate a 2048-bit RSA Storage Root Key (SRK) that will never

leave the chip. The SRK enables sealed storage, whereby data leaving the

TPM chip is encrypted under the SRK for storage on another medium. Data

can be sealed with respect to the values of certain PCR registers, so that the

unsealing process will fail unless the required values are present. TPM Seal

outputs a ciphertext, which contains the sealed data and information about

the platform configuration required for its release. Software is responsible

for keeping it on a non-volatile storage medium. There is no limit on the use

of sealed storage, but the data is encrypted using (relatively slow) asymmet-

ric algorithms inside the TPM. Thus, it is common to encrypt and MAC

the data to be sealed using (relatively fast) symmetric algorithms on the

platform’s main CPU, and then keep the symmetric encryption and MAC

keys in sealed storage. The TPM includes a random number generator that

can be used for key generation.

An alternative is to use the TPM’s Non-Volatile RAM (NV-RAM) facil-

ity. NV-RAM can be configured with similar properties to sealed storage,

CHAPTER 2. BACKGROUND 29

in that a region of NV-RAM can be made inaccessible unless the PCR val-

ues match those specified when the region was defined. NV-RAM has a

limited number of write cycles during the TPM’s lifetime, but the use of a

symmetric master key that is only read from NV-RAM in the common case

can greatly extend its life. Flicker (Chapter 3) can use TPM sealed storage

or NV-RAM to protect long-term state that is manipulated during Flicker

sessions.

Chapter 3

Flicker: An Execution

Infrastructure for

Minimizing the Trusted

Computing Base using a

Dynamic Root of Trust

The large size and huge complexity of today’s popular operating systems

makes them difficult to analyze and vulnerable to attack. These systems run

a daunting amount of code in the CPU’s most privileged mode. Version 2.6

of the Linux kernel alone consists of nearly 5 million lines of code [179], while

Microsoft’s Windows Server 2003 includes over 50 million lines of code [105].

Even virtual machine monitors (VMMs), often touted as smaller and more

secure than commodity operating systems, include substantial amounts of

code that tend to grow over time. For example, the initial implementation of

the Xen VMM required 42K lines of code [13] and within a few years almost

doubled to approximately 83K lines [104], excluding the size of the privileged

OS running in the management VM. The inevitability of vulnerabilities in

this code makes the compromise of systems commonplace, and its privileged

30

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 31

status is inherited by the malware that invades it.

The integrity and secrecy of every application is at risk because the

Trusted Computing Base (TCB) for a given application extends far beyond

the application code itself. Unfortunately, today’s formal methods for prov-

ing software correct do not scale to the size of today’s operating systems and

applications. As a result, even security-conscious application developers can

make few guarantees about the security properties of their applications.

Thus, an effective way to improve the security of applications today is to

reduce the size of the relevant Trusted Computing Base (TCB). If the TCB

for code execution can be precisely defined and limited, formal assurance of

both reliability and security properties enters the realm of possibility [28].

An additional challenge for secure software execution is to learn that the

desired code was actually loaded for execution. Remote attestation is one

way to convince an external entity that a particular program or set of pro-

grams was loaded for execution. However, the security properties attainable

via attestation also suffer when the TCB is bloated, since such a large TCB

prevents current proposals for system-wide code attestation [8, 106, 143]

from providing meaningful security information. The only guarantee is that

exploitable vulnerabilities do exist.

Attestation is more valuable in a system that provides strong isolation of

application code, so that only relevant code needs to be included in attesta-

tions. Such fine-grained attestations also make a remote party’s verification

much simpler, since the verifier need only trust a small piece of code, instead

of trusting Application X running alongside Application Y on top of OS Z

with some number of device drivers installed. Also, the smaller attestation

does not leak extraneous information about the system’s software state.

Thus, we need a mechanism to execute security-sensitive code in isolation

without bloating the TCB and to attest to the correct invocation of this code.

To achieve these goals, we propose Flicker, an architecture to enable code

execution with a trusted computing base (TCB) that is orders of magnitude

smaller than even minimalist hypervisors or security kernels. None of the

software executing before Flicker begins can monitor or interfere with Flicker

code execution, and all traces of Flicker code execution can be eliminated

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 32

before regular execution resumes. The use of Flicker, as well as the exact

code executed (and its inputs and outputs), can be attested to an external

party. Flicker can operate at any time and does not require a new OS or

even a VMM, so the platform for non-sensitive operations is unchanged.

For example, a Certificate Authority (CA) can sign certificates with its

private key, even while keeping the key secret from an adversary that controls

the BIOS, OS, and DMA-enabled devices. Or, server code handling a user’s

password can execute in complete isolation from all other software on the

server, and an attestation from the server can convince the client that the

secrecy of the password is preserved.

To achieve these properties, Flicker utilizes hardware support for estab-

lishing a dynamic root of trust (also known as late launch) and attestation

recently introduced in commodity processors from AMD and Intel. These

processors already ship with off-the-shelf computers and will soon become

ubiquitous. Flicker provides strong isolation guarantees while requiring the

application to trust as few as 250 additional lines of code for its secrecy and

integrity, thereby circumventing entire layers of legacy system software and

eliminating reliance on their correctness for security properties (Figure 3.1).

Chapter 2 contains background information on the Trusted Computing

primitives on which Flicker is constructed. Although current hardware still

has a high overhead, we anticipate that future hardware performance will

improve as these functions are increasingly used. Indeed, in Chapter 6, we

suggest hardware modifications that can improve performance by up to six

orders of magnitude. Finally, many applications perform security-sensitive

operations where the speed of the operations is not the first priority.

From a programmer’s perspective, the sensitive code protected by Flicker

can be written from scratch or extracted from an existing program. To

simplify this task, the programmer can draw on a collection of small code

modules we have developed for common functions, such as cryptographic

operations or protecting the existing execution environment from malicious

or malfunctioning PALs.

We present an implementation of Flicker using AMD’s SVM technology

and use it to improve the security of a variety of applications. We develop

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 33

CPU, Chipset

OS Flicker

TPM

App

1

App

n...

S

CPU, Chipset, DMA TPM

App

1 ...
App

n
S

OS

Figure 3.1: On the left, a traditional computer with an application that
executes sensitive code (S). On the right, Flicker protects the execution of
the sensitive code. The shaded portions represent components that must be
trusted; other applications are included on the left because many applica-
tions run with or can be exploited to acquire superuser privileges.

a rootkit detector that an administrator can run on a remote machine and

receive a guarantee that the detector executed correctly and returned the

correct result. We also show how Flicker can improve the integrity of results

for distributed computing projects. Finally, we use Flicker to protect a CA’s

private signing key and to improve an SSH server’s password handling.

3.1 Problem Definition

We define the class of adversaries we consider. We also define our goals and

explain why the new hardware capabilities do not meet them on their own.

3.1.1 Adversary Model

At the software level, the adversary can subvert the operating system, so

it can also compromise arbitrary applications and monitor all network traf-

fic. Since the adversary can run code at ring 0, it can invoke the SKINIT

instruction with arguments of its choosing. We also allow the adversary

to regain control between Flicker sessions. We do not consider Denial-of-

Service attacks, since a malicious OS can always simply power down the

machine or otherwise halt execution to deny service.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 34

At the hardware level, we make the same assumptions as does the Trusted

Computing Group with regard to the TPM [172]. In essence, the attacker

can launch simple hardware attacks, such as opening the case, power cy-

cling the computer, or attaching a hardware debugger. The attacker can

also compromise expansion hardware such as a DMA-capable Ethernet card

with access to the PCI bus. However, the attacker cannot launch sophisti-

cated hardware attacks, such as monitoring the high-speed bus that links

the CPU and memory.

3.1.2 Goals

We describe the goals for isolated execution and explain why SVM alone

does not meet them.

Isolation. Provide complete isolation of security-sensitive code from all

other software (including the OS) and devices in the system. Protect the

secrecy and integrity of the code’s data after it exits the isolated execution

environment.

Provable Protection. After executing security-sensitive code, convince

a remote party that the intended code was executed with the proper protec-

tions in place. Provide assurance that a remote party’s sensitive data will

be handled only by the intended code.

Meaningful Attestation. Allow the creation of attestations that include

measurements of exactly the code executed, its inputs and outputs, and

nothing else. This property provides the dual advantages of giving the ver-

ifier a tractable task (instead of learning only that untold millions of lines

of code were executed), and leaking as little information as possible about

the attestor’s software state (instead of sharing the identity of all software

executed since reboot).

Minimal Mandatory TCB. Minimize the amount of software that secu-

rity-sensitive code must trust. Individual applications may need to include

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 35

additional functionality in their TCBs, e.g., to process user input, but the

amount of code that must be included in every application’s TCB must be

minimized.

On their own, AMD’s SVM and Intel’s TXT technologies only meet two

of the above goals. While both provide Isolation and Provable Protection,

they were both designed with the intention that the SKINIT instruction

would be used to launch a secure kernel or secure VMM [61]. Either mech-

anism will significantly increase the size of an application’s TCB and dilute

the meaning of future attestations. For example, a system using the Xen [12]

hypervisor with SKINIT would add almost 50, 000 lines of code1 to an ap-

plication’s TCB, not including the Domain 0 OS, which potentially adds

millions of additional lines of code to the TCB.

In contrast, Flicker takes a bottom-up approach to the challenge of man-

aging TCB size. Flicker starts with fewer than 250 lines of code in the

software TCB. The programmer can then add only the code necessary to

support her particular application into the TCB.

3.2 Flicker Architecture

Flicker provides complete, hardware-supported isolation of security-sensitive

code from all other software and devices on a platform (even including hard-

ware debuggers and DMA-enabled devices). Hence, the programmer can

include exactly the software needed for a particular sensitive operation and

exclude all other software on the system. For example, the programmer can

include the code that decrypts and checks a user’s password but exclude the

portion of the application that processes network packets, the OS, and all

other software on the system.

3.2.1 Flicker Overview

Flicker achieves its properties using the late launch capabilities described in

Chapter 2.2. Instead of launching a VMM, Flicker pauses the current exe-

1http://xen.xensource.com/

http://xen.xensource.com/

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 36

Lo
ad

 F
lic

ke
r m

od
.

A
cc

ep
t u

ni
ni
t.

S
LB

In
iti
al
iz
e

S
LB

Execute PAL

C
le
an

up

Piece of Application Logic

E
xt
en

d
P
C
R

R
es

um
e

O
S

R
et

ur
n

ou
tp

ut
s

S
us

pe
nd

 O
S

Flicker Session

S
K
IN
IT

A
cc

ep
t i
np

ut
s

SLB

Figure 3.2: Timeline showing the steps necessary to execute a PAL. The
SLB includes the PAL, as well as the code necessary to initialize and ter-
minate the Flicker session. The gap in the time axis indicates that the
flicker-module is only loaded once.

cution environment (e.g., the untrusted OS), executes a small piece of code

using the SKINIT instruction, and then resumes operation of the previous

execution environment. The security-sensitive code selected for Flicker pro-

tection is the Piece of Application Logic (PAL). The protected environment

of a Flicker session starts with the execution of SKINIT and ends with the

resumption of the previous execution environment. Figure 3.2 illustrates

this sequence.

Application developers must provide the PAL and define its interface

with the remainder of their application (we discuss this process, as well as our

work on automating it, in Section 3.3). To create an SLB (the Secure Loader

Block supplied as an argument to SKINIT), the application developer links

her PAL against an uninitialized code module we have developed called the

SLB Core. The SLB Core performs the steps necessary to set up and tear

down the Flicker session. Figure 3.3 shows the SLB’s memory layout.

To execute the resulting SLB, the application passes it to a Linux kernel

module we have developed, flicker-module. It initializes the SLB Core and

handles untrusted setup and tear-down operations. The flicker-module is

not included in the TCB of the application, since its actions are verified.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 37

3.2.2 Isolated Execution

We provide a simplified discussion of the operation of a Flicker session by

following the timeline in Figure 3.2.

Accept Uninitialized SLB and Inputs. SKINIT is a privileged in-

struction, so an application uses the flicker-module’s interface to invoke a

Flicker session. In the sysfs,2 the flicker-module makes four entries avail-

able: control, inputs, outputs, and slb. Applications interact with the

flicker-module via these file-system entries. An application first writes to the

slb entry an uninitialized SLB containing its PAL code. The flicker-module

allocates kernel memory in which to store the SLB; we refer to the physical

address at which it is allocated as slb base. The application writes any

inputs for its PAL to the inputs sysfs entry; the inputs are made available

at a well-known address once execution of the PAL begins (the parameters

are at the top of Figure 3.3). The application initiates the Flicker session

by writing to the control entry in the sysfs.

Initialize the SLB. When the application developer links her PAL against

the SLB Core, the SLB Core contains several entries that must be initialized

before the resulting SLB can be executed. The flicker-module updates these

values by patching the SLB.

When the SKINIT instruction executes, it puts the CPU into flat 32-

bit protected mode with paging disabled, and begins executing at the entry

point of the SLB. By default, the PAL is not built as position independent

code, so it assumes that it starts at address 0, whereas the actual SLB may

start anywhere within the kernel’s address space. The SLB Core addresses

this issue by enabling the processor’s segmentation support and creating

segments that start at the base of the PAL code. During the build process,

the starting address of the PAL code is unknown, so the SLB Core includes

a skeleton Global Descriptor Table (GDT) and Task State Segment (TSS).

Once the flicker-module allocates memory for the SLB, it can compute the

2A virtual file system that exposes kernel state.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 38

starting address of the PAL code, and hence it can fill in the appropriate

entries in the SLB Core.

Suspend OS. SKINIT does not save existing state when it executes.

However, we want to resume the untrusted OS following the Flicker session,

so appropriate state must be saved. This is complicated by the fact that

the majority of systems available with AMD SVM support are multi-core.

On a multi-CPU system, the SKINIT instruction has additional require-

ments which must be met for secure initialization. In particular, SKINIT

can only be run on the Boot Strap Processor (BSP), and all Application

Processors (APs) must successfully receive an INIT Inter-Processor Inter-

rupt (IPI) so that they respond correctly to a handshaking synchronization

step performed during the execution of SKINIT . However, the BSP cannot

simply send an INIT IPI to the APs if they are executing processes. Our

solution is to use the CPU Hotplug support available in recent Linux kernels

(starting with version 2.6.19) to deschedule all APs. Once the APs are idle,

the flicker-module sends an INIT IPI by writing to the system’s Advanced

Programmable Interrupt Controller. At this point, the BSP is prepared to

execute SKINIT , and the OS state needs to be saved. In particular, we

save information about the Linux kernel’s page tables so the SLB Core can

restore paging and resume the OS after the PAL exits.

SKINIT and the SLB Core. The SKINIT instruction enables hard-

ware protections and then begins to execute the SLB Core, which prepares

the environment for PAL execution. Executing SKINIT enables the hard-

ware protections described in Section 2.2. In brief, the processor adds en-

tries to the Device Exclusion Vector (DEV) to disable DMA to the memory

region containing the SLB, disables interrupts to prevent the previously ex-

ecuting code from regaining control, and disables debugging support, even

for hardware debuggers. By default, these protections are offered to 64 KB

of memory, but they can be extended to larger memory regions. If this is

done, preparatory code in the first 64 KB must add this additional mem-

ory to the DEV, and extend measurements of the contents of this additional

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 39

Page Tables

Init()

Out: PAL Outputs

(During Legacy OS Reload Only)

Size of SLB Entry point

Global Descriptor Table (GDT)

(Grows Towards Low Addresses)

Start of SLB

(arg. to SKINIT)

End of SLB

(Start + 64KB)

Parameters

Exit()

S
e
c
u
re

 L
o
a
d
e
r

B
lo

c
k
 (

S
L
B

)

Task State Segment (TSS)

S
L
B

 C
o
re

Stack Space (4 KB)

In: PAL Inputs

In: Saved Kernel State
End + 4 KB

End + 8 KB

End of PAL

(Start + 60KB)

Additional PAL Code

(Optional)

PAL

Figure 3.3: Memory layout of the SLB. The shaded region indicates memory
containing executable PAL code. The dotted lines indicates memory used
to transfer data into and out of the SLB. After the PAL has executed and
erased its secrets, memory that previously contained executable code is used
for the skeleton page tables needed to reload the OS.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 40

memory into the TPM’s PCR 17 after the hardware protections are enabled,

but before transferring control to any code in these upper memory regions.

The Initialization operations performed by the SLB Core once SKINIT

gives it control are: (i) load the GDT, (ii) load the CS, DS, and SS registers,

and (iii) call the PAL, providing the address of PAL inputs as a parameter.

Execute PAL. Once the environment has been prepared, the PAL ex-

ecutes its application-specific logic. To keep the TCB small, the default

SLB Core includes no support for heaps, memory management, or virtual

memory. Thus, it is up to the PAL developer to include the functionality

necessary for her particular application. Section 3.3 describes some of our

existing modules that can optionally be included to provide additional func-

tionality. We have also developed a module that can restrict the actions of

a PAL, since by default (i.e., without the module), a PAL can access the

machine’s entire physical memory and execute arbitrary instructions (see

Section 3.3.1.2 for more details).

During PAL execution, output parameters are written to a well-known

location beyond the end of the SLB. When the PAL exits, the SLB Core

regains control.

Cleanup. The PAL’s exit triggers the cleanup and exit code at the end of

the SLB Core. The cleanup code erases any sensitive data left in memory

by the PAL.

Extend PCR. To signal the completion of the SLB, the SLB Core extends

a well known value into PCR 17. As we discuss in Section 3.2.4.1, this

allows a remote party to distinguish between values generated by the PAL

(trusted), and those produced after the OS resumes (untrusted).

Resume OS. Linux operates with paging enabled and segment descrip-

tors set to cover all of memory, but the SLB executes in protected mode

with segment descriptors starting at slb base. We transition between these

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 41

states in two phases. First, we reload the segment descriptors with GDT

entries that cover all of memory, and second, we enable paged memory mode.

We use a call gate in the SLB Core’s GDT as a well-known point for

resuming the untrusted OS. It is used to reload the code segment descriptor

register with a descriptor covering all of memory.

After reloading the data and stack segments, we re-enable paged memory

mode. This requires the creation of a skeleton of page tables to map the SLB

Core’s memory pages to the virtual addresses where the Linux kernel believes

they reside. The procedure resembles that executed by the Linux kernel

when it first initializes. The page tables must contain a unity mapping for

the memory location of the next instruction, allowing paging to be enabled.

Finally, the kernel’s page tables are restored by rewriting CR3 (the page

table base address register) with the value saved during the Suspend OS

phase. Next, the kernel’s GDT is reloaded, and control is transferred back

to the flicker-module.

The flicker-module restores the execution state saved during the Sus-

pend OS phase and fully restores control to the Linux kernel by re-enabling

interrupts. If the PAL outputs any values, the flicker-module makes them

available through the sysfs outputs entry.

3.2.3 Multiple Flicker Sessions

PALs can leverage TPM-based sealed storage to maintain state across Flicker

sessions, enabling more complex applications. For example, a Flicker-based

application may wish to interact with a remote entity over the network.

Rather than include an entire network stack and device driver in the PAL

(and hence the TCB), we can invoke Flicker more than once (upon the ar-

rival of each message), using secure storage to protect sensitive state between

invocations.

Flicker-based secure storage can also be used by applications that wish

to share data between PALs. The first PAL can store secrets so that only

the second PAL can read them, thus protecting the secrets even when con-

trol reverts to the untrusted OS. Finally, Flicker-based secure storage can

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 42

improve the performance of long-running PAL jobs. Since Flicker execution

pauses the rest of the system, an application may prefer to break up a long

work segment into multiple Flicker sessions to allow the rest of the system

time to operate, essentially multitasking with the OS. We first present the

use of TPM Sealed Storage and then describe extensions necessary to pro-

tect multiple versions of the same object from a replay attack against sealed

storage.

3.2.3.1 TPM Sealed Storage

To save state across Flicker sessions, a PAL uses the TPM to seal the data

under the measurement of the PAL that should have access to its secrets.

More precisely, suppose PAL P , operating in a Flicker session, wishes to

securely store data so that only PAL P ′, also operating under Flicker pro-

tection, can read the data.3 P ′ could be a later invocation of P , or it could

be a completely different PAL. Either way, while it is executing within the

Flicker session, PAL P uses the TPM’s Seal command to secure the sensi-

tive data. As an argument, P specifies that PCR 17 must have the value

V ← H(0x0020||H(P ′)) before the data can be unsealed. Only an SKINIT

instruction can reset the value of PCR 17, so PCR 17 will have value V

only after PAL P ′ has been invoked using SKINIT . Thus, the sealed data

can be unsealed if and only if P ′ executes under Flicker’s protection. This

allows PAL code to store persistent data such that it is only available to a

particular PAL in a future Flicker session.

3.2.3.2 Replay Prevention for Sealed Storage

TPM-based sealed storage prevents other code from directly learning or

modifying a PAL’s secrets. However, TPM Seal outputs ciphertext c (for

data d) that is handled by untrusted code: c ← TPM Seal(d,PCR list).

The untrusted code is capable of performing a replay attack where an

older ciphertext c′ is provided to a PAL. For example, consider a password

3For brevity, we will assume that PALs operate with Flicker protection. Similarly, a
measurement of the PAL consists of a hash of the SLB containing the PAL.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 43

Seal(d): Unseal(c):
IncrementCounter() d||j′ ← TPM Unseal(c)
j ← ReadCounter() j ← ReadCounter()
c← TPM Seal(d||j,PCR List) if (j′ 6= j) Output(⊥)
Output(c) else Output(d)

Table 3.1: Replay protection for sealed storage based on a secure counter.
Ciphertext c is created when data d is sealed.

database that is maintained in sealed storage and a user who changes her

password because it is publicized. To change a user’s password, version i of

the database is unsealed, updated with the new password, and then sealed

again as version i + 1. An attacker who can cause the system to operate on

version i of the password database can gain unauthorized access using the

publicized password. To summarize, TPM Unseal ensures that the plaintext

of c′ is accessible only to the intended PAL, but it does not guarantee that

c′ is the most recent sealed version of data d.

Replay attacks against sealed storage can be prevented if a secure counter

is available, as illustrated in Table 3.1. To seal an updated data object, the

secure counter should be incremented, and the data object should be sealed

along with the new counter value. When a data object is unsealed, the

counter value included in the data object at seal time should be the same as

the current value of the secure counter. If the values do not match, either the

counter was tampered with, or the unsealed data object is a stale version.

In both cases, the data object is untrustworthy and should be discarded.

Options for realizing a secure counter with Flicker include a trusted third

party, and the Monotonic Counter and Non-volatile Storage facilities of v1.2

TPMs [172]. We provide a sketch of how to implement replay protection for

sealed storage with Flicker using the TPM’s Non-volatile Storage facility.In

particular, we do not treat recovery after a power failure or system crash

during the counter-increment and sealed storage ciphertext-output. In these

scenarios, the secure counter can become out-of-sync with the latest sealed-

storage ciphertext maintained by the OS. An appropriate mechanism to

detect such events is also necessary.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 44

The TPM’s Non-volatile Storage facility exposes interfaces to Define

Space, and Read and Write values to defined spaces. Space definition is

authorized by demonstrating possession of the 20-byte TPM Owner Autho-

rization Data, which can be provided to a Flicker session using the protocol

we present in Section 3.2.4. A defined space can be configured to restrict ac-

cess based on the contents of specified PCRs. Setting the PCR requirements

to match those specified during the TPM Seal command creates an environ-

ment where a counter value stored in non-volatile storage is only available to

the desired PAL. Values placed in non-volatile storage are maintained in the

TPM, so there is no dependence on the untrusted OS to store a ciphertext.

This, combined with the PCR-based access control, is sufficient to protect

a counter value against attacks from the OS.

3.2.4 Interaction With a Remote Party

Since neither SVM nor TXT include any visual indication that a secure

session has been initiated via a late launch, a remote party must be used

to bootstrap trust in a platform running Flicker. Below, we describe how a

platform attests to the PAL executed, the use of Flicker, and any inputs or

outputs provided. We also demonstrate how a remote party can establish a

secure channel to a PAL.

3.2.4.1 Attestation and Result Integrity

A platform using Flicker can convince remote parties that a Flicker session

executed with a particular PAL. Our approach builds on the TPM attesta-

tion process described in Chapter 2.3. Below, we refer to the party executing

Flicker as the challenged party, and the remote party as the verifier.

To create an attestation, the challenged party accepts a random nonce

from the verifier to provide freshness and replay protection. The challenged

party then uses Flicker to execute a particular PAL as described in Sec-

tion 3.2.2. As part of Flicker’s execution, the SKINIT instruction resets

the value of PCR 17 to 0 and then extends it with the measurement of the

PAL. Thus, PCR 17 will take on the value V ← H(0x0020||H(P)), where

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 45

P represents the PAL code. The properties of the TPM, chipset, and CPU

guarantee that no other operation can cause PCR 17 to take on this value.

Thus, an attestation of the value of PCR 17 will convince a remote party

that the PAL was executed using Flicker’s protection.

After Flicker terminates, the OS causes the TPM to load its AIK, invokes

the TPM’s Quote command with the nonce provided by the verifier, and

specifies the inclusion of PCR 17 in the quote.

To verify the use of Flicker, the verifier must know both the measure-

ment of the PAL, and the public key corresponding to the platform’s AIK.

These components allow the verifier to authenticate the attestation from the

platform. The verifier uses the platform’s public AIK to verify the signature

from the TPM. It then computes the expected measurement of the PAL, as

well as the hash of the input and output parameters. If these values match

those extended into PCR 17 and signed by the TPM, the verifier accepts

the attestation as valid.

To provide result integrity, after PAL execution terminates, the SLB

Core extends PCR 17 with measurements of the PAL’s input and output

parameters. By verifying the quote (which includes the value of PCR 17),

the verifier also verifies the integrity of the inputs and results returned by

the challenged party, and hence knows that it has received the exact re-

sults produced by the PAL. The nonce provided by the remote party is also

extended into PCR 17 to guarantee the freshness of the outputs.

As another important security procedure, after extending the PAL’s re-

sults into PCR 17, the SLB Core extends PCR 17 with a fixed public con-

stant. This provides several powerful security properties: (i) it prevents any

other software from extending values into PCR 17 and attributing them to

the PAL; and (ii) it revokes access to any secrets kept in the TPM’s sealed

storage which may have been available during PAL execution.

3.2.4.2 Establishing a Secure Channel

The techniques described above ensure the integrity of the PAL’s input and

output, but to communicate securely (i.e., with both secrecy and integrity

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 46

protections) with a remote party, the PAL and the remote party must es-

tablish a secure channel. We create a secure channel by combining multiple

Flicker sessions, the attestation capabilities just described, and some addi-

tional cryptographic techniques (described below).

We first describe the intuition behind the protocol, and then describe it

in detail. The PAL generates an asymmetric keypair within the protection

of the Flicker session and then transmits the public key to the remote party.

The private key is sealed for a future invocation of the same PAL using

the technique described above. An attestation convinces the remote party

that the PAL ran with Flicker’s protections and that the public key was a

legitimate output of the PAL. Finally, the remote party can use the PAL’s

public key to create a secure channel [63] to the PAL. We need not include

communication software (such as network drivers) in the PAL’s TCB, since

we can use multiple invocations of a PAL to process data from the remote

party while letting the untrusted OS manage the encrypted network packets.

We now describe the protocol (Table 3.2) for securely conveying a public

key from the PAL to a remote party for use in establishing a secure chan-

nel. This protocol is similar to one developed at IBM for linking remote

attestation to secure tunnel endpoints [59].

The PAL uses randomness from the TPM to generate an asymmetric

keypair {KPAL, K−1

PAL
} within the protection of a Flicker session. The pri-

vate key is then sealed for a future invocation of the same PAL using the

technique described in Section 3.2.3. The TPM guarantees that no other

code (not even a different PAL) can access the private key. Note that the

PAL developer may extend other application-dependent data into PCR 17

before sealing the private key. This ensures the key will be released only if

that application-dependent data is present.

The public portion of the key is extended into PCR 17 as an output pa-

rameter from the Flicker session. The OS sends the public key to the remote

party along with an attestation proving that the PAL ran with Flicker’s pro-

tections and that the public key was a legitimate output of the PAL that ran.

The remote party uses the PAL’s public key to create a secure channel [63]

to the PAL. Since only the PAL executed with Flicker’s protections can ac-

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 47

cess the private key, only the PAL can decrypt communications from the

remote party. Since the PAL executes with Flicker’s protections, no other

code on the system can access the contents of the remote party’s messages.

The nonce value sent by the remote party for the TPM quote operation

is also provided as an input to the PAL for extension into PCR 18. This

provides the remote party with a different freshness guarantee: that the

PAL was invoked in response to the remote party’s request. Otherwise, a

malicious OS may be able to fool multiple remote parties into accepting the

same public key.

As with all output parameters, the public key KPAL is extended into

PCR 18 before it is output to the application running on the untrusted

host. The application generates a TPM quote over PCRs 17 and 18 based

on the nonce from the remote party. The quote allows the remote party to

determine that the public key was indeed generated by a PAL running in a

Flicker session. The remote party can use the public key to create a secure

channel to future invocations of the PAL.

Our implementation of Flicker makes the above protocol available as a

module that developers can include with their PAL. We discuss this further

in Section 3.3. We make use of this module in our SSH application, and

thus we will revisit this protocol in Section 3.4.3.1.

3.3 Developer’s Perspective

Below, we describe the process of creating a PAL from the perspective of

an application developer. Then, we discuss techniques for automating the

extraction of sensitive portions of an existing application for inclusion in a

PAL.

3.3.1 Creating a PAL

We have developed Flicker primarily in C, with some of the core functionality

written in x86 assembly. However, any language that can be linked against

the core Flicker components is viable for inclusion in a PAL.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 48

Remote has AIKserver,

Party (RP): expected hash(PAL || shim) = Ĥ

RP: generate nonce
RP → App: nonce
App → PAL: nonce
PAL: extend(PCR18,nonce)

generate {KPAL, K−1

PAL
}

extend(PCR18, h(KPAL))

seal(PCR17, K−1

PAL
)

extend(PCR17,⊥)
extend(PCR18,⊥)

PAL → App: KPAL

App: q ← quote(nonce, {17, 18})

App → RP: q, KPAL

RP: if (¬Verify(AIKserver, q,nonce)

∨ q.PCR17 6= h(h(0||Ĥ)||⊥)
∨ q.PCR18 6=
h(h(h(0||nonce)||h(KPAL))||⊥)

) then abort

RP: has authentic KPAL

knows server ran Flicker

Table 3.2: Protocol to generate and convey the public key KPAL to a remote
party (RP). Note that the messages between the application (App) and the
PAL can safely travel through the untrusted portion of the application and
the OS kernel. ⊥ denotes a well-known value which signals the end of
extensions performed within the Flicker session.

#include "slbcore.h"

const char* msg = "Hello, world";

void pal enter(void *inputs) {
for(int i=0;i<13;i++)

PAL OUT[i] = msg[i]; }

Table 3.3: A simple PAL that ignores its inputs, and outputs “Hello,
world.” PAL OUT is defined in slbcore.h.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 49

Size
Module Properties LOC (KB)

SLB Core Prepare env., exec. PAL, clean env., resume OS 94 0.312
OS Protection Memory protection, ring 3 PAL execution 5 0.046
TPM Driver Low-level TPM communication 216 0.825
TPM Utils TPM operations, e.g., Seal, GetRand, Extend 889 9.427
Crypto Cryptographic library, e.g., RSA, SHA-1, etc. 2262 31.380
Memory Utils Implementation of malloc/free/realloc 657 12.511
Sec. Chan. Gen. keypair, seal priv. key, return pub. key 292 2.021

Table 3.4: Modules that can be included in the PAL. Only the SLB Core
is mandatory. Each adds some number of lines of code (LOC) to the PAL’s
TCB and contributes to the overall size of the SLB binary.

3.3.1.1 A “Hello, World” Example PAL

As an example, Table 3.3 illustrates a simple PAL that ignores its inputs, and

outputs the classic message, “Hello, world.” Essentially, the PAL copies the

contents of the global msg variable to the well-known PAL output parameter

location (defined in the slbcore header file). Our convention is to use the

second 4-KB page above the 64-KB SLB. The PAL code, when built using

the process described below, can be executed with Flicker protections. Its

message will be available from the outputs entry in the flicker-module sysfs

location. Thus the application can simply use open and read to obtain the

PAL’s results.

3.3.1.2 Building a PAL

To convert the code from Table 3.3 into a PAL, we link it against the object

file representing Flicker’s core functionality (described as SLB Core below)

using the Flicker linker script. The linker script specifies that the skeleton

data structures and code from the SLB Core should come first in the re-

sulting binary, and that the resulting output format should be binary (as

opposed to an ELF executable). The application then provides this binary

blob to the flicker-module for execution under Flicker’s protection.

Application developers depend on a variety of libraries. There is no

reason this should be any different just because the target executable is

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 50

a PAL, except that it is desirable to modularize the libraries further than

is traditionally done to help minimize the amount of code included in the

PAL’s TCB. We have developed several small libraries in the course of ap-

plying Flicker to the applications described in Section 3.4. The following

paragraphs provide a brief description of the libraries listed in Table 3.4.

SLB Core. The SLB Core module provides the minimal functionality

needed to support a PAL. Section 3.2.2 describes this functionality in detail.

In brief, the SLB Core contains space for the SLB’s entry point, length,

GDT, TSS, and code to manage segment descriptors and page tables. The

SLB Core transfers control to the PAL code, which performs application-

specific work. When the PAL terminates, it transfers control back to the

SLB Core for cleanup and resumption of the OS.

OS Protection. Thus far, Flicker has focused on protecting a security-

sensitive PAL from all of the other software on the system. However, we

have also developed a module to protect a legitimate OS from a malicious

or malfunctioning PAL. It is important to note that since SKINIT is a

privileged instruction, only code executing at CPU protection ring 0 (recall

that x86 has 4 privilege rings, with 0 being most privileged) can invoke a

Flicker session. Thus, the OS ultimately decides which PALs to run, and

presumably it will only run PALs that it trusts or has verified in some

manner, e.g., using proof carrying code [121]. Nonetheless, the OS may

desire additional guarantees. The OS Protection module restricts a PAL’s

memory accesses to the exact memory region allocated by the OS, thus

preventing it from intentionally or inadvertently reading or overwriting the

code and/or data of other software on the system. We are also investigating

techniques to limit a PAL’s execution time using timer interrupts in the SLB

Core.

Aside from availability concerns, a malicious PAL that is allowed to run

forever can tamper with the system’s System Management Mode handlers

and potentially set the system’s cooling fans to their lowest setting. The

malicious PAL may then perform CPU-intensive work, risking hardware

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 51

damage. These timing restrictions must be chosen carefully, however, since

a PAL may need some minimal amount of time to allow TPM operations

to complete before the PAL can accomplish any meaningful work. Alterna-

tively, a malicious PAL may install malicious SMM handlers and then exit,

assuming that the normal course of system activity will eventually involve

CPU-intensive work. To prevent this attack, the OS should either inspect

PAL code to ensure that it does not install a new SMM handler, or only

execute PALs from a trusted source (that presumably does not include an

SMM attack in their PALs).

To restrict the memory accessed by a PAL, we use segmentation and run

the PAL in CPU protection ring 3. Essentially, the SLB Core creates seg-

ment descriptors for the PAL that have a base address set at the beginning

of the PAL and a limit placed at the end of the memory region allocated by

the OS. The SLB Core then runs the PAL in ring 3 to prevent it from mod-

ifying or otherwise circumventing these protections. When the PAL exits,

it transitions back to the SLB Core running in ring 0. The SLB Core can

then cleanse the memory region used and reload the OS.

In more detail, we transition from the SLB Core running in ring 0 to the

PAL running in ring 3 using the IRET instruction which loads the slb base-

offset segment descriptors before the PAL executes. Executing the PAL in

ring 3 only requires two additional PUSH instructions in the SLB Core.

Returning execution to ring 0 once the PAL terminates involves the use of

the call gate and task state segment (TSS) in the GDT. This mechanism is

invoked with a single (far) call instruction in the SLB Core.

TPM Driver and Utilities. The TPM is a memory-mapped I/O device

that needs a small amount of driver functionality to keep it in an appropriate

state and to ensure that its buffers never over- or underflow. This driver

code is necessary before any TPM operations can be performed, and it is

also necessary to release control of the TPM when the Flicker session is

ready to exit, so that the Linux TPM driver can regain access to the TPM.

The TPM Utilities allow other PAL code to perform useful TPM oper-

ations. Currently supported operations include GetCapability, PCR Read,

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 52

PCR Extend, GetRandom, Seal, Unseal, and the OIAP and OSAP sessions

necessary to authorize Seal and Unseal [172].

Crypto. We have developed a small library of cryptographic functions.

Supported operations include a multi-precision integer library, RSA key gen-

eration and encryption, SHA-1, SHA-512, MD5, AES, and RC4.

Memory Management. We have implemented a small version of mal-

loc/free/realloc for use by applications. The memory region used as the

heap is simply a large global buffer.

Secure Channel. We have implemented the protocol described in Sec-

tion 3.2.4 for creating a secure channel into a PAL from a remote party. It

relies on all of the other modules we have developed (except the OS Protec-

tion module which the developer may add).

3.3.2 Automation

Ideally, we envision each PAL containing only the security-sensitive portion

of each application, rather than the application in its entirety. Minimizing

the PAL makes it easier to ensure that the required functionality is per-

formed correctly and securely, facilitating a remote party’s verification task.

Previous research indicates that many applications can be readily split into

a privileged and an unprivileged component. Such privilege separation can

be performed manually [90, 133, 168, 81], or automatically [24, 11, 186].

While each PAL is necessarily application-specific, we have developed a

tool using the source-code analysis tool CIL [122] to help extract functional-

ity from existing programs. Since CIL can replace the C compiler (e.g., the

programmer can simply run “CC=cil make” using an existing Makefile), our

tool can operate even on large programs with complex build dependencies.

The programmer supplies our tool with the name of a target function

within a larger program (e.g., rsa keygen()). The tool then parses the

program’s call graph and extracts any functions that the target depends on,

along with relevant type definitions, etc., to create a standalone C program.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 53

The tool also indicates which additional functions from standard libraries

must be eliminated or replaced. For example, by default, a PAL cannot call

printf or malloc. Since printf usually does not make sense for a PAL,

the programmer can simply eliminate the call. For malloc, the programmer

can convert the code to use statically allocated variables or link against our

memory management library (described above). While the process is clearly

not completely automated, the tool does automate a large portion of PAL

creation and eases the programmer’s burden, and we continue to work on

increasing the degree of automation provided. We found the tool useful in

our application of Flicker to the applications described next.

3.4 Flicker Applications

In this section, we demonstrate the versatility of the Flicker platform by

showing how Flicker can be applied to several broad classes of applications.

Within each class, we describe our implementation of one or more applica-

tions and show how Flicker significantly enhances security in each case. In

Section 3.5, we evaluate the performance of the applications, as well as the

general Flicker platform.

We have implemented Flicker for AMD SVM on a 32-bit Linux kernel

v2.6.20, including the various modules described in Section 3.3. Each ap-

plication described below utilizes precisely the modules needed (and some

application-specific logic) and nothing else. On the untrusted OS, the flicker-

module loadable kernel module is responsible for invoking the PAL and facil-

itating delivery of inputs and reception of outputs from the Flicker session.

Further, it manages the suspension and resumption of the untrusted OS be-

fore and after the Flicker session. We also developed a TPM Quote Daemon

(the tqd) on top of the TrouSerS4 TCG Software Stack that runs on the

untrusted OS and provides an attestation service.

4http://trousers.sourceforge.net/

http://trousers.sourceforge.net/

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 54

3.4.1 Stateless Applications

Many applications do not require long-term state to operate effectively. For

these applications, the primary overhead of using Flicker is the time required

for the SKINIT instruction, since the attestation can be generated by the

untrusted OS (see Section 3.2.4.1). As a concrete example, we use Flicker to

provide verifiable isolated execution of a kernel rootkit detector on a remote

machine.

For this application, we assume a network administrator wishes to run

a rootkit detector on remote hosts that are potentially compromised. For

instance, a corporation may wish to verify that employee laptops have not

been compromised before allowing them to connect to the corporate Virtual

Private Network (VPN).

We implement our rootkit detector for version 2.6.20 of the Linux kernel

as a PAL. After the SLB Core hands control to the rootkit detector PAL,

it computes a SHA-1 hash of the kernel text segment, system call table,

and loaded kernel modules. The detector then extends the resulting hash

value into PCR 17 and copies it to the standard output memory location.

Once the PAL terminates, the untrusted OS resumes operation and the tqd

provides an attestation to the network administrator. Since the attestation

contains the TPM’s signature on the current PCR values, the administrator

knows that the correct rootkit detector ran with Flicker protections in place

and can verify that the untrusted OS returns the correct value. Finally,

the administrator can compare the hash value returned against known-good

values for that particular kernel.

3.4.2 Integrity-Protected State

Some applications may require multiple Flicker sessions, and hence a means

of preserving state across sessions. For some, simple integrity protection of

this state will suffice (we consider those that also require secrecy in Sec-

tion 3.4.3). To illustrate this class of applications, we apply Flicker to a

distributed computing application.

Applications such as SETI@Home [6] divide a task into smaller work

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 55

units and distribute these units to hosts with spare computation capacity.

When the hosts are untrusted, the application must take measures to detect

erroneous results. A common approach distributes the same work unit to

multiple hosts and compares the results. Unfortunately, this wastes signifi-

cant amounts of computation, and does not provide any tangible correctness

guarantees [118]. With Flicker, the clients can process their work units in-

side a Flicker session and attest the results to the server. The server then has

a high degree of confidence in the results and need not waste computation

on redundant work units.

In our implementation, we apply Flicker to the BOINC framework [5],

which is a generic framework for distributed computing applications. It is

currently used by several dozen projects.5 By targeting BOINC, rather than

a specific application, we can allow all of these applications to take advantage

of Flicker’s security properties (though some amount of application-specific

modifications are still required). As an illustration, we developed a simple

distributed application using the BOINC framework that attempts to factor

a large number by naively asking clients to test a range of numbers for

potential divisors.

In this application, our modified BOINC client contacts the server to

obtain a work unit. It then invokes a Flicker session to perform application

specific work. Since the PAL may have to compute for an extended period

of time, it periodically returns control to the untrusted OS. This allows the

OS to process interrupts (including a user’s return to the computer) and

multitask with other programs.

Since many distributed computing applications care primarily about the

integrity of the result, rather than the secrecy of the intermediate state, our

implementation focuses on maintaining the integrity of the PAL’s state while

the untrusted OS operates. To do so, the very first invocation of the BOINC

PAL generates a 160-bit symmetric key based on randomness obtained from

the TPM and uses the TPM to seal the key so that no other code can access

it. It then performs application specific work.

Before yielding control back to the untrusted OS, the PAL computes a

5http://boinc.berkeley.edu/projects.php

http://boinc.berkeley.edu/projects.php

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 56

cryptographic MAC (HMAC) over its current state (for the factoring appli-

cation, the state is simply the current prospective divisor and any successful

divisors found thus far). Each subsequent invocation of the PAL unseals the

symmetric key and checks the MAC on its state before beginning applica-

tion-specific work. When the PAL finally finishes its work unit, it extends

the results into PCR 17 and exits. Our modified BOINC client then returns

the results to the server, along with an attestation. The attestation demon-

strates that the correct BOINC PAL executed with Flicker protections in

place and that the returned result was truly generated by the BOINC PAL.

Thus, the application writer can trust the result.

3.4.3 Secret and Integrity-Protected State

Finally, we consider applications that need to maintain both the secrecy

and the integrity of their state between Flicker invocations. To evaluate

this class of applications, we developed two additional applications. The

first uses Flicker to protect SSH passwords, and the second uses Flicker to

protect a Certificate Authority’s private signing key.

3.4.3.1 SSH Password Authentication

We have applied Flicker to password-based authentication with SSH. Since

people tend to use the same password for multiple independent computer

systems, a compromise on one system may yield access to other systems. Our

primary goal is to prevent any malicious code on the server from learning

the user’s password, even if the server’s OS is compromised. Our secondary

goal is to convince the client system (and hence, the user) that the secrecy

of the password has been preserved. Flicker is well suited to these goals, as

it makes it possible to restrict access to the user’s cleartext password on the

server to a tiny TCB (the PAL), and to attest to the client that this indeed

was enforced. While other techniques (e.g., PwdHash [138]) exist to ensure

varied user passwords across servers, SSH provides a useful illustration of

Flicker’s properties when applied to a real-world system.

Our implementation is built upon the basic components we have de-

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 57

Client: has KPAL

Server: has sdata, salt , hashed passwd
generates nonce

Server → Client: nonce
Client: user inputs password

c←encryptKPAL
({password ,nonce})

Client → Server: c

Server → PAL: c, salt , sdata,nonce

PAL: K−1

PAL
← unseal(sdata)

{password ,nonce ′} ← decrypt
K

−1

PAL

(c)

PAL: if (nonce ′ 6= nonce)
then abort

hash ← md5crypt(salt , password)
extend(PCR17,⊥)

PAL → Server: hash

Server: if (hash = hashed passwd)
then allow login

else abort

Table 3.5: The protocol surrounding the second Flicker session for our SSH
implementation. sdata contains the sealed private key, K−1

PAL
. Variables salt

and hashed passwd are components of the entry in the system’s /etc/passwd
file for the user attempting to log in. The nonce serves to prevent replay
attacks against a well-behaved server.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 58

scribed in the preceding sections, and consists of five main software compo-

nents. A modified SSH client runs on the client system. The client system

does not need hardware support for Flicker, but a compromise of the client

may leak the user’s password. We are investigating techniques for utiliz-

ing Flicker on the client side. We add a new client authentication method,

flicker-password , to OpenSSH version 4.3p2. The flicker-password module

establishes a secure channel to the PAL on the server using the protocol de-

scribed in Section 3.2.4.2 and implements the client portion of the protocol

shown in Table 3.5.

The other four components, a modified SSH server daemon, the flicker-

module kernel module, the tqd , and the SSH PAL, all run on the server

system. Below, we describe the two Flicker sessions used to protect the

user’s password on the server.

First Flicker Session (Setup). The first session uses our Secure Channel

module to provide the client system with a secure channel for sending the

user’s password to the second Flicker session.

In more detail, the Secure Channel module conveys a public key KPAL to

the client in such a way that the client is convinced that the corresponding

private key is accessible only to the same PAL in a subsequent Flicker session.

Thus, by verifying the attestation from the first Flicker session, the client is

convinced that the correct PAL executed, that the legitimate PAL created

a fresh keypair, and that the SLB Core erased all secrets before returning

control to the untrusted OS. Using its authentic copy of KPAL, the client

encrypts the user’s password for transmission to the second Flicker session

on the server. We use PKCS1 encryption which is chosen-ciphertext-secure

and nonmalleable [85]. The end-to-end encryption of the user’s password,

from the client system all the way into the PAL, protects the user’s password

in the event that any of the server’s software is malicious.

Second Flicker Session (Login). The second Flicker session processes

the user’s encrypted password and outputs a hash of the (unencrypted)

password for comparison with the user’s login information in the server’s

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 59

password file (see Table 3.5).

When the second session begins, the PAL uses TPM Unseal to retrieve

its private key K−1

PAL
from sdata. It then uses the key to decrypt the user’s

password. Finally, the PAL computes the hash of the user’s password and

salt6 and outputs the result for comparison with the server’s password file.

The end result is that the user’s unencrypted password only exists on the

server during a Flicker session.

No attestation is necessary after the second Flicker session because,

thanks to the properties of Flicker and sealed storage, the client knows that

K−1

PAL
is inaccessible unless the correct PAL is executing within a Flicker

session.

Instead of outputting the hash of the password, an alternative implemen-

tation could keep the entire password file in sealed storage between Flicker

sessions. This would prevent dictionary attacks, but make the password file

incompatible with local logins.

An obvious optimization of the authentication procedure described above

is to only create a new keypair the first time a user connects to the server.

Between logins, the sealed private key can be kept at the server, or it could

even be given to the user to be provided during the next login attempt.

If the user loses this data (e.g., if she uses a different client machine) or

provides invalid data, the PAL can simply create a new keypair, at the cost

of some additional latency for the user.

3.4.3.2 Certificate Authority

Our final application, a Flicker-enhanced Certificate Authority (CA), is sim-

ilar to the SSH application but focuses on protecting the CA’s private signing

key. The benefit of using Flicker is that only a tiny piece of code ever has

access to the CA’s private signing key. Thus, the key will remain secure,

even if all of the other software on the machine is compromised. Of course,

malevolent code on the server may submit malicious certificates to the sign-

ing PAL. However, the PAL can implement arbitrary access control policies

6Most *nix systems compute the hash of the user’s password concatenated with a “salt”
value and store the resulting hash value in an authentication file (e.g., /etc/passwd).

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 60

on certificate creation and can log those creations. Once the compromise is

discovered, any certificates incorrectly created can be revoked. In contrast,

revoking a CA’s public key, as would be necessary if the private key were

compromised, is a more heavyweight proposition in many settings.

In our implementation, one PAL session generates a 1024-bit RSA key-

pair using randomness from the TPM and seals the private key under PCR

17. The public key is made generally available. The second PAL session

takes in a certificate signing request (CSR). It uses TPM Unseal to obtain

its private key and certificate database. If the access control policy supplied

by an administrator approves the CSR, then the PAL signs the certificate,

updates the certificate database, reseals it, and outputs the signed certifi-

cate.

3.5 Performance Evaluation

Below, we describe our experimental setup and evaluate the performance

of the Flicker platform. We begin with macrobenchmarks of the various

applications described in Section 3.4, and then perform microbenchmarks

to better identify the most significant sources of overhead.

While the overhead for several applications is significant, we have iden-

tified several hardware modifications that improve performance by up to six

orders of magnitude. These modifications are discussed in Section 6. Thus,

it is reasonable to expect significantly improved performance in future ver-

sions of this technology.

Finally, we evaluate the impact of Flicker sessions on the rest of the

system, e.g., the untrusted OS and applications.

3.5.1 Experimental Setup

Our primary test machine is an HP dc5750 which contains an AMD Athlon64

X2 Dual Core 4200+ processor running at 2.2 GHz, and a v1.2 Broadcom

BCM0102 TPM. In experiments requiring a remote verifier, we use a generic

PC with an AMD Opteron CPU running at 1.6 GHz. The remote verifier is

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 61

Operation Time (ms)

SKINIT 15.4
PCR Extend 1.2
Hash of Kernel 22.0

TPM Quote 972.7

Total Query Latency 1022.7

Table 3.6: Breakdown of Rootkit Detector Overhead. The first three oper-
ations occur during the Flicker session, while the TPM Quote is generated
by the OS. The standard deviation was negligible for all operations.

12 hops away (determined using traceroute) with minimum, maximum, and

average ping times of 9.33 ms, 10.10 ms, and 9.45 ms over 50 trials.

All of our timing measurements were performed using the RDTSC in-

struction to count CPU cycles. We converted cycles to milliseconds based

on each machine’s CPU speed, obtained by reading /proc/cpuinfo.

3.6 End-to-End Application Macrobenchmarks

Here, we evaluate the high-level performance overhead of the four applica-

tions that we have extended with Flicker (Section 3.4). We divide our anal-

ysis between those applications maintaining no long-term state, integrity-

protected state, and secret state. We then summarize the common overheads

among all of the applications.

3.6.1 Stateless Applications

We evaluate the performance of the rootkit detector by measuring the total

time required to execute a detection query. We perform additional exper-

iments to break down the various components of the overhead involved.

Finally, we measure the impact of regular runs of the rootkit detector on

overall system performance.

End-to-End Performance. We begin by evaluating the total time re-

quired for an administrator to run our rootkit detector on a remote ma-

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 62

Detection Benchmark Standard
Period [m:s] Time [m:s] Deviation [s]

No Detection 7:22.6 2.6

5:00 7:21.4 1.1
3:00 7:21.4 0.9
2:00 7:21.8 1.0
1:00 7:21.9 1.1
0:30 7:22.6 1.7

Table 3.7: Performance impact of the Rootkit Detector. Kernel build time
when run with no detection and with rootkit detection run periodically.
Note that the detection does not actually speed up the build time; rather
the small performance impact it does have is lost in experimental noise.

chine. Our first experiment measures the total time between the time the

administrator initiates the rootkit query on the remote verifier and the time

the response returns from the AMD test machine. Over 25 experiments,

the average query time was 1.02 seconds, with a standard deviation of less

than 1.4 ms. This relatively small latency suggests that it would be reason-

able to run the rootkit detector on remote machines before allowing them

to connect to the corporate VPN, for example.

Microbenchmarks. To better understand the overhead of the rootkit

detector, we performed additional instrumentation to determine the most

expensive operations involved (Table 3.6). The results indicate that the

highest overhead comes from the TPM Quote operation. This performance

is TPM-specific. We discuss the performance of other TPMs in Section 3.7.3.

System Impact. As a final experiment, we evaluate the rootkit detector’s

impact on the system by measuring the time required to build the 2.6.20

Linux kernel while also running the rootkit detector periodically. Table 3.7

summarizes our results. Essentially, our results suggest that even frequent

execution of the rootkit detector (e.g., once every 30 seconds) has negligible

impact on the system’s overall performance.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 63

Operation Time (ms)

Application Work 1000 2000 4000 8000
SKINIT 14.3 14.3 14.3 14.3
Unseal 898.3 898.3 898.3 898.3

Flicker Overhead 47% 30% 18% 10%

Table 3.8: Operations for Distributed Computing. This table indicates the
significant expense of the Unseal operation, as well as the tradeoff between
efficiency and latency. We achieve this SKINIT time using an optimization
presented in Section 3.7.1.

3.6.2 Integrity-Protected State

At present, our distributed computing PAL periodically exits to check whether

the main system has work to perform. The frequency of these checks rep-

resents a tradeoff between low latency in responding to system events (such

as a user returning to the computer) and efficiency of computation (the per-

centage of time performing useful, application-specific computation), since

the Flicker-induced overhead is experienced every time the application re-

sumes its work.

In our experiments, we evaluate the amount of Flicker-imposed overhead

by measuring the time required to start performing useful application work,

specifically, between the time the OS executes SKINIT , and the time at

which the PAL begins to perform application-specific work.

Table 3.8 shows the resulting overhead, as well as its most expensive

constituent operations, in particular, the time for the SKINIT , and the time

to unseal and verify the PAL’s previous state.7 The table demonstrates how

the application’s efficiency improves as we allow the PAL to run for longer

periods of time before exiting back to the untrusted OS. For example, if the

application runs for one second before returning to the OS, only 53% of the

Flicker session is spent on application work; the remaining 47% is consumed

by Flicker’s setup time. However, if we allow the application to run for two

or four seconds at a time, then Flicker’s overhead drops to only 30% or 18%,

7As described in Section 3.4.2, the initial PAL must also generate a symmetric key and
seal it under PCR 17. We discuss this overhead in more detail in Section 3.6.3.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 64

1 2 3 4 5 6 7 8 9 10
User Latency [s]

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

n
cy

 (
%

) Flicker
3-Way
5-Way
7-Way

Figure 3.4: Flicker vs. Replication Efficiency. Replicating to a given number
of machines represents a constant loss in efficiency. Flicker gains efficiency
as the length of the periods during which application work is performed
increases.

respectively. Table 3.8 also indicates that the vast majority of the overhead

arises from the TPM’s Unseal operation. Again, a faster TPM, such as the

Infineon, can unseal in under 400 ms.

While Flicker adds additional overhead on a single client, the true sav-

ings come from the higher degree of trust the application writer can place

in the results returned. Figure 3.4 illustrates this savings by comparing the

efficiency of Flicker-enhanced distributed computing with the standard so-

lution of using redundancy. With our current implementation, a two second

user latency allows a more efficient distributed application than replicat-

ing to three or more machines. As the performance of this new hardware

improves, the efficiency of using Flicker will only increase.

3.6.3 Secret and Integrity-Protected State

Since both SSH and the CA perform similar activities, we focus on the mod-

ified SSH implementation and then highlight places where the CA differs.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 65

Operation Time
(ms)

SKINIT 14.3
Key Gen 185.7
Seal 10.2

Total Time 217.1
(a) PAL 1

Operation Time
(ms)

SKINIT 14.3
Unseal 905.4
Decrypt 4.6

Total Time 937.6
(b) PAL 2

Figure 3.5: SSH Overhead. Average server side performance over 100 trials,
including a breakdown of time spent inside each PAL. The standard error
on all measurements is under 1%, except key generation at 14%. We achieve
this SKINIT time using an optimization presented in Section 3.7.1.

SSH Password Authentication. Our first set of experiments measures

the total time required for each PAL on the server. The quote genera-

tion, seal and unseal operations are performed on the TPM using 2048-bit

asymmetric keys, while the key generation and the password decryption are

performed by the CPU using 1024-bit RSA keys.

Figure 3.5 presents these results, as well as a breakdown of the most

expensive operations that execute on the SSH server. The total time elapsed

on the client between the establishment of the TCP connection with the

server, and the display of the password prompt for the user is 1221 ms

(this includes the overhead of the first PAL, as well as 949 ms for the TPM

Quote operation), compared with 210 ms for an unmodified server. Similarly,

the time elapsed beginning immediately after password entry on the client,

and ending just before the client system presents the interactive session to

the user is approximately 940 ms while the unmodified server only requires

10 ms. The primary source of overhead is clearly the TPM. As these devices

have just been introduced by hardware vendors and have not yet proven

themselves in the market, it is not surprising that their performance is poor.

Nonetheless, current performance suffices for lightly-loaded servers, or for

less time-critical applications, such as the CA.

During the first PAL, the 1024-bit key generation clearly imposes the

largest overhead. This cost could be mitigated by choosing a different public

key algorithm with faster key generation, such as ElGamal, and is readily

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 66

parallelized. Both Seal and SKINIT contribute overhead, but compared to

the key generation, they are relatively insignificant. We also make one call

to TPM GetRandom to obtain 128 bytes of random data (it is used to seed a

pseudorandom number generator), which averages 1.3 ms. The performance

of PCR Extend is similarly quick and takes less than 1 ms on the Broadcom

TPM.

Quote is an expensive TPM operation, averaging 949 ms, but it is per-

formed while the untrusted OS has control. Thus, it is experienced as a

latency only for the SSH client. It does not impact the performance of other

processes running on the SSH server, as long as they do not require access

to the TPM.

The second PAL’s main overhead comes from the TPM Unseal. As

mentioned above, the Unseal overhead is TPM-specific. An Infineon TPM

can Unseal in 391 ms.

Certificate Authority. For the CA, we measure the total time required

to sign a certificate request. In 100 trials, the total time averaged 906.2 ms

(again, mainly due to the TPM’s Unseal). Fortunately, the latency of the

signature operation is far less critical than the latency in the SSH example.

The components of the overhead are almost identical to the SSH server’s,

though in the second PAL, the CA replaces the RSA decrypt operation with

an RSA signature operation. This requires approximately 4.7 ms.

3.6.4 Summary of High-Level Flicker Overheads

Here, we categorize the overheads incurred by our Flicker-enabled applica-

tions, so that we can establish a broader baseline for what kind of perfor-

mance is available today using microbenchmarks in Section 3.7. We focus on

the performance of two generic PALs. The first PAL (PAL Gen) launches,

generates application-specific data, seals the data using the TPM’s sealed

storage capability, and exits. The second PAL (PAL Use) launches, unseals

data sealed during a previous session, operates on that data, reseals the

data, and exits.

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 67

0

200

400

600

800

1000

1200

T
im

e
(m

s)

PAL Gen Quote PAL Use
0

200

400

600

800

1000

1200

T
im

e
(m

s)

Seal

PAL Gen Quote PAL Use
0

200

400

600

800

1000

1200

T
im

e
(m

s)

Unseal

PAL Gen Quote PAL Use
0

200

400

600

800

1000

1200

T
im

e
(m

s)

SKINIT

PAL Gen Quote PAL Use
0

200

400

600

800

1000

1200

T
im

e
(m

s)

Quote

Figure 3.6: Breakdown of overheads that will be incurred by generic appli-
cations implemented with Flicker. Measurements were taken using an HP
dc5750 containing an AMD processor and a Broadcom TPM. PAL Gen rep-
resents the overhead for an application that generates data and seals it for
later use. PAL Use unseals previous state, modifies it, and reseals it.

Figure 3.6 summarizes our results (taken over 100 runs with negligible

variance) and indicates both the total time taken by each PAL, as well as

the breakdown of the overhead for each. Note that these numbers represent

pure overhead—the time necessary for application-specific work is added on

top of these measurements. We also include the time required to perform a

TPM Quote operation, since this operation is needed to create an attestation

that will convince an external party that a PAL was executed successfully.

Looking at the breakdown of the execution time, each PAL requires

a late launch, represented by the SKINIT region (the PAL uses the full

64 KB supported by AMD). The PAL Gen session experiences the additional

overhead of sealing data using the TPM’s 2048-bit RSA Storage Root Key.

The PAL Use session must perform a TPM Unseal, and may also perform a

Seal operation before exiting. Both TPM Quote and TPM Unseal perform

a private RSA operation (digital signature and decrypt, respectively), which

is their dominant source of overhead.

Our results indicate that the TPM’s role in protecting PAL state during

a context-switch creates significant amounts of overhead. Storing data for

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 68

later use requires approximately 200 ms (PAL Gen), but accessing, modify-

ing, and then storing state (PAL Use) requires over a second. Note also that

this experiment was run on the Broadcom TPM, which had the fastest seal

operation of all TPMs that we tested, as we discuss with our microbench-

marks in Section 3.7.

The above overheads are exacerbated by the constraint that no other

code can execute during PAL execution. Thus, while a PAL Use module

executes, all other operations on the computer will be suspended for over

a second. This overhead is particularly egregious on a multi-processor ma-

chine, as the late launch operation requires all but one of the processors to

be in a special idle state. As a result, most of the computer’s processing

power and responsiveness vanish for over a second during PAL execution.

3.6.5 Impact on Suspended Operating System

Flicker runs with the legacy OS suspended and interrupts disabled. We

have presented Flicker sessions that run for more than one second, e.g.,

in the context of a distributed computing application (Table 3.8). While

these are long times to keep the OS suspended and interrupts disabled, we

have observed relatively few problems in practice. We relate some of our

experience with Flicker and describe the options available today to reduce

Flicker’s impact on the suspended system.

While a Flicker session runs, the user will perceive a hang on the machine.

Keyboard and mouse input during the Flicker session may be lost. Such

responsiveness glitches sometimes occur even without Flicker, and while un-

pleasant, they do not put valuable data at risk. Likewise, network packets

are sometimes lost even without Flicker, and today’s network-aware appli-

cations can and do recover. The most significant risk to a system during a

Flicker session is lost data in a transfer involving a block device, such as a

hard drive, CD-ROM drive, or USB flash drive.

We have performed experiments on our HP dc5750 copying large files

while the distributed computing application runs repeatedly. Each run lasts

an average of 8.3 seconds, and the legacy OS runs for an average of 37 ms in

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 69

between. We copy files from the CD-ROM drive to the hard drive, from the

CD-ROM drive to the USB drive, from the hard drive to the USB drive, and

from the USB drive to the hard drive. Between file copies, we reboot the sys-

tem to ensure cold caches. We use a 1-GB file created from /dev/urandom

for the hard drive to/from USB drive experiments, and a CD-ROM contain-

ing five 50-200 MB Audio-Video Interleave (AVI) files for the CD-ROM to

hard drive / USB drive experiments. During each Flicker session, the dis-

tributed computing application performs a TPM Unseal and then performs

division on 1,500,000 possible factors of a 384-bit prime number. In these

experiments, the kernel did not report any I/O errors, and integrity checks

with md5sum confirmed that the integrity of all files remained intact.

To provide stronger guarantees for the integrity of device transfers on a

system that supports Flicker, these transfers should be scheduled such that

they do not occur during a Flicker session. This requires OS awareness of

Flicker sessions so that it can quiesce devices appropriately. Modern devices

already support suspension in the form of ACPI power events [69], although

this is sub-optimal since power will remain available to devices. The best

solution is to modify the relevant OS schedulers to be Flicker-aware, so

that minimal work is required to prepare for a Flicker session. We plan to

further investigate Flicker-aware device drivers and OS extensions, but the

best solution may be an architectural change for next-generation hardware

(Section 6).

3.7 Microbenchmarks

To determine if the application overheads described in the preceding section

are representative of current hardware, we perform a number of microbench-

marks to measure the time needed by late launch and various TPM opera-

tions on two AMD machines and one Intel machine.

In addition to the AMD HP dc5750 described above, we employ a second

AMD test machine based on a Tyan n3600R server motherboard with two

1.8 GHz dual-core Opteron processors. This second machine is not equipped

with a TPM, but it does support execution of SKINIT . This allows us to

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 70

TPM
CPU Overhead in ms for various PAL sizes
Vendor 0 KB 4 KB 8 KB 16 KB 32 KB 64 KB

Yes
AMD

0.00 11.94 22.98 45.05 89.21 177.52
No 0.01 0.56 1.11 2.21 4.41 8.82

Yes Intel 26.39 26.88 27.38 28.37 30.46 34.35

Table 3.9: SKINIT and SENTER benchmarks. We run SKINIT bench-
marks on AMD systems with (an HP dc5750) and without (a Tyan n3600R)
a TPM to isolate the overhead of the SKINIT instruction from the over-
head induced by the TPM. We also run SENTER benchmarks on an Intel
Technology Enabling Platform (TEP) with a TPM.

isolate the performance of SKINIT without the potential bottleneck of a

TPM. Our Intel test machine is an MPC ClientPro Advantage 385 TXT

Technology Enabling Platform (TEP), which contains a 2.66 GHz Core 2

Duo processor, an Atmel v1.2 TPM, and the DQ965CO motherboard.

Since we have observed that the performance of different TPM imple-

mentations varies considerably, we also evaluate the TPM performance of

two other machines with a v1.2 TPM: a Lenovo T60 laptop with an Atmel

TPM, and an AMD workstation with an Infineon TPM.

3.7.1 Late Launch with an AMD Processor

AMD SVM supports late launch via the SKINIT instruction. The overhead

of the SKINIT instruction can be broken down into three parts: (1) the

time to place the CPU in an appropriate state with protections enabled, (2)

the time to transfer the PAL to the TPM across the low pin count (LPC)

bus, and (3) the time for the TPM to hash the PAL and extend the hash

into PCR 17. To investigate the breakdown of the instruction’s performance

overhead, we ran the SKINIT instruction on the HP dc5750 (with TPM)

and the Tyan n3600R (without TPM) with PALs of various sizes. We invoke

RDTSC before executing SKINIT and invoke it a second time as soon as

code from the PAL can begin executing.

Table 3.9 summarizes the timing results. The measurements for the

empty (0 KB) PAL indicate that placing the CPU in an appropriate state

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 71

introduces relatively little overhead (less than 10 µs). The Tyan n3600R

(without TPM) allows us to measure the time needed to transfer the PAL

across the LPC bus. The maximum LPC bandwidth is 16.67 MB/s, so the

fastest possible transfer of 64 KB is 3.8 ms [74]. Our measurements agree

with this prediction, indicating that it takes about 8.8 ms to transfer a

64 KB PAL, with the time varying linearly for smaller PALs.

Unfortunately, our results for the HP dc5750 indicate that the TPM

introduces a significant delay to the SKINIT operation. We investigated

the cause of this overhead and identified the TPM as causing a reduction

in throughput on the LPC bus. The TPM slows down SKINIT runtime by

causing long wait cycles on the LPC bus. SKINIT sends the contents of the

PAL to a TPM to be hashed using the following TPM command sequence:

TPM HASH START, zero or more invocations of TPM HASH DATA (each sends

one to four bytes of the PAL to the TPM), and finally TPM HASH END. The

TPM specification states that each of these commands may take up the

entire long wait cycle of the control flow mechanism built into the LPC bus

that connects the TPM [171]. Our results suggest that the TPM is indeed

utilizing most of the long wait cycle for each of the commands, and as a

result, the TPM contributes almost 170 ms of overhead. This may be either

a result of the TPM’s low clock rate or an inefficient implementation, and is

not surprising given the low-cost nature of today’s TPM chips. The 8.82 ms

taken by the Tyan n3600R may be representative of the performance of

future TPMs which are able to operate at maximum bus speed.

SKINIT Optimization. Short of changing the speed of the TPM and

the bus through which the CPU communicates with the TPM, the best op-

portunity for improving the performance of SKINIT is to reduce the size

of the SLB. To maintain the security properties provided by SKINIT , how-

ever, code in the SLB must be measured before it is executed. Note that

SKINIT enables the Device Exclusion Vector for the entire 64 KB of mem-

ory starting from the base of the SLB, even if the SLB’s length is less than

64 KB. One viable optimization is to create a PAL that only includes a

cryptographic hash function and enough TPM support to perform a PCR

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 72

Extend. This PAL can then measure and extend the application-specific

PAL. A PAL constructed in this way offloads most of the burden of comput-

ing code measurement to the system’s main CPU. We have constructed such

a PAL in 4736 bytes. When this PAL runs, it measures the entire 64 KB

and extends the resulting measurement into PCR 17. Thus, when SKINIT

executes, it only needs to transfer 4736 bytes to the TPM. In 50 trials, we

found the average SKINIT time to be 14 ms. While only a small savings for

the rootkit detector, it saves 164 ms of the 176 ms SKINIT requires with a

64-KB SLB. We used this optimization in our applications in Section 3.6.

3.7.2 Late Launch with an Intel Processor

Chapter 2.2 provides an introduction to Intel’s late launch capabilities. In-

tel’s late launch consists of two phases. First, the ACMod is extended into

PCR 17 using the same TPM HASH START, TPM HASH DATA, and TPM HASH END

command sequence used by AMD’s SKINIT . The ACMod then hashes the

PAL on the main CPU and uses an ordinary TPM Extend operation to record

the PAL’s identity in PCR 18. Thus, only the 20 byte hash of the PAL is

passed across the LPC to the TPM in the second phase.

The last row in Table 3.9 presents experimental results from invoking

SENTER on our Intel TEP. Interestingly, the overhead of SENTER is ini-

tially quite high, and it grows linearly but slowly. The large initial overhead

(26.39 ms) results from two factors. First, even for a 0 KB PAL, the Intel

platform must transmit the entire ACMod to the TPM and wait for the

TPM to hash it. The ACMod is just over 10 KB, which matches nicely with

the fact that the initial overhead falls in between the overhead for an SKINIT

with PALs of size 8 KB (22.98 ms) and 16 KB (45.05 ms). The overhead

for SENTER also includes the time necessary to verify the signature on the

ACMod.

The slow increase in the overhead of SENTER relative to the size of

the PAL is a result of where the PAL is hashed. On an Intel platform, the

ACMod hashes the PAL on the main CPU and hence sends only a constant

amount of data across the LPC bus. In contrast, an AMD system must

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 73

send the entire PAL to the TPM and wait for the TPM to do the hashing.

However, in practice, there is no need to incur SKINIT overhead beyond

that required for a PAL that measures itself, as in Section 3.7.1. Table 3.9

suggests that for large PALs, Intel’s implementation decision pays off. Fur-

ther reducing the size of the ACMod would improve Intel’s performance even

more. The gradual increase in SENTER’s runtime with increase in PAL size

is most likely attributable to the hash operation performed by the ACMod.

On an Intel TXT platform, the ACMod verifies that system configura-

tion is acceptable, enables chipset protections such as the initial memory

protections for the PAL, and then measures and launches the PAL [61].

On AMD SVM systems, microcode likely performs similar operations, but

we do not have complete information about AMD CPUs. Since Intel TXT

measures the ACMod into a PCR, an Intel TXT attestation to an external

verifier may contain more information about the challenged platform and

may allow an external verifier to make better trust decisions.

3.7.3 Trusted Platform Module (TPM) Operations

Though Intel and AMD send different modules of code to the TPM using

the TPM HASH * command sequence, this command sequence is responsible

for the majority of late launch overhead. More significant to overall PAL

overhead, however, is Flicker’s use of the TPM’s sealed storage capabili-

ties to protect PAL state during a context switch. To understand whether

the generic overheads from Figure 3.6 are representative, we perform TPM

benchmarks on four different TPMs. Two of these are the TPMs in our

already-introduced HP dc5750 and Intel TEP. The other two TPMs are an

Atmel TPM (a different model than that included in our Intel TEP) in an

IBM T60 laptop, and an Infineon TPM in an AMD system.

We evaluate the time needed for relevant operations across several dif-

ferent TPMs. These operations are: PCR Extend, Seal, Unseal, Quote, and

GetRandom. Figure 3.7 shows the results of our TPM microbenchmarks.

The results show that different TPM implementations optimize different

operations. The Broadcom TPM in our primary test machine is the slow-

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 74

PCR Extend Seal Quote Unseal GetRand 128B

TPM Operation

0

200

400

600

800

T
im

e
(m

s)

T60 Atmel
Broadcom
Infineon
TEP Atmel

Figure 3.7: TPM benchmarks run against the Atmel v1.2 TPM in a Lenovo
T60 laptop, the Broadcom v1.2 TPM in an HP dc5750, the Infineon v1.2
TPM in an AMD machine, and the Atmel v1.2 TPM (note that this is not
the same as the Atmel TPM in the Lenovo T60 laptop) in the Intel TEP.
Error bars indicate the standard deviation over 20 trials (not all error bars
are visible).

est for Quote and Unseal. Switching to the Infineon TPM (which has the

best average performance across the relevant operations) would reduce the

TPM-induced overhead for a combined Quote and Unseal by 1132 ms, al-

though it would also add 213 ms of Seal overhead. Even if we choose the

best performing TPM for each operation (which is not necessarily techni-

cally feasible, since a speedup on one operation may entail a slowdown in

another), a PAL Gen would still require almost 200 ms (177 ms for SKINIT

and 20.01 ms for the Broadcom Seal), and a PAL Use could require at least

579.37 ms (177 ms for SKINIT , 390.98 ms for the Infineon Unseal, and

11.39 ms for the Broadcom Seal). These values indicate that TPM-based

context-switching is extremely heavy-weight.

3.7.4 Major Sources of Performance Problems

Our experiments reveal two significant performance bottlenecks for minimal

TCB execution on current CPU architectures: (1) on a multi-CPU machine,

CHAPTER 3. TCB MINIMIZATION INFRASTRUCTURE 75

the inability to execute PALs and untrusted code simultaneously on different

CPUs, and (2) the use of TPM Seal and Unseal to protect PAL state during

a context switch between secure and insecure execution.

The first issue exacerbates the second, since the TPM-based overheads

apply to the entire platform, and not only to the running PAL, or even only

to the CPU on which the PAL runs. With TPM-induced delays of over a

second, this results in significant overhead. While this overhead may be ac-

ceptable for a system dedicated to a particular security-sensitive application,

it is not generally acceptable in a multiprogramming environment.

3.8 Summary

Flicker allows code to verifiably execute with hardware-enforced isolation.

Flicker itself adds as few as 250 lines of code to the application’s TCB. Given

the correlation between code size and bugs in the code, Flicker significantly

improves the security and reliability of the code it executes. New desktop

and laptop machines already contain the hardware support necessary for

Flicker, so widespread Flicker-based applications can soon become a reality.

With Flicker, application developers finally have the opportunity to write

secure applications without relying on the security of layer upon layer of

legacy software, and without breaking compatibility with today’s commodity

systems.

Chapter 4

Protecting Sensitive User

Input with a Reduced

Trusted Computing Base

Today’s commodity web browsers and operating systems do not provide any

facility by which a user can be sure that her sensitive information is reaching

its intended destination unmolested. The Secure Socket Layer (SSL) pro-

vides cryptographic protection for data while it is in-transit on the network,

but the prevalence of host-based malware such as keyloggers and screen

scrapers suggests that a more complete mechanism is needed. It is also de-

sirable to enable the user to confirm that such a mechanism is active at any

moment. Indeed, we argue that the user should have the ability to control

which of her inputs are deemed sensitive.

Ideally, we would construct a system that guarantees that all user input

is directed exclusively to its intended destination, irrespective of the presence

of malware on the user’s system. We would like the destination to be able

to distinguish between input arriving via a secure mechanism from input

provided via today’s legacy channels.

Flicker provides us with an isolation mechanism that can process data

without exposing it to malware on the user’s computer. On top of this we

develop Bumpy, a system for protecting a user’s sensitive input intended for

76

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 77

a webserver from a compromised client OS or compromised web browser.

We consider a user who desires to provide strings of information (e.g., a

credit card number or mailing address) to a remote webserver (e.g., her

bank) by entering it via her web browser. We limit ourselves to a case study

of user input to web pages, although our techniques can also be applied to

local applications. Bumpy is able to protect this sensitive user input by

reducing the requisite trusted computing base to exclude the legacy OS and

applications without requiring a hypervisor or VMM.

Bumpy separates the process of accepting user input into trusted and

untrusted parts, and thus can be viewed as implementing a type of privilege

separation [144]. Bumpy employs two primary mechanisms. First, the initial

handling of all keystrokes is performed in a special-purpose code module

that is isolated from the legacy OS using the Flicker system (Chapter 3).

Second, we establish the convention that sensitive input begin with the

secure attention sequence @@, so that a user can indicate to this module that

the data she is about to type is sensitive. These sensitive inputs are released

to the legacy platform only after being encrypted for the end webserver or

otherwise processed to protect user privacy [52, 51, 138].

Bumpy allows the remote webserver to configure the nature of the pro-

cessing performed on user input before it is transmitted to the webserver,

and automatically isolates the configurations and data-handling for mutually

distrusting webservers. The webserver for which the user’s current input will

be processed can receive a TCG-style attestation that the desired input pro-

tections are in-place, potentially allowing the webserver to offer additional

services to users with improved input security.

In order for the user to determine the website for which her input will

be encrypted, she requires some trusted display to which the input-handling

module can send this information. Since the client computer display cannot

be trusted in our threat model, we explore the use of a separate user device,

or Trusted Monitor, that receives such indicators from the input-handling

module, authenticates them (using digital signatures) and displays them to

the user.

Our prototype implementation of Bumpy demonstrates both the practi-

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 78

Encrypting Mouse & Keyboard Trusted Monitor

Primary Display

Flicker-capable
Computer

Web Browser

Extension

TPM

Operating
System

PreP

Application
Domain
Favicon

Web
Server

Internet

PoPr

Figure 4.1: Logical flow through the major components of the Bumpy sys-
tem. The OS, web browser, and browser extension are untrusted.

cality of our approach and the fact that commodity hardware already offers

nearly the full set of functionality needed to achieve these protections. In

fact, the only compromise we make in our implementation is using an em-

bedded Linux system as an encrypting USB Interposer, as we have been

unable to locate keyboards or mice offering programmable encryption. We

also leverage a smartphone as a Trusted Monitor for the user. However,

we emphasize that the emergence of encrypting keyboards and far simpler

devices to serve as a Trusted Monitor would suffice to remove any bloat

from Bumpy’s TCB. Bumpy is achievable without any client-side trusted

software of complexity even close to that of a general-purpose OS, VMM,

or hypervisor.

4.1 Overview

We detail our goals and assumptions, introduce the user experience, and

provide an overview of our design and the major system components of

Bumpy (Figure 4.1).

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 79

4.1.1 Goals and Assumptions

Goals. Our goals are to protect keystrokes from a potentially malicious

legacy input system while retaining a seamless user experience, and to of-

fer assurance to both the remote webserver and the user herself that input

is protected. To the remote webserver, we provide an attestation that the

user’s input was protected with Bumpy, including the presence of encryption-

capable input devices. To the user, we provide an indicator of whether it is

safe to enter sensitive input. Bumpy achieves this without breaking compat-

ibility with existing operating systems and without requiring a hypervisor

or VMM.

Assumptions and Threat Model. We consider the user’s OS and ap-

plications (including the web browser and its extensions) to be malicious.

We assume the user has a trustworthy mobile device to serve as a Trusted

Monitor and input devices (keyboard and mouse) capable of encryption.

We also assume the remote webserver to which the user wishes to direct her

input is uncompromised, and that the certificate authority (CA) that issues

the webserver’s SSL certificate is similarly uncompromised.

We leverage the Flicker system to protect sensitive code executing on

the user’s computer (Chapter 3). As such, the user’s computer must meet

the hardware requirements for Flicker: a version 1.2 TPM, and a CPU

and chipset capable of establishing a Dynamic Root of Trust, also known

as late launch. Chapter 2 provides additional background on the relevant

technologies, which are widely available today.

Physical attacks such as “shoulder surfing” and keyboard emanation

attacks [187] are beyond the scope of Bumpy. Thus, we do not discuss them

further.

4.1.2 User Experience

We are striving to make Bumpy usable by non-experts to protect sensitive

input. Our mechanism employs a convention for entering sensitive informa-

tion, and a trustworthy indication of the destination for that information.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 80

This indication is conveyed via an external display, called the Trusted Mon-

itor (Figure 4.1). It is our intention that the Trusted Monitor will help to

alleviate some of the usability problems (e.g., a lack of feedback) identified

for password managers such as PwdHash [32], although we leave a formal

usability study as future work.

In the common case, the user experience with Bumpy follows this se-

quence:

1. The user signals that she is about to enter sensitive information by

pressing @@. Note that this can be thought of as a convention, e.g.,

“my passwords should always start with @@.”

2. The Trusted Monitor beeps to acknowledge the reception of @@ in the

PreP, and updates its display to show the destination of the user’s

upcoming sensitive input.

3. The user types her sensitive data. Bumpy does not change this step

from the user’s perspective.

4. The user performs an action that signals the end of sensitive input

(e.g., presses Tab or Enter, or clicks the mouse). Bumpy does not

change this step from the user’s perspective.

While users are accustomed to typing their passwords without seeing

the actual characters on-screen (e.g., the characters appear as asterisks),

most other sensitive data is displayed following entry. Given our desire to

remove the legacy OS from the input TCB and the threat of malicious screen

scrapers, this echoing to the main display must be prevented by Bumpy. The

usability of entering relatively short sequences of characters (e.g., credit card

numbers) under these conditions may remain acceptable to concerned users,

but it is not ideal. We perceive this as the price one must pay for secure

input with an untrusted OS.

For those users employing a Trusted Monitor of sufficient capability,

sensitive keystrokes can be echoed there for validation by the user. While

this partially eliminates the challenge of entering input “blind,” a minimal

Trusted Monitor would still make it impractical to compose lengthy mes-

sages.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 81

4.1.3 Technical Overview

We now summarize the main components of Bumpy. In Figure 4.1, solid ar-

rows represent logical communication through encrypted tunnels. Bumpy is

built around encryption-capable input devices sending input events directly

into a Pre-Processor (PreP) protected by the Flicker system on the user’s

computer. Bumpy allows the remote webserver to control (within certain

limits) how users’ sensitive input is processed after it is entered with Bumpy.

We term this Post-Processing, and enable it by allowing the webserver to

provide a post-processor (PoPr) along with web content. Bumpy tracks and

isolates PoPrs from different webservers, as well as supports standardized

PoPrs that may be used across many websites. Leveraging the Flicker sys-

tem (Chapter 3), the PreP and PoPrs execute in isolation from each other

and from the legacy OS.

Encryption and password-hashing are two desirable forms of post-pro-

cessing of user input. Site-specific hashing of passwords (as in PwdHash [138])

can provide password diversity across multiple websites, and prevent the

webserver from ever having to handle the user’s true password. Dedicated

post-processing with server-supplied code can resolve issues with the Pwd-

Hash [138] algorithm producing unacceptable passwords (e.g., passwords

without any punctuation characters that violate the site’s password require-

ments) or passwords from a reduced namespace, since the webserver itself

provides the algorithm. Encrypting input directly within the Bumpy envi-

ronment to the remote webserver dramatically reduces the client-side TCB

for sensitive user input.

4.2 Identifying and Isolating Sensitive Input

In this section, we focus on acquiring input from the user in the PreP,

and storing sensitive input such that it is protected from the legacy OS.

Section 4.3 treats the post-processing and delivery of this input to approved

remote servers. We identify three requirements for protecting user input

against a potentially malicious legacy OS:

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 82

Web
Server

Internet

Web Browser

Extension

PreP
PoPr 1

PoPr N

...

Flicker

Legacy
Operating

System
KB &

Mouse USB Interposer

Encrypting Input Devices

1. User presses
 key / button

2. Keystroke
 encrypted

4. OS invokes
 PreP / Flicker

5. PreP releases
 input event
 to OS / App

3. OS handles
 ciphertext

6. PoPr invoked
 with queue

8. Webserver receives
 PoPr output

7. PoPr output
 handled by
 web browser

Figure 4.2: Acquiring user input with Bumpy. Steps 1–5 (described in
Section 4.2) occur for every keystroke or mouse click performed by the user.
Steps 6–8 (described in Section 4.3) occur only in response to a keystroke
or mouse click that the PreP detects will cause a blur event (in the web
browser GUI sense) while the user is entering sensitive data. We revisit this
figure in Section 4.6.3 while describing the life of a keystroke within our
implementation.

R1 All input must be captured and isolated.

R2 Sensitive input must be distinguishable from non-sensitive input.

R3 The final destination for sensitive input must be identifiable.

Requirement R1 for protecting user input is to acquire the input without

exposing it to the legacy OS. The challenge here is that we wish to avoid

dependence on a VMM or hypervisor and retain the OS in charge of device

I/O. We propose to use encryption-capable input devices to send opaque

input events through the untrusted OS to a special-purpose Piece of Appli-

cation Logic (PAL) that is protected by the Flicker system (Steps 1–4 in

Figure 4.2). This PAL is architected in two components. The first is specifi-

cally designed to Pre-Process encrypted input events from the input devices,

and we call it the PreP. The PreP achieves requirement R2 by monitoring

the user’s input stream for the secure attention sequence “@@” introduced in

Section 4.1.2, and then taking appropriate action (which affects what input

event is released in Step 5 of Figure 4.2). The PreP serves as the source

of input events for post-processing by a destination-specific Post-Processor

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 83

(PoPr). The process of authenticating a PoPr serves to identify the final

destination for sensitive input (requirement R3). The PoPr encrypts or

otherwise processes the received input for the remote server (Steps 6–8 in

Figure 4.2).

These components are separated so that the PreP’s sensitive state infor-

mation can be kept isolated from the PoPr, as Bumpy supports multiple,

mutually distrusting PoPrs that accept input events from the same PreP.

The PreP’s state information includes the cryptographic state associated

with the encrypting input devices, the currently active PoPr, and a queue

of buffered input events. The PreP’s state is protected by encrypting it

under a master key that is maintained on the user’s TPM chip. The prop-

erties of Flicker (Chapter 3) guarantee that no code other than the exact

PreP can access it. For the following sections we encourage readers not inti-

mately familiar with trusted computing technology to read Chapter 2 before

proceeding.

We defer discussion of the one-time setup of the cryptographic state as-

sociated with the encrypting input device(s) until Section 4.2.2. We proceed

assuming that the setup has already been completed.

4.2.1 Steady-State User Input Protection

We describe the actions taken by the PreP in response to user input events

and events from the web browser. The state machine in Figure 4.3 summa-

rizes these actions.

Every event e is processed in a distinct Flicker session, i.e., the PreP

only accepts a single event as an input parameter. We design Bumpy this

way out of necessity, due to two conflicting desires. The first is to avoid

trusting the OS, and the second is to remain responsive to the user as she

provides input to her system. One consequence of this design is that every

Flicker session (i.e., PreP invocation) begins and ends with the decryption

and encryption of the PreP’s sensitive state information, respectively.

The legacy OS provides arguments for each invocation of the PreP: the

event e to be processed, the SSL certificate for the active website, the PoPr

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 84

e = KP: @

e = KP: ¬Blur

e = KP: Blur

Event e, SSL cert, PoPr, SealedState

e = KP: Blur

e ≠ KP:@

e = KP: @

e ≠ KP:@

e = B: Focus

Invoke PoPr

1. Q = State.Queue
2. T = State.Tag
3. PoPr ?= State.PoPrID
4. PoPr(SSL cert, Q, T)

PreP initialization

1. Unseal SealedState
2. Verify SSL cert
3. Decrypt e

Prev = P.I.U.

Prev =
Focused

Prev =
@

Prev =
@@

Prev =
EnQ

e ≠ B: Focus

SSL C
e

rtificate
 V

e
rificatio

n
 Faile

d

Pass Input Unmodified

1. State.Prev = P.I.U.
2. Clear State.Queue
3. Output e

1. State.Tag = e.Field
2. State.Prev = Focused
3. State.PoPrID =
 hash(SSL cert||PoPr)

Focused

Enqueue Input

1. State.Prev = EnQ
2. Filter e
3. Output *

Second @

1. State.Prev = @@
2. Output e

First @

1. State.Prev = @
2. Output e

Figure 4.3: States of the PreP. KP = keypress or mouse click. B:Focus =
browser GUI focus event. Blur indicates action taken in response to events
on the encrypted input channel that cause a GUI blur event (e.g., Tab,
Shift+Tab, Enter, or mouse click).

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 85

associated with the active website, and the PreP’s encrypted state. Each

event e can be an encrypted keystroke or mouse click, or it can be a focus

event1 from the browser. All other event types from the browser are ignored.

The PreP maintains in its state the necessary cryptographic information to

decrypt and integrity-check input events from the input device(s). The

master keys used to protect the secrecy and integrity of the PreP’s state

are TPM-protected based on the identity of the PreP. We describe these

protocols in greater detail as part of our implementation in Section 4.6.

During each run of the PreP (i.e., during each Flicker session in Step 4 of

Figure 4.2), the state machine (Figure 4.3) begins in PreP Initialization and

transitions to the state where the previous PreP invocation ended (main-

tained as State.Prev in Figure 4.3), where the current event then causes

a single transition. Actions listed in a state are performed when an event

causes arrival into that state (as opposed to returning to a state because

of the value of State.Prev). If there is no action for a particular event in

a particular state, then that event is ignored. For example, browser focus

events are ignored in the Second @, Enqueue Input, and Invoke PoPr states.

PreP Initialization. Regardless of the previous state of the PreP, it al-

ways performs an initialization step. The PreP first decrypts and integrity-

checks its own long-term state, verifies that the provided SSL certificate is

valid using its own list of trusted certificate authorities (which we define as

being part of the PreP itself), and verifies that the provided PoPr is signed

by the provided SSL certificate. (If any of these verification steps fail, the

current event is dropped.) Next, the incoming event e is processed. If it

is an encrypted input event from the input device(s), then it is decrypted,

integrity-checked, and verified to be in-sequence (using cryptographic keys

and a sequence number maintained in the PreP’s state). If any of the steps

involving synchronization with the input device(s) fail, then input events can

no longer be received. We discuss options for recovery in Section 4.6.2.3.

1A focus event is an event in the web browser’s graphical user interface where a new
component such as an HTML text input field becomes active. This generally follows a
blur event caused by the previously focused component becoming inactive. These events
fire in response to user actions, such as clicking the mouse.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 86

The PreP then transitions to State.Prev where e will cause one additional

state transition. During the very first invocation of a PreP, it transitions to

Pass Input Unmodified. The following paragraphs describe the actions taken

upon entry to a state caused by an event, not by State.Prev. At the end

of each of these states, the PreP’s sensitive long-term state is sealed2 using

the TPM-protected master key, and then cleared (set to zero) before the

PreP terminates and produces output. Untrusted code running on the OS

maintains the ciphertext that makes up the PreP’s sealed state and provides

it as input to the PreP’s next invocation.

Pass Input Unmodified. The common case for user input is that it is

non-sensitive, and does not require special protection by the PreP. Any ex-

isting queue of sensitive events is discarded upon entry to this state. Unless

e is a browser focus event, State.Prev is set to remain in the Pass Input Un-

modified state. The current input event is not considered sensitive, and it is

provided as an output when the PreP exits. The legacy OS then interprets

this input event just as it does today.

Focused. A browser focus event contains the name of the field that has

just received focus (e.Field). The PreP saves the cryptographic hash of

the current PoPr and its SSL certificate (which was validated during PreP

Initialization) as the PoPrID . It is necessary to track the PoPrID to ensure

that the PoPr is not maliciously exchanged while the user is typing sensitive

input. When invoked with a keystroke, a PreP in the Focused state checks

whether the keystroke is the @ character. If so, the PreP transitions to

the First @ state. Otherwise, the PreP transitions back to the Pass Input

Unmodified state. The keystroke is output to the legacy OS for processing.

Note that the @ keystroke is not secret; it serves only to signify that the user

may be about to enter something she considers sensitive.

2Sealed means that the state is encrypted and integrity-protected (by computing a
MAC) for subsequent decryption and integrity-verification. This use of sealed is consistent
with the TPM’s sealed storage facility, which we describe in Chapter 2.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 87

First @. We have defined the secure attention sequence for Bumpy to be

@@ in the input stream immediately following a browser focus event. This

state serves to keep track of the @ characters that the user enters. It is

possible that the user is in the process of initiating sensitive input. When

invoked with a keystroke that is the @ character, the system transitions to

the Second @ state. Otherwise, the system transitions back to the Pass Input

Unmodified state. The keystroke is output to the legacy OS.

Second @. When in the Second @ state, the user has successfully indicated

that she is about to provide some sensitive input using Bumpy. From this

point forward, the only way for the user to terminate the process of entering

sensitive input is to perform an action that will cause a blur event in the

current input field. A blur event is an event in the graphical user interface

that indicates that a particular component is becoming inactive, generally

because the focus is now elsewhere. Relevant actions include clicking the

mouse or pressing Tab, Shift+Tab, Alt+Tab, or Enter. Note that we ex-

plicitly do not listen for blur events from the web browser, as a malicious

browser would be able to terminate secure input prematurely. If the user’s

input does not represent a blur event, then the system transitions to the

Enqueue Input state.

Enqueue Input. For each PreP invocation in the Enqueue Input state,

the decrypted keystroke is filtered before being appended to State.Queue.

The filter identifies and drops illegal password characters that would not

cause a blur event (e.g., meta-characters used for editing, such as arrows,

Backspace, and Delete). We discuss editable sensitive input in Section 4.8.

This process continues until the user causes a blur event, e.g., presses Tab,

Shift+Tab, Alt+Tab, Enter, or clicks the mouse. A decoy input event is

released to the legacy OS: an asterisk. From the perspective of the legacy OS,

when the user types her sensitive input, she appears to be typing asterisks.

This has the convenient property of mimicking the usual functionality of

input to password fields even if the current field is a normal text field: all

keystrokes appear as asterisks. Note that these asterisks will eventually be

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 88

discarded, as the PoPr provides the remote webserver with the true input

for the protected fields. When the user causes a blur event, the system

transitions to the Invoke PoPr state.

Invoke PoPr. When the PreP state machine transitions to the Invoke

PoPr state, it means that the user successfully directed the web browser’s

focus to a particular field, entered @@ to signal the start of sensitive input,

provided some sensitive input, and then caused a blur event that signals

the end of sensitive input. This input will now be handed to the PoPr for

destination-specific processing (Section 4.3). First, however, it is necessary

to check that the PoPr provided as an input to the PreP during the current

Flicker session is the same PoPr that was provided during the focus event

that initiated this sensitive input. If the PoPr is changed, malicious code

may be trying to fool the user. In this case, the system transitions directly

back to Pass Input Unmodified where the queue of sensitive input events

is discarded. If the PoPr is confirmed to be the same, it is invoked. The

PoPr also runs with Flicker’s protections, but it is less trusted than the

PreP. Thus, PreP state is sealed and cleared before invoking the PoPr with

the queue of input events. This is essential, as the PreP state includes the

cryptographic secrets involved in communication with the user’s physical

input device(s). If a PoPr could compromise this information, it might be

able to collude with a malicious OS and capture all subsequent input on the

user’s platform. Once the PoPr has executed, its output is handed to the

web browser via the legacy OS for submission to the webserver from which

the PoPr originated. If the PoPr considers these input events to be secret,

then they should be encrypted such that the legacy OS will be unable to

learn their values.

4.2.2 Associating the PreP and Input Device(s)

Bumpy depends on input devices capable of encrypting input events gener-

ated by the user, so that the legacy OS can pass the opaque events to the

PreP without learning their value. We now describe the process of estab-

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 89

lishing the necessary cryptographic keys when input device(s) and a PreP

are first associated.

The PreP is invoked with the command to establish a new association

with an input device. During this process, the PreP:

1. Generates symmetric encryption and MAC keys for the protection of

its own long-term state, Klt enc , Klt mac , if they do not already exist.

2. Generates an asymmetric keypair, Kinput , K
−1

input , for bootstrapping

communication with the encrypting input device, and adds the private

key to its long-term state. Note that no other software (not even a

PoPr) will ever be allowed to access K−1

input .

The public key Kinput is then conveyed to the input device. Given the

complexity of equipping input devices with root CA keys to verify cer-

tificates, we use a trust-on-first-use model where the input device simply

accepts Kinput and then prevents it from changing unexpectedly. Since

encryption-capable input devices like we require do not currently exist, we

specify how the input device enters a state where it is willing to accept a pub-

lic encryption key. The greatest challenge is to prevent key re-establishment

from being initiated in the presence of malicious code, whether through a

design or implementation failure or a social engineering attack. One promis-

ing design may be a physical switch that must be placed into the “Establish

Keys” position before key establishment can commence. This way, most

users will establish keys once and forget about it. Another alternative is

to use a location-limited channel (Chapter 5) [10, 166]. We describe input

device key establishment for our USB Interposer implementation in Sec-

tion 4.6.

In the future, more sophisticated input devices may verify an attesta-

tion that the public key came from a known-good PreP. Another promising

alternative is that input device manufacturers imprint their devices with a

certificate establishing them as approved encrypting input devices, though

it can be challenging to establish that a certificate corresponds to a par-

ticular physical device [125]. The PreP can then verify the origin of input

events as trustworthy, provided that the PreP’s list of trusted CAs covers

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 90

manufacturers’ signing keys.

Irrespective of the method of public-key exchange, symmetric keys for

encryption and integrity protection should be established to maximize per-

formance. Additionally, we require the use of sequence numbers so that the

PreP can detect if any keystrokes are dropped or reordered by the legacy

OS.

4.2.3 PreP State Freshness

The PreP must have the ability to protect its own state when the legacy

OS has control (i.e., across Flicker sessions). The secrecy and integrity of

the PreP’s state is ensured by encrypting it under a symmetric master key

kept in PCR-protected non-volatile RAM on the TPM chip. It is PCR-

protected under the measurement of the PreP itself, so that no other code

can ever unseal the master key. However, protecting the freshness of the

PCR-protected state is more challenging. The risk is a state roll-back or

replay attack where, e.g., an attacker may try to keep the PreP in the Pass

Input Unmodified (Figure 4.3) state by perpetually providing the same ci-

phertext of the PreP’s state as an input to the PreP. The standard solution

to this problem is to employ a secure counter or other versioning scheme that

can track the latest version of the PreP’s state. While the TPM does imple-

ment a monotonic counter [172], its specification dictates that the counter

need only support incrementing every five seconds. This is clearly insuf-

ficient to keep up with per-keystroke events. Our solution is to leverage

the sequence numbers associated with input events coming from the input

devices (Section 4.6.2.3).

4.3 Input Post-Processing and Attestation

We now detail the actions taken by the PoPr to Post-Process sensitive input

events enqueued by the PreP (Step 6 in Figure 4.2). Then, we describe the

attestation process employed to convince the remote webserver (which is the

PoPr provider) that it is receiving inputs protected by Bumpy.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 91

4.3.1 Post-Processing Sensitive Input

The final destination for sensitive input protected by Bumpy is the webserver

from which the current web page originated. In Section 4.2.1, we describe

how the PoPr is invoked by the PreP when the user has completed entering

sensitive input for a particular field. The PoPr is provided by the webserver

hosting the current web page in the user’s browser. The sensitive input is

tagged with the name of the field that had focus when the input was entered,

and this {inputString, tag} pair is what the PoPr receives. The PoPr can

perform arbitrary, site-specific transformations on the sensitive input before

handing the (potentially opaque) result to the web browser for transmission

to the remote webserver when the page is submitted.

4.3.1.1 Example Forms of Post-Processing

We consider two example forms of post-processing that we believe to be

widely useful on the web today, though there may be many others. The

first is encryption of user input such that only the webserver can process

the raw input, and the second is destination-specific hashing (with the Pwd-

Hash algorithm [138]) so that, e.g., passwords cannot be reused at multiple

websites.

End-to-End Encryption. Encrypting sensitive inputs for the webserver

completely removes the web browser and OS from the TCB of the input path

for the field accepting the sensitive input, though it requires the webserver

to be Bumpy-aware. This capability is achieved on the user’s system by

embedding a webserver-generated public encryption key in the PoPr. The

PreP will automatically check that the PoPr (and hence its encryption key)

is certified by the webserver from which it originated.

Note that it may seem tempting to have the input device encrypt the

user’s input all the way to the remote webserver, removing the need for the

PreP or PoPr. We prefer the flexibility afforded by the Flicker architecture to

process input in a PoPr on the user’s system in whatever way is appropriate

for a given application or remote system. It is not the duty of the input

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 92

device manufacturer to foresee all of these possible applications. Indeed,

incorporating too much programmability into the input device itself is sure

to make it a promising target for attack. Rather, the input device is tasked

solely with getting keystrokes securely to the PreP, and websites concerned

about the size of the input TCB can supply their own minimized PoPr.

Destination-Specific Hashing with PwdHash. A second form of post-

processing – contained entirely within the user’s system – is to perform a

site-specific transformation of certain fields before they are released to the

web browser for transmission to the webserver. For example, usernames or

passwords can be hashed along with the webserver’s domain name, thereby

providing the user with additional protection when she employs the same

username or password at multiple websites. The domain name is obtained

from the webserver’s SSL certificate, which is verified by the PreP before

the PoPr begins executing. In Section 4.6, we describe our implementation

of the PwdHash [52, 51, 138] algorithm within Bumpy.

4.3.1.2 Activating a PoPr

It is possible that malicious browser or OS code will intentionally load the

wrong PoPr for the current site. If the PoPr is well-behaved (i.e., provided

by a reputable webserver), then it is unlikely to expose the user’s sensitive

input. However, attackers may intentionally use a PoPr from a compromised

server with a valid SSL certificate. In this case, our defense is the Trusted

Monitor, as it will display the domain name and favicon3 of the website

that has certified the current PoPr. It is the user’s responsibility to see that

the information on the Trusted Monitor corresponds to the web page that

she is browsing. We explain the detailed operation of the Trusted Monitor,

including the users’ responsibilities, and how secure communication between

the PreP and the Trusted Monitor is established, in Section 4.4.

3A favicon is an image associated with a particular website or web page, installed by
the web designer. It is commonly displayed alongside the address bar and alongside a
tab’s title for browsers that support tabs.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 93

4.3.2 Attestation and Verifying Input Protections

Flicker enables the computer using Bumpy to attest to the PreP and PoPr

that have run most recently. This attestation can be verified by a remote

entity to ascertain whether the user’s input received the intended protec-

tion. Though there are no technical limitations governing which device (or

devices) perform the verification, we proceed from the perspective of the

remote webserver as the verifier. Institutions such as banks employ profes-

sional administrators who are better suited than the average consumer to

make trust decisions in response to which PreP and PoPr are in operation

on the user’s computer. For certain types of transactions (e.g., online bank-

ing), the webserver may be willing to expose more services to a user whose

computer can provide this assurance that the user’s input is being protected.

However, the user still must behave responsibly.

If verification by the remote webserver succeeds, then the requested web

page can be served normally. However, if verification fails, then the software

state of the user’s system cannot be trusted, and the webserver should pre-

vent access to sensitive services. One option is to serve a web page with an

explanation of the error, though there is no guarantee that the malicious (or

unknown) software will display the error. We discuss an extension to create

a trusted path between the Trusted Monitor and webserver for conveyance

of such error notifications in Section 4.8.

4.3.2.1 Establishing Platform Identity

TPM-based remote attestation is used to convince the webserver that the

user’s input is protected with Bumpy. However, the remote webserver must

first have a notion of the identity of the user’s computer system. We use

an Attestation Identity Key (AIK) generated by the TPM in the user’s

computer. Chapter 2 discusses known techniques for certifying an AIK, any

of which can be applied to Bumpy. Here, Bumpy benefits from the property

of the Flicker system (Chapter 3) that causes attestations to cover only the

PreP and PoPr code that was executed, and no other software at all.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 94

4.3.2.2 The Attestation Protocol

Here, we describe the protocol between a user’s system with Bumpy and

a Bumpy-aware webserver when they connect for the first time. As an

example, we consider a user who is trying to login to a webserver’s SSL-

protected login page. The user’s browser sends a normal HTTPS request

for the login page.

In response, the webserver participates in an SSL connection and delivers

the login page. Embedded within the page (e.g., in a hidden input element)

are several Bumpy-specific pieces of information, which must be signed by

the webserver’s private SSL key:

• nonce – A nonce to provide replay protection for the ensuing attesta-

tion.

• hash – The cryptographic hash of the PoPr. The PoPr itself can be

obtained with another HTTP request and verified to match this hash.

• favicon – The favicon corresponding to the webserver.

• Certws enc – A public encryption key signed by the webserver’s private

SSL key.

A well-behaved browser then passes the newly received PoPr, embedded

information, and the webserver’s public SSL certificate to the untrusted

code module that manages the invocation of Flicker sessions with the PreP.

During subsequent Flicker sessions, these data are provided as input to the

PreP. The PreP verifies the webserver’s SSL certificate using its own list

of trusted CAs, and verifies that the other input parameters are properly

signed.

If all verifications succeed, an output message is prepared for the web-

server. This message requires the generation of an asymmetric keypair

within the PoPr that will serve to authenticate future encrypted strings

of completed input as having originated within this PoPr. This key is gen-

erated and its private component is protected in accordance with the Flicker

external communication protocol (Chapter 3). Only this PoPr will ever be

able to access the private key.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 95

When key generation completes, the newly generated public signing key

(KPoPr sig) is extended into a TPM Platform Configuration Register (PCR)

and output from the PoPr. Untrusted code running on the legacy OS then

passes this key back to the web browser, along with the user’s system’s pub-

lic identity (e.g., an Attestation Identity Key, or the set of Endorsement

Key, Platform, and Conformance Credentials) and a TPM attestation cov-

ering the relevant PCRs. These tasks can be left to untrusted code because

the properties of the PCRs in the TPM chip prevent untrusted code from

undetectably tampering with their values.

In steady-state, the PoPr will encrypt user input using the public key in

the webserver-provided Certws enc , and sign it with K−1

PoPr sig to authenticate

that it came from the PoPr running on the user’s computer. There is no

need to perform an attestation during future communication between this

PoPr and webserver.

4.3.2.3 Processing Attestation Results

Remote entities need to have knowledge that a set of attested measurements

represents a PreP and PoPr that keep the user’s input and PreP state safe

(encrypted when untrusted code runs, which may include Flicker sessions

with other, distrusted PALs). Prominent institutions (e.g., banks) may de-

velop and provide their own PoPrs for protecting user input to their websites.

In these cases, the institution’s webserver can easily be configured with the

expected PoPr measurements, since it provided the PoPr in the first place.

If one PoPr proves to be sufficient for a wide variety of websites, then its

measurement may become a standard which can be widely deployed.

The webserver must also have knowledge of existing PrePs in order to

make a trust decision based on the attestation result. We expect the number

of PrePs to be reasonably small in practice, as most input devices adhere to

a well-known (and simple) protocol.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 96

4.4 The Trusted Monitor

Bumpy’s input protections by themselves are of limited value unless the user

can ascertain whether the protections are active when she enters sensitive

data. The primary usability criticism [32] of PwdHash [138] is that it pro-

vides insufficient feedback to the user as to the state of input protections.

Thus, it is of utmost importance that the user is aware of the transition

between protected and unprotected input. With Bumpy, the Trusted Mon-

itor serves as a trusted output device that provides feedback to the user

concerning the state of input protections on her computer.

4.4.1 Feedback for the User

When input protections are active, the Trusted Monitor displays the final

destination (e.g., website) whose PoPr will receive her next sensitive input.

We represent this using the domain name and favicon of the currently active

PoPr, as reported by the PreP. When input protections are disabled, the

Trusted Monitor displays a warning that input is unprotected and that users

should use @@ to initiate sensitive input. Figure 4.4 shows screen shots from

our implementation. In addition to changing the information on its dis-

play, the Trusted Monitor uses distinctive beeps to signal when protections

become enabled or disabled.

The Trusted Monitor works in concert with the properties of the PreP’s

Second @ and Enqueue Input states (Figure 4.3): when in these states,

the PoPr is locked in and cannot change until after the sensitive input to a

single field is processed by this PoPr (in the Invoke PoPr state). As such, the

PoPr represented by the domain name and favicon that are displayed by the

Trusted Monitor will remain the active PoPr until input to the current field

is complete. Thus, there is no need for the user to worry about a malicious

PoPr change in the middle of a string of sensitive input. However, the user

must be diligent between fields. She must ensure that the Trusted Monitor

responds to each unique @@ sequence that she types (i.e., that the Trusted

Monitor beeps and shows that protection is enabled) before proceeding to

input her sensitive data. This is because the untrusted OS may affect the

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 97

delivery of encrypted keystrokes to the PreP and PreP messages to the

Trusted Monitor.

The risk is that malicious code may try to confuse the user such that

she misinterprets the Trusted Monitor’s display for one input field as indi-

cating that her input is secure for additional input fields. One such attack

works as follows. Malcode allows keystrokes and Trusted Monitor updates

to proceed normally until the user begins typing sensitive input for one in-

put field on a web page. The Trusted Monitor beeps and updates its display

to indicate that protections are active. At this point, the malcode begins to

suppress Trusted Monitor updates, but the Trusted Monitor cannot imme-

diately distinguish between suppressed updates and a distracted user who

has turned away from her computer. A user who finishes typing this secret

and then transitions to another input field and proceeds to enter another

secret — even after entering @@ and glancing at the Trusted Monitor, but

without waiting for confirmation of the receipt of the new @@ by the PreP—

renders the second secret vulnerable to disclosure. To expose this secret,

the malicious OS plays the user’s encrypted inputs to the PreP after the

user is finished typing the second secret, but provides a malicious PoPr to

the PreP when transitioning to the Focused and Invoke PoPr states for the

second input. That is, the user provided the second secret presuming it was

protected in the same way as the first, but since she did not confirm that

the second @@ was received by the PreP before she typed the second secret,

it is vulnerable to disclosure to a malicious PoPr.

To help users avoid such pitfalls, it may be desirable for the Trusted

Monitor to emit an audible “tick” per sensitive keystroke received by the

PreP, in addition to the preceding beep when the @@ is received. This way,

the absence of ticks might be another warning to the user.

4.4.2 Protocol Details

To facilitate the exchange of information regarding the active PoPr, a cryp-

tographic association is needed between the PreP and the Trusted Monitor.

To establish this association, the Trusted Monitor engages in a one-time

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 98

initialization protocol with the PreP, whereby cryptographic keys are es-

tablished for secure (authentic) communication between the PreP and the

Trusted Monitor. The protocol is quite similar to that used between the

PreP and input device(s) in Section 4.2.2.

The initialization process for PreP-to-Trusted Monitor communication is

an infrequent event (i.e., only when the user gets a new Trusted Monitor or

input device). Thus, a trust-on-first-use approach is reasonable, where the

Trusted Monitor simply accepts the public key claimed for the PreP. Any of

a range of more secure (but more manual or more infrastructure-dependent)

approaches can be employed, including ones that allow the Trusted Monitor

to validate an attestation from the TPM on the user’s computer as to the

correct operation of the PreP and to the value of its public key (a capability

offered by Flicker). The PreP can save its private key in PCR-protected

storage on the user’s computer, and so will be available only to this PreP in

the future (as in Section 4.2).

The Trusted Monitor need not be a very complex device. Its respon-

sibilities are to receive notifications from the user’s computer via wired or

wireless communication, and to authenticate and display those notifications.

While our implementation employs a smartphone for a Trusted Monitor

(Section 4.6), this is far more capable than is necessary (and more capable

than we would recommend).

With a smartphone serving as the Trusted Monitor, there is no reason

why the user’s Trusted Monitor cannot perform the full gamut of verification

tasks we have described as being in the webserver’s purview. In fact, techni-

cally savvy and privacy-conscious users may prefer this model of operation,

and it becomes significantly easier to adopt if a small number of PrePs and

PoPrs become standardized across many websites. These users can learn

that their input is being handled by precisely the PreP and PoPr that they

have configured for their system, and that opaque third-party code is never

invoked with their input.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 99

4.5 Security Analysis

We discuss Bumpy’s TCB, the implications of a compromised web browser,

phishing attacks, and usability.

4.5.1 Trusted Computing Base

One of the primary strengths of Bumpy is the reduction in the TCB to

which input is exposed on the user’s computer. Always in the TCB are

the encrypting input device and the PreP that decrypts and processes the

encrypted input events on the user’s computer. The PoPr associated with

each website is also in the TCB for the user’s interaction with that website,

but the PreP isolates each PoPr from both the PreP’s sensitive state and the

OS (thereby preventing a malicious PoPr from harming a well-behaved OS).

The encrypting input device is a dedicated, special-purpose hardware device,

and the PreP is a dedicated, special-purpose software module that executes

with Flicker’s isolation. A compromise of either of these components is fatal

for Bumpy, but their small size dramatically reduces their attack surface

with respect to alternatives available today, and may make them amenable

to formal verification. The PoPr may be specific to the destination website,

and may be considered a local extension of the remote server. It does not

make sense to send protected input to a remote server that the user is

unwilling to trust. Additionally, the PoPr’s functionality is well-defined,

leading to small code size.

Also in the TCB is the Trusted Monitor that displays authenticated

status updates from the PreP, i.e., the domain name and favicon for the

active PoPr. The Trusted Monitor never handles the user’s sensitive input,

so compromising it alone is insufficient to obtain the user’s input. However,

if the Trusted Monitor indicates that all is well when in fact it is not, then

a phishing attack may be possible (Section 4.5.3).

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 100

4.5.2 Compromised Browser

If the user’s browser or OS is compromised, then malicious code can invoke

the PreP with input of its choosing. Bumpy can still keep the user’s sensitive

input safe provided that she adheres to the convention of starting sensitive

input with @@ and pays attention to the security indicator on her Trusted

Monitor.

The cryptographic tunnel between the input device and PreP prevents

malicious code from directly reading any keystrokes, and prevents the mali-

cious code from injecting spurious keystrokes. Thus, a compromised browser’s

options are restricted to providing spurious inputs to the PreP, including

SSL certificates, PoPrs, and browser focus events. None of these are suffi-

cient to violate the security properties of Bumpy, but they can put the user’s

diligence in referring to the Trusted Monitor to the test.

Malicious SSL Certificates. The PreP is equipped with a list of trusted

certificate authorities (CAs). Any SSL certificate that cannot be verified is

rejected, causing sensitive keystrokes to be dropped. Thus, an attacker’s best

option is to compromise an existing site’s SSL certificate (thereby reducing

the incentive to attack the user’s computer), or to employ a phishing attack

by registering a similar domain name to that which the user expects (e.g.,

hotmai1.com, instead of hotmail.com) and using an identical favicon.

Malicious PoPr. The PreP will not accept a PoPr unless it can be verified

with the current SSL certificate, thereby reducing this attack to an attack

on the SSL certificate (as described in the previous paragraph) or webserver.

Malicious Browser Focus Events. A malicious browser may generate

spurious or modified focus events in an attempt to confuse the PreP with

respect to which field is currently active. However, regardless of which field

is active, the user controls whether the current input events are considered

sensitive. When they are sensitive, input to a field is always encrypted

(initially by the input device(s), and subsequently within the PreP) and

tagged with the field’s name until input to the field completes, at which

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 101

point they are released to the PoPr. A malicious focus event may only

cause ciphertext to be tagged with the wrong field name. Provided that the

PoPr is written to protect all processed input events when they are released

to the legacy OS for transmission to the webserver, malicious focus events

are only a threat to availability. However, we already consider an adversary

which controls the OS on the user’s computer, and is thus already in total

control of availability.

Omitted Browser Focus Events. A malicious browser may refuse to

deliver any focus events. In this case, as the state machine in Figure 4.3

shows, the user’s @@ will not trigger special protections for user input. Thus,

the Trusted Monitor will not beep or update its display to show that input

protections are active. Currently, it is the user’s responsibility to detect

that her @@ did not trigger input protections. However, it is a straightfor-

ward extension to detect @@ from within the Pass Input Unmodified state in

Figure 4.3 and actively warn the user that her browser may be compromised.

4.5.3 Phishing

If a user is fooled by a phishing attack (e.g., she confuses similar-looking

domains), she may be using Bumpy’s protections to enter her sensitive data

directly into a phishing website. Defeating phishing attacks is not our focus

here, though Bumpy should be compatible with a wide range of phishing

defenses [79]. As a simple measure, Bumpy provides an indicator on the

Trusted Monitor that includes the domain name and favicon of the current

website. Recall from Section 4.3.2.2 that the favicon must be signed by the

webserver’s private SSL key. It is the subject of future work to determine

whether users are more likely to fall victim to phishing attacks that use an

exact duplicate of the phished site’s favicon.

Though we have not solved some of the intrinsic problems with certifi-

cate authorities and SSL (e.g., users are in the habit of always accepting

certificates), the PreP can enforce policies such as: only PoPrs from white-

listed webservers are eligible to receive a user’s input; PoPrs from blacklisted

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 102

webservers can never receive a user’s input; and self-signed certificates are

never acceptable. These policies are enforceable in the PreP, and require

the user to have a Trusted Monitor only to provide feedback to improve

usability.

With a PoPr implementing PwdHash, only the hashed password is re-

turned to the web browser. If a user is fooled into entering her password

into a phishing site with a different domain name, the phishing site cap-

tures only a hash of the user’s password, and must successfully perform an

offline dictionary attack before any useful information is obtained about the

user’s password at other sites. Additionally, in the case where a user ig-

nores the indicator but has established the habit of starting her password

with @@, hashing of the user’s password can restrict the impact of the user’s

being phished on one website to that website alone. With a compromised

OS, malware on the user’s system can observe the hashed password when

it is released to the web browser, but this password is only valid at a single

website.

4.5.4 Usability

Confusion. If users do not understand the Bumpy system, or their mental

model of the system is inaccurate, then they may be fooled by a malicious

web page. For example, a prompt such as the following may trick the user

into believing that there is no need to prefix her password with @@ on the

current web page:

Input your password: @@

The user may also become confused if she makes a typographical error

entering @@, and tries to use backspace to correct it. Bumpy will not offer

protections in this case, until the user changes to another input field and

then comes back to the current field (i.e., causes a blur event and then a

new focus event). The Trusted Monitor does indicate that protections are

disabled, but it may not be obvious to the user why this is the case. We

discuss editable sensitive input in Section 4.8.2.

Only a formal user study can ascertain the level of risk associated with

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 103

this kind of attack, which we plan to pursue in future work.

Extra Mouse Clicks. When a user clicks in an input field, a focus event

is generated for the field and conveyed to the PreP. The user’s next mouse

click is interpreted by the PreP as a blur event for the current input field,

disabling input protection. An attack may be possible if the user clicks the

mouse in an input field after already typing part of her input into the field.

This click could be interpreted as a blur event, and cause the rest of the

user’s keystrokes to be sent unencrypted. This may arise when, e.g., the

user forgot her credit card number after entering the first few digits from

memory, and needs to go lookup the remainder. The Trusted Monitor will

beep and update its display to indicate that input protections are disabled

when this blur event happens, but this may be a source of user confusion.

4.6 Implementation

Our implementation of Bumpy supports verification by the remote webserver

with a smartphone as Trusted Monitor to provide feedback to the user. We

implement two PoPrs: one encrypts sensitive input as-is for transmission to a

Bumpy-aware webserver, and the other hashes passwords with the PwdHash

algorithm [138] for transmission to an unmodified webserver.

We have been unable to find any commercially available keyboards or

mice that enable programmable encrypted communication. However, myr-

iad wireless keyboards do implement encrypted communication with their

host adapter (e.g., encrypted Bluetooth packets are decrypted in the Blue-

tooth adapter’s firmware, and not in software). Thus, the problem is not

technical, but rather a reflection of the market’s condition. Indeed, Mi-

crosoft’s NGSCB was originally architected to depend on USB keyboards

capable of encryption [42, 126]. In our system, we have developed a USB

Interposer using a low-power system-on-a-chip. Our USB Interposer sup-

ports a USB keyboard and mouse and manages encryption for use with

Bumpy.

We have implemented Bumpy using an HP dc5750 with an AMD Athlon64

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 104

X2 at 2.2 GHz and a Broadcom v1.2 TPM as the user’s computer, with a

USB-powered BeagleBoard [15] containing a 600 MHz ARM CPU running

embedded Linux serving as the USB Interposer. We use a Nokia E51 smart-

phone running Symbian OS v9.2 as the Trusted Monitor. Our USB Inter-

poser supports encryption of all keyboard events, and mouse click events.

Mouse movement events (i.e., X and Y delta information) are not encrypted,

since only mouse clicks trigger blur events in the web browser GUI.

4.6.1 Bumpy Components

Our implementation includes the PreP and two PoPrs that run with Flicker’s

protections on the user’s computer, the USB Interposer (BeagleBoard), the

Trusted Monitor running on a smartphone, and an untrusted web browser

extension and Perl script. We begin by describing the components that

are in Bumpy’s TCB, and then treat the additional untrusted components

that are required for availability (which we are forced to surrender since we

consider the OS as untrusted).

PreP and PoPrs. We implemented the PreP as a Piece of Application

Logic that runs with the protection of the Flicker system and (1) receives

encrypted keystroke events from the encrypting input device (i.e., the USB

Interposer), (2) invokes one of our PoPrs to process the encrypted keystrokes

for the webserver, either by re-encrypting them or performing the Pwd-

Hash [138] operation on passwords, and (3) sends encrypted messages to

the Trusted Monitor that provide the favicon and domain of the active web

page and PoPr. In our implementation, the PreP and both PoPrs are all

part of the same PAL that runs using Flicker. An input parameter controls

which PoPr is active.

USB Interposer. Our USB Interposer is built using a BeagleBoard fea-

turing an OMAP3530 processor implementing the ARM Cortex-A8 instruc-

tion set [15], and a Prolific PL-25A1 USB-to-USB bridge [132]. We currently

run embedded Debian Linux to benefit from the Linux kernel’s mature sup-

port for both USB host and client operation. While this adds considerable

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 105

code-size to our TCB, the interposer executes in relative isolation with a

very specific purpose. We implement a small Linux application that re-

ceives all keyboard and mouse events (using the kernel’s evdev interface),

and encrypts all keyboard and mouse click events, letting mouse movement

information pass in the clear. We describe the cryptographic protocol details

in Section 4.6.2.

(a) Protection enabled visiting SunTrust
bank.

(b) Protection disabled.

Figure 4.4: Screen shots of the Trusted Monitor.

Trusted Monitor. We implemented a Symbian C++ application that

runs on the Nokia E51 smartphone and serves as the Trusted Monitor. The

Trusted Monitor updates its display in response to authenticated messages

from the PreP, as described in Section 4.4. Figure 4.4 shows screen shots

of the Trusted Monitor in action. When a session is active between the

Trusted Monitor and PreP, the Trusted Monitor displays the domain name

and favicon of the active web page’s PoPr. It also displays a green key-

board (Figure 4.4(a)) as a unified indicator that protections are enabled.

When input protections are disabled, it displays a warning message that

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 106

input is unprotected and that @@ should be used for sensitive input (Fig-

ure 4.4(b)). The Trusted Monitor uses distinctive beeps whenever input

protections transition between enabled and disabled.

Note that after the initial configuration of the Trusted Monitor and PreP

(Section 4.6.2), no further configuration is necessary during subsequent input

sessions. The long-term symmetric keys encrypted under the master key

that is kept in PCR-protected TPM NV-RAM will only be accessible to the

correct PreP. Thus, only the PreP will be able to send authentic messages

to the Trusted Monitor.

Untrusted Components. We developed an untrusted Firefox Browser

Extension that communicates a web page’s SSL certificate and embedded

PoPr, and all focus events to the PreP. An untrusted Perl script facilitates

communication between all components, manages the invocation of Flicker

sessions, injects decrypted keystrokes into the OS using the Linux kernel’s

Uinput driver, and provides TPM Quotes in response to attestation requests.

Note that the Flicker architecture provides the property that the code re-

questing the attestation from the TPM chip need not be trusted. To convey

encrypted data from the PreP to the USB Interposer, Trusted Monitor, or

browser extension, the PreP must exit and release the ciphertext to the Perl

script.

4.6.2 Secure Communication with the PreP

Both the USB Interposer and the Trusted Monitor require the ability to

exchange secret, integrity-protected messages with the PreP. We implement

the Flicker external communication protocol for both, with a trust-on-first-

use model for accepting the respective public keys created in the PreP.

Neither the USB Interposer nor the Trusted Monitor is pre-configured with

knowledge of the identity of the TPM in the user’s computer or the identity

of the PreP installed on the user’s computer.

We program a dedicated button on the USB Interposer to bootstrap as-

sociation with a PreP, whereas the Trusted Monitor exposes a menu option

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 107

to the user to connect to her computer to perform the initial configura-

tion. The USB Interposer communicates with the user’s computer via USB,

and we use the AT&T 3G cellular network or WiFi to connect the Trusted

Monitor to the user’s computer using a standard TCP/IP connection. An

untrusted Perl script running on the user’s computer handles reception of

these messages and invokes Flicker sessions with the PreP so that the mes-

sages can be processed.

Both the USB Interposer and Trusted Monitor send a request to initiate

an association with the PreP, passing in the command to bootstrap Flicker’s

external communication protocol (Chapter 3), as well as a nonce for the

subsequent attestation. The PreP then uses TPM-provided randomness to

generate a 1024-bit RSA keypair. In accordance with Flicker’s external

communication protocol, the PreP extends PCR 17 with the measurement

of its newly generated public key. The public key is then output from the

PreP to be sent to the Trusted Monitor, and PCR 17 is capped (extended

with a random value) to indicate the end of the Flicker session. At this

point, PCR 17 on the user’s computer contains an immutable record of the

PreP executed and public key generated during execution.

4.6.2.1 PreP Authentication

Our use of a trust-on-first-use model to accept the PreP’s public key dictates

that no further verification of the exchanged keys is necessary. However, rig-

orous security goals may require the USB Interposer or Trusted Monitor to

verify that the user’s computer is running an approved PreP. In our current

prototype, the USB Interposer and Trusted Monitor request a TPM attesta-

tion from the user’s computer to ascertain the machine’s public Attestation

Identity Key (AIK) that it uses to sign attestations (TPM Quotes [172]),

and the measurement (SHA-1 hash) of the PreP that will process input

events. On subsequent connections, any change in the AIK or PreP mea-

surement is an error. This way, it is readily extensible to allow application

vendors to distribute signed lists of expected measurements, to leverage a

PKI, or to a community-driven system similar in spirit to that of Wendlandt

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 108

et al. (Perspectives [178]), and thus enable the USB Interposer and Trusted

Monitor to validate the identity of the PreP themselves.

The USB Interposer and Trusted Monitor include a nonce with their ini-

tial connection requests, and expect a response that includes a TPM Quote

over the nonce and PCR 17. The measurements extended into PCR 174 are

expected to be the measurement of the PreP itself, the command to boot-

strap external communication (ExtCommCmd), and the measurement of the

public RSA key produced by the PreP. H denotes the SHA-1 hash function:

PCR17 ← H(H(H(0160||H(PreP)) ||H(ExtCommCmd))||H(PubKey)).

The USB Interposer and Trusted Monitor perform the same hash opera-

tions themselves using the measurement of the PreP, value of ExtCommCmd,

and hash of the received public key. They then verify that the resulting hash

matches the value of PCR 17 included in the TPM Quote.

4.6.2.2 Symmetric Key Generation for Communication with the

PreP

We bootstrap secret and integrity-protected communication between the

PreP and the USB Interposer or Trusted Monitor using the PreP’s relevant

public key to establish a shared master key KM1 . Separate symmetric en-

cryption and MAC keys are derived for each direction of communication. We

use AES with 128-bit keys in cipher-block chaining mode (AES-CBC) and

HMAC-SHA-1 to protect the secrecy and integrity of all subsequent com-

munication between the Trusted Monitor and the PreP. These keys form a

part of the long-term state maintained by both endpoints.

Kaes1 ← HMAC-SHA-1(KM1,‘aes128.1’)
128

Khmac1 ← HMAC-SHA-1(KM1,‘hmac-sha1.1’)

Kaes2 ← HMAC-SHA-1(KM1,‘aes128.2’)
128

Khmac2 ← HMAC-SHA-1(KM1,‘hmac-sha1.2’)

4This example is specific to an AMD system. The measurements extended by Intel
systems are similar.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 109

4.6.2.3 Long-Term State Protection

The PreP must protect its state from the untrusted legacy OS while Flicker

is not active. To facilitate this, the PreP generates a 20-byte master key KM2

using TPM-provided randomness. This master key is kept in PCR-protected

non-volatile RAM (NV-RAM) on the TPM chip itself. We choose TPM NV-

RAM instead of TPM Sealed Storage because of a significant performance

advantage. The PCR 17 value required for access to the master key is that

which is populated by the execution of the PreP using Flicker:

PCR17 ← SHA-1(0160||SHA-1(PreP)).

Flicker ensures that no code other than the precise PreP that created

the master key will be able to access it. Our PreP uses AES-CBC and

HMAC-SHA-1 to protect the secrecy and integrity of the PreP’s state while

the (untrusted) legacy OS runs and stores the ciphertext. The necessary

keys are derived as follows:

Kaes ← HMAC-SHA-1(KM2,‘aes128’)
128,

Khmac ← HMAC-SHA-1(KM2,‘hmac-sha1’).

This is sufficient to detect malicious changes to the saved state and to

protect the state’s secrecy. However, a counter is still needed to protect the

freshness of the state and prevent roll-back or replay attacks. The TPM does

include a monotonic counter facility [172], but it is only required to support

updating once every five seconds. This is insufficient to keep up with user

input. Instead, we leverage the sequence numbers used to order encrypted

input events coming from the USB Interposer. The PreP is constructed such

that a sequence number error causes the PreP to fall back to a challenge-

response protocol with the USB Interposer, where the PreP ensures that

it is receiving fresh events from the USB Interposer and reinitializes its

sequence numbers. Any sensitive input events that have been enqueued

when a sequence number error takes place are discarded. Note that this

should only happen when the system is under attack.

The USB Interposer and Trusted Monitor run on devices with ample

non-volatile storage available.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 110

4.6.3 The Life of a Keystroke

Here, we detail the path taken by keystrokes for a single sensitive web form

field. It may be useful to refer back to Figures 4.2 and 4.3. At this point,

symmetric cryptographic keys are established for bidirectional, secret, au-

thenticated PreP-USB Interposer and PreP-Trusted Monitor communica-

tion. We now detail the process that handles keystroke events as the user

provides input to a web page.

The user begins by directing focus to the relevant field, e.g., via a click

of the mouse. On a well-behaved system, our browser extension initiates a

Flicker session with the PreP, providing the name of the field, and the web-

server’s SSL certificate, PoPr (which includes the encryption key certificate

Certws enc), nonce, and favicon as arguments. The PreP verifies the SSL

certificate using its CA list and verifies that the PoPr, nonce, and favicon

are signed by the same SSL certificate. The user then types @@ to indi-

cate that the following input should be regarded as sensitive. The user’s

keystrokes travel from the keyboard to the USB Interposer, where they are

encrypted for the PreP, and transmitted to the Perl script on the user’s

computer (Steps 1–3 in Figure 4.2). The script then initiates other Flicker

sessions with the PreP, this time providing the encrypted keystrokes as input

(Step 4 in Figure 4.2). The PreP decrypts these keystrokes and recognizes

@@ (Figure 4.3) as the sequence to indicate the start of sensitive input. The

PreP outputs the @ characters in plaintext and prepares a message for the

Trusted Monitor to indicate the domain name and favicon of the current

website and PoPr. The Trusted Monitor receives this message, beeps, and

updates its display with the domain name and favicon.

Subsequent keystrokes are added to a buffer maintained as part of the

PreP’s long-term state. Dummy keystrokes (asterisks) are output for deliv-

ery to the legacy operating system (Step 5 in Figure 4.2) using the Uinput

facility of the Linux kernel (which is also used when cleartext mouse and

keyboard input events need to be injected). This enables the browser to

maintain the same operational semantics and avoid unnecessary user confu-

sion (e.g., by fewer asterisks appearing than characters that she has typed).

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 111

In the common case (after the long-term cryptographic keys are estab-

lished), TPM-related overhead for one keystroke is limited to the TPM

extend operations to initiate the Flicker session, and a 20-byte read from

NV-RAM to obtain the master key protecting the sealed state. All other

cryptographic operations are symmetric and performed by the main CPU.

Section 4.7 offers a performance analysis.

When the user finishes entering sensitive input into a particular field,

she switches the focus to another field. The PreP catches the relevant input

event (a Blur in Figure 4.3) on the input stream, and prepares the sensitive

input for handoff to the PoPr (Step 6 in Figure 4.2). We have implemented

two PoPrs: encryption directly to the webserver, and PwdHash [138]. The

PreP will then receive a focus event from the browser, indicating that focus

has moved to another field. Note that form submission is a non-sensitive

input event, so no special handling is required.

Encryption for Webserver. A widely useful PoPr encrypts the sensitive

input for the remote webserver exactly as entered by the user (Steps 6–8 in

Figure 4.2). This is accomplished using a public encryption key that is

certified by the webserver’s private SSL key. We use RSA encryption with

PKCS#1v15 padding [83] to encrypt symmetric AES-CBC and HMAC-

SHA-1 keys, which are used to encrypt and MAC the actual input with

its corresponding field tags. The public encryption key is embedded in the

PoPr.

Post-Processing as PwdHash. Another useful PoPr performs a site-

specific transformation of data before submission to the webserver. We have

implemented the PwdHash [138] algorithm in our PoPr. When this PoPr is

active, the remote webserver need not be aware that Bumpy is in use, since

the hashed password is output to the web browser as if it were the user’s

typed input. The PoPr manages the transformation from the user’s sensitive

password to a site-specific hash of the password, based on the domain name

of the remote webserver.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 112

4.6.4 The Webserver’s Perspective

We now describe the process of acquiring sensitive input from the perspec-

tive of a Bumpy-enabled webserver. Prior to handling any requests, the web-

server generates an asymmetric encryption keypair and signs the public key

using its private SSL key (using calls to OpenSSL), resulting in Certws enc .

Certws enc can be used for multiple clients.

Our implementation consists of a Perl CGI script. When a request ar-

rives at the webserver for a page that accepts user input, our CGI script

is invoked to bundle Certws enc with a freshly generated nonce (for the up-

coming attestation from the user’s computer) and the hash and URL of the

binary image of our direct-encryption PoPr. The ensuing bundle is then

embedded into a hidden input field on the resulting web page. The hash

and URL of the PoPr prevents wasting bandwidth on transferring the full

PoPr unless it is the user’s computer’s first time employing this PoPr.

When the user submits the resulting page, the webserver expects to

receive an attestation from the user’s computer covering the PreP, the pro-

vided PoPr and nonce, and a public signing key (KPoPr sig) newly generated

by the PoPr on the user’s computer. Currently, we employ trust-on-first-use

to accept the Attestation Identity Key (AIK) that the user’s computer’s

TPM used to sign the PCR register values. We have manually configured

the webserver with the expected measurement of the PreP and PoPrs, as

they are part of the same binary in our implementation. If the measurements

in the attestation match the expected values, then KPoPr sig is associated

with K−1
ws enc (and the user’s computer’s TPM’s AIK) to enable decryption

and authentication of subsequent strings of sensitive input encrypted by the

PoPr.

4.7 Evaluation

We discuss the size of the TCB for our implementation, the performance

impact on ordinary typing, webserver overhead, and the impact of network

latency on the refresh rate of the Trusted Monitor’s display.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 113

PreP and PoPrs

Func. Lang. SLOC

Main .c 1044
PwdHash .c 99
PwdHash .h 4

Total .c, .h 1147

Flicker libraries

Func. Lang. SLOC

Crypto .c 3980
Crypto .h 471
TPM .c 1210
TPM .h 252
Util .c 518
Util .h 251
Util .S 161

Total .c, .h, .S 6854

USB Interposer

Func. Lang. SLOC

Decode, Encrypt & TX .c 489

Webserver CGI

Func. Lang. SLOC

Embed & Verify .pl 167

Trusted Monitor

Func. Lang. SLOC

Protocol .cpp 979
Protocol .h 286
UI .cpp 539
UI .h 160
Util .cpp 50
Util .h 34

Total .cpp, .h 2048

Table 4.1: Lines of code for trusted Bumpy components obtained using
SLOCCount [179]. The PreP and PoPrs include only the Flicker libraries in
their software TCB. The USB Interposer, webserver, and Trusted Monitor
also include their respective operating systems.

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 114

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500

R
o
u
n
d
-t

ri
p
 L

at
en

cy
 (

m
s)

Keystroke

Keystroke
PreP

Uinput

Figure 4.5: Latencies for 500 individual keystrokes. The PreP and Uinput
latencies are components of the Keystroke latencies.

Code Size. Bumpy provides strong security properties in part due to its

small trusted computing base (TCB). Table 4.1 shows the code size for

our PreP and PoPrs, USB Interposer, webserver CGI script, and Trusted

Monitor. Note that the TCB for the PreP and PoPrs includes no additional

code beyond the listed Flicker libraries thanks to the properties of Flicker.

Our current USB Interposer runs as a Linux application on a BeagleBoard;

however, its only interface is the USB bridge to the user’s computer, and

its only function is to transmit encrypted keyboard and mouse events. Our

Trusted Monitor includes Symbian OS in its TCB, as it runs as a normal

smartphone application. We emphasize that the inclusion of Linux in the

TCB of our USB Interposer and Symbian OS in the TCB of our Trusted

Monitor is an artifact of our prototype implementation, and not a necessary

consequence of our architecture.

Typing Overhead with USB Interposer. We measured the round-

trip-time between reception of a keypress on the USB Interposer (from the

physical keyboard) and reception of an acknowledgement from the user’s

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 115

computer. This includes the time to encrypt and HMAC the keypress in the

USB Interposer, send it to the user’s computer via the USB-to-USB bridge,

invoke the Flicker session on the user’s computer with the PreP (unseal PreP

state using the master key kept in PCR-protected TPM Non-Volatile RAM,

decrypt and authenticate the newly arrived keypress, reseal PreP state, and

release the new keypress to the OS), and send the acknowledgement back

over the USB-to-USB bridge. In 500 trials, we experienced overhead of

141±15 ms (Figure 4.5). This is mildly noticeable during very fast typing,

similar to an SSH session to a far-away host. It is noteworthy that the

overhead consumed by Flicker (i.e., by the PreP) is 66±0.1 ms per keystroke,

suggesting that more than half of the latency in our current prototype may

be an artifact of the untrusted Perl script in our implementation. Indeed,

the contribution of the Uinput driver used to inject keystrokes (42±8 ms)

is uncharacteristically large, and grows over time. Writing to the driver

from our Perl script presently involves the creation of a child process and

a new virtual input device for every keystroke. The virtual input device

driver was not designed to scale so far. Our script should be modified to

employ the same virtual input device throughout. Ample opportunities

remain for optimization, which we plan to pursue in the course of future

work in preparation for a user study.

Webserver Overhead with Encryption PoPr. With our encryption

PoPr enabled, the webserver must embed Certws enc , a newly generated

nonce, the hash of the desired PoPr, the URL at which the client system

can obtain the PoPr, and a signature covering the favicon and all of these

items into each page that may accept sensitive input. Our webserver is

a Dell PowerEdge 2650 with two Intel Xeon 2.4 GHz CPUs running the

Debian Linux flavor of Apache 2.2.3. In 25 trials, our CGI script induces a

page-load latency of 17.0±0.4 ms, which is primarily composed of reading

the cryptographic keys from disk (8.2±0.0 ms) and signing the nonce and

metadata (8.6±0.5 ms). When the user submits the completed page, the

webserver must verify an attestation from her platform. In 25 trials, our

CGI script induces a form-submission latency of less than 2 ms to verify the

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 116

signature on the attestation. Note that symmetric keys can be established

that reduce the need for the signature-verification operation to a one-time

overheads. Though we have not yet implemented this optimization, the

only cost is a few tens of bytes of long-term state maintained on the user’s

computer and the webserver.

Trusted Monitor Network Latency. Our Trusted Monitor uses a TCP

connection between the Nokia E51 smartphone and the user’s computer. If

there is significant network latency, then the Trusted Monitor may not be

displaying the correct URL and favicon when the user looks at it. The

smartphone can access the Internet using either its 3G/3.5G cellular radio,

or using standard 802.11b/g wireless access points. To evaluate the latency

impact of using these networks, we performed a simple echo experiment

with an established TCP connection, where the E51 sends a series of 4-byte

requests and receives 24-byte responses (excluding TCP/IP headers) from

the HP workstation. We observed an average round-trip time (RTT) of

102±82 ms using the 802.11 network, and 211±25 ms using AT&T’s 3.5G

network. In our experience, these latencies are imperceptible to the user as

she turns her head to look away from her primary display and towards the

Trusted Monitor.

4.8 Discussion

We describe the use of the Trusted Monitor as an input proxy when a USB

Interposer is not available, design alternatives and other interesting features

that Bumpy might be extended to offer.

4.8.1 Trusted Monitor as Input Proxy

Here we discuss the use of the Trusted Monitor as a proxy to perform encryp-

tion of keystroke events in addition to its use as a trustworthy display. We

also implement and evaluate this design, which stands as an alternative to

the implementation and evaluation presented in the previous sections. This

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 117

design is the most analogous to our prior Bump in the Ether work [112],

and the most accessible with off-the-shelf devices.

The Trusted Monitor as an encrypting input device is convenient and

usable with an external keyboard attached. We use a Bluetooth Apple

Wireless Keyboard5 to provide keystrokes to the Nokia E51 via the E51’s

Bluetooth Wireless Keyboard application. We have paired this keyboard

with the Nokia E51 using Bluetooth’s standard encryption and integrity

protection.6 Subsequent discussion treats the wireless keyboard as part of

the Trusted Monitor. Our current smartphone prototype does not support

protection of mouse input, thus users must change fields on a web form

with the keyboard (Tab, Shift+Tab) after entering sensitive data. If the

PreP allowed blur events from the web browser instead of directly from the

input device, then a compromised browser could disable input protections

by sending spurious blur events.

Typing Overhead with Trusted Monitor as Proxy. This experiment

is identical to the experiment measuring the typing overhead of the USB

Interposer, except that a Bluetooth wireless keyboard is attached to the

Nokia E51, and the Nokia E51 communicates with the user’s computer via

a standard 802.11b/g WiFi network. We again measured the round-trip-

time between reception of a keypress on the Trusted Monitor and reception

of an acknowledgement from the PreP. In 50 trials, we experienced overhead

of 181±39 ms. This is slower than with the USB Interposer, but it remains

quite usable. Unfortunately, over 100 ms of this overhead is induced by the

wireless network, and is not amenable to optimization.

Trusted Monitor Attestation Latency. The process of initially asso-

ciating the PreP on the user’s computer with her Trusted Monitor involves

the Trusted Monitor receiving an attestation in the form of a TPM Quote

from the user’s computer. This one-time event only occurs as part of the

5http://www.apple.com/keyboard/
6We are aware of weaknesses in Bluetooth’s security primitives (e.g., cracking its

PIN [151]), but we placed a higher emphasis on availability of commodity components
for our prototype implementation of the smartphone as a proxy for input.

http://www.apple.com/keyboard/

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 118

Avg (ms) Stdev (ms)

Nonce Gen. 4.3 0.5
Quote RTT 1950.7 115.8
Quote Verif. 7.8 0.5
PCR Verif. 0.1 0.3

Table 4.2: Overhead associated with requesting, generating, receiving, and
verifying a TPM Quote.

cryptographic tunnel setup when the Trusted Monitor and PreP establish

their first connection, i.e., it is not on the critical path for each keystroke.

Table 4.2 shows the relevant overheads. The Trusted Monitor first gener-

ates a cryptographic nonce to ensure freshness of the resulting quote. The

nonce is then sent to the user’s computer, where a TPM Quote is generated.

The quote is returned to the Trusted Monitor, where the signature on the

quote is verified with the public AIK, and the AIK and PCR values are

saved as known-good values. In our current prototype, the establishment of

symmetric cryptographic keys means that the attestation information will

never be used again. This is a consequence of our trust-on-first-use design;

the attestation information may prove valuable in the future if the Trusted

Monitor is configured with approved PreP measurements and the identity

of the TPM in the user’s computer.

4.8.2 Bumpy Design Alternatives

@@ at Any Time. As presented, the secure attention sequence for Bumpy

is the @@ sequence immediately following a focus event from the web browser

GUI. There are no technical limitations to enabling a secure attention se-

quence at any time, regardless of where in a field the cursor may be. How-

ever, we anticipate significant usability challenges for all but the most savvy

users. This may prove to be an interesting direction for future work.

Editing Bumpy-Protected Input. As presented (Section 4.2.1), Bumpy

ignores non-display characters that do not cause a blur event in the web

browser GUI while the user is entering sensitive data. Examples of such

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 119

characters are backspace and the arrow keys. Here too, there are no techni-

cal limitations to enabling the user to edit her opaque (from the browser’s

perspective) data. However, we are concerned about a malicious browser

tampering with the cursor and confusing the user. Additional investigation

is warranted to determine whether this attack amounts to anything beyond

a denial-of-service attack (e.g., to get better data for a keystroke timing

attack [163]).

Trusted Path Between Trusted Monitor and Webserver. There are

many circumstances where the lack of a trusted path from a remote server to

a user with a compromised computer can lead to the user’s loss of sensitive

information. For example, when a remote server checks an attestation from

the user’s computer and finds known malware installed, it is desirable to

inform the user that her system is compromised. Other researchers have

considered the use of PDAs or smartphones in such roles (e.g., Balfanz et

al. [9]), but we consider this enhancement to Bumpy to be beyond the scope

of the current paper.

PreP as Password Store. The direct-encryption PoPr breaks the web

browser’s ability to remember passwords on behalf of the user. This feature

can be reenabled using the PreP or PoPr as a password store, and the

Trusted Monitor as the interface to select a stored password.

4.8.3 Other Interesting Features

Password Leak Detection. A compelling feature that can readily be

added to a PreP is to look for the user’s password(s) in the input stream

and detect whether it appears when input protections are not enabled. This

may allow the system to issue a warning if, e.g., the user is about to fall

victim to a phishing attack.

Hardware Keyloggers. Resistance to physical attacks is not an explicit

goal of Bumpy; however, the issue warrants discussion. Bumpy’s resilience

to hardware keyloggers depends on the model used for associating new input

CHAPTER 4. TCB REDUCTION FOR SENSITIVE USER INPUT 120

devices with the user’s computer. If a simple plug-and-play architecture is

allowed, then a hardware keylogger inserted between the input device and

the user’s computer can appear as a new input device to the computer, and

a new computer to the input device. One alternative is for input devices to

require manufacturer certification before the user’s computer will associate

with them. However, this may prove to be impractical, as users may perceive

all certification errors as indicative of a broken device. The core research

challenge here is the problem of key establishment between devices with no

prior context (Chapter 5) [10, 166].

4.9 Summary

User input to today’s commodity applications and operating systems is ex-

posed to host-based malware. A viable alternative protects user input while

simultaneously giving feedback to the user and the intended destination for

her input that protections are in place. We develop such an alternative on

top of the Flicker architecture, thereby demonstrating its utility in improv-

ing the security properties of real applications on today’s systems.

Bumpy protects users’ sensitive input from keyloggers and screen scrap-

ers by excluding the legacy OS and software stack from the TCB for input.

Bumpy allows users to dictate which input is considered sensitive, thus intro-

ducing the possibility of protecting much more than just passwords. Bumpy

allows webservers to define how input that their users deem sensitive is han-

dled, and further allows users’ systems to generate attestations that input

protections are in place. With a separate local device, Bumpy can provide

the user with a positive indicator that her input is protected. We have im-

plemented Bumpy and show that it is efficient and compatible with existing

legacy software.

Chapter 5

Seeing-is-Believing:

Using Camera Phones for

Human-Verifiable

Authentication

Chapters 3 and 4 depend on TPM-based attestation to convince a verifier

that code has executed with hardware-enforced isolation. Fundamental to

checking attestations is the verifier’s knowledge of the identity of the TPM

generating the attestation, which is the TPM’s public Endorsement Key

(EK). While there are proposals for a public key infrastructure (PKI) that

enables the verifier to confirm that a given Endorsement Key Certificate

corresponds to a specification-compliant TPM [172], two problems remain.

First, this PKI exists only on paper. Second, even if it did exist, a dig-

ital certificate is insufficient to provide a simple human-verifiable binding

between an Endorsement Key Certificate and a physical computer whose

TPM contains this EK.

For the security-conscious user who wishes to ascertain the true identity

of the TPM in her computer, the lack of a physical binding is a serious limi-

tation. It leaves room for a form of man-in-the-middle (MITM) attack called

121

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 122

a proxy attack, where malicious code on the user’s machine hides by proxy-

ing all TPM requests to an attacker-controlled machine. More generally, a

MITM attack takes place when Alice and Bob believe they are communicat-

ing with each other, when in fact they are both communicating with Charlie,

who is able to monitor, modify, inject, suppress, or otherwise tamper with

Alice and Bob’s intended communication without their knowledge.

An out-of-band communication channel that can provide an authentic

copy of the public EK suffices to defeat proxy attacks. The challenge, then,

is to construct an out-of-band channel that provides authenticity for the ex-

change of public keys while unambiguously showing the human user which

physical device originates the public key. We also seek to achieve these

properties using the interfaces present on current devices. Balfanz et al.

refer to such an authentication mechanism as providing demonstrative iden-

tification of the communication devices [10]. We approach this problem with

the premise that, in many situations, a user can visually identify the desired

device.

We propose to use the camera on a mobile phone as a new visual channel

to achieve demonstrative identification of communicating devices formerly

unattainable with wireless communication. We term this approach Seeing-

is-Believing (SiB). In SiB, one device uses its camera to take a snapshot

of a barcode encoding cryptographic material identifying, e.g., the public

key of another device. We term this a visual channel. Barcodes can be

pre-configured and printed on labels attached to devices, or they can be

generated on-demand and shown on a device’s display.

As camera-equipped mobile phones rapidly approach ubiquity, these de-

vices become an excellent platform for security applications that can be

deployed to millions of users. Today’s mobile phones increasingly feature

Internet access, cameras, high-quality displays, and short-range Bluetooth

wireless radios. They can perform public-key cryptographic operations in

under one second.

In addition to identifying the TPM in a computer, we apply this vi-

sual channel to bootstrap authenticated key exchange between devices that

share no prior context, including such devices as mobile phones, wireless

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 123

access points, and public printers. This enables users to configure two de-

vices to communicate over a secret and authentic channel, e.g., to exchange

sensitive documents or personal messages, even if the underlying communi-

cation primitive is insecure (i.e., wireless). We also use SiB to secure device

configuration in the context of a smart home.

5.1 Seeing-is-Believing (SiB)

With SiB, a mobile phone’s integrated camera serves as a visual channel

to provide demonstrative identification of the communicating devices to the

user while also providing an out-of-band mechanism for exchanging authen-

tic information. By demonstrative identification, we mean the property that

the user is sure her device is communicating with that other device. In SiB,

the user identifies that other device visually. This serves to strongly au-

thenticate data from the other device since the user knows precisely which

devices are communicating. Thus, SiB can be used to bootstrap authen-

tic and secret communication, thereby defeating man-in-the-middle attacks

while allowing the use of convenient wireless communication. SiB also cap-

tures user intentions in an intuitive way. What better way for a user to tell

device A that it should communicate securely with device B than to take a

picture of device B using device A’s integrated camera?

In the remainder of this section, we detail the physical realization of

the visual channel with 2D barcodes. The use of the visual channel to

bootstrap secure communication is then illustrated with a specific example.

We end this section with a discussion on using SiB with devices that may

be lacking a display or a camera, or both. Sections 5.2 and 5.3 then provide

detailed usage scenarios for the demonstrative identification provided by

SiB. In Section 5.4, we move on to discuss a weaker – though still valuable –

property that can be provided by the visual channel, which we term presence.

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 124

5.1.1 2D Barcodes as a Visual Channel

We implement the visual channel with a 2D barcode (e.g., Data Matrix [77]),

displayed by or affixed to one device and captured by another with its digital

camera. When a user executes the SiB protocol, she must aim the camera

of her mobile device at a barcode on another device (either displayed elec-

tronically or affixed to the device’s housing). The act of aiming the camera

at the desired device results in demonstrative identification of the targeted

device. We say that the device displaying the barcode is in Show mode, and

that the device whose camera is active is in Find mode.

We now present a more detailed example of the use of SiB. Suppose Al-

ice and Bob want to set up a secure channel between their camera phones.

Alice’s phone generates a 2D barcode encoding appropriate public crypto-

graphic material and Shows it on its screen, while Bob uses his phone’s dig-

ital camera in Find mode to take a snapshot of Alice’s screen displaying the

barcode. Bob must watch his phone’s LCD, acting as viewfinder, updating

in real time in response to his positioning of his camera-phone. A barcode

recognition algorithm processes each image in the viewfinder in real time and

overlays a colored rectangle around recognized barcodes. Once a barcode

is successfully recognized, the view-finding process stops and the barcode

recognition and error-correcting algorithms return the data represented by

the barcode. Section 5.5 presents further details of our implementation.

5.1.2 Pre-Authentication and the Visual Channel

We build on work by Balfanz et al. [10], and Stajano and Anderson [166],

to secure wireless communication by leveraging an out-of-band channel for

authentication. Our out-of-band channel is the visual channel. We adopt

the term pre-authentication, as Balfanz et al. suggest [10], to describe the

authentic data exchanged on the visual channel. Pre-authentication data

is later used to authenticate one or both of the communicating parties in

almost any standard public-key communication protocol over the wireless

link. Eavesdropping on the visual channel gives no advantage to an attacker,

provided that the underlying cryptographic primitives are secure, and that

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 125

A (Show) B (Find)

1 hA ← hash(KA)

2
hA

−→
(visual)

3
KA

−→
(wireless)

h′ ← hash(KA)

4
if h′ 6=hA

then abort

Figure 5.1: Pre-authentication over the visual channel. KA is A’s public key,
which can be either long-term or ephemeral, depending on the protocol.

the mobile devices themselves have not been compromised.

Balfanz et al. discuss the use of infrared communication as a “secure side-

channel” for pre-authentication between mobile devices [10]. They focus on

the property that infrared is a “location-limited channel,” emphasizing the

difficulty an attacker faces in trying to interfere with the channel, because

he must be in close physical proximity to the communicating devices. The

primary advantage of SiB is that it uses a visual channel instead of an in-

visible channel, thus adding a direct human factor. We acknowledge that

attacks against infrared are difficult to perform, but we believe that the in-

ability of the user to actually see which devices are communicating provides

dangerous opportunities to an attacker.

Figure 5.1 shows the pre-authentication phase of SiB, carried out over the

visual channel. Device A Shows its public key by displaying a hash of its key

as a barcode: hA ← hash(KA). The user of device B then aims her device’s

camera at the display of device A, causing software (in Find mode) on device

B to process the barcode from device A’s display: A
visual
→ B : hA . At this

point, device B has an authentic copy of the hash of A’s public key. We

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 126

say that this hash was conveyed via the visual channel. Device A can then

send A’s full public key to device B via the untrusted wireless connection:

A
wireless
→ B : KA. After receiving KA via the untrusted wireless connection,

software on device B can recompute the hash of KA (h′ ← hash(KA)) and

compare the computed hash with the hash received via the visual channel:

h′ ?
= hA. If there is any discrepancy, device B aborts.

Provided that the mobile phone has not been compromised, and that

the visual channel and relevant cryptographic primitives are secure against

active adversaries (Section 5.7 presents a detailed security analysis), authen-

tication in SiB requires merely that the user confirm her camera is pointed

at the intended device.

5.1.3 Device Configurations

The concepts of SiB can be applied in different ways to devices with different

capabilities, each equipped with either a camera and display, a camera only,

a display only, or neither. In some cases, these device configurations im-

pose some limitations on the strength of the achievable security properties.

Table 5.1 summarizes these properties.

The most flexible configuration for SiB is when both devices have both

a camera and a display – these have a CD in their column or row heading in

Table 5.1. These devices can be mutually authenticated, since both possess

cameras. Further, each device can make use of either a long-term public

key or an ephemeral public key in each exchange, since barcodes containing

keys are displayed on an electronic screen (as opposed to paper or some

other fixed medium).

We refer to devices equipped with no display – devices without a D in

their column or row heading in Table 5.1 – as “displayless” devices. These

devices can be authenticated with a long-term public key. A barcode encod-

ing a commitment to the key, or multiple barcodes encoding the key itself,

must be affixed to the device’s housing (e.g., in the form of a sticker). The

issue of whether to use a commitment to a key, or the key itself, is addressed

in Section 5.3.

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 127

Y
CD C D N

CD X X
∗

X X
∗

X C X X
∗

X X
∗

D presence presence × ×
N × × × ×

Legend
X Strong authentication possible
X

∗ Barcode label required on housing
presence Confirm presence only
× No authentication possible

Table 5.1: Can a device of type X authenticate a device of type Y? We
consider devices with cameras and displays (CD), cameras only (C), displays
only (D), and neither (N).

Entries in Table 5.1 marked presence indicate that demonstrative iden-

tification of communicating devices is unattainable, but a property we term

presence is still achievable. Presence refers to the ability to demonstrate

that a device is in view of someone. We describe this property in more

detail in Section 5.4.

5.2 Bidirectional Authentication

Providing mutual authentication between mobile devices that share no prior

context is a difficult problem. In this section, we show how SiB can be used

to intuitively capture user intentions and establish a mutually authenti-

cated security context between precisely the devices the user wants, without

a trusted authority. Examples of the established security context include

authenticated exchange of public keys, and an authenticated Diffie-Hellman

key exchange to establish a shared secret [38]. The device combinations we

consider in this section are those where both devices have cameras.

We now walk through the use of SiB, beginning with device discovery and

barcode generation. Next, we describe pre-authentication and bootstrapping

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 128

a well-known public key protocol. Then, we describe options to satisfy

different security requirements and project the likely performance of SiB on

emerging mobile phones.

The SiB protocol begins when Alice and Bob decide they want to com-

municate securely. They must decide upon whose device will Show initially,

and whose device will Find . The Showing device computes a commitment to

its public key material and generates a barcode encoding this commitment,

and any necessary network information to establish a wireless connection.

The key material can take the form of a user’s long-term public key, or it

can be an ephemeral key for use in only one key exchange. One practical

example of this key material is a self-signed public key certificate extended

with additional information about the key owner (e.g., name, email address,

etc., similar to a vCard [36, 71]). The decision regarding what form of public

key material to use is orthogonal to the authentication provided by SiB.

The pre-authentication phase now begins. The users take turns Showing

and Finding (displaying and taking snapshots of) their respective barcodes.

The order is not important, but it is necessary that Alice’s device capture the

barcode commitment to Bob’s public key, and that Bob’s device capture the

barcode commitment to Alice’s public key. This pre-authentication protocol

is secure as long as an attacker cannot find a second pre-image for the

commitment function, and is unable to perform an active attack on the

visual channel.

After pre-authentication is complete, both devices now hold commit-

ments to the other device’s public key, and the devices can exchange public

keys over the wireless link. The devices then perform the same commitment

function over the other device’s public key, ensuring that the result matches

the commitment that was received over the visual channel. At this point,

the devices have mutually authenticated one another’s public keys, and Al-

ice and Bob achieve demonstrative identification that the devices in their

hands are the ones that are communicating. These authenticated public

keys can then be used appropriately in any well-known public-key proto-

col on the wireless link (e.g., Diffie-Hellman [38], signed email, IKE [65],

SSL/TLS [37]). It is imperative that in the chosen protocol, each party

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 129

verifies that the other does in fact hold the private key corresponding to its

authenticated public key.

A user may desire to protect their privacy by avoiding transmission of

their public key on the wireless network. For example, public key transmis-

sion may allow eavesdroppers to ascertain which devices are communicating.

The user’s public key can be encoded in a barcode directly, or in a sequence

of barcodes if a single barcode has insufficient data capacity. The key is

thereby obtained by the other device without transmitting it on the wireless

medium, while retaining the demonstrative identification property with re-

spect to the device originating the key. It is then advisable that the public

key protocol that is used with SiB authentication is key-private [17].

As the processing and display capabilities of mobile phones improve,

visual channel bandwidth will improve sufficiently for data transmitted over

the visual channel to include network addresses for the relevant wireless

interfaces (e.g., Bluetooth, 802.11) in addition to authentication data. This

is more convenient for the user, since she never has to wait for discovery

of neighboring devices or select a device from a list. Madhavapeddy et al.

use barcodes on camera phones to speed up the Bluetooth device discovery

process in this way [103].

5.3 Unidirectional Authentication

We now discuss entries from Table 5.1 where the device of type X (the

authenticator) is equipped with a camera, and the device of type Y (the

device being authenticated) lacks a display and a camera. It is this presence

of a camera on the authenticator, and lack of a display and a camera on the

device being authenticated, that are responsible for the security properties

of this particular device combination. We refer to a device of type X as

camera-equipped, and a device of type Y as displayless.

Displayless devices do not have the ability to display newly generated

values. Still, a camera-equipped device can authenticate displayless devices

and establish secure communication channels. The displayless device must

be equipped with a long-term public/private keypair, and a sticker con-

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 130

taining a barcode of a commitment to its public key must be affixed to its

housing. Since the displayless device is constrained to the use of a single

public/private key pair for its entire lifetime, the option to generate per-

interaction public keys no longer applies. Of course, devices can be repro-

grammed and new stickers affixed, but we consider this to be a significant

maintenance task. As in Section 5.2, there are privacy issues with using

fixed public keys that might be of concern. We now discuss three scenarios

where unidirectional authentication is valuable.

Trusted Platform Module. A TCG-compliant computing platform con-

tains a Trusted Platform Module security chip to help protect the platform

against software-based attack [172]. Chapter 2 contains additional back-

ground on TCG technologies. However, the current specification does not

give the owner of the platform a definitive mechanism to authenticate the

TPM in her machine. Rather, the specification provides protocols to learn

that one is communicating with a “valid” (specification-compliant) TPM.

Unfortunately, this leaves room for a proxy attack whereby malicious code

leverages a remote, benign platform to respond to local TPM challenges. We

propose the use of a barcode to encode the TPM’s public Endorsement Key

Credential, thereby enabling SiB-based demonstrative identification of the

TPM in this computing platform for a physically present user. We discuss

this further in Section 5.6.1.

Wireless Access Point. An 802.11 access point (AP) is one example of

a class of devices where “sticker-based” authentication may be desirable.

Camera-enabled devices can authenticate the AP, enabling the establish-

ment of a secure link-level connection between the camera-enabled device

and the AP. This solution also enables deployment of wireless connectivity in

environments where security policies require physical presence for network

access. Figure 5.2 shows the SiB application on a mobile phone scanning a

barcode installed on a wireless access point.

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 131

Figure 5.2: Phone running SiB scanning a barcode on an 802.11 access point.

Public Printer Another application where demonstrative identification of

communicating devices is desirable is when using a printer in a public place.

Similar to the wireless access point, the printer can have a barcode affixed to

its housing so that a user can use SiB to authenticate wireless communication

with the printer or print server and bootstrap the establishment of a secure

connection. Secure communication is important here not only to ensure the

secrecy of the printed document, but to prevent a man-in-the-middle attack

used to inject malicious software onto the user’s computer by masquerading

as a printer driver.

5.4 Presence Confirmation

A display-only device (display-equipped and cameraless) is unable to strongly

authenticate other devices using SiB. Equipped with no camera, it makes

no difference whether the entity the cameraless device wants to authenti-

cate has a display, or makes use of a barcode sticker – the cameraless device

cannot “see” them. However, display-only devices can obtain a property we

refer to as presence (Table 5.1). That is, it can confirm the presence of some

other device in line-of-sight with its display.

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 132

To detect the presence of a nearby device, the display-only device gen-

erates a key K for a message authentication code (MAC), encodes it in a

barcode, and displays that barcode, noting the time when it was first dis-

played. Any nearby devices that are able to see the display and capture the

barcode can send data to the display along with a MAC computed over that

data: {data,MAC (K, data)} → display-only device.

When the data and MAC arrive over the wireless channel, the display-

only device knows that some device has been in line-of-sight during the

time since K was first displayed. We emphasize that this presence property

is quite weak – the display-only device has no way of knowing how many

devices can see its display, or whether the radio signal is from the same

device that is in line-of-sight with its display. It can only verify the MAC

computed over the data received via the wireless channel, and it can measure

the delay between displaying the barcode and receiving the MAC on the

wireless channel.

Despite the weakness of the presence property, there are still practical

applications for devices capable of determining presence. For instance, the

presence property is useful in the context of a smart home. It can restrict

remote control access of a television to users in the same room. In general,

it can serve to limit authority to control a device to users located in view of

that device.

Consider the establishment of a security context between a TV and a

DVD player to secure wireless communication between the two. The user

can use SiB to strongly authenticate the DVD player to her phone through

a barcode attached to the DVD player’s housing. She can then demonstrate

the DVD player’s presence to the TV by sending it the public key of the

DVD player, along with a MAC over the DVD player’s public key:

{KDVD ,MAC (K, KDVD)} → TV .

The TV is then configured to establish a secure, authenticated connec-

tion to the DVD player whenever the user selects the DVD player as the

active input source on the TV. Taken one step further, the TV can add the

DVD player to its list of trusted devices, such that the TV will automatically

accept input from the DVD player whenever the user inserts a DVD.

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 133

Following the initial publication of SiB [110, 111], Saxena et al. extended

the presence property to achieve authentication if users are willing to per-

form an integrity check [146]. They devise Visual authentication based on

Integrity Checking (VIC), where both devices compute a common checksum

on exchanged public data, and compare their results via a unidirectional SiB

session on the visual channel. VIC is applicable when both devices have an

electronic display, and at least one device has a camera. VIC requires user

A to prompt user B as to whether B’s device accepted or rejected. User

A must then press a button on her device to indicate whether B’s device

output accept or reject. While this step requires user diligence, it is a simple

binary comparison, and may be a viable option when mutual authentication

with SiB is not possible or prohibitively complex.

5.5 Implementation Details

5.5.1 Series 60 Phone Application

We built SiB in C++ such that it will run on mobile phones running Symbian

OS (tested with versions 6.1, 7.0s, and 8.1a) with the Nokia Series 60 User

Interface. The size of the Symbian Installation System (SIS) file for SiB is

only 52 KB, including a full implementation of RSA. This makes deployment

feasible over even the most constrained channels, such as General Packet

Radio Service (GPRS).

The Nokia N70 is our development platform today, though we initially

developed SiB on the Nokia 6600 and 6620. To present a sense of the user ex-

perience with SiB, Figure 5.3 contains a photograph of SiB in action. Alice’s

Nokia 6620 (background), is displaying a barcode, while Bob’s Nokia 6620

(foreground) is successfully decoding the data encoded in Alice’s phone’s

barcode. In bidirectional authentication with SiB, Alice and Bob would

then switch roles. Bob’s phone would display a barcode, and Alice’s phone

would decode it.

The barcode format and image processing algorithm in our system is

adapted from Visual Codes [136]. The data contained in the barcodes

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 134

Figure 5.3: SiB application on a Nokia 6620 with one phone scanning a
barcode on the LCD of another.

for SiB is augmented with Reed-Solomon error correcting codes to pro-

vide better performance in the presence of errors in the image process-

ing [134]. We ported Karn’s implementation of Reed-Solomon codes to Sym-

bian OS [87]. The SHA-1 cryptographic hash function is used for all hashing

operations [82], and all wireless communication occurs via Bluetooth [62].

It is worth pointing out that the last three years have seen a great deal of

development in barcode processing on mobile phones. A Java standard for

mobile devices has been published that specifies the use of 2D barcodes [84].

While phones adhering to this Java specification are not yet available, phones

are available today that include native barcode processing support, such as

the Nokia N95. We plan to update our implementation to take advantage

of this support.

To enable users to perform a key exchange between two camera phones,

our application generates and maintains an RSA keypair representing the

user’s identity. We use the XySSL1 library for RSA operations, including

key generation, encryption, decryption, signing, and verification. Ephemeral

1http://xyssl.org/

http://xyssl.org/

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 135

Diffie-Hellman key exchange can also be used to establish a shared secret

between the two devices [38], or users can upload their own key files from

an existing application.

Bluetooth device discovery is a time consuming and error-prone process,

since there is no user-friendly way to distinguish between two devices with

the same Bluetooth Device Name. We eliminate the Bluetooth discovery

process by including the Bluetooth MAC address in the barcode displayed

by the first Showing device.

Thus, for a secure and usable SiB exchange, the device that Shows first

needs to convey 48 bits of Bluetooth address and 160 bits of SHA-1 output

(a total of 208 bits) in its barcode. Unfortunately, each Visual Code barcode

has a useful data capacity of only 68 bits [136], since 15 of the 83 total bits

in the raw barcode format are reserved for Reed-Solomon codes. We now

describe how we use multiple barcodes to increase the effective bandwidth

of the visual channel.

5.5.2 Visual Channel Bandwidth

The visual channel bandwidth between two devices can be increased by

choosing a barcode format with a higher data capacity or by using multiple

barcodes of a given capacity. There are two basic approaches to using mul-

tiple barcodes: cycle through the barcodes one-at-time, or tile the barcodes

side-by-side. Cycling is necessary on an electronic screen that is two small

to display tiled barcodes, such as the screen on a mobile phone. Tiling is

necessary when when cycling is not feasible, due to barcodes being printed

on a label instead of displayed electronically. Tiling is also an option on

larger electronic displays. In both cases, the Reed-Solomon codes embed-

ded in each barcode indicate whether a processed code is valid or invalid,

enabling fully automated scanning of multiple barcodes.

5.5.2.1 Cycling Multiple Barcodes

Barcodes can be cycled as fast as the camera and recognition algorithm on

the other device can process them. On the Nokia N70, we achieve good

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 136

results displaying each barcode for one seventh of a second on the Showing

device, and configuring the camera on the Finding device to send bitmap

images with a resolution of 160x120 to the recognition algorithm.

Encoding a 48-bit Bluetooth address and 160-bit SHA-1 output requires

a total of four barcodes, including necessary sequencing information to allow

the scanning device to properly reorder the scanned barcodes. The device

that Shows first must include its Bluetooth address to enable the Finding

device to initiate the Bluetooth connection between devices. Three bar-

codes suffice after the devices switch roles, since the Bluetooth connection

is already established and only the output of SHA-1 and the sequencing

information need to be encoded.

There is a limit to the corrective capability of the Reed-Solomon codes,

and barcode scans with significant reading errors can cause the Reed-Solomon

codes to report corrected errors when the data remains corrupted. We add

an additional checksum to the data payload spread across multiple barcodes

to detect and suppress these errors.

We performed timing analysis on our implementation of bidirectional

authenticated RSA public key exchange between two Nokia N70s when op-

erated by an experienced user (Table 5.2). We instrumented the application

to track the length of time to generate the user’s public key initially, though

this is a one-time cost and may be unnecessary if the user has an existing

public key on her desktop platform that can be copied to her mobile phone.

We measured the length of time the user spends aiming her device before the

four (first Show) or three (second Show) cycling barcodes are successfully

recognized, as well as the length of time devices spend cycling their barcodes

on-screen. Role-switch is automated via the Bluetooth connection between

devices, so we present the latency involved in establishing the Bluetooth

connection and causing each device to switch roles.

5.5.2.2 Tiling Multiple Barcodes

When scanning tiled barcodes, we configure the camera on the Finding de-

vice to return higher resolution 640x480 bitmaps. We have successfully

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 137

Operation Avg (s) Stdev

Generate Public Key 10.145 4.928

Recognize Barcodes 5.609 2.079
Establish BT Conn. 1.266 0.490
Display Barcodes 6.456 1.598
Save Public Key 0.016 0.000
Total Key Exchange 10.452 4.452

Table 5.2: Latency of mutual authenticated key exchange with SiB using
our barcode-cycling implementation on Nokia N70s, including user-induced,
computational, and Bluetooth overheads. The total is less than the sum
of the components because operations may overlap, e.g., Alice’s device may
have completed barcode recognition and started establishing the Bluetooth
connection while Bob’s device is still displaying barcodes. RSA operations
used 1024-bit keys.

Figure 5.4: Mobile phone screen shot showing the SiB application on a Nokia
6620 recognizing multiple tiled barcodes displayed on an LCD screen.

scanned six tiled barcodes from a laptop’s LCD in a single frame at this

resolution on the Nokia 6620, as shown in Figure 5.4. The Nokia N70 sup-

ports image sizes up to 1600x1200, but the recognition algorithm imposes

sufficient processing overhead to degrade the user’s view-finding experience

at higher resolutions. We conclude that scanning tiled barcodes for a single

logical item is a viable implementation strategy.

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 138

5.6 Applications of Seeing-is-Believing

We initially developed SiB in 2004 [110]. Since then, we have gained some

practical experience with its use in various circumstances, which we relate

here.

5.6.1 Applications in Trusted Computing

The Trusted Computing Group (TCG) has specified a Trusted Platform

Module (TPM), which is a dedicated security chip designed to increase the

resilience of a computing platform to software-based attacks [172]. We pro-

vide background on the TCG and TPM in Chapter 2. The ability of SiB

to demonstratively identify a computing device is useful in the context of

trusted computing.

A TCG-style attestation is a digitally signed list of a particular set of

programs. However, if the origin of the public key used to verify the sig-

nature cannot be confirmed, then it does not truly identify which platform

loaded these programs. This enables a proxy attack, whereby a compro-

mised machine that is challenged to attest its software state forwards the

attestation request to a machine known to be in a benign state, and then

forwards the resulting attestation back to the original challenger.

In many situations, it is imperative that the machine in front of the user

is the one generating the attestation. For example, consider an extension to

our Bumpy system (Chapter 4) that enables the Bumpy Trusted Monitor

to verify an attestation from the user’s platform. If equipped with the true

identity of the TPM in the user’s machine, a mobile device can perform the

necessary computation to process an attestation from the user’s machine.

A solution to the above problem is to enable the user to definitively

identify the TPM in her machine, so that the true origin of any attestations

purported to be from the user’s machine can be verified. We propose that

TPM-equipped machines include a barcode commitment to their Endorse-

ment Key Certificate somewhere on the case, so that SiB can be used to

ascertain the true identity of the TPM in that machine.

Note that an attacker with direct access to the computing platform can

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 139

subvert the TPM by physical means. Thus, the use of SiB enhances secu-

rity under the assumption of software-only attacks and requires an attacker

to have physical access to the computing platform, ruling out all remote

attacks.

5.6.2 Seeing-is-Believing and the Grey Project

SiB has been in use at Carnegie Mellon for several years as part of the

Grey Project [14]. Grey is an access control system with mobile phones

as the primary development platform, and is currently in use by 25 people

to access 35 office and laboratory doors. SiB is used in Grey to allow two

users to exchange contact information, including users’ public keys, in an

authenticated manner. However, the implementation of SiB used by Grey

is written in Java, and the performance impact of Java on the Nokia N70 is

noticeable. We expect these problems to diminish with the next generation

of mobile phones, where we hope to employ native barcode recognition in

accordance with JSR-257 [84].

5.6.3 Group Key Establishment

Secure group communication requires the distribution of authentic infor-

mation to group members’ devices. We consider this problem in a context

where members’ devices share no prior context. SiB has proven to be quite

usable for one-on-one exchange of information, such as between two people,

or between one person and a device. However, as part of ongoing research

on group key establishment, we have encountered some human-factors chal-

lenges when a large number of people try to perform SiB multiple times

and in close proximity to one another. Recall that mutual authentication

with SiB between two people requires a role switch, where the person whose

device was initially in Show mode changes to Find , and vice versa.

In a group key establishment scenario, we have found that people often

make one particular mistake. After performing the first half of a mutual

exchange, they look for another person to exchange with, instead of per-

forming the second half. For example, consider Alice, Bob, and Charlie,

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 140

where all three would like to establish a group key. Alice may photograph

Bob’s device, and then, when her device switches to Show mode, she may

allow Charlie to photograph it, instead of Bob. This opportunity for con-

fusion has proved a major obstacle for the development of a usable group

key-establishment protocol.

In Section 5.1, we introduced the property that SiB should either es-

tablish authentic communication, or fail. This property applied to SiB in

a single direction only, and we achieve mutual authentication by repeating

the unidirectional exchange in the other direction. In a group scenario, we

require a binding between both unidirectional exchanges. That is, Alice au-

thenticates Bob’s key, and then Bob authenticates Alice’s key, or else the

exchange fails. To make the scheme usable, failure should be an infrequent

occurrence. Given our experience with group key establishment, it is worth

considering how to achieve strong mutual authentication between two people

with only a single unidirectional SiB step. In Section 5.4, we showed that

unidirectional SiB can only provide presence to the display-only device, but

that an extension to use Visual authentication based on Integrity Checking

(VIC [146]) can provide mutual authentication if users are willing to press a

button on one device based on whether the other device accepts or rejects.

In particular, VIC reduces by a factor of two the number of SiB exchanges

that must be done in a group scenario. It is the subject of future work to

determine if this change results in fewer human errors.

5.7 Security Analysis

In addition to the security of the underlying cryptographic primitives, the

security of SiB is based on the assumption that an attacker is unable to

perform an active attack on the visual channel, and is unable to compro-

mise the mobile device itself. We first discuss the employed cryptographic

primitives, then the security properties of various side-channels for authen-

tication. Finally, we discuss attacks against the visual channel.

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 141

5.7.1 Cryptography

Our implementation uses cycling barcodes that provide sufficient bandwidth

to convey a full 160 bit SHA-1 hash. As discussed in Section 5.2, the hash

transmitted in the barcode needs to be secure against active attacks, which

we achieve through the properties of the visual channel. However, if an

adversary can find a second pre-image of the value encoded in the barcode,

then a passive attack on the barcode coupled with an active attack against

the wireless network connection can be successful. For particularly cautious

users, and as mobile phone cameras and displays increase in fidelity, the

key itself can be encoded in the barcode, eliminating this dependence on a

cryptographic hash function.

5.7.2 Selecting an Authentication Channel

Mutual authentication between two parties without the assistance of a trusted

authority requires a channel that is secure against active attacks, such as

a man-in-the-middle (MITM) attack. We analyze potential channels based

on the degree to which the user’s intentions are captured, and the amount

of feedback that the channel provides to the user. Table 5.3 contains a

summary of proposed channels and their characteristics.

Activity on channels such as infrared, ultrasound, or radio is unde-

tectable to humans without specialized equipment. Therefore, if Alice be-

lieves her device is communicating with Bob’s device via infrared, the only

assurance she has that it is actually doing so is through status indicators on

the two devices. She cannot see infrared radiation leaving her device and

entering Bob’s, and she certainly cannot see an attacker’s device outputting

interference patterns and affecting the data stream. Similarly, in case of

ultrasound and radio, Alice and Bob need to rely on status indicators of

their devices, but they are not sure that Alice’s device is indeed setting up

a key with Bob’s device. Thus, the users’ intentions are not captured well,

and feedback is indirect and prone to error. Using an audible signal (marked

“beeps” in Table 5.3) for data exchange is more intuitive, but this would not

work well in noisy environments and is still prone to a man-in-the-middle

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 142

Resists
Channel COTS MITM Convenient
Ultrasound # #

Audible (“beeps”) G#

Radio #

Physical Contact #

Near Field Comm. G# G#

Wired Link #

Spoken Passwords #

Written Passwords #

Visual Hash Verif. G#

Infrared G# G#

Loud-and-Clear G#

Seeing-is-Believing

Table 5.3: Characteristics of various channels proposed for authentication.
We acknowledge that rating the convenience of a channel is subjective; how-
ever, we believe it is useful to compare various channels in this way. Sec-
tion 7.5 contains a discussion of many of these alternatives. COTS indicates
that the necessary hardware is already present in Commercial Off-The-Shelf
products. Symbols: yes (), partial (G#), no (#).

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 143

attack since it can be difficult for people to tell where “beeps” originate and

how many devices are “beeping.”

Physical contact between devices is much more intuitive for people and

captures the intentions of the users – identifying the devices between which

they want to establish a secure communication link [166]. Unfortunately,

most current devices are not equipped with an interface for this purpose.

This may change in the future, however, as Near Field Communication

(NFC) interfaces have been standardized for use in mobile phones [84]. It is

necessary to analyze the difficulty of performing an attack against an NFC

device from a distance of several meters or more. An alternative approach

is to use a wired link, for example connect both devices with a USB cable,

however, this approach is not convenient to use and people would need to

carry a wire with them.

Another approach is for Alice and Bob to establish a secret password,

either by speaking the password aloud, or by writing passwords on paper

and passing them to each other. Both Alice and Bob would then need to

type in the password correctly, which the devices use to perform a secure

password protocol, e.g., EKE [18]. We believe this approach is cumbersome

in comparison with SiB, particularly on devices with a limited keyboard.

Finally, both devices could present a visual representation of the hash

of the exchanged key material to detect a man-in-the-middle attack [39, 58,

98, 127]. Each user must then press a button to indicate whether the images

on their devices are the same. These approaches, however, are not secure

unless people carefully compare the output of the visual hash function. We

believe SiB has an advantage here not just in ease-of-use but because strong

authentication is intrinsically linked with device identification.

5.7.3 Attacks Against Seeing-is-Believing

Active attacks are extremely difficult to perform against the visual channel

without being detected by the user. The user has in mind the device at

which she is aiming her camera, and will be conscious of a mistake if she

takes a snapshot of anything else. We believe the act of taking a picture of

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 144

that device – the one with which the user wants to communicate securely – is

intuitive, and should therefore enjoy a low rate of operator error. Thus, the

visual channel has the property of being resilient against active attacks (e.g.,

a man-in-the-middle attack), and the property that active attacks are easily

detected by the user, who can then terminate wireless communication. It is

ideal for authentication, providing the user with demonstrative identification

of the communicating devices without burdening the user with device names

or certificate management.

In Section 5.4, we discuss a presence property which requires the user

to demonstrate that her device can see a display. Kuhn details some at-

tacks which enable a malicious party to read the contents of a CRT screen

without actually being in line-of-sight with it. For example, a sophisticated

adversary may be able to measure emitted electromagnetic radiation [92], or

to assemble the contents of the CRT by looking at reflected light from the

CRT [91]. Defense against this form of attack is outside the scope of SiB.

An attacker can disrupt the lighting conditions around Alice and Bob

in an attempt to disrupt SiB. However, changes of sufficient magnitude to

impair SiB are easily observed by Alice, Bob, and any people in the vicinity,

alerting them to some kind of unusual behavior. A more sophisticated,

and subtle, attack is to use infrared radiation or a carefully aimed laser to

overwhelm the CCD2 in a phone’s camera. If an attacker is able to flood an

environment with sufficient infrared radiation or aim a laser directly at the

camera’s CCD, the CCD in a phone’s camera can begin to saturate, and all

attempts to take pictures will yield a picture with all pixels set at or above

the intensity of the legitimate image, up to the maximum value for each

pixel. Essentially, the image becomes noise. Alice will see that the image in

her viewfinder is not the picture of Bob’s phone that she expects, and can

abort the protocol. We have experimented with an off-the-shelf red laser

pointer and confirmed these claims.

Even without a user monitoring the process, the electronic-warfare-esque

techniques necessary to cause the CCD to output a meaningful image other

2Charge Coupled Devices (CCDs) are the prevalent type of image sensor used in today’s
digital cameras.

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 145

than the scene in front of the camera are beyond the reach of all but the

most sophisticated adversaries with current technology. We are unaware

of any attacks feasible today which result in anything but noise from the

camera under attack.

5.7.4 Sticker-based Attacks

We have described how devices without an electronic display may be equipped

with stickers on which a barcode commitment to the device’s public key is

printed (Section 5.1.3). The obvious attack against these devices is to re-

place the sticker on the case with a new sticker encoding the public key of

the attacker’s device and perform a MITM attack on the wireless channel.

Thus, some level of tamper-resistance may be desired for the stickers on,

e.g., computers in Internet cafes.

An interesting alternative exists for devices that do have displays but

may still employ sticker-based authentication, such as TPM-equipped com-

puters. Future systems that employ secure or verifiable video subsystems

may be able to enter a special mode where the barcode commitment to their

public keys can be displayed electronically. If the size of the trusted comput-

ing base can be managed and verified, this may be a better option than using

stickers. If nothing else, it can provide defense-in-depth in that the mobile

device can photograph the barcode on the sticker and the display and check

for discrepancy. The attacker will need to modify both the software running

on the device and the sticker affixed to the device. Challenge-response pro-

tocols can also be employed to confirm that, e.g., the barcode on the display

really does correspond to the TPM chip identified by the sticker.

5.8 Summary

This thesis develops mechanisms to verifiably execute code in isolation in

Chapters 3 and 4. Here, we improve the strength of the verification by

showing how to bind the cryptographic identity of the TPM in the user’s

computer with the physical identity of that computer. To this end, we

CHAPTER 5. HUMAN-VERIFIABLE AUTHENTICATION 146

propose Seeing-is-Believing, a system that uses barcodes and camera phones

as a visual channel for human-verifiable authentication. This channel rules

out man-in-the-middle attacks against public-key-based key establishment

protocols. The visual channel has the desirable property that it provides

demonstrative identification of the communicating parties, providing the

user with assurance that her device is communicating with that other device.

We have also analyzed the establishment of secure, authenticated sessions

between SiB-enabled devices and devices missing either a camera, a display,

or both, and found that secure communication is possible in many situations.

Chapter 6

Recommendations for

Hardware-Supported

Minimal TCB Code

Execution

In this chapter, we make hardware recommendations to alleviate the Flicker

performance issues we summarize in Section 3.7.4. Our investigation reveals

that by combining alterations to Flicker with hardware modifications to

improve performance and concurrency, we can achieve efficient minimal TCB

code execution. In other words, we can avoid today’s performance issues

and execute application code while trusting only the mandatory TCB. We

emphasize isolation, secure initialization, and external verification.

Although other researchers have proposed compelling hardware security

architectures, e.g., XOM [99] or AEGIS [167], we focus on hardware modi-

fications that tweak or slightly extend existing hardware functionality. We

believe this approach offers the best chance of seeing hardware-supported

security deployed in the real world. Through a series of experiments on

existing commodity hardware, we show that our recommendations promise

significant performance improvements.

147

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 148

North

Bridge

South

Bridge

RAM

PCI
USB

LPC Bus

...

TPM

CPU

Figure 6.1: Chipset configuration for a modern x86 computer. Shaded com-
ponents are part of the minimal TCB for our execution model. The TPM is
shaded differently because it is included for practical reasons but is not an
essential part of a stored-program computer architecture.

6.1 Security Properties

Isolation. Execution of the PAL must be protected from legacy software

on the platform, as well as the hardware components not included in the

TCB shown in Figure 6.1. At the same time, to maintain reasonable per-

formance, we need to be able to execute a PAL concurrently with legacy

software. On a system with a single CPU, virtual concurrency is achieved

by rapidly context switching between threads of execution. This requires

a secure mechanism to protect the secrecy and integrity of PAL execution

state while other code executes. Given the trend towards multi-core CPUs,

PAL state must also be protected during execution, since malicious code

may be running concurrently on another CPU.

Secure Initialization. The isolation described above is only useful if PAL

execution can be securely initiated. In other words, the legacy software

cannot be trusted to properly initialize the protections necessary for the

PAL’s protection. Hence a mechanism is needed that provides a “clean

slate” for PAL execution without actually rebooting the platform.

External Verification. The isolation and secure initialization properties

allow a PAL to execute unmolested. However, an external party that de-

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 149

Legacy OS and

Applications

PAL

1

PAL

2

PAL

n...
CPU CPU CPUCPU CPU

Figure 6.2: Physical platform running a legacy OS and applications along
with some number of PALs.

pends on outputs from the PAL must be able to distinguish between a PAL

that was executed with full hardware protections and a PAL that was exe-

cuted in a malicious, e.g., virtual, environment.

6.2 Overview of Recommendations

To meet these security requirements, we establish two goals for our recom-

mendations: (1) to enable the concurrent execution of an arbitrary number

of mutually-untrusting PALs alongside an untrusted legacy OS and legacy

applications, and (2) to enable performant context switching of individual

PALs. A system achieving these goals supports multiprogramming with

PALs, so that there can be more PALs executing than there are physical

CPUs in a system. It also enables efficient use of the execution resources

available on today’s multi-core computing platforms. Figure 6.2 shows an

example of our desired execution model. Note that we assume that a PAL

only executes on one CPU core at a time, but Section 6.10 discusses exten-

sion to multiple cores.

We have two requirements for the recommendations we make. First, our

recommendations must make minimal modifications to the architecture of

today’s trusted computing technologies: AMD SVM and Intel TXT. Ad-

mittedly, such a requirement narrows the scope of our creativity. However,

we believe that by keeping our modifications minimal, our recommenda-

tions are more likely to be implemented by hardware vendors. Second, in

order to keep our execution architecture as close to today’s systems archi-

tectures as possible, we require that the untrusted OS retain the role of the

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 150

resource manager. With this requirement, we open up the possibility that

the untrusted OS could perform denial-of-service attacks against the PALs.

However, we believe this risk is unavoidable, as the untrusted OS can always

simply power down or otherwise crash the system.

There are two new hardware mechanisms required to achieve our desired

execution model (Figure 6.2) while simultaneously achieving the two goals

stated above. The first is a hardware mechanism for memory isolation that

isolates the memory pages belonging to a PAL from all other code. The

second is a hardware context switch mechanism that can efficiently suspend

and resume PALs, without exposing a PAL’s execution state to other PALs

or the untrusted OS. In addition to these two mechanisms, we also require

modifications to the TPM to allow external verification via attestation when

multiple PALs execute concurrently.

In the rest of this section, we first describe PAL launch (Section 6.3),

and our proposed hardware memory isolation mechanism (Section 6.4). Sec-

tion 6.5 talks about the hardware context switch mechanism we propose. In

Section 6.6 we describe changes to the TPM chip to enable external ver-

ification. We describe PAL termination in Section 6.7. Section 6.8 ties

these recommendations together and presents the life-cycle of a PAL. Fi-

nally, Section 6.9 summarizes the expected performance improvement of

our recommendations.

6.3 Launching a PAL

We propose a mechanism for securely launching a PAL to achieve the Secure

Initialization security property from Section 6.1.

6.3.1 Recommendation

First, we recommend that the untrusted OS allocate resources for a PAL.

Resources include execution time on a CPU and a region of memory to

store the PAL’s code and data. We define a Secure Execution Control Block

(SECB, Figure 6.3(a)) as a structure to hold PAL state and resource alloca-

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 151

tions, both for the purposes of launching a PAL and for storing the state of

a PAL when it is not executing. The PAL and SECB should be contiguous

in memory to facilitate memory isolation mechanisms. The SECB entry for

allocated memory should consist of a list of physical memory pages allocated

to the PAL.

To begin execution of a PAL described by a newly allocated SECB, we

propose the addition of a new CPU instruction, Secure Launch (SLAUNCH),

that takes as its argument the starting physical address of a SECB. Upon

execution, SLAUNCH :

1. reinitializes the CPU on which it executes to a well-known trusted

state,

2. enables hardware memory isolation (described in Section 6.4) for the

memory region defined in the SECB and for the SECB itself,

3. transmits the PAL to the TPM to be measured (described in Sec-

tion 6.6),

4. disables interrupts on the CPU executing SLAUNCH ,

5. initializes the stack pointer to the top of the memory region defined in

the SECB (allowing the PAL to confirm the size of its data memory

region),

6. sets the Measured Flag in the SECB to indicate that this PAL has

been measured, and

7. jumps to the PAL’s entry point as defined in the SECB.

6.3.2 Suggested Implementation

We can modify the existing hardware virtual machine management data

structures of AMD and Intel to realize the SECB. Both AMD and Intel use

an in-memory data structure to maintain guest state. These structures are

the Virtual Machine Control Block (VMCB) and Virtual Machine Control

Structure (VMCS) for AMD and Intel, respectively. The functionality of

SLAUNCH when used to begin execution of a PAL is designed to give the

same security properties as today’s SKINIT and SENTER instructions.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 152

6.4 Hardware Memory Isolation

To securely execute a PAL using a minimal TCB, we need a hardware mecha-

nism to isolate its memory state from all devices and from all code executing

on other CPUs (including other PALs and the untrusted OS and applica-

tions). This mechanism will achieve the Isolation property from Section 6.1.

6.4.1 Recommendation

We propose that the memory controller maintain an access control table

where each entry specifies which CPUs (if any) have access to a range of

physical pages. A naive solution is an M × N bitmap, where M is the

number of physical pages present on the platform and N is the maximum

number of CPUs. However, the naive solution wastes area on the CPU chip.

A better solution is one where arbitrary ranges of memory can be specified.

Other multiprocessor designs use a similar partitioning system to protect

memory from other processors [95]. To use the access control table, the

memory controller must be able to determine which CPU initiates a given

memory request.

Figure 6.3(b) presents the state machine detailing the possible states

of an entry in the access control table as context switches (described in

Section 6.5) occur. Memory pages are by default marked ALL to indicate

that they are accessible by all CPUs and DMA-capable devices. The other

states are described below.

When PAL execution is started using SLAUNCH , the memory controller

updates its access control table so that each page allocated to the PAL (as

specified by the list of memory pages in the SECB) is accessible only to

the CPU executing the PAL. When the PAL is subsequently suspended,

the state of its memory pages transitions to NONE, indicating that nothing

currently executing on the platform is allowed to read or write to those

pages. Note that the memory allocated to a PAL includes space for data,

and is a superset of the pages containing the PAL binary.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 153

6.4.2 Suggested Implementation

We can realize hardware memory isolation as an extension to existing DMA

protection mechanisms. As noted in Chapter 2.2, AMD SVM and Intel TXT

already support DMA protections for physical memory pages. In both pro-

tection systems, the memory controller maintains a bit vector with one bit

per physical page. The value of the bit indicates whether the corresponding

page can be accessed (read or written) using a DMA operation. One imple-

mentation strategy for our recommendations may be to increase the size of

each entry in this protection table to include a bit per CPU on the system.

Existing memory access and cache coherence mechanisms can be used to

provide the necessary information to enforce memory isolation. Identifying

the CPU from which memory requests originate is straightforward, since

memory reads and writes on different CPUs already operate correctly today.

For example, every memory request from a CPU in an Intel system includes

an agent ID that uniquely identifies the requesting CPU to the memory

controller [152].

The untrusted OS will be unable to access the physical memory pages

that it allocates to the PALs, and so supporting the execution of PALs re-

quires the OS to cope with discontiguous physical memory. Modern OSes

support discontiguous physical memory for structures like the AGP graph-

ics aperture, which require the OS to relinquish certain memory pages to

hardware. These mechanisms can be modified to tolerate the allocation of

memory to PALs.

6.5 Hardware Context Switch

To enable multiplexing of CPUs between multiple PALs and the untrusted

OS, a secure context switch mechanism is required. Our mechanism retains

the legacy OS as the primary resource manager on a system, allowing it to

specify on which CPU and for how long a PAL can execute.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 154

CPU State

General purpose registers
Flags, condition codes
Instruction pointer
Stack pointer
etc.

Memory Pages

Resume Flag

Preemption Timer

sePCR Handle

PAL Length | Entry Point

(a) SECB structure.

CPU i

ALL

NONE

(b) Page states.

Figure 6.3: State machine for the possible states of a memory page in our
proposed memory controller modification. The states correspond to which
CPUs can access an individual memory page.

6.5.1 Recommendation

We first treat the mechanism required to cause an executing PAL to yield,

and then detail how a suspended PAL is resumed.

PAL Yield. We recommend the inclusion of a PAL preemption timer

in the CPU that can be configured by the untrusted OS. When the timer

expires, or a PAL voluntarily yields, the PAL’s CPU state should be auto-

matically and securely written to its SECB by hardware, and control should

be transferred to an appropriate handler in the untrusted OS. To enable a

PAL to voluntarily yield, we propose the addition of a new CPU instruction,

Secure Yield (SYIELD). Part of writing the PAL’s state to its SECB in-

cludes signaling the memory controller that the PAL and its state should be

inaccessible to all entities on the system. Note that any microarchitectural

state that may persist long enough to leak the secrets of a PAL must be

cleared upon PAL yield.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 155

PAL Resume. The untrusted OS can resume a PAL by executing an

SLAUNCH on the desired CPU, parameterized with the physical address of

the PAL’s SECB. The PAL’s Measured Flag indicates to the CPU that the

PAL has already been measured and is only being resumed, not started for

the first time. Note that the Measured Flag is honored only if the SECB’s

memory page is set to NONE. This prevents the untrusted OS from invoking

a PAL without it being measured by the TPM. During PAL resume, the

SLAUNCH instruction will signal the memory controller that the PAL’s

state should be accessible to the CPU on which the PAL is now executing.

Note that the PAL may execute on a different CPU each time it is resumed.

Once a PAL is executing on a CPU, any other CPU that tries to resume

the same PAL will fail, as that PAL’s memory is inaccessible to the other

CPUs.

6.5.2 Suggested Implementation

We achieve significant performance improvements by eliminating the use of

TPM sealed storage as a protection mechanism for PAL state during con-

text switches. Existing hardware virtualization extensions of AMD and Intel

support suspending and resuming guest VMs.1 We can enhance these mech-

anisms to provide secure context switch by extending the memory controller

to isolate a PAL’s state while it is executing, even from an OS. Table 6.1

shows that with current hardware, VM entry and exit overheads are on

the order of half a microsecond. Reducing the context switch overhead

of between approximately 200 ms and a full second for the TPM sealed

storage-based context switch mechanism (recall Figure 3.6) to essentially

the overhead of a VM exit or entry would be a pronounced improvement.

6.6 TPM Support for Flicker

Thus far, our focus has been on recommendations to alleviate the two perfor-

mance bottlenecks identified in Section 3.7.4. Unfortunately, the functional-

1A guest yields by executing VMMCALL / VMCALL. A VMM resumes a guest by
executing VMRUN / VMRESUME for AMD and Intel, respectively.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 156

Operation
AMD SVM Intel TXT

Avg (µs) Stdev Avg (µs) Stdev

VM Enter 0.5580 0.0028 0.4457 0.0029
VM Exit 0.5193 0.0036 0.4491 0.0015

Table 6.1: Benchmarks showing the average runtime of VM Entry and VM
Exit on the Tyan n3600R with a 1.8 GHz AMD Opteron and the MPC
ClientPro 385 with a 2.66 GHz Intel Core 2 Duo.

ity of today’s TPMs is insufficient to provide measurements, sealed storage,

and attestations for multiple, concurrently executing PALs. These features

are essential to achieve the External Verification property from Section 6.1.

As implemented with today’s hardware, Flicker always uses PCR 17

(and 18 on Intel systems) to store a PAL’s measurement. The addition

of the SLAUNCH instruction introduces the possibility of concurrent PAL

execution. When executing multiple PALs concurrently, today’s TPMs do

not have enough PCR registers to securely store the PALs’ measurements.

Further, since PALs may be context switched in and out, there can be many

more PALs executing than there exist CPUs on the system.

Ideally, the TPM should maintain a separate measurement chain for

each executing PAL, and the measurement chain should indicate that the

PAL began execution via the SLAUNCH instruction. These are the same

properties that late launch provides for one PAL today.

We propose the inclusion of additional secure execution PCRs (sePCRs)

that can be bound to a PAL during SLAUNCH . The number of sePCRs

present in a TPM establishes the limit for the number of concurrently ex-

ecuting PALs, as measurements of additional PALs do not have a secure

place to reside. The PAL must also learn the identity of its sePCR so that

it can output a sePCR handle usable by untrusted software to generate a

TPM Quote once execution is complete.

However, the addition of sePCRs introduces several challenges:

1. A PAL must be bound to a unique sePCR (Section 6.6.1).

2. A PAL’s sePCR must be inaccessible to all other code until the PAL

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 157

terminates (Section 6.6.2).

3. TPM Quote must be able to address the sePCRs when invoked from

untrusted code (Section 6.6.3).

4. A PAL that used TPM Seal to seal secrets to one sePCR must be able

to unseal its secrets in the future, even if that PAL terminates and is

assigned a different sePCR on its next invocation (Section 6.6.4).

5. A hardware mechanism is required to arbitrate TPM access from mul-

tiple CPUs (Section 6.6.5).

Below, we present additional details for each of these challenges and propose

solutions.

6.6.1 sePCR Assignment and Communication

Challenge 1 specifies that a PAL must be bound to a unique sePCR while

it executes. The binding of the sePCR to the PAL must prevent other code

(PALs or the untrusted OS) from extending or reading the sePCR until the

PAL has terminated. We describe how the TPM and CPU communicate to

assign a sePCR to a PAL during SLAUNCH .

As part of SLAUNCH , the contents of the PAL are sent from the CPU

to the TPM to be measured. The arrival of these messages signals the

TPM that a new PAL is starting, and the TPM assigns a free sePCR to

the PAL being launched. The sePCR is reset to zero and extended with a

measurement of the PAL. If no sePCR is available, SLAUNCH must return

a failure code.

As part of SLAUNCH , the TPM returns the allocated sePCR’s handle

to the CPU executing the PAL. This handle becomes part of the PAL’s

state, residing in the CPU while the PAL is executing and written to the

PAL’s SECB when the PAL is suspended.2 The handle is also made available

to the executing PAL. One implementation strategy is to make the handle

available in one of the CPU’s general purpose registers when the PAL first

gets control.

2This is similar to the handling of Machine Status Registers (MSRs) by AMD SVM
and Intel TXT for virtualized CPU state today.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 158

TPM Extend, Seal, and Unseal must be extended to optionally accept

a PAL’s sePCR as an argument, but only when invoked from within that

PAL. The CPU, memory controller, and TPM must prevent other code from

invoking TPM Extend, Seal, or Unseal with a PAL’s sePCR. Enforcement

can be performed by the CPU or memory controller using the CPU’s copy

of the PAL’s sePCR handle. These restrictions do not apply to TPM Quote,

as untrusted code will eventually need the PAL’s sePCR handle to generate

a TPM Quote. We describe its use in more detail in Section 6.6.3.

Note that the TPM in today’s machines is a memory-mapped device,

and access to the TPM involves the memory controller. The exact archi-

tectural details are chipset-specific, but it may be necessary to enable the

memory controller to cache the sePCR handles during SLAUNCH to enable

enforcement of the PAL-to-sePCR binding and avoid excessive communica-

tion between the CPU and memory controller during TPM operations.

6.6.2 sePCR Access Control

Challenge 2 is to render a PAL’s sePCR inaccessible to all other code. This

includes concurrently executing PALs and the untrusted OS. This condition

must hold whether the PAL is actively running on a CPU or context switched

out.

The binding between a PAL and its sePCR is maintained in hardware

by the CPU and TPM. Thus, a PAL’s sePCR handle need not be secret, as

other code attempting any TPM commands with the PAL’s sePCR handle

will fail. PAL code is able to access its own sePCR to invoke TPM Extend

to measure its inputs, or TPM Seal or Unseal to protect secrets, as described

in the previous section.

A PAL needs exclusive access to its sePCR for the TPM Extend, Seal,

and Unseal operations. Allowing, e.g., a TPM PCR Read by other code

does not introduce a security vulnerability for a PAL. However, we cannot

think of a scenario where it is beneficial, and allowing sePCR access from

other code for selected commands may unnecessarily complicate the access

control mechanism.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 159

6.6.3 sePCR States and Attestation

The previous section describes techniques that give a PAL exclusive access

to its sePCR. However, Challenge 3 states our aim to allow TPM Quote to

be invoked from untrusted code. To enable these semantics, sePCRs exist in

one of three states: Exclusive, Quote, and Free. While a PAL is executing

or context-switched out, its sePCR is in the Exclusive state. No other code

on the system can read, extend, reset, or otherwise modify the contents of

the sePCR.

When the PAL terminates, untrusted code is tasked with generating an

attestation of the PAL’s execution. The purpose of the Quote state is to

grant the necessary access to the untrusted code. Thus, as part of PAL

termination, the CPU must signal the TPM to transition this PAL’s sePCR

from the Exclusive to the Quote state.

To generate the quote, the untrusted code must be able to specify the

handle of the sePCR to use. It is the responsibility of the PAL to include its

sePCR handle as an output. The TPM Quote command must be extended

to optionally accept a sePCR handle instead of (or in addition to) a list of

regular PCR registers to include in the quote.

After a TPM Quote is generated, the TPM transitions the sePCR to the

Free state, where it is eligible for use by another PAL via SLAUNCH . This

can be realized as a new TPM command, TPM SEPCR Free, executable from

untrusted code. We treat the case where a PAL does not terminate cleanly

in Section 6.7.

6.6.4 Sealing Data Under a sePCR

TPM Seal can be used to encrypt data such that it can only be decrypted

(using TPM Unseal) if the platform is in a particular software configuration,

as defined by the TPM’s PCRs. TPM Seal and Unseal must be enhanced

to work with our proposed sePCRs.

A PAL is assigned a free sePCR by the TPM when SLAUNCH is exe-

cuted on a CPU. However, the PAL does not have control over which sePCR

it is assigned. This breaks the traditional semantics of TPM Seal and Un-

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 160

seal, where the index of the PCR(s) that must contain particular values for

TPM Unseal are known at seal-time. To meet Challenge 4, we must ensure

that a PAL that uses TPM Seal to seal secrets to its assigned sePCR will

be able to unseal its secrets in the future, even if that PAL terminates and

is assigned a different sePCR when it executes next.

We propose that TPM Seal and Unseal accept a boolean flag that indi-

cates whether to use a sePCR. The sePCR to use is specified implicitly by

the sePCR handle stored in the PAL’s SECB.

6.6.5 TPM Arbitration

Today’s TPM-to-CPU communication architecture assumes the use of soft-

ware locking to prevent multiple CPUs from trying to access the TPM con-

currently. With the introduction of SLAUNCH , we require a hardware

mechanism to arbitrate TPM access from PALs executing on multiple CPUs.

A simple arbitration mechanism is hardware locking, where a CPU requests

a lock for the TPM and obtains the lock if it is available. All other CPUs

learn that the TPM lock is set and wait until the TPM is free to attempt

communication.

6.7 PAL Exit

When a PAL finishes executing, its resources must be returned to the un-

trusted OS so that they can be allocated to another PAL or legacy appli-

cation that is ready to execute. We first describe this process for a well-

behaved PAL, and then discuss what must happen for a PAL that crashes

or otherwise exits abnormally.

Normal Exit. The memory pages for a PAL that are inaccessible to the

remainder of the system must be freed when that PAL completes execution.

It is the PAL’s responsibility to erase any secrets that it created or accessed

before freeing its memory. To free this memory, we propose the addition of a

new CPU instruction, Secure Free (SFREE). SFREE is parameterized with

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 161

the address of the PAL’s SECB, and communicates to the memory controller

that these pages no longer require protection. The memory controller then

updates its access control table to mark these pages as ALL so that the

untrusted OS can allocate them elsewhere. Note that SFREE executed by

other code must fail. This can be detected by verifying that the SFREE

instruction resides at a physical memory address inside the PAL’s memory

region. As part of SFREE , the CPU also sends a message to the TPM to

cause the terminating PAL’s sePCR to transition from the Exclusive state

to the Quote state.

Abnormal Exit. The code in a PAL may contain bugs or exploitable

flaws that cause it to deviate from the intended termination sequence. For

example, it may become stuck in an infinite loop. The preemption timer

discussed in Section 6.5 can preempt the misbehaving PAL, but the memory

allocated to that PAL remains in the NONE state, and the sePCR allocated

to that PAL remains in the Exclusive state. These resources must be freed

without exposing any of the PAL’s secrets to other entities on the system.

We propose the addition of a new CPU instruction, Secure Kill (SKILL),

to kill a misbehaving PAL. Its operations are as follows:

1. Erase all memory pages associated with the PAL.

2. Mark the PAL’s memory pages as available to ALL.

3. Extend the PAL’s sePCR with a well known constant that indicates

that SKILL was executed.

4. Transition the PAL’s sePCR to the Free state.

Depending on low-level implementation details, SKILL may be merged

with SFREE . One possibility is that SFREE behaves identically to SKILL

whenever it is executed outside of a PAL.

6.8 PAL Life Cycle

Figure 6.4 summarizes the life cycle of a PAL on a system with our recom-

mendations. To provide a better intuition for the ordering of events, we step

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 162

through each state in detail. We also provide pseudocode for SLAUNCH ,

and indicate which states of a PAL’s life cycle correspond to portions of the

SLAUNCH pseudocode (Table 6.2).

Launch: Protect and Measure. The untrusted OS is responsible for

creating the necessary SECB structure for a PAL so that the PAL can be

executed. The OS allocates memory pages for the PAL and sets the PAL’s

preemption timer. The OS then invokes the SLAUNCH CPU instruction

with the address of the SECB, initiating the transition from the Start state

to the Protect state in Figure 6.4. This causes the CPU to signal the

memory controller with the address of the SECB. The memory controller

updates its access control table (recall Section 6.4) to mark the memory

pages associated with the SECB as being accessible only by the CPU which

executed the SLAUNCH instruction. If the memory controller discovers

that another PAL is already using any of these memory pages, it signals

the CPU that SLAUNCH must return a failure code. Once the memory

protections are in place, the memory controller signals the CPU. The CPU

inspects the Measured Flag and begins the measurement process since it is

clear. The Measured Flag in the SECB (Figure 6.3(a)) is used to distinguish

between a PAL that is being executed for the first time and a PAL that is

being resumed. This completes the transition from the Protect state to the

Measure state.

The CPU then begins sending the contents of the PAL to the TPM to

be hashed. When the first message arrives at the TPM, the TPM attempts

to allocate a sePCR for this PAL. A free sePCR is allocated, reset, and

then extended with a measurement of the contents of the PAL. The TPM

returns a handle to the allocated sePCR to the CPU, where it is maintained

as part of the SECB. If there is no sePCR available, the TPM returns a

failure code to the CPU. The CPU signals the memory controller to return

the SECB’s pages to the ALL state, and SLAUNCH returns a failure code.

Upon reception of the sePCR handle, the CPU sets the Measured Flag for the

PAL to indicate that it has been measured. The completion of measurement

causes a transition from the Measure state to the Execute state.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 163

Execute. At this point, the PAL is executing with full hardware protec-

tions. It is free to complete whatever application-specific task it was designed

to do. If it requires data from an external source (e.g., network or disk), it

may yield by executing SYIELD . If it has been running for too long, the

CPU may preempt it. These events affect transitions to the Suspend state.

If the PAL is ready to exit, it can transition directly to the Done state by

executing SFREE .

Suspend: Preempted or SYIELD. The PAL is no longer executing,

and it must transition securely to the Suspend state. The CPU signals the

memory controller that this PAL is suspending, and the memory controller

updates its access control table for that PAL’s memory pages to NONE, indi-

cating that those pages should be unavailable to all processors and devices

until the PAL resumes. Once the protections are in place, the memory

controller signals the CPU, and the CPU completes the secure state clear

(e.g., it may be necessary to clear microarchitectural state such as cache

lines). At this point, the PAL is suspended. If the OS has reason to believe

that this PAL is malfunctioning, it can terminate the PAL using the SKILL

instruction. SKILL causes a transition directly to the Done state.

Resume. The untrusted OS invokes the SLAUNCH instruction on the

desired CPU to resume a PAL, again with the address of the PAL’s SECB.

The causes a transition from the Suspend state to the Protect state. The

CPU signals the memory controller with the SECB’s address, just as when

Protect was reached from the initial Start state. The memory controller

enables access to the PAL’s memory pages by removing the NONE status

on the PAL’s memory pages, setting them as accessible only to the CPU

executing the PAL. The memory controller signals an error if these pages

were in use by another CPU. The memory controller then signals the CPU

that protections are in place. The Measured Flag is set, indicating that

the PAL has already been measured, so the CPU reloads the suspended

architectural state of the PAL and directly resumes executing the PAL’s

instruction stream, causing a state transition from Protect to Execute.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 164

Start

Measurement

Complete SFREE

SKILL

Preempted

or SYIELD
SLAUNCH

MF=0

SLAUNCH

MF=1

Measure

SuspendProtect

Execute Done

Figure 6.4: Life cycle of a PAL. MF stands for Measured Flag . Note that
these states are for illustrative purposes and need not be represented in the
system.

Exit. While executing, the PAL can signal that it has completed execu-

tion with SFREE . This causes the CPU to send a message to the TPM

indicating that the PAL’s sePCR should transition to the Quote state. It

is assumed that the PAL has already completed an application-level state

clear. The CPU then performs a secure state clear of architectural and mi-

croarchitectural state, and signals to the memory controller that this PAL

has exited. The memory controller marks the relevant pages as available to

the remainder of the system by transitioning them to the ALL state. This

CPU is now finished executing PAL code, as indicated by the transition to

the Done state. It becomes available to the untrusted OS for use elsewhere.

6.9 Expected Impact

Here, we summarize the impact we expect our recommendations to have on

Flicker application performance. First, the improved memory isolation of

PAL state allows truly concurrent execution of secure and legacy code, even

on multi-core systems. Thus, PAL execution no longer requires the entire

system to grind to a halt.

With Flicker on existing hardware, a PAL yields by simply transferring

control back to the untrusted OS. Resume is achieved by executing late

launch again. It is the responsibility of the PAL to protect its own state

before yielding, and to reconstruct the necessary state from its inputs upon

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 165

Start:
OS: Allocate pages for SECB S and PAL P

OS: Initialize SECB.pages
OS: Initialize SECB.timer

Protect:
CPUi: SLAUNCH (S)
CPUi: Reinitialize to trusted state
CPUi: Disable interrupts
CPUi to MC: SECB.pages
MC: if(∃p ∈ SECB.pages s.t. p.accessible = NONE) FAIL
MC: ∀p ∈ SECB.pages: p.accessible = CPUi

MC to CPUi: done
CPUi: ESP=SECB.pages.top

Measure:
if(¬SECB.MeasuredFlag)

CPUi: send PAL to TPM
TPM: Allocate sePCR ℓ

MC: if(¬∃ℓ ∈ sePCRs s.t. sePCR [ℓ].state = Quote) FAIL
TPM: h = SHA-1(PAL)
TPM: sePCR [ℓ] = 0
TPM: sePCR [ℓ] = SHA-1(sePCR [ℓ]||h)
TPM to CPUi: done
CPUi: SECB.MeasuredFlag = 1

Execute:
CPUi: EIP=SECB.pages.eip
CPUi: Begin executing

Table 6.2: SLAUNCH pseudocode.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 166

resume. Protecting state requires the use of the TPM Seal and Unseal com-

mands. An SKINIT on AMD hardware can take up to 177.52 ms (Table 3.9),

while Seal requires 20-500 ms and Unseal requires 290-900 ms (Figure 3.7).

Thus, context switching into a PAL (which requires unsealing prior data)

can take over 1000 ms, while context switching out (which requires sealing

the PAL’s state) can require 20-500 ms. Further, existing hardware has no

facility for guaranteeing that a PAL can be preempted (to prevent it from

compromising system availability).

With our recommendations, we eliminate the use of TPM Seal and Un-

seal during context switches and only require that the TPM measure the

PAL once (instead of on every context switch). We expect that an imple-

mentation of our recommendations can achieve PAL context switch times

on the order of those possible today using hardware virtualization support,

i.e., 0.6 µs on current hardware (Table 6.1). This reduces the overhead of

context switches by six orders of magnitude (from 200-1000 ms on current

hardware) and hence makes it significantly more practical to switch in and

out of a PAL.

Taken together, these improvements help make minimal TCB code ex-

ecution with Flicker a practical and effective way to achieve secure compu-

tation on commodity systems, while only requiring relatively minor changes

in existing technology.

As an alternative to our recommended hardware modifications, we could

instead consider increasing the speed of the TPM and the bus through which

it communicates with the CPU. As shown in Section 3.7, the TPM is a major

bottleneck for efficient Flicker applications on current hardware. Increasing

the TPM’s speed could potentially reduce the cost of using the TPM to

protect PAL state during a context switch, and similarly reduce the penalty

of using SKINIT during every context switch. However, achieving sub-

microsecond overhead comparable to our recommendations would require

significant hardware engineering of the TPM, since many of its operations

use a 2048-bit RSA keypair. Even with performant hardware, the power

consumed by such operations is wasteful, since we may achieve superior

performance with our less power-intensive modifications.

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 167

6.10 Extensions

We discuss issues that our recommendations do not address, but that may

be desirable in future systems.

Multi-core PALs. As presented, we offer no mechanism for allocating

more than one CPU to a single PAL. First, it should be noted that a sin-

gle application-level function that will benefit from multi-core PALs can be

implemented as multiple single-CPU PALs. However, applications that re-

quire frequent communication between code running on different CPUs (e.g.,

for locks) may suffer from PAL launch, termination and context switching

overheads. To address this, a mechanism is needed to join a CPU to an

existing PAL. The join operation serves to add the new CPU to the memory

controller’s access control table for the PAL’s pages.

sePCR Sets. As presented, we propose a one-to-one relationship between

sePCRs and PALs. It is a straightforward extension to group sePCRs into

sets and bind a set of sePCRs to each PAL. The TPM operations that accept

an sePCR as an argument will need to be modified appropriately. Some will

be indexed by the sePCR set itself (e.g., SLAUNCH will need to cause all

sePCRs in a set to reset), some by a subset of the sePCRs in a set (e.g.,

TPM Quote), and others by the individual sePCRs inside a set (e.g., TPM

Extend).

PAL Interrupt Handling. As presented, interrupts are disabled on the

CPU executing a PAL (expiry of the preemption timer does not cause a

software-observable interrupt to the PAL). We believe that a PAL’s purpose

should be to perform an application-specific security-sensitive operation.

As such, we recommend that a PAL not accept interrupts. However, there

may still be situations where it is necessary to receive an interrupt, e.g.,

in future systems where a PAL requires human input from the keyboard.

Thus, a PAL should be able to configure an Interrupt Descriptor Table to

receive interrupts. However, this may result in the PAL receiving extraneous

CHAPTER 6. ARCHITECTURAL RECOMMENDATIONS 168

interrupts. Routing only the interrupts of interest to the PAL requires the

CPU to reprogram the interrupt routing logic every time a PAL is scheduled,

which may create undesirable overhead or design complexity.

Chapter 7

Related Work

We now discuss related work that is not essential background for understand-

ing this thesis (Chapter 2). We first relate systems for providing isolated

execution (Section 7.1) and then discuss other research on remote attestation

(Section 7.2). We also consider works on protecting user I/O (Section 7.3),

web browser security (Section 7.4), and authentication without prior context

(Section 7.5).

7.1 Isolation

Virtualization [131] and microkernels [1] are two technologies capable of

providing strong isolation and reduced TCB size compared to commodity

monolithic kernels (e.g., Microsoft Windows and Linux). Numerous works

leverage these foundations.

Around 1980, VM370 [35] received a security retrofit in the form of

KVM370 [57, 147]. This effort to reduce the TCB settled on the VMM as the

smallest desirable virtualization layer, with further reduction purportedly

yielding little benefit [56]. Flicker is able to reduce the TCB further for ap-

plication-specific functionality. The goal of a tiny system-wide TCB remains

elusive.

NetTop [116] uses a virtual machine monitor (VMware) and operating

system with MAC support (SELinux) to enable what were traditionally

169

CHAPTER 7. RELATED WORK 170

physically separate computer terminals on the desks of government employ-

ees to be consolidated onto a single system. The NetTop architecture relies

extensively on the security controls of the host OS, which suffers from ex-

cessive TCB complexity.

Exokernels are designed to enable application-level and application-spe-

cific resource management, thus reducing the kernel’s responsibilities to se-

curely multiplexing the available hardware resources [43]. The Denali iso-

lation kernel is structured much like a VMM, but does away with faithful

emulation of the underlying hardware to reduce complexity and increase

performance [180]. This design comes at the cost of breaking compatibility

with legacy operating systems, whereas Flicker remains compatible. Both of

these designs reduce the TCB for a given application, but not to the same

extent as Flicker.

EROS [153] is a capability-based microkernel with performance on the

order of today’s commodity operating systems. Asbestos [41] is an operating

system designed with labels and isolation as priorities, enabling system-wide

information flow controls. Singularity [72] uses formally verified and strongly

typed channels between processes. Unfortunately, all three of these systems

require applications to be ported to a fundamentally different interface.

Proxos [168] defines a system call routing language and allows Linux

applications running on the Xen [12] VMM to specify that certain system

calls and their arguments be handled by a special-purpose private OS. For

example, all file operations on /etc/secrets can be routed to the private OS

such that the legacy OS never sees the file’s contents. Note that applications’

memory must be managed by the underlying, trusted VMM so that the

legacy OS cannot simply access the secrets in the application’s memory

space. This architecture resembles that of Exokernels and Denali in that

applications have control over many security-sensitive functions that are

traditionally in the operating system’s purview. Proxos has the advantage

that legacy operating systems and applications can continue to run, but the

extent of TCB minimization in their prototype remains orders of magnitude

behind that of Flicker.

CHAOS [30], Overshadow [31], and SP3 [184] use a trusted VMM to

CHAPTER 7. RELATED WORK 171

protect application data from an untrusted OS. These works present com-

pelling ideas, but implementation details and experimental results are want-

ing. Source code for Flicker is publicly available.

Nizza is an architecture to reduce the TCB for security-sensitive appli-

cations by executing their sensitive components as AppCores on top of the

L4Env [160], which leverages the L4 microkernel [100]. L4Linux [67] is used

to export the Linux ABI, thereby enabling legacy applications to run un-

modified. We believe this architecture holds great promise for tomorrow’s

systems, but it remains underutilized today. Its TCB is also orders of mag-

nitude larger than that of Flicker. The PERSEUS [128] architecture is a

precursor to Nizza that also uses L4Linux to support legacy applications.

Nizza extends PERSEUS by demonstrating components for real-world ap-

plications.

Enforcer [106] binds the notion of software identity to a signing keypair,

with emphasis on commodity hardware and existing applications. However,

enforcer leverages the static root of trust for measurement (Chapter 2.1),

which suffers from excessive TCB complexity.

IBM developed the rHype research hypervisor and subsequently applied

their security technology to the sHype hypervisor security architecture [142].

Their goal is to implement mandatory access controls at the hypervisor level.

While compelling, their implementation is built for Xen [12], which consists

of tens of thousands of lines of code for the hypervisor [104], not to mention

the complete Linux kernel running in the privileged domain 0.

SELinux [161, 165] enables enforcement of extremely fine-grained secu-

rity policies for the Linux kernel. However, this fine granularity has resulted

in policy complexity [78] that makes analysis of the resulting security prop-

erties somewhat untenable.

AEGIS [167] is an entirely new hardware architecture designed to be se-

cure against both physical and software attacks. Currently, only simulated

performance results are available, and compatibility with existing software

is dubious. XOM [99] proposes hardware changes to provide security prop-

erties for applications, even if the OS or VMM is compromised. However,

XOM breaks compatibility with legacy hardware and software.

CHAPTER 7. RELATED WORK 172

Systems employing trusted hardware have also been built, for example

the Dyad HW architecture [185], the IBM 4758 [40, 81, 162] or the Cerium

processor [29]. Jiang used a secure coprocessor to build an SSL co-server to

process student passwords and grades [80]. These solutions are effective but

add both financial and administrative costs to a system.

Flicker adds less than 250 lines of code to the TCB of a PAL, compared

with tens or hundreds of thousands of lines of code for today’s popular

VMMs. While Flicker does not achieve the same level of physical tamper-

resistance as do secure coprocessors, it provides the same strong software

guarantees using modern commodity hardware.

7.2 Attestation and Trusted Computing

Chapter 2 provided essential background information on attestation and

trusted computing technology. Here, we discuss additional related work in

trusted computing.

Ames [4], Gold et al. [56], and Tasker [169] were among the first to

propose computer systems capable of cryptographically demonstrating their

security properties to other systems. Today, this is called attestation.

Early schemes for attesting to a platform’s software state include the en-

tire software stack (e.g., BIOS, bootloader, OS, applications) [8, 106, 143].

Arbaugh et al. proposed secure boot, whereby each layer of the software

stack checks that the integrity of the next layer matches a known-good

configuration, otherwise boot is aborted [8]. This architecture does not al-

low a system to attest its configuration to an external party. Sailer et al.

designed an integrity measurement architecture for Linux that implements

trusted boot, whereby an external party can receive an attestation of all

software that has been loaded since boot and make its own trust decision

depending on the software configuration [143]. Unfortunately, the security

of a newly executed piece of code depends on the security of all previously

executed code in both of these systems. Due to the lack of isolation, a sin-

gle compromised piece of code may compromise all subsequent code. Such

large attestations can be difficult to verify and leak information about the

CHAPTER 7. RELATED WORK 173

software on the attestor’s platform. Property-based attestation has been

proposed [141] as a mechanism for providing meaningful attestations; unfor-

tunately, evaluating software for the various properties of interest remains

an open problem.

Terra [53] is an architecture for trusted computing that leverages a

Trusted VMM (TVMM) to allow legacy applications to continue running

in an “open-box” virtualized environment while high-security applications

execute in a “closed-box” special-purpose VM. Terra provides an attesta-

tion service that allows applications running in a local VM to authenticate

themselves to remote parties [96, 181]. However, Terra makes heavy use of

certification from independent software vendors, which does not exist today.

Further, Terra is implemented on an OS-hosted commercial VMM which

suffers from an extremely large TCB.

The BIND system guarantees the safe execution of a small piece of code –

BGP routing management is used as an example application – to an external

party using attestation [158], but BIND relies on the security of a trusted

kernel that was never implemented.

We have focused on late launch and associated trusted computing tech-

nologies such as the TPM. Seshadri et al. explore an alternate means for

creating a dynamic root of trust at runtime, called Pioneer [150]. The Pio-

neer system provides code integrity guarantees to an external verifier. Pio-

neer is not a realistic alternative today as the verifier must possess intimate

knowledge of the microarchitectural design of the challenged system’s CPU

and cannot tolerate Internet levels of network latency.

Kauer developed the Open Secure Loader (OSLO) [88], which employs

SKINIT to eliminate the BIOS and bootloader from the TCB and establish

a dynamic root of trust for trusted boot. OSLO consists of just over 1,000

lines of code, and is larger than Flicker because it executes at boot time and

includes support for the Multiboot Specification [123]. OSLO also includes

an implementation of SHA-1 to hash the OS kernel, whereas SHA-1 is op-

tional with Flicker. OSLO served as a starting point for the development of

our Flicker implementation. Trusted Boot1 from Intel performs similarly for

1http://sourceforge.net/projects/tboot

http://sourceforge.net/projects/tboot

CHAPTER 7. RELATED WORK 174

Intel hardware. Garriss et al. employ the new SKINIT instruction to elim-

inate the BIOS and the bootloader from their attestations and TCB [54],

but as suggested in the original design [61], after the SKINIT , they launch

a standard OS or VMM. Thus, application security depends on these large

layers of code.

7.3 Protecting User Input and Output

We review related work on protecting sensitive user I/O. Many of these

works consider an untrusted system such as a kiosk in an Internet cafe

or other public location, but the prevalence of malware today suggests that

users must be wary of even their own machine. We discuss works leveraging a

mobile device to improve I/O security (Section 7.3.1), and works considering

a redesign of the graphical window manager (Section 7.3.2).

7.3.1 Mobile Devices

The most closely related work is our prior work called Bump2 in the Ether

(BitE) [112]. BitE circumvents the legacy input path by leveraging encryp-

tion by user input devices (e.g., an encrypting keyboard), just as Bumpy

does. However, BitE retains the legacy OS and Window Manager in its

TCB, is tailored to local applications, and performs attestations to its cor-

rect functioning based on a static root of trust. In contrast, Bumpy dramat-

ically reduces the TCB for input by leveraging a dynamic root of trust for

each input event, works for sensitive input to websites, and supports secure

post-processing of sensitive input (e.g., password hashing).

Borders and Prakash propose a Trusted Input Proxy (TIP) as a module

in a virtual machine architecture where users can indicate data as sensitive

using a keyboard escape sequence [21]. Users are presented with a special

dialog box where they can enter their sensitive data, after which it is injected

into the SSL session by the TIP. Again, however, the TCB of TIP includes

a VMM and OS, whereas Bumpy’s TCB includes neither.

2We derive the name Bumpy from Bump in the Ether.

CHAPTER 7. RELATED WORK 175

Garriss et al. employ the new SKINIT instruction to establish a dynamic

root of trust to launch a virtual machine monitor (VMM) on unfamiliar

public kiosk machines, thus eliminating the BIOS and the bootloader from

their TCB [54, 55]. After using a mobile device to verify an attestation3 that

the VMM launched successfully, the user’s personal virtual machine [25] can

be resumed on the public machine. While compelling, application security

depends on large layers of code. In Bumpy, the remote webserver verifies

an attestation to the correct operation of the Flicker sessions handling user

input. Bumpy is trivially extensible to allow the user’s mobile device to

verify attestations, and in fact we originally considered this architecture in

BitE.

Balfanz and Felten explored the use of hand-held computing devices

(e.g., PDAs) as smart-cards, and found some advantages because the user

can interact directly with the hand-held for sensitive operations [9]. The

authors generalized their work into a design paradigm they call splitting

trust, where a smaller, trusted device performs security-sensitive operations

and a large, powerful device performs other operations. Bumpy can be

considered a system designed in accordance with the principles of splitting

trust.

The Pebbles project attempts to let handhelds and PCs work together

when both are available, as opposed to the conventional view that handhelds

are used when PCs are unavailable [120]. Bumpy uses a trusted mobile

device as a Trusted Monitor to help improve input security on a PC.

Ross et al. develop a framework for access to Internet services, where

both the sensitivity of the information provided by the service and the ca-

pabilities of the client device are incorporated [139]. This framework de-

pends on either a trusted proxy infrastructure or service providers running

a trusted proxy. While promising, this scheme is not widely deployed today.

Oprea et al. consider the use of public terminals to access one’s home

PC. The public terminals are considered unsuitable for trusting with long-

term secrets such as passwords [124]. A trusted mobile device (e.g., PDA)

provides all input which is cryptographically tunneled to the user’s home

3Background on the relevant trusted computing primitives is provided in Chapter 2.

CHAPTER 7. RELATED WORK 176

PC, and the public terminal is given read-only access to serve as a display

for only the applications that the user accesses on her home PC during that

session. Further, these credentials are short-lived, expiring shortly after the

user disconnects her mobile device from the public terminal. Bumpy differs

in that it operates directly on the user’s PC, is specific to providing user

input to websites, and has a dramatically smaller TCB.

Sharp et al. develop a system for splitting input and output across an

untrusted terminal and a trusted mobile device [155]. Applications run on

a trusted server or on the mobile device itself, using VNC [135] to export

video to the trusted and untrusted displays in accordance with a security

policy. The user has the ability to decide on the security policy used for

the untrusted keyboard, mouse, and display. An initial user study yielded

encouraging results, but this technique is best described as a tool for power

users. In contrast, Bumpy is designed for users who may have very little

understanding of computer security.

In more recent work, Sharp et al. propose an architecture for fighting

crimeware (e.g., keyloggers and screen scrapers) via split-trust web applica-

tions [156]. Web-applications are written to support an untrusted browser

and a trusted mobile device with limited browsing capabilities. All security-

critical decisions are confirmed on the mobile device. This architecture raises

the bar for web-based attackers, but it also raises usability issues which are

the subject of future work.

The Zone Trusted Information Channel (ZTIC [73]) is a recent device

with a dedicated display and the ability to perform cryptographic opera-

tions. Its purpose is to confirm online banking transactions in isolation

from malware on the user’s computer. This device is appropriate for use as

a Trusted Monitor in Bumpy.

Bumpy uses the separate Trusted Monitor as a verifier and indicator for

the input framework, rather than as a platform for execution of portions of

a split application or as an input device. But perhaps more importantly, the

TCB of Bumpy is far smaller than in these other works, and in fact Bumpy

can be viewed as extreme in this respect.

CHAPTER 7. RELATED WORK 177

7.3.2 Secure Window Managers

Much prior work has addressed the issue of a security-conscious graphical

window manager. Unfortunately, none of it is readily available for non-

expert users on commodity systems today. We review related work chrono-

logically.

Several government and military computer windowing systems have been

developed with attention to security and the need to carefully isolate differ-

ent grades of information (e.g., classified, secret, top secret). Early efforts to

secure commercial window managers resulted in the development of Com-

partmented Mode Workstations [20, 27, 49, 130, 137, 182], where tasks with

different security requirements are strictly isolated from each other. These

works consider an operating environment where an employee has various

tasks she needs to perform, and some of her tasks have security requirements

that necessitate isolation from other tasks. For example, Picciotto et al. con-

sider trusted cut-and-paste in the X window system [129]. Cut-and-paste

is strictly confined to allow information flow from low-sensitivity to high-

sensitivity applications, so that high-sensitivity information can never make

its way into a low-sensitivity application. Epstein et al. performed significant

work towards trusted X for military systems in the early 1990s [46, 47, 48].

While these systems are effective for employees trained in security-sensitive

tasks, they are unsuitable for use by consumers.

Shapiro et al. propose the EROS Trusted Window System [154], which

demonstrates that breaking an application into smaller components can

greatly increase security while maintaining very powerful windowing func-

tionality. Unfortunately, EROS is incompatible with a significant amount

of legacy software, which hampers widespread adoption. In contrast, BitE

works in concert with existing window managers.

Microsoft’s Next-Generation Secure Computing Base (NGSCB) proposes

encrypting keyboard and mouse input, and video output [42, 126]. In

NGSCB, special USB keyboards encrypt keystrokes which pass through the

regular operating system into the Nexus, where they are decrypted. Once in

the Nexus, they can be sent to a trusted application running in Nexus-mode,

CHAPTER 7. RELATED WORK 178

or they can be sent to the legacy OS. Applications running in Nexus-mode

have the ability to take control of the system’s primary display, which was

designed to be useful for establishing a trusted tunnel.

A compelling recent example is Nitpicker [50], but it currently requires

changing operating systems and porting existing legacy applications. Bumpy

remains compatible with existing legacy operating systems, to the extent

that they meet the requirements for Flicker (Chapter 3), i.e., it may be

necessary to install a kernel module or driver.

Common to the majority of these schemes is a mechanism by which some

portion of the computer’s screen is trusted. That is, an area of the screen

is controlled by some component of the trusted computing base (TCB) and

is inaccessible to all user applications. However, if an application can use a

“full-screen” mode, it may be able to spoof any trusted output. This is par-

ticularly relevant given the ubiquity of interactive and animated multimedia

on today’s web pages [2]. Precisely defining trusted full-screen semantics

that a non-expert user can operate securely is, to the best of our knowledge,

an unsolved problem. Considering the value that the user receives from be-

ing able to maximize applications, and the role of multi-media applications

on today’s commodity PCs, we believe the ability to run applications in

full-screen mode on the system’s primary display is an indispensable fea-

ture. Still, there is no effective way to establish a trusted tunnel if there

is no trusted display. Due to the complexity of X and the likely confusion

of untrained users, it is difficult to implement a trusted screen area in an

assurable way. Bumpy uses the trusted mobile device’s screen—a physically

separate display—as a Trusted Monitor for output.

We emphasize that, despite the large body of work on trusted windowing

systems, the majority of users do not employ any kind of trusted windowing

system. Thus, we conclude that users do not want to change their windowing

system.

CHAPTER 7. RELATED WORK 179

7.4 Browser Security

Ross et al. developed PwdHash, an extension for the Firefox web browser

that hashes users’ typed passwords in combination with the domain serving

the page to produce a unique password for every domain [138]. The Pwd-

Hash algorithm adapts earlier work by Gabber et al. on protecting users’

privacy while browsing the web [52, 51]. Chiasson et al. identify usability

problems with PwdHash, specifically, that it provides insufficient feedback

to the user regarding the status of protections [32]. We extend this work

in two ways in the context of Bumpy. First, we implement the PwdHash

algorithm as one possible transformation of sensitive data in Bumpy, with

a much smaller TCB than the web browser and OS that must be trusted

with PwdHash. Second, we leverage a Trusted Monitor to provide feedback

to the user regarding the status of her input. Validating the efficacy of our

feedback mechanisms with a user study remains the subject of future work

(discussed in Chapter 8.2).

7.5 Authentication without Prior Context

We study authentication between two co-located entities with no prior trust

relationships. This context rules out the use of a public key infrastructure

or trusted third party to perform authentication.

A common mechanism to establish a secure channel between two entities

is to use Diffie-Hellman key establishment [38]. Unfortunately, a man-in-

the-middle (MITM) attack is possible if the two entities do not share any

established trusted information. Bellovin and Merrit propose the encrypted

key exchange (EKE) protocol, which prevents the MITM attack if both

parties share a secret password [18]. Several researchers have refined this

approach [19, 22, 101, 183], but they all require a shared secret password

between the two entities, which may be cumbersome to establish in many

mobile settings.

Another approach to defeat the MITM attack is to use a secondary chan-

nel to verify that the same key is shared by two parties. An approach that

CHAPTER 7. RELATED WORK 180

several researchers have considered is that a human can manually verify that

the generated keys are identical [97, 174, 175]. Uzun et al. found usability

issues with general classes of string comparison-based protocols [173]. To

avoid manual comparison, researchers have devised visual metaphors that

represent the hash of a key to make it easier for people to perform the com-

parison [58, 98, 127, 39]. Though these schemes make key comparison easier

for the user, they still rely on the user to diligently compare the resulting vi-

sual key representations. With SiB, visual device identification is an integral

part of establishing a connection between devices.

To defend against MITM attacks, Stajano and Anderson propose to

set up keys through a link that is created through physical contact [166].

However, in many settings, devices may not have interfaces that connect for

this purpose, or they may be too bulky to carry around. Balfanz et al. extend

this approach to use short-range wireless infrared communication [10]. Of all

these approaches, theirs is the most closely related to SiB, and we discuss

it further in Section 5.1.2. Čapkun, Hubaux, and Buttyán have further

extended this research direction [176]. They make use of one-hop transitive

trust to enable two nodes that have never met to establish a key. SiB

could leverage this technique equally well. Hoepman gives a more rigorous

definition of the ephemeral pairing problem and presents ephemeral key

exchange protocols for authentic channels and private channels [70].

Clarke et al. propose protocols for camera-based authentication of the

screen content of public computers [34]. A camera-equipped, trusted, mo-

bile device monitors the screen of the public computer for the duration of

a transaction, verifying the presence of a nonce, a one-time password, and

a MAC. The mobile device connects to the user’s trusted “proxy,” which

is their home computer, to verify that the screen contents have not been

modified. Image processing and optical character recognition are both con-

sidered as viable mechanisms for processing the screen. SiB can be used to

implement this protocol, with a 2D barcode serving as the relevant image.

Following the initial publication of SiB [110, 111], Saxena et al. further

explored the visual channel [146]. They consider the minimal device ca-

pabilities that can support SiB, and devise a video codec that can use a

CHAPTER 7. RELATED WORK 181

mobile phone’s camera to decode data encoded in a severely constrained

visual channel – in the limit a single flashing LED. This scheme is valuable

in low-cost scenarios where the only output mechanism available may be an

LED, though it requires a higher level of understanding from the user.

Also following our work, Goodrich et al. developed Loud-and-Clear, a

system that uses an audio channel to establish authentic keys [60]. In Loud-

and-Clear, English phrases are derived from the hash of a device’s public key.

One device uses a text-to-speech engine to read a phrase aloud, while the

other device displays a phrase on-screen. The human user is tasked with lis-

tening to one phrase and comparing it with the written phrase. HAPADEP

extends this mechanism to pure audio device pairing [164].

In some cases, the visual channel bandwidth available between two de-

vices may be insufficient for standard cryptographic techniques. For ex-

ample, a single barcode in our implementation has a data payload of only

68 bits. To address issues with low-bandwidth channels, Laur et al. pro-

pose protocols based on Manually Authenticated Strings (MANA) conveyed

across an out-of-band channel that may have low bandwidth [97]. In their

case, the low bandwidth channel is that of humans performing a manual

comparison. MANA IV requires users to visually compare short ℓ-bit strings

displayed on their devices and push a button on each device to indicate

whether the strings match, where ℓ is presumed to be shorter than the out-

put of a cryptographic hash function. Given SHA-1 as an acceptable hash

function, ℓ < 160.

SiB can be modified to use MANA-IV as the commitment protocol when

the only available visual channel is exceptionally low-bandwidth. The visual

channel is used to convey the ℓ-bit strings between devices, where they can be

programmatically compared. This design is compelling because it removes

the users’ responsibility to carefully compare the ℓ-bit strings, thereby sub-

stantially reducing the opportunity for human error [173]. However, MANA

IV requires the devices to exchange three messages before the visual chan-

nel exchange takes place. This necessitates an out-of-band mechanism for

discovering the network identity of the other device. Traditional Bluetooth

discovery mechanisms are one option in this scenario.

CHAPTER 7. RELATED WORK 182

7.5.1 Barcode Recognition with Camera Phones

SiB depends on a camera phone having the ability to use its camera to

recognize two-dimensional (2D) barcodes. Several projects exist that seek

to allow camera-equipped mobile phones to interact with physical objects

through the use of 2D barcodes. Rohs and Gfeller develop their own 2D

code explicitly for use with mobile phones, emphasizing their ability to be

read from electronic screens and printed paper [136]. Woodside develops

semacodes, 4 which is an implementation of the Data Matrix barcode stan-

dard for mobile phones [77]. Woodside considers the primary application of

semacodes as containers for a URL which contains information about the

physical location where the barcode was installed. Madhavapeddy et al.

use SpotCodes to enhance human-computer interaction by using a camera-

phone as a pointing and selection device [102]. Researchers working on the

CoolTown5 project at HP Labs propose tagging electronics around the house

with barcodes to be read by camera phones or PDAs so that additional data

about the tagged device can be easily retrieved.

Hanna considers devices with barcodes affixed to aid in the establishment

of security parameters [64]. His work considers a smart home, where a user

may want to establish a security context for controlling appliances or other

devices in a smart-home. In Hanna’s work, the barcode contains a secret

which is also stored inside the device. Hanna proposes using this secret to

enable the secure transmission of commands to the device from a master

controller over an untrusted network. We refer to the security property

discussed by Hanna as presence, where it is desirable that only users or

devices close to some device are able to control it. We discuss the notion of

presence further in Section 5.4.

Today, recognition of 2D barcodes with mobile phones has become ac-

cepted practice. Phones are now available that include barcode recognition

software, such as the Nokia N95.6 Further, a Java standard has been pub-

lished that specifies an API for barcode recognition on mobile phones [84].

4http://www.semacode.com/
5http://www.cooltown.com/
6http://mobilecodes.nokia.com/

http://www.semacode.com/
http://www.cooltown.com/
http://mobilecodes.nokia.com/

Chapter 8

Conclusions and Future

Work

We state the conclusions of this thesis before discussing opportunities for

further investigation.

8.1 Conclusions

Networked computer systems have grown in complexity to a level we can

no longer control. To date, formal methods have not reached a level of

maturity or scalability to prove these systems correct [44, 45, 177]. Con-

sequently, we use TCB minimization to approach correctness for security-

sensitive parts of applications [157], observing that for many applications

the security-sensitive operations are relatively small. We have developed a

method for isolated code execution on commodity systems with a TCB that

adds as few as 250 lines of code to application-specific functionality. TPM-

based attestation can be used to convince a verifier, which may be local

or remote, that the application-specific code did execute with the desired

protections. Our work finally gives application developers the opportunity

to write secure applications without relying on the security of layer upon

layer of legacy software, and without breaking compatibility with today’s

commodity systems.

183

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 184

We have extended our system for isolated code execution to minimize the

TCB for sensitive user input to web pages. We allow the webserver to control

the processing of user input intended for that webserver. While we require

the user to be aware of our system, and to demonstrate some diligence in its

operation, we are optimistic about its ability to defeat software keyloggers

and screen scrapers in the wild. The use of our system can be attested

to both a local verifier and a remote webserver, giving the user and/or

webserver (and hence the organization that operates it, e.g., a bank) the

ability to determine with higher assurance than can be obtained today that

the user’s inputs were protected.

We have shown that trust relationships predicated on authentic public

key exchange can be established without depending on a trusted third party

or public key infrastructure, further reducing the amount of trust that must

be placed in entities beyond the user’s control. This gives the conscientious

user the opportunity to configure her own input and verification devices,

and the savvy user the ability to retain total control over her own privacy-

relevant inputs.

Perhaps most encouraging is the demonstration that so-called trusted

computing technologies do have uses that can enhance users’ security and

privacy. The inclusion of TPMs in commodity systems was a significant

gamble by platform manufacturers, and the push-back against a perceived

utility as nothing more than a DRM component threatens to kill the trusted

computing movement. We hope that our work will mature into a widely

deployed service available on commodity systems with trusted computing

technology, and that it will make a difference in the security of ordinary

users’ everyday computing experience.

8.2 Opportunities for Further Investigation

The technologies that have come to be known as Trusted Computing, such

as remote attestation and the creation of a dynamic root of trust, are still in

their infancy. While this thesis explores some uses of this technology, many

issues exist that warrant further exploration. We consider three in partic-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 185

ular: usability, automatic privilege separation, and user-observable verifica-

tion. An extended discussion of open questions related to user-observable

verification of attestations has been previously published [115].

8.2.1 User Studies

We design the Bumpy and SiB systems in this thesis with an emphasis on

usability, but we have not performed a formal user study. A user study is

needed to evaluate and refine the mechanisms through which users interact

with Bumpy in particular, and remote attestation in general.

8.2.2 Automatic Privilege Separation

Flicker dramatically reduces the TCB for sensitive code, but modifying ex-

isting applications to work with Flicker is largely a manual process. Re-

searchers have considered manual privilege separation in other domains [90,

133, 168, 106, 81]. However, security gains made possible by Flicker can

be realized more rapidly if existing applications can be automatically sep-

arated [24, 11, 186] such that the privileged components run with Flicker’s

protections.

8.2.3 User-Observable Verification

In order to use their computing devices with confidence, users need to know if

the software on their computing devices is infected by malware. Attestation

enables a verifier to learn the configuration of the software on any TCG-

compliant computing device, provided that infrastructure such as Flicker

(Chapter 3) or IBM’s Integrity Measurement Architecture [143] is in place

to measure loaded software (Chapter 2). The verifier can compare this

configuration to a known-good configuration to detect deviations.

Unfortunately, a successful verification of one device by another does

not directly translate into a user-observable verification, potentially failing

to give the user assurance that her devices are working as intended. The

user who seeks a trustworthy system from which to verify others quickly

discovers an endless loop of trust dependencies. Though we have shown

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 186

how to dramatically reduce the TCB for sensitive operations, it is an open

research question to provide the user with a device that is axiomatically

trustworthy, thereby breaking the dependency loop. Further, it is not clear

whether a user-friendly recovery mechanism for a failed verification can ever

be devised.

Bibliography

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian,

and M. Young. Mach: A new kernel foundation for UNIX development.

In Proceedings of the Summer USENIX Conference, pages 93–112,

June 1986. 169

[2] Adobe Systems Incorporated. Adobe flash player 9 security. White

Paper, July 2008. 178

[3] Advanced Micro Devices. AMD64 architecture programmer’s manual:

Volume 2: System programming. AMD Publication no. 24594 rev.

3.11, December 2005. 19, 24, 25

[4] S. R. Ames, Jr. Security kernels: A solution or a problem? In Pro-

ceedings of the IEEE Symposium on Security and Privacy, April 1981.

172

[5] D. P. Anderson. BOINC: A system for public-resource computing

and storage. In Proceedings of the Workshop on Grid Computing,

November 2004. 55

[6] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.

SETI@Home: An experiment in public-resource computing. Commu-

nications of the ACM, 45(11):56–61, 2002. 54

[7] W. A. Arbaugh. Improving the tcpa specification. IEEE Computer,

35(8):77–79, 2002. 18

[8] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A reliable bootstrap

architecture. In Proceedings of the IEEE Symposium on Security and

187

BIBLIOGRAPHY 188

Privacy, May 1997. 31, 172

[9] D. Balfanz and E. W. Felten. Hand-held computers can be better

smart cards. In Proccedings of the USENIX Security Symposium, Au-

gust 1999. 119, 175

[10] D. Balfanz, D. Smetters, P. Stewart, and H. C. Wong. Talking to

strangers: Authentication in ad-hoc wireless networks. In Proceed-

ings of the Symposium on Network and Distributed Systems Security

(NDSS), February 2002. 89, 120, 122, 124, 125, 180

[11] D. Balfanz. Access Control for Ad-hoc Collaboration. PhD thesis,

Princeton University, 2001. 52, 185

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtual-

ization. In Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP), 2003. 35, 170, 171

[13] P. R. Barham, B. Dragovic, K. A. Fraser, S. M. Hand, T. L. Harris,

A. C. Ho, E. Kotsovinos, A. V. Madhavapeddy, R. Neugebauer, I. A.

Pratt, and A. K. Warfield. Xen 2002. Technical Report UCAM-CL-

TR-553, University of Cambridge, January 2003. 30

[14] L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter, J. Rouse, and

P. Rutenbar. Device-enabled authorization in the Grey system. In Pro-

ceedings of the 8th Information Security Conference (ISC), September

2005. 139

[15] BeagleBoard.org. BeagleBoard revision B6 system reference manual

revision 0.1. BeagleBoard.org, November 2008. 104

[16] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified ex-

position and Multics interpretation. Technical report, MITRE MTR-

2997, March 1976. 18

[17] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy

in public-key encryption. In Proceedings of Advances in Cryptology

(ASIACRYPT), 2001. 129

BIBLIOGRAPHY 189

[18] S. Bellovin and M. Merrit. Augmented encrypted key exchange: a

password-based protocol secure against dictionary atttacks and pass-

word file compromise. In Proceedings of the ACM Conference on Com-

puter and Communications Security (CCS), pages 244–250, 1993. 143,

179

[19] S. M. Bellovin and M. Merrit. Encrypted key exchange: Password-

based protocols secure against dictionary attacks. In Proceedings of

the IEEE Symposium on Security and Privacy, pages 72–84, 1992. 179

[20] J. L. Berger, J. Picciotto, J. P. L. Woodward, and P. T. Cummings.

Compartmented mode workstation: Prototype highlights. Software

Engineering, 16(6):608–618, June 1990. 177

[21] K. Borders and A. Prakash. Securing network input via a trusted

input proxy. In Proceedings of the USENIX Workshop on Hot Topics

in Security (HotSec), August 2007. 174

[22] V. Boyko, P. MacKenzie, and S. Patel. Provably secure password

authentication and key exchange using Diffie-Hellman. In Proceedings

of Advances in Cryptology (EUROCRYPT), pages 156–171, 2000. 179

[23] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.

In Proceedings of the ACM Conference on Computer and Communi-

cations Security (CSS), October 2004. 28

[24] D. Brumley and D. Song. Privtrans: Automatically partitioning pro-

grams for privilege separation. In Proceedings of the USENIX Security

Symposium, August 2004. 52, 185

[25] R. Cáceres, C. Carter, C. Narayanaswami, and M. Raghunath. Rein-

carnating pcs with portable soulpads. In Proceedings of the conference

on Mobile systems, applications, and services (MobiSys), pages 65–78,

June 2005. 175

[26] J. Camenisch. Better privacy for trusted computing platforms. In

Proceedings of the European Symposium On Research in Computer

Security (ESORICS), 2004. 28

BIBLIOGRAPHY 190

[27] M. Carson and J. Cugini. An X11-based Multilevel Window System

architecture. In Proceedings of the EUUG Technical Conference, 1990.

177

[28] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verifi-

cation of software components in C. IEEE Transactions on Software

Engineering, 30(6), 2004. 31

[29] B. Chen and R. Morris. Certifying program execution with secure

procesors. In Proceedings of the Workshop on Hot Topics in Operating

Systems (HotOS), 2003. 172

[30] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, P. C.

Mew, and W. Mao. Tamper-resistant execution in an untrusted op-

erating system using a virtual machine monitor. Technical Report

FDUPPITR-2007-0801, Parallel Processing Institute, Fudan Univer-

sity, August 2007. 170

[31] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-

spurger, D. Boneh, J. Dwoskin, and D. R. Ports. Overshadow: a

virtualization-based approach to retrofitting protection in commodity

operating systems. In Proceedings of the international conference on

Architectural support for programming languages and operating sys-

tems (ASPLOS), pages 2–13, March 2008. 170

[32] S. Chiasson, P. C. van Oorschot, and R. Biddle. A usability study and

critique of two password managers. In Proceedings of the USENIX

Security Symposium, August 2006. 80, 96, 179

[33] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.

Understanding data lifetime via whole system simulation. In Proceed-

ings of the USENIX Security Symposium, August 2004. 20

[34] D. E. Clarke, B. Gassend, T. Kotwal, M. Burnside, M. van Dijk, S. De-

vadas, and R. L. Rivest. The untrusted computer problem and camera-

based authentication. In Proceedings of the International Conference

on Pervasive Computing, pages 114–124, 2002. 180

[35] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM

BIBLIOGRAPHY 191

Journal of Research and Development, 25(5):483–490, September

1981. 169

[36] F. Dawson and T. Howes. vCard MIME directory profile. RFC 2426,

September 1998. 128

[37] T. Dierks and E. Rescorla. The transport layer security (TLS) proto-

col: Version 1.1. RFC 4346, April 2006. 128

[38] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, IT-22:644–654, November 1976.

127, 128, 135, 179

[39] S. Dohrmann and C. Ellison. Public key support for collaborative

groups. In Proceedings of the PKI Research Workshop, April 2002.

143, 180

[40] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W.

Smith, and S. Weingart. Building the IBM 4758 secure coprocessor.

IEEE Computer, 34(10):57–66, 2001. 172

[41] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,

E. Kohler, D. Mazières, F. Kaashoek, and R. Morris. Labels and

event processes in the Asbestos operating system. In Proceedings of

the ACM Symposium on Operating Systems Principles (SOSP), pages

17–30, 2005. 170

[42] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman.

A trusted open platform. IEEE Computer, 36(7):55–62, July 2003.

103, 177

[43] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel: an

operating system architecture for application-level resource manage-

ment. In Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP), pages 251–266, December 1995. 170

[44] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules

using system-specific, programmer-written compiler extensions. In

Proceedings of the Symposium on Operating System Design and Im-

BIBLIOGRAPHY 192

plementation (OSDI), 2000. 183

[45] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as

deviant behavior: A general approach to inferring errors in systems

code. In Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP), 2001. 183

[46] J. Epstein. A prototype for Trusted X labeling policies. In Proceed-

ings of the Sixth Annual Computer Security Applications Conference

(ACSAC), December 1990. 177

[47] J. Epstein and J. Picciotto. Issues in building Trusted X Window

Systems. The X Resource, 1(1), Fall 1991. 177

[48] J. Epstein and J. Picciotto. Trusting X: Issues in building Trusted

X window systems -or- what’s not trusted about X? In Proceedings

of the Annual National Computer Security Conference, October 1991.

177

[49] G. Faden. Reconciling CMW requirements with those of X11 appli-

cations. In Proceedings of the Annual National Computer Security

Conference, October 1991. 177

[50] N. Feske and C. Helmuth. A nitpicker’s guide to a minimal-complexity

secure GUI. In Proceedings of the Annual Computer Security Appli-

cations Conference (ACSAC), pages 85–94, 2005. 178

[51] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer. How to make per-

sonalized web browsing simple, secure, and anonymous. In Proceedings

of Financial Cryptography, 1997. 21, 77, 92, 179

[52] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias, and A. Mayer. On

secure and pseudonymous client-relationships with multiple servers.

ACM Transactions on Information and System Security, 2(4):390–415,

1999. 21, 77, 92, 179

[53] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra:

A virtual machine-based platform for trusted computing. In Proceed-

ings of the ACM Symposium on Operating System Principles (SOSP),

BIBLIOGRAPHY 193

October 2003. 173

[54] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and

X. Zhang. Towards trustworthy kiosk computing. In Proceedings of the

Workshop on Mobile Computing Systems and Applications, February

2006. 174, 175

[55] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and

X. Zhang. Trustworthy and personalized computing on public kiosks.

In Proceeding of the Conference on Mobile Systems, Applications, and

Services (MobiSys), June 2008. 175

[56] B. Gold, R. Linde, and P. Cudney. KVM/370 in retrospect. In Pro-

ceedings of the IEEE Symposium on Security and Privacy, April 1984.

169, 172

[57] B. Gold, R. Linde, R. J. Peller, M. Schaefer, J. Scheid, and P. D.

Ward. A security retrofit for VM/370. AFIPS National Computing

Conference, 48:335–344, June 1979. 169

[58] I. Goldberg. Visual key fingerprint code.

http://www.cs.berkeley.edu/iang/visprint.c, 1996. 143,

180

[59] K. Goldman, R. Perez, and R. Sailer. Linking remote attestation to

secure tunnel endpoints. Technical Report RC23982, IBM, 2006. 46

[60] M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and E. Uzun. Loud

and clear: Human-verifiable authentication based on audio. In Pro-

ceedings of the IEEE International Conference on Distributed Com-

puting Systems (ICDCS), 2006. 181

[61] D. Grawrock. The Intel Safer Computing Initiative: Building Blocks

for Trusted Computing. Intel Press, 2006. 19, 35, 73, 174

[62] J. C. Haartsen. The Bluetooth radio system. IEEE Personal Com-

munications Magazine, pages 28–36, 2000. 134

[63] S. Halevi and H. Krawczyk. Public-key cryptography and password

protocols. ACM Transactions on Information and System Security,

http://www.cs.berkeley.edu/iang/visprint.c

BIBLIOGRAPHY 194

2(3), 1999. 46

[64] S. R. Hanna. Configuring security parameters in small devices.

draft-hanna-zeroconf-seccfg-00.txt, July 2002. 182

[65] D. Harkins and D. Carrel. The Internet key exchange (IKE).

RFC 2409, November 1998. 128

[66] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The

performance of microkernel-based systems. In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP), October 1997.

18

[67] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and S. Schönberg. The

performance of µ-kernel-based systems. In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP), 1997. 171

[68] K. Hemenway and T. Calishain. Spidering Hacks. O’Reilly, October

2003. 17

[69] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Advanced

configuration and power interface specification. Revision 3.0b, October

2006. 69

[70] J.-H. Hoepman. The ephemeral pairing problem. In Proceedings of

Financial Cryptography, 2004. 180

[71] T. Howes and M. Smith. MIME content-type for directory information.

RFC 2425, September 1998. 128

[72] G. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham, M. Fahn-

drich, C. Hawblitzel, O. Hodson, S. Levi, N. Murphy, B. Steensgaard,

D. Tarditi, T. Wobber, and B. D. Zill. An overview of the singular-

ity project. Technical Report MSR-TR-2005-135, Microsoft Research,

October 2005. 170

[73] IBM Zurich Research Lab. Security on a stick. Press release, October

2008. 176

[74] Intel Corporation. Intel low pin count (LPC) interface specification.

Revision 1.1, August 2002. 71

draft-hanna-zeroconf-seccfg-00.txt

BIBLIOGRAPHY 195

[75] Intel Corporation. Trusted eXecution Technology – preliminary archi-

tecture specification and enabling considerations. Document number

31516803, November 2006. 19, 24, 26

[76] Intel Corporation. Intel virtualization technology for directed I/O.

Intel Publication no. D51397-004 rev. 1.2, September 2008. 26

[77] ISO/IEC. IS 16022:2006: Information technology — automatic iden-

tification and data capture techniques — Data Matrix bar code sym-

bology specification. For review, International Organization for Stan-

dardization, Geneva, Switzerland., 2006. 124, 182

[78] T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity protection in

the SELinux example policy. In Proceedings of the USENIX Security

Symposium, pages 59–74, August 2003. 171

[79] M. Jakobsson and S. Myers. Phishing and Countermeasures: Under-

standing the Increasing Problem of Electronic Identity Theft. Wiley,

December 2006. 101

[80] S. Jiang. WebALPS implementation and performance analysis. Mas-

ter’s thesis, Dartmouth College, 2001. 172

[81] S. Jiang, S. Smith, and K. Minami. Securing web servers against

insider attack. In Proceedings of the Annual Computer Security Ap-

plications Conference (ACSAC), 2001. 52, 172, 185

[82] P. Jones. RFC3174: US Secure Hash Algorithm 1 (SHA-1).

http://www.faqs.org/rfcs/rfc3174.html, September 2001. 134

[83] J. Jonsson and B. Kaliski. PKCS #1: RSA cryptography specifications

version 2.1. RFC 3447, February 2003. 111

[84] JSR-257. JSR-257: Contactless communication API. Java Community

Process, October 2006. 134, 139, 143, 182

[85] B. Kaliski and J. Staddon. PKCS #1: RSA cryptography specifica-

tions. RFC 2437, 1998. 58

[86] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn.

A retrospective on the VAX VMM security kernel. IEEE Transactions

http://www.faqs.org/rfcs/rfc3174.html

BIBLIOGRAPHY 196

on Software Engineering, 17(11):1147–1165, November 1991. 18

[87] P. Karn. Reed-solomon encoding/decoding.

http://www.ka9q.net/code/fec/, 2002. 134

[88] B. Kauer. OSLO: Improving the security of trusted computing. In

Proceedings of the USENIX Security Symposium, August 2007. 24,

25, 173

[89] T. Kidder. The Soul of a New Machine. Atlantic-Little, Brown, Au-

gust 1981. 18

[90] D. Kilpatrick. Privman: A library for partitioning applications. In

USENIX Annual Technical Conference, 2003. 52, 185

[91] M. G. Kuhn. Optical time-domain eavesdropping risks of CRT dis-

plays. In Proceedings of the IEEE Symposium on Security and Privacy,

May 2002. 144

[92] M. G. Kuhn and R. J. Anderson. Soft tempest: Hidden data trans-

mission using electromagnetic emanations. In Proceedings of the In-

formation Hiding Workshop (IHW), pages 124–142, April 1998. 144

[93] C. Kuo. Reduction of End User Errors in the Design of Scalable,

Secure Communication. PhD thesis, Carnegie Mellon University, 2008.

17

[94] K. Kursawe, D. Schellekens, and B. Preneel. Analyzing trusted plat-

form communication. In Proceedings of the Cryptographic Advances

in Secure Hardware Workshop (CRASH), September 2005. 24

[95] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-

chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,

M. Rosenblum, and J. Hennessy. The Stanford FLASH multiproces-

sor. In Proceedings of the Symposium on Computer Architecture, April

1994. 152

[96] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication

in distributed systems: theory and practice. ACM Transactions on

Computer Systems (TOCS), 10(4):265–310, 1992. 173

http://www.ka9q.net/code/fec/

BIBLIOGRAPHY 197

[97] S. Laur, N. Asokan, and K. Nyberg. Efficient mutual data authentica-

tion using manually authenticated strings. Cryptology ePrint Archive,

Report 2005/424, 2005. 180, 181

[98] R. Levien. PGP snowflake. Personal communication, 1996. 143, 180

[99] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C.

Mitchell, and M. Horowitz. Architectural support for copy and tam-

per resistant software. In Architectural Support for Programming Lan-

guages and Operating Systems, 2000. 147, 171

[100] J. Liedtke. On micro-kernel construction. In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP), pages 237–250,

1995. 171

[101] P. MacKenzie, S. Patel, and R. Swaminathan. Password authenticated

key exchange based on RSA. In Proceedings of Advances in Cryptology

(ASIACRYPT), pages 599–613, 2000. 179

[102] A. Madhavapeddy, D. Scott, R. Sharp, and E. Upton. Using camera-

phones to enhance human-computer interaction. In Proceedings of

Ubiquitous Computing (Adjunct Proceedings: Demos), 2004. 182

[103] A. Madhavapeddy, D. Scott, R. Sharp, and E. Upton. Using visual tags

to bypass Bluetooth device discovery. In Proceedings of the ACM Mo-

bile Computing and Communications Review (MC2R), January 2005.

129

[104] D. Magenheimer. Xen/IA64 code size stats. Xen developer’s mailing

list: http://lists.xensource.com/, September 2005. 30, 171

[105] V. Maraia. The Build Master: Microsoft’s Software Configuration

Management Best Practices. Addison Wesley, first edition, September

2005. 30

[106] J. Marchesini, S. W. Smith, O. Wild, J. Stabiner, and A. Barsamian.

Open-source applications of TCPA hardware. In the IEEE Computer

Security Applications Conference, 2004. 31, 171, 172, 185

[107] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.

http://lists.xensource.com/

BIBLIOGRAPHY 198

Flicker: An execution infrastructure for TCB minimization. In Pro-

ceedings of the ACM European Conference in Computer Systems (Eu-

roSys), April 2008. 19

[108] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri.

Minimal TCB code execution (extended abstract). In Proceedings of

the IEEE Symposium on Security and Privacy, May 2007. 19

[109] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri.

How low can you go? Recommendations for hardware-supported min-

imal TCB code execution. In Proceedings of the ACM Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), March 2008. 19

[110] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using

camera phones for human-verifiable authentication. Technical Report

CMU-CS-04-174, Carnegie Mellon University, November 2004. 133,

138, 180

[111] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using

camera phones for human-verifiable authentication. In Proceedings of

the IEEE Symposium on Security and Privacy, May 2005. 19, 133,

180

[112] J. M. McCune, A. Perrig, and M. K. Reiter. Bump in the Ether: A

framework for securing sensitive user input. In Proceedings of USENIX

Annual Technical Conference, June 2006. 19, 117, 174

[113] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for passwords

and other sensitive data. In Proceedings of the Symposium on Network

and Distributed Systems Security (NDSS), February 2009. 19

[114] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Us-

ing camera phones for human-verifiable authentication. International

Journal of Security and Networks Special Issue on Secure Spontaneous

Interaction, 4(1), 2009. 19

[115] J. M. McCune, A. Perrig, A. Seshadri, and L. van Doorn. Turtles

all the way down: Research challenges in user-based attestation. In

BIBLIOGRAPHY 199

Proceedings of the USENIX Workshop on Hot Topics in Security (Hot-

Sec), August 2007. 19, 185

[116] R. Meushaw and D. Simard. NetTop: Commercial technology in high

assurance applications. VMware Tech Trend Notes, 9(4):1–8, 2000.

169

[117] S. C. Misra and V. C. Bhavsar. Relationships between selected soft-

ware measures and latent bug-density: Guidelines for improving qual-

ity. In Proceedings of the Conference on Computational Science and

Its Applications, January 2003. 18

[118] D. Molnar. The SETI@Home problem. ACM Crossroads, 7.1, 2000.

55

[119] A. Moshchuk, T. Bragin, S. Gribble, and H. Levy. A crawler-based

study of spyware on the web. In Proceedings of the Symposium on

Network and Distributed Systems Security (NDSS), February 2006. 17

[120] B. A. Myers. Using handhelds and PCs together. Communications of

the ACM, 44(11), November 2001. 175

[121] G. C. Necula and P. Lee. The design and implementation of a certifying

compiler. In Proceedings of the ACM Conference on Programming

Language Design and Implementation (PLDI), pages 333–344, 1998.

50

[122] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Intermediate

language and tools for analysis and transformation of C programs. In

Proceedings of the Conference on Compilier Construction, 2002. 52

[123] Y. K. Okuji, B. Ford, E. S. Boleyn, and K. Ishiguro. The multiboot

specification. Version 0.6.95, 2006. 173

[124] A. Oprea, D. Balfanz, G. Durfee, and D. K. Smetters. Securing a re-

mote terminal application with a mobile trusted device. In Proceedings

of the Annual Computer Security Applications Conference (ACSAC),

pages 438–447, 2004. 175

[125] B. Parno. Bootstrapping trust in a “trusted” platform. In Proceedings

BIBLIOGRAPHY 200

of the USENIX Workshop on Hot Topics in Security (HotSec), July

2008. 89

[126] M. Peinado, Y. Chen, P. England, and J. Manferdelli. NGSCB: A

trusted open system. In Proceedings of the Australasian Conference

on Information Security and Privacy (ACISP), July 2004. 103, 177

[127] A. Perrig and D. Song. Hash visualization: A new technique to im-

prove real-world security. In Proceedings of the Workshop on Crypto-

graphic Techniques and E-Commerce (CrypTEC), pages 131–138, July

1999. 143, 180

[128] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, and A. Weber.

The PERSEUS system architecture. In Proceedings of Verlässliche

IT-Systeme (Dependable IT Systems), pages 1–17, 2001. 171

[129] J. Picciotto. Towards trusted cut and paste in the X Window Sys-

tem. In Proceedings of the Annual Computer Security Applications

Conference (ACSAC), December 1991. 177

[130] J. Picciotto and J. Epstein. A comparison of Trusted X security poli-

cies, architectures, and interoperability. In Proceedings of the An-

nual Computer Security Applications Conference (ACSAC), December

1992. 177

[131] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable

third generation architectures. Communications of the ACM, 17, July

1974. 169

[132] Prolific Technology Inc. PL-25A1 hi-speed USB host to host bridge

controller. PL-25A1 Product Brochure, October 2006. 104

[133] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege esca-

lation. In Proceedings of the USENIX Security Symposium, August

2003. 52, 185

[134] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.

Journal of the Society for Industrial and Applied Mathematics, 1960.

134

BIBLIOGRAPHY 201

[135] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Vir-

tual network computing. IEEE Internet Computing, 2(1):33–38, 1998.

176

[136] M. Rohs and B. Gfeller. Using camera-equipped mobile phones for

interacting with real-world objects. Proceedings of Advances in Per-

vasive Computing, pages 265–271, April 2004. 133, 135, 182

[137] D. S. H. Rosenthal. LInX—a Less INsecure X server (Sun Microsys-

tems unpublished draft). 177

[138] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger

password authentication using browser extensions. In Proceedings of

the USENIX Security Symposium, August 2005. 21, 56, 77, 81, 91, 92,

96, 103, 104, 111, 179

[139] S. J. Ross, J. L. Hill, M. Y. Chen, A. D. Joseph, D. E. Culler, and E. A.

Brewer. A composable framework for secure multi-modal access to

Internet services from post-PC devices. Mobile Network Applications,

7(5):389–406, 2002. 175

[140] A.-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and

M. Winandy. TCG inside? - A note on TPM specification compliance.

In Proceedings of the ACM Workshop on Scalable Trusted Computing

(STC), 2006. 24

[141] A.-R. Sadeghi and C. Stueble. Property-based attestation for com-

puting platforms: caring about properties, not mechanisms. In Pro-

ceedings of the Workshop on New Security Paradigms (NSPW), 2004.

173

[142] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. L. Griffin,

and S. Berger. sHype: Secure hypervisor approach to trusted virtu-

alized systems. Technical Report RC23511, IBM Research, February

2005. 171

[143] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and im-

plementation of a TCG-based integrity measurement architecture. In

Proceedings of the USENIX Security Symposium, 2004. 18, 24, 26, 31,

BIBLIOGRAPHY 202

172, 185

[144] J. H. Saltzer and M. D. Schroeder. The protection of information in

computer systems. Proceedings of the IEEE, 63(9):1278–1308, Septem-

ber 1975. 77

[145] S. Saroiu, S. D. Gribble, and H. M. Levy. Measurement and analysis

of spyware in a university environment. In Proceedings of the Sym-

posium on Networked Systems Design and Implementation (NSDI),

March 2004. 17

[146] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device

pairing based on a visual channel (short paper). In Proceedings of the

IEEE Symposium on Security and Privacy, 2006. 133, 140, 180

[147] M. Schaefer and B. Gold. Program confinement in KVM/370. In

Proceedings of the Annual ACM Conference, pages 404–410, October

1977. 169

[148] W. L. Schiller. Design of a security kernel for the PDP-11/45. Tech-

nical Report ESD-TR-73-294, MTR-2709, The MITRE Corporation,

HQ Electronic Systems Division: Hanscom AFB, December 1973. 18

[149] W. L. Schiller. The design and specification of a se-

curity kernel for the PDP-11/45. Technical Report ESD-

TR-75-69, The MITRE Corporation, HQ Electronic Systems

Division, Hanscom AFB, MA, May 1975. Available at:

http://csrc.nist.gov/publications/history/schi75.pdf. 18

[150] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.

Pioneer: Verifying integrity and guaranteeing execution of code on

legacy platforms. In Proceedings of ACM Symposium on Operating

Systems Principles (SOSP), October 2005. 173

[151] Y. Shaked and A. Wool. Cracking the Bluetooth PIN. In Proceed-

ings of the Conference on Mobile Systems, Applications, and Services

(MobiSys), June 2005. 117

[152] T. Shanley. The Unabridged Pentium 4. Addison Wesley, first edition,

http://csrc.nist.gov/publications/history/schi75.pdf

BIBLIOGRAPHY 203

August 2004. 153

[153] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A fast capability

system. In Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP), 1999. 18, 170

[154] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia. Design

of the EROS trusted window system. In Proceedings of the USENIX

Security Symposium, 2004. 177

[155] R. Sharp, J. Scott, and A. Beresford. Secure mobile computing via

public terminals. In Proceedings of the International Conference on

Pervasive Computing, May 2006. 176

[156] R. Sharp, A. Madhavapeddy, R. Want, and T. Pering. Enhancing web

browsing security on public terminals using mobile composition. In

Proceeding of the Conference on Mobile Systems, Applications, and

Services (MobiSys), June 2008. 176

[157] V. Y. Shen, T.-J. Yu, S. M. Thebaut, and L. R. Paulsen. Identify-

ing error-prone software an empirical study. IEEE Transactions on

Software Engineering, 11(4):317–324, 1985. 183

[158] E. Shi, A. Perrig, and L. van Doorn. BIND: A time-of-use attesta-

tion service for secure distributed systems. In Proceedings of IEEE

Symposium on Security and Privacy, May 2005. 173

[159] A. Shieh, D. Williams, E. G. Sirer, and F. B. Schneider. Nexus: A new

operating system for trustworthy computing. In WIP Session at the

ACM Symposium on Operating Systems Principles (SOSP), October

2005. 18

[160] L. Singaravelu, C. Pu, H. Haertig, and C. Helmuth. Reducing TCB

complexity for security-sensitive applications: Three case studies. In

Proceedings of the ACM European Conference in Computer Systems

(EuroSys), 2006. 171

[161] S. Smalley and P. Loscocco. Integrating flexible support for secu-

rity policies into the linux operating system. In Proceedings of the

BIBLIOGRAPHY 204

FREENIX Track: USENIX Annual Technical Conference, 2001. 171

[162] S. W. Smith and S. Weingart. Building a high-performance, pro-

grammable secure coprocessor. Computer Networks, 31(8), April 1999.

172

[163] D. X. Song, D. Wagner, and X. Tian. Timing analysis of keystrokes

and timing attacks on SSH. In Proceedings of the USENIX Security

Symposium, August 2001. 119

[164] C. Soriente, G. Tsudik, and E. Uzun. HAPADEP: Human-assisted

pure audio device pairing. In Proceedings of the International Infor-

mation Security Conference (ISC), September 2008. 181

[165] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and

J. Lepreau. The flask security architecture: System support for diverse

security policies. In Proceedings of the USENIX Security Symposium,

1999. 171

[166] F. Stajano and R. Anderson. The resurrecting duckling: Security

issues for ad-hoc wireless networks. In Proceedings of the Security

Protocols Workshop, 1999. 89, 120, 124, 143, 180

[167] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas.

AEGIS: Architecture for tamper-evident and tamper-resistant process-

ing. In Proceedings of the International Conference on Supercomput-

ing, 2003. 147, 171

[168] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making trust be-

tween applications and operating systems configurable. In Proceedings

of the Symposium on Operating System Design and Implementation

(OSDI), November 2006. 52, 170, 185

[169] P. S. Tasker. Trusted computer systems. In Proceedings of the IEEE

Symposium on Security and Privacy, April 1981. 172

[170] W. S. L. R. Team. First half 2005 security trends report. Websense

Security Labs, 2005. 17

[171] Trusted Computing Group. PC client specific TPM interface specifi-

BIBLIOGRAPHY 205

cation (TIS). Version 1.2, Revision 1.00, July 2005. 24, 71

[172] Trusted Computing Group. Trusted platform module main specifi-

cation, Part 1: Design principles, Part 2: TPM structures, Part 3:

Commands, July 2007. Version 1.2, Revision 103. 18, 20, 23, 28, 34,

43, 52, 90, 107, 109, 121, 130, 138

[173] E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of secure

pairing methods. In Proceedings of the Usable Security Workshop,

February 2007. 180, 181

[174] S. Vaudenay. Secure communications over insecure channels based on

short authenticated strings. In Advances in Cryptology (CRYPTO),

volume 3621. Lecture Notes in Computer Science, 2005. 180

[175] M. Čagalj, S. Čapkun, and J.-P. Hubaux. Key agreement in peer-to-

peer wireless networks. In Proceedings of the IEEE (Special Issue on

Cryptography and Security), volume 94, pages 467–478, 2006. 180

[176] S. Čapkun, J. Hubaux, and L. Buttyán. Mobility helps security in ad

hoc networks. In Proceedings of the ACM Symposium on Mobile Ad

Hoc Networking and Computing (MobiHoc), June 2003. 180

[177] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step

towards automated detection of buffer overrun vulnerabilities. In Pro-

ceedings of the Network and Distributed System Security Symposium

(NDSS), pages 3–17, February 2000. 183

[178] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives: Im-

proving SSH-style host authentication with multi-path probing. In

Proceedings of the USENIX Annual Technical Conference, June 2008.

108

[179] D. A. Wheeler. Linux kernel 2.6: It’s worth more! Available at:

http://www.dwheeler.com/essays/linux-kernel-cost.html, Oc-

tober 2004. 30, 113

[180] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and performance in

the Denali isolation kernel. In Proceedings of the Symposium on Op-

http://www.dwheeler.com/essays/linux-kernel-cost.html

BIBLIOGRAPHY 206

erating System Design and Implementation (OSDI), December 2002.

170

[181] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentica-

tion in the Taos operating system. ACM Transactions on Computer

Systems (TOCS), 12(1):3–32, 1994. 173

[182] J. P. L. Woodward. Security requirements for system high and com-

partmented mode workstations. Technical Report MTR 9992, Rev. 1,

The MITRE Corporation, November 1987. 177

[183] T. Wu. The secure remote password protocol. In Proceedings of the

Network and Distributed System Security Symposium (NDSS), Febru-

ary 1999. 179

[184] J. Yang and K. G. Shin. Using hypervisor to provide data secrecy for

user applications on a per-page basis. In Proceedings of the ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments (VEE), pages 71–80, 2008. 170

[185] B. S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon

University, 1994. 172

[186] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Secure pro-

gram partitioning. ACM Transactions on Computer Systems (TOCS),

20(3), August 2002. 52, 185

[187] L. Zhuang, F. Zhou, and J. D. Tygar. Keyboard acoustic emanations

revisited. In Proceedings of the ACM Conference on Computer and

Communications Security (CCS), October 2005. 79

	Title
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 TCB Minimization Infrastructure
	1.2 TCB Reduction for Sensitive User Input
	1.3 Human-Verifiable Authentication
	1.4 Architectural Recommendations

	2 Background
	2.1 Integrity Measurement and Static Root of Trust
	2.2 Late Launch / Dynamic Root of Trust
	2.2.1 AMD Secure Virtual Machine (SVM)
	2.2.2 Intel Trusted Execution Technology (TXT)

	2.3 Attestation
	2.3.1 Certifying Platform Identity

	2.4 TPM-Based Sealed Storage

	3 TCB Minimization Infrastructure
	3.1 Problem Definition
	3.1.1 Adversary Model
	3.1.2 Goals

	3.2 Flicker Architecture
	3.2.1 Flicker Overview
	3.2.2 Isolated Execution
	3.2.3 Multiple Flicker Sessions
	3.2.3.1 TPM Sealed Storage
	3.2.3.2 Replay Prevention for Sealed Storage

	3.2.4 Interaction With a Remote Party
	3.2.4.1 Attestation and Result Integrity
	3.2.4.2 Establishing a Secure Channel

	3.3 Developer's Perspective
	3.3.1 Creating a PAL
	3.3.1.1 A ``Hello, World'' Example PAL
	3.3.1.2 Building a PAL

	3.3.2 Automation

	3.4 Flicker Applications
	3.4.1 Stateless Applications
	3.4.2 Integrity-Protected State
	3.4.3 Secret and Integrity-Protected State
	3.4.3.1 SSH Password Authentication
	3.4.3.2 Certificate Authority

	3.5 Performance Evaluation
	3.5.1 Experimental Setup

	3.6 End-to-End Application Macrobenchmarks
	3.6.1 Stateless Applications
	3.6.2 Integrity-Protected State
	3.6.3 Secret and Integrity-Protected State
	3.6.4 Summary of High-Level Flicker Overheads
	3.6.5 Impact on Suspended Operating System

	3.7 Microbenchmarks
	3.7.1 Late Launch with an AMD Processor
	3.7.2 Late Launch with an Intel Processor
	3.7.3 Trusted Platform Module (TPM) Operations
	3.7.4 Major Sources of Performance Problems

	3.8 Summary

	4 TCB Reduction for Sensitive User Input
	4.1 Overview
	4.1.1 Goals and Assumptions
	4.1.2 User Experience
	4.1.3 Technical Overview

	4.2 Identifying and Isolating Sensitive Input
	4.2.1 Steady-State User Input Protection
	4.2.2 Associating the PreP and Input Device(s)
	4.2.3 PreP State Freshness

	4.3 Input Post-Processing and Attestation
	4.3.1 Post-Processing Sensitive Input
	4.3.1.1 Example Forms of Post-Processing
	4.3.1.2 Activating a PoPr

	4.3.2 Attestation and Verifying Input Protections
	4.3.2.1 Establishing Platform Identity
	4.3.2.2 The Attestation Protocol
	4.3.2.3 Processing Attestation Results

	4.4 The Trusted Monitor
	4.4.1 Feedback for the User
	4.4.2 Protocol Details

	4.5 Security Analysis
	4.5.1 Trusted Computing Base
	4.5.2 Compromised Browser
	4.5.3 Phishing
	4.5.4 Usability

	4.6 Implementation
	4.6.1 Bumpy Components
	4.6.2 Secure Communication with the PreP
	4.6.2.1 PreP Authentication
	4.6.2.2 Symmetric Key Generation for Communication with the PreP
	4.6.2.3 Long-Term State Protection

	4.6.3 The Life of a Keystroke
	4.6.4 The Webserver's Perspective

	4.7 Evaluation
	4.8 Discussion
	4.8.1 Trusted Monitor as Input Proxy
	4.8.2 Bumpy Design Alternatives
	4.8.3 Other Interesting Features

	4.9 Summary

	5 Human-Verifiable Authentication
	5.1 Seeing-is-Believing (SiB)
	5.1.1 2D Barcodes as a Visual Channel
	5.1.2 Pre-Authentication and the Visual Channel
	5.1.3 Device Configurations

	5.2 Bidirectional Authentication
	5.3 Unidirectional Authentication
	5.4 Presence Confirmation
	5.5 Implementation Details
	5.5.1 Series 60 Phone Application
	5.5.2 Visual Channel Bandwidth
	5.5.2.1 Cycling Multiple Barcodes
	5.5.2.2 Tiling Multiple Barcodes

	5.6 Applications of Seeing-is-Believing
	5.6.1 Applications in Trusted Computing
	5.6.2 Seeing-is-Believing and the Grey Project
	5.6.3 Group Key Establishment

	5.7 Security Analysis
	5.7.1 Cryptography
	5.7.2 Selecting an Authentication Channel
	5.7.3 Attacks Against Seeing-is-Believing
	5.7.4 Sticker-based Attacks

	5.8 Summary

	6 Architectural Recommendations
	6.1 Security Properties
	6.2 Overview of Recommendations
	6.3 Launching a PAL
	6.3.1 Recommendation
	6.3.2 Suggested Implementation

	6.4 Hardware Memory Isolation
	6.4.1 Recommendation
	6.4.2 Suggested Implementation

	6.5 Hardware Context Switch
	6.5.1 Recommendation
	6.5.2 Suggested Implementation

	6.6 TPM Support for Flicker
	6.6.1 sePCR Assignment and Communication
	6.6.2 sePCR Access Control
	6.6.3 sePCR States and Attestation
	6.6.4 Sealing Data Under a sePCR
	6.6.5 TPM Arbitration

	6.7 PAL Exit
	6.8 PAL Life Cycle
	6.9 Expected Impact
	6.10 Extensions

	7 Related Work
	7.1 Isolation
	7.2 Attestation and Trusted Computing
	7.3 Protecting User Input and Output
	7.3.1 Mobile Devices
	7.3.2 Secure Window Managers

	7.4 Browser Security
	7.5 Authentication without Prior Context
	7.5.1 Barcode Recognition with Camera Phones

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work
	8.2.1 User Studies
	8.2.2 Automatic Privilege Separation
	8.2.3 User-Observable Verification

	Bibliography

