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Abstract

As commercial microprocessors become increasingly popu�
lar in current MPP architectures� high�performance com�
mercial workstations have also received increased attention
as cost�e�ective building blocks for large parallel�processing
systems� The Fast User�level Network �FUNet� project ���	
is an attempt at constructing an inexpensive workstation�
based parallel system capable of supporting e
cient ex�
ecution of message�passing parallel programs� Based on
MIT�s Arctic ��	 network technology� FUNet connects stock�
con�gured commodity workstations with a high�bandwidth
packet�switched routing network� The Fast User�level Net�
work Interface �FUNi� is the custom hardware network
interface device that provides access to FUNet for both
message passing and remote direct�memory�access �DMA�
block transfers between parallel peer processes on FUNet�
connected workstations� The FUNi hardware mechanisms
allow direct low�overhead user�level accesses to FUNet while
maintaining secure and transparent sharing of FUNet among
multiple parallel applications� FUNi can be realized as SBus
peripheral cards to allow compatibility with a variety of
workstation platforms� The relaxed clock speed ��MHz
max�� of SBus allows FUNi to be inexpensively imple�
mented using FPGA parts that are synthesized from de�
signs captured in Verilog Hardware Description Language
���	� SBus�s Direct Virtual Memory Access �DVMA���	 also
assists FUNi in overcoming the performance limitations im�
posed by existing workstation designs� Simulation results
have shown that FUNet with FUNi� when coupled with
latency�hiding software techniques� is e�ective in supporting
�ne�grained parallel processing on a workstation cluster�

� Introduction

In a cluster of workstations connected by a traditional
LAN� the scalability and granularity of parallel processing
are heavily restricted by the cost of interprocessor com�
munication� The Fast User�level Network �FUNet� ���	 is
an attempt at constructing an e
cient workstation�based
message�passing parallel system by augmenting a LAN�
connected cluster with an additional high�performance user�
level communication network suitable for parallel computa�
tion� By providing the means for low�overhead interworksta�
tion communication� we are able to leverage the engineer�
ing e�ort of the workstation industry to construct a low�
cost workstation�based parallel system that can rival exist�
ing MPP architectures in speedup and performance�

The bene�t of these inexpensive� fully engineered� high�
performance commercial workstations comes at the cost of
the �xed� pre�de�ned hardware con�guration� Thus� al�
though FUNet is able to carry over existing MPP routing
and interconnecting technology directly� the design of the
Fast User�level Network Interface �FUNi� requires careful re�
thinking to accommodate the constraints of stock hardware�
Namely� FUNi needs to deal with the lack of a speci�cally de�
signed� tightly coupled interface to the microprocessor� The
network interface for a workstation must be relegated to a
memory�mapped device in an existing peripheral slot on the
memory or even the backplane I�O bus� The long latency
of accessing such a network interface device could have a
strong impact on the cost of interprocessor communication
and� therefore� on the e
ciency of parallel execution�

This paper describes FUNi and provides the rationale for
its design� Section  describes the message interface model
which FUNi uses and explains how it helps to cope with limi�
tations of commercial hardware� Section � describes features
of FUNi for supporting time sharing of the processor and
network resources� Section � presents FUNi�s interface and
datapath design in more speci�c detail� Section � evaluates
the performance of a FUNet parallel cluster by comparing
a simulated FUNet cluster with a contemporary massively
parallel computer� CM��� Section � discusses other related
work in network interface design for workstation�based par�
allel processing� This paper concludes with Section ��

� Network Interface for Stock Workstation

Interprocessor communication incurs cost � extra processor
cycles � due to communication overhead and latency� To
send an interprocessor message� the processor must spend
overhead cycles to compose the outgoing message and make
the message available to the network� A similar overhead is
also incurred on the receiving processor to receive the incom�
ing message into computation� Communication latency can
lead to extra idle processor cycles if the computation thread
depends on a pending incoming message� To achieve �ne�
grain parallelization where communication and synchroniza�
tion are frequent� the e�ects of both overhead and latency
must be minimized�

��� Design Objective� Minimizing Communication Over�
head

Communication latency is less dependent on the network
implementation� For example in a common scenario where



one processor requests for a remote fetch� the latency of the
fetch is a function of how soon the data actually becomes
available on the remote processor and how fast the remote
processor processes the request� The round�trip transit la�
tency of the request and reply messages on the network is
negligible by comparison� The software component of com�
munication latency not only tends to be large but is also less
predictable� Fortunately� split�phased transactions �	 can
allow us to tolerate the e�ects of communication latency by
overlapping the communication with useful computations�
Instead of stalling for the requested data� a processor could
perform other independent computations and continue the
thread requesting the data only when the fetch has been
satis�ed� Thus� communication latency� a software problem
with a software solution� is the less important factor in the
network interface design�

Communication overhead� on the other hand� is heavily
dependent on the network and the network interface design�
Communication overhead steals real processor cycles from
useful computations� If the communication overhead is not
kept minimal� processor utilization will degrade in �ne�grain
parallel programs because the overhead cycles overwhelm
the relatively short computation threads� Unfortunately�
there is no simple way to mask the e�ects of communication
overhead� Thus� the key design goal of FUNi is to minimize
� within the design space allowed by existing workstation
architectures � the processor overhead of sending and receiv�
ing interworkstation messages� even at the cost of increased
latency�

��� Shortcoming of Memory�Mapped Network Interface

As mentioned previously� a network interface for stock work�
stations can only communicate with the processor through
a bus� A straightforward message�passing interface could be
implemented as memory�mapped registers such as in CM��
���	� or as a packet�sized array of memory�mapped regis�
ters as suggested by Joerg and Henry ��	 �Figure ��� These
interfaces are passive devices that only respond to the pro�
cessor�s direct manipulation through memory�mapped op�
erations� A user program composes an outbound packet by
writing the content of the packet� with its header� to the reg�
isters through memory�mapped writes� The content of the
register or the register array is formatted as a packet and en�
queued into the outbound network bu�er� Conversely� user
processes can receive and read an inbound packet in the re�
ceive registers by memory�mapped reads� Without speci�c
provision to speed up the memory�mapped access path in
stock workstations� the long latency � typically on the order
of tens of cycles per access � to reach the network interface
quickly adds up to tremendous overhead cycles when sending
or receiving a message� This e�ect is especially noticeable in
the contemporary RISC microprocessor design whose mem�
ory system is optimized for cached memory accesses�

��� Active Network Interface Device

As an active device with DMA capability� FUNi logically
extends the register array and the network bu�ers into
the user�s virtual memory space� Figure  illustrates this
idea� In the memory�mapped designs described in the pre�
vious section� a user enqueues an outbound packet� through
memory�mapped writes� into the hardware network bu�er
directly� and the network interface locates pending outbound
packets by dequeuing them from the hardware bu�er� A

similar e�ect can be achieved with software enforced circu�
lar queues allocated in the user�s virtual memory space and
jointly maintained by the user program and FUNi� Instead
of enqueuing into the hardware bu�er through memory�
mapped writes� the user process would enqueue the out�
bound packet into the head of a circular queue in user�s
virtual memory� FUNi would then retrieve the pending out�
bound packets from the tail of the circular queue by DMA�
A similar transformation can also be made for the receive
registers and inbound network bu�er�

Moving the messaging interface into the memory sys�
tem has the bene�t of decoupling the processor overhead
of communication from the bandwidth and latency of ac�
cessing a memory�mapped network interface device� Long
latency memory�mapped accesses by the processor are re�
placed by normal memory accesses that are supported by
caching techniques� The user process can enqueue and de�
queue outbound and inbound packets at its own rate in�
dependent of the bandwidth that is available to FUNi� In
addition to reducing messaging overhead� extending the net�
work bu�ers into the user memory space also allows for a
much greater bu�ering capacity than in hardware because
we are no longer constrained by the context switch over�
head associated with the large hardware states� Regardless
of the bu�er size� the amount of FUNi hardware states that
needs to be context switched is �xed� The logical size of the
bu�ers can be arbitrarily enlarged in the paged virtual mem�
ory� This provides the bu�er size necessary for the program
execution to tolerate the possibly irregular network tra
c on
our highly distributed parallel system in which �ne�grained
coordination of peer processes is di
cult�

� Hardware Support for Time Sharing

FUNet is designed to allow multiple parallel applications to
time�share the network and processor resources while pro�
viding each application the illusion of a private and reliable
network� The primary concern with network security is the
privacy of communication which is maintained through au�
tomatic tagging of network packets� Another concern in
sharing is gross performance degradation� or even deadlock�
of the network by a single participant� This issue is ad�
dressed in FUNet by the Acknowledgment�Retry End�to�
End Flow Control Protocol carried out by FUNi�

��� Network Privacy and Authenticity

With di�erent application contexts sharing various parts
of the FUNet resources� we need to have a mechanism to
prevent one application context from accidentally� or con�
sciously� seeing the private communication of another con�
text� Similarly� an application context must not be able to
falsify a delivery to another context� To avoid the high over�
head cost of system calls� protection and authentication of
user�level communications are enforced by the FUNi hard�
ware�

For each parallel application on FUNet� the operating
systems on all participating nodes of FUNet collectively as�
sign a unique Group Identi�er �GID�� When the process of
a parallel application is switched in on a workstation� the
operating system makes the corresponding GID available to
FUNi� During the time�slice of the process� every outbound
packet is automatically tagged with the GID� When the
packet arrives at its destination� the receiving FUNi com�
pares the GID tag of the inbound packet against the local
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GID� The inbound packet is delivered to the executing pro�
cess only if a match is made� In the case of a mismatched
GID� indicating the correct receiving process is not presently
executing� the inbound packet is not delivered� Under the
�ow control protocol of FUNet� FUNi will drop the unde�
liverable packet and return a negative acknowledgment to
the packet�s originator� Thus� a process is only able to com�
municate with its cooperating peer processes of the same
application whom all share the same application GID�

��� Acknowledgment�Retry End�to�End Flow Control

An Acknowledgment�Retry End�to�End Flow Control Pro�
tocol� a simpli�cation of Selective Repeat Protocol ���	� is
carried out by the FUNi hardware transparently from user
programs� When FUNi absorbs an inbound packet from
the network� it needs to return an acknowledgment to the
originating FUNi� If FUNi accepts the packet� a positive ac�
knowledgment is sent back to acknowledge the acceptance�
If FUNi cannot accept the packet for any reason� a nega�
tive acknowledgment needs to be returned to the originating
FUNi to request a retry� The originating FUNi is responsible
for bu�ering each of its outbound packets until the packet
is accepted and positively acknowledged�

With the ability to reject incoming packets� FUNi at each
node can continuously absorb packets from the network even
with only �nite storage� Because network packets are con�
tinuously absorbed� the network will neither deadlock nor
block regardless of the individual behavior at each node�
FUNi can never be indirectly blocked from communication
by other misbehaving communication pairs� A FUNi can
only be denied from sending if its own receivers are not ac�
cepting the inbound packets� thus causing the sending FUNi
to run out of bu�ering resources for outbound packets that
are pending delivery� Thus� this mechanism also serves as
an automatic rate control for throttling network activities of
over�active sending processes� preventing them from swamp�
ing other processors with messages�

� FUNi

FUNi will be implemented as peripheral cards for SBus ��	�
The SBus card is chosen as the target FUNi implementa�
tion primarily for the SBus�s DVMA �Direct Virtual Mem�
ory Accesses� feature that is crucial to FUNi�s programming
interface� The ease of implementation is also a major consid�
eration that stood in favor of the SBus� The SBus compat�
ibility also allows FUNi to work directly in a wide range of
SBus�equipped commercial workstation platforms� The im�
plementation of custom logic on the FUNi card abandons the
traditional schematic capturing process� Instead� designs
will be entered in Verilog Hardware Description Language
and compiled into the appropriate netlists by Synopsys HDL
Compiler� The current plan calls for implementation using
the Xilinx ���� Family of Field Programmable Gate Ar�
rays �FPGA� ���	� The reprogrammability of the FPGA
�rmware will allow rapid revisioning of the FUNi hardware
during the hardware development and future studies� This
section starts by describing the FUNi messaging interface
and then describes the hardware datapath that implements
this interface�

��� FUNi Messaging Interface

To achieve the goal of minimizing communication overhead�
user processes are given direct control of FUNi when pos�
sible� User�level processes directly invoke FUNi to send
and receive packets in a message�passing style of com�
munication� FUNi also provides a facility for a DMA�
style virtual�memory�to�virtual�memory block transfer be�
tween workstations� The payload length of message�passing
packets can vary from � to � ��bit words� �Memory�
to�memory data transfers can occur in burst sizes vary�
ing from � to � words�� Aside from allowing �� user�
de�ned packet types� the network interface also supports
two hardware�enforced packet priorities� reply and request�
for constructing deadlock�free communication protocols in
user programs� FUNi�s sending and receiving mechanisms
always give precedence to packets with reply priority� All
packet types and priorities are available in both message�
passing communications and DMA transfers�

����� Interface Registers and Packet Queues

User� and system�level processes control the operation of
FUNi by reading and writing to FUNi�s internal control
registers through memory�mapped accesses� However� the
sending and receiving interface is based on a set of software�
enforced circular packet queues jointly maintained by the
user program and FUNi� Two sets of send and receive
queue pairs are provided� one for each packet priority� The
queues are logically divided into ��word packet slots� A
set of memory�mapped registers� containing the head index�
tail index and base address� is associated with each circular
queue� Figure � depicts FUNi�s message sending and re�
ceiving interface in a user�s virtual memory space� There is
an additional register that speci�es the size of the circular
queues�

For each queue� the user software controls one end of the
queue� and FUNi controls the other end� The user process
assumes the role of the producer on the send queues and
the consumer on the receive queues� FUNi performs the
exact opposite� The two parties rely on the memory�mapped
head and tail index registers to relay information about the
indices� The producer of the queue uses one register to pass
the head index to the consumer so the consumer knows how
far to proceed in the queue� The consumer uses another
register to pass the tail index to the producer so the producer
knows which slots are freed� The circular queues rely on
the standard convention of head and tail indices� The head
index points to the next free slot for enqueuing a new packet�
The tail index points to the next occupied slot to dequeue
from� A queue is empty when both the head index and the
tail index point to the same slot� A queue is full when the
head is logically immediate before the tail�

Before interfacing with FUNi� a user program �rst needs
to allocate memory space for sending and receiving queues
and then initialize FUNi with the starting addresses and
the size of the queues� After initialization� it is possible for
the software to switch to a new or larger packet queue by
updating the appropriate control registers� Once initialized�
FUNi will be able to deliver inbound network packets to the
receive queues and retrieve outbound network packets from
the send queues for transmission�

�
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����� Receiving Operations

When a packet arrives from the network� the network in�
terface will use DVMA to append the packet to the one of
the two receive queues according to the packet�s priority� To
enqueue a packet� the network interface �rst compares the
content of the tail and the head index registers to prevent
over�ow� Then the content of packet is stored sequentially
into the tail slot of the queue� Once the packet is completely
stored� the network interface will increment the head index
register� The network interface is allowed to perform DVMA
upon packet arrival until the queue for that particular packet
type becomes full� At that point the network interface must
reject further incoming packets of that type�

The user process can detect the presence of an unreceived
incoming packet by comparing the head and tail indices of
the receive queue� When an unreceived packet is found� the
user program �rst extracts the packet length from the packet
header located at the �rst word of the packet slot pointed to
by the tail index� Then the correct number of words from the
packet can be read from the successive addresses following
the header word� After the packet�s content is received� the
program needs to release the slots occupied by the packet
by incrementing the content of the tail index register�

����� Sending Operations

For sending packets� FUNi and the user process exchange
roles as producer and consumer� FUNi uses the contents of
the head and tail index registers to determine and locate
pending outbound packets in the user send queues� FUNi
will attempt to retrieve and transmit the pending packets
from the user send queues whenever possible� Thus to send a
packet� the program composes the packet in the next avail�
able slot at the head of the appropriate packet queue� A
packet header� containing the logical destination address�
packet length� packet type� is written to the �rst word of
that packet slot� The packet payload is stored to the succes�
sive addresses following the packet header� After composing�
the user process increments the content of the head index

register to make the current packet slot visible to FUNi for
transmission�

����� Message�Passing plus Memory�to�Memory

With a passive network interface� performing a block mem�
ory transfer requires the sending process to explicitly copy�
in verbatim� each byte of transfer from the source to the in�
terface� Similarly� the receiving process must later explicitly
copy� in verbatim� each byte from the interface to the des�
tination location� The active FUNi device is extended with
a remote DMA transfer feature to eliminate the data move�
ment overhead on both the sending and the receiving nodes�
The user program only needs to enqueue a header that spec�
i�es the location and length � to � words� of the transfer
block� FUNi will compose the transfer packet directly from
its source� Similarly� FUNi can use DMA to write the data
from inbound transfer packets directly to their destination
location� This DMA�style remote block transfer will signi��
cantly reduce the overhead cost of bulk data transfer�

��� FUNi Datapath

The FUNi datapath can be divided into seven principal
blocks� SBus Interface� FUNi Core Module� Route Table
RAM�s� Undelivered Packet Cache� Synchronization FIFO
Group� Router Interface� and Di�erential Transceivers� Fig�
ure � diagrams the high�level datapath of FUNi�

����� SBus Interface

The FUNi SBus card will be both a master and a slave device
on the SBus� The FUNi card behaves as a slave device in
response to memory�mapped accesses from the CPU� FUNi
assumes the role of a master device to perform DVMA to
access the user�s packet queues� An o��the�shelf L�����A
SBus DVMA Controller ���	 from LSI Logic will provide
both interfaces on the FUNi card�
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����� FUNi Core Module

The FUNi Core Module contains three �nite�state�machine
controllers that coordinate packet movements through
FUNi� This module will be partitioned� according to the
subunit boundary� for implementation as a ��FPGA chip set�
The Retrieval Unit is responsible for retrieving the pending
outbound packets from the user�s two send queues in mem�
ory into the Undelivered Packet Cache� and the Dispatch
Unit is responsible for scheduling sends and retries of the
outbound packets� The Dispatch Unit is also responsible
for processing acknowledgments and maintaining the book�
keeping information for the Acknowledgment�Retry Flow
Control Protocol� The Delivery Unit is responsible for deliv�
ering inbound packets to the user�s receive queues in mem�
ory� The FUNi Core Module also contains sixteen ���bit
memory�mapped FUNi status and control registers� These
registers are used to specify information about the software
packet queues and control the behavior of FUNi�

����� Undelivered Packet Cache

The multi�context Undelivered Packet Cache� implemented
with dual�ported RAM� bu�ers outbound packets until they
are positively acknowledged by their recipients� The Re�
trieval Unit retrieves pending outbound packets from the
send queues in user memory into this cache� The usage of
the cache is managed by the Dispatch Unit� The cache is
multi�contexted so cached packets do not need to be �ushed
between context switches�

����� Route Table RAM�s

In the FUNi programming model� remote workstations are
named by abstracted integral node ID�s� Before a packet is
transmitted� the integral destination ID in the packet header
needs to be converted into the corresponding route bits that
the network routers understand� The content of the route
table is loadable by the operating system� This gives the
operating system the ability to individually determine� for
each workstation� who and where its peer workstations are�

Thus� it is possible to partition a cluster into non�interfering
sub�clusters for more �exible usage� Individual node can
also be remapped or excluded for fault tolerance or load
balancing�

����	 Synchronization FIFO Group

The Synchronization FIFO Group is made up of four hard�
ware uni�directional FIFO�s� each allowing independent
asynchronous enqueue and dequeue operations� The clock�
ing isolation provided by the FIFO�s allows the Arctic net�
work to operate at its own maximum clock rate despite the
maximum � MHz SBus clock limit imposed on the SBus
end of FUNi� The clocking isolation also allows workstations
with di�erent SBus speeds to connect to the same network�

The Send FIFO and Acknowledgment FIFO are two
small FIFO�s of � and � bits wide respectively� The depth of
the FIFO�s is bounded by the number of Undelivered Packet
Cache lines available for each context� The Dispatch Unit
schedules a packet for transmission by enqueuing a request
into the Send FIFO� The Router Interface Module forwards
returned acknowledgments to the Dispatch Unit through the
�ve�bit wide Acknowledgment FIFO�

When the Router Interface Module receives a data
packet� the packet is �rst enqueued into one of the two hard�
ware receive bu�ers according to the packet�s priority� Two
bu�ers are required to bu�er reply and request packets sep�
arately because higher priority reply packets must not be
blocked by request packets� The depth of the bu�ers is not
important since the user receive queues in memory provide
the main bu�ering� However� since the bandwidth at which
the Delivery Unit can move packets out of FUNi is slower
than the bandwidth of the network� the hardware bu�ers
do need to have some bu�ering capacity to handle a mo�
mentary pile up of inbound packets� The Router Interface
Module will reject subsequent inbound packets when these
bu�ers are full�

�



����
 Router Interface and Di�erential Transceivers

The Router Interface Module has three tasks� First� the
Transmitter and Input Port Bu�ers of the interface imple�
ment the necessary handshake with Arctic to transmit and
receive packets on the network� Second� the Network Packet
Preprocessor in the interface participates in the Acknowl�
edgment�Retry Flow Control Protocol by deciding whether
a network packet can be accepted and returning the appro�
priate acknowledgment packet� Lastly� the Transmit Sched�
uler coordinates the sharing of the transmitter between the
data tra
c from the Undelivered Packet Cache and the ac�
knowledgment tra
c from the Network Packet Preproces�
sor�

	 FUNet Cluster Performance Evaluation

This section assesses the quality of the network interface de�
sign� This assessment is based on two benchmark programs
executed on a simulator of a hypothetical FUNet system�
We �rst describe the simulator to establish con�dence in
the results of the experiments� Next� we explain the two
benchmark programs and analyze the results of the simula�
tions�

	�� The FUNi Simulator

The simulator is based on the PROTEUS ��	 simulation en�
gine that allows rapid development of event�driven simula�
tors of parallel architectures� The PROTEUS simulation
engine is a collection of C source �les for an abstracted core
system of a simulator� The FUNet simulator is created by
incorporating a custom simulation of FUNi and FUNet into
the PROTEUS simulation engine�

	���� Processing Nodes� �� MHz SPARCstation�

The cycle�counting data in our version of the PROTEUS en�
gine is derived from the SPARCstation� For our simulation�
we assign �� MHz as the clock rate of our simulated process�
ing nodes� PROTEUS uses an optimistic model for the in�
struction execution on a single�issue SPARC microprocessor
that is fully pipelined� Instruction fetches are assumed to al�
ways hit in the instruction cache� and interlocks due to data
dependency are ignored� Thus� all arithmetic and logical
instructions� both scalar and �oating�point� contribute only
one cycle to the total cycle count� Flow control instructions
take two cycles� but the second cycle is a delay slot that can
be occupied by another instruction� PROTEUS does not ac�
count for the e�ect of data caching� Cache hits are assumed
for all normal memory accesses� Thus� all load and store in�
structions are considered single cycle instructions� with the
exception of load�double�word which takes two cycles�

To accurately emulate the interaction between the CPU
and FUNi� details about memory�mapped I�O and bus
transactions are incorporated into our simulation� A
memory�mapped read latency is approximately � CPU cy�
cles �derived from experimental results�� plus any additional
cycles for acquiring the bus� The simulator assumes the
CPU will bu�er the memory�mapped writes� and thus� a
memory�mapped write contributes only two cycles to the
program execution� Loads and stores to the user�s send and
receive queues are treated as cache misses and their latency
and e�ect on bus contention are accounted for�

	���� Programming Environment

User applications are coded in a superset of the C pro�
gramming language� The FUNet cluster maintains a MIMD
message�passing programming model� When the simula�
tor starts at time zero� a process is created on each simu�
lated node� and all started processes begin execution at the
main�� procedure of the user application� During the par�
allel execution of the application� peer processes can com�
municate explicitly with each other through FUNi� In our
e�ort to assess the e�ectiveness of the FUNi design� we ig�
nore the e�ect of time sharing� The benchmark programs
are executed alone without interference from other applica�
tions�

	���� Physical Network� Hypercube Arctic Hub

The FUNet cluster simulator incorporates a custom network
simulation for a hypercube direct�routing network based on
Arctic� The operation of the Arctic network is accurately
depicted in the simulation� The network is simulated at the
estimated network clock rate of � MHz� An hypothetical
��by�� Arctic router is simulated with three bu�ers at each
input section� with one reserved for high priority packets�
The �ow�through latency of the simulated Arctic is six net�
work cycles� The transfer bandwidth through an established
path is two ���bit halfwords per network cycle� The wire de�
lay between the routers is one network cycle�

	�� FUNi

FUNi hardware events are accurately accounted for in terms
of latency and resource utilization� The simulator supports
the full programming interface de�ned in ���	� User pro�
cesses access FUNi�s internal control registers through sim�
ulated memory�mapped reads and writes� The simulated
FUNi uses DVMA accesses in bursts of �� � or � words
to access the user memory� The DVMA bus transactions
are sequentialized with bus transactions from the CPU� Fif�
teen bus cycles are allotted for the bus transaction overhead
�not including the cycles to acquire the bus�� and a transfer
bandwidth of one ��bit word per two cycles is used in the
simulation�


 Benchmark and Analysis

Two benchmark programs based on University of Califor�
nia at Berkeley�s version of the Connection Machine Active
Message �CMAM� communication library ���	 were executed
on a FUNet simulator to evaluate FUNet and FUNi� The
CMAM library was ported to the FUNet cluster by rewriting
the low�level primitives that dealt with the network inter�
face directly� A few extensions were made to the original
CMAM library to take advantage of the features of FUNet
and FUNi� A new set of primitives that supports single�
packet active messages with up to twenty arguments was
added� A new set of data transfer primitives was also added
to take advantage of FUNi�s low�overhead remote DMA data
transfer� A description of the benchmarks is presented be�
low� followed by the results of the experiments�


�� CMAM Primitives Benchmark

The �rst benchmark is used to quantify the performance
of FUNi� Instead of measuring idealistic raw throughput

�



Active Message Passing Primitives
send tp send ovhd recv tp recv ovhd round�trip

usec cyc usec cyc usec cyc usec cyc usec cyc
FUNiAM � ��� ����� ��� ����� ��	 ����� ��� ����� ���
 ���
��
FUNiAM reply � ��� ����� ��� ���� ��� ����� ��
 �
���
CMAM � ��� �
�	 ��� ���� ���� �����
CMAM reply � ��� ���� ��� ����

Block Data Transfer Primitives
send tp send ovhd recv tp recv ovhd

MB�s cyc MB�s cyc MB�s cyc MB�s cyc
FUNiAM xfer � ��� ����� ��� ����� ��� ����
 ��	 �����
FUNiAM reply xfer � ��
 ����� ��	 ����	 ��� ����� ��
 �����
FUNiAM mfer n �
�� ���� ���	 ���� 	�� ���� ���� ����
FUNiAM reply mfer n ��� ���� ���� ���� 	�
 �
�� ���� �
��
CMAM xfer � 	�� 	��� ��� ���

CMAM reply xfer � ��� ���� �
�
 ����

Shared Memory Library Calls
read i read d write i write d

usec cyc usec cyc usec cyc usec cyc
FUNiAM  �
�	 ���	�� ���
 ������ �
�� ��
��� �
�� ������
CMAM  ���	 ��
�� ���� ��
�� ���� ����� ���� ����	

i ovhd i lat �� ovhd �� lat
usec cyc usec cyc usec cyc usec cyc

FUNiAM get  ���� ����	 �
�� ��
��
 �
�
 	�	�� ���� ���	��
FUNiAM put  ��� ����� �
�� �����

CMAM get  ��� ����� ���� ����
 ���� ����� �
�� �	���
CMAM put  ��
 ���	 ���� �����

Table �� Performance Comparison between CMAM and FUNet Active Message Library Primitives

by sending and receiving meaningless messages� we measure
the performance of FUNi when coupled with the CMAM li�
brary� The benchmark suite that is included in the CMAM
library distribution has been adapted for FUNet�s ported
version of the CMAM library� The adapted CMAM primi�
tive benchmark suite is executed in a ��node FUNet cluster
simulation� For reference� a similar suite is also executed on
� nodes of CM��� A subset of the result is shown in Table ��

The �rst section of the table presents the results of the
active message primitives in the CMAM library� For each
primitive� �ve parameters are measured� The send and re�
ceive throughput time measures the total time required for
a node to send or receive an active message to other nodes�
The send and receive overhead measures the execution time
of the corresponding primitives on the CPU� The �nal col�
umn of this section shows the round�trip time of a request�
priority active message and a returning reply�priority mes�
sage� The next section of the table presents the results from
the data transfer primitives� The last section measures the
performance of a high�level communication library that im�
plements a shared�memory coherence protocol in software�

In general� the results reveal that� as expected� FUNi
performs much worse in terms of bandwidth and latency
when compared to CM��� However� FUNi�s communication
overhead in processor cycles is within a factor of two to
four of CM��� �Note� FUNi�s version of the CMAM prim�
itive is coded in C and compiled by GCC with optimization
o� due to peculiarity of the PROTEUS simulator� Over�
head can be further reduced by hand crafting the primitives��
Furthermore� when coupled with the larger packet size and
the DMA feature of FUNi� the extended CMAM primitives
perform competitively with their CM�� counterpart in all
respects�


�� Matrix Multiply

This particular version of matrix�multiply is taken from von
Eiken et al� ���	� The example is well suited for a FUNet
cluster because the algorithm pipelines each remote fetch
with computations on previously fetched data� The overlap�
ping of communication delay with useful computations hides
the e�ect of FUNi�s relatively high communication latency�
Two experiments were performed with the matrix multiply
program� The �rst experiment is designed to demonstrate
that a FUNet cluster can achieve good CPU utilization de�
spite its relatively low bandwidth and high latency� The sec�
ond experiment demonstrates the scalability of the FUNet
system� For each experiment� three runs are made� One run
is made on a CM�� using UC Berkeley�s version of CMAM
library� Next� a run is made on the FUNet cluster using
an identical version of matrix multiply as the one used for
CM��� Finally� another run is made on the FUNet cluster�
this time allowing the use of the FUNet extensions to the
CMAM library for improved performance� By comparison�
we are able to demonstrate that by overlapping communica�
tion latency with useful computation� the lowered overhead
of communication enables the FUNet cluster to achieve com�
parable processor utilization and scalability as a successful
contemporary MPP system�


���� Latency Hiding and Overhead Amortization

This experiment was performed by von Eiken� et al� for
CMAM on a ���node CM�� ���	� The experiment is scaled
down for execution on a ��node FUNet simulator� In the
di�erent trials� the dimensions of the matrices are varied to
control the ratio of computation versus communication while
maintaining the total number of �oating point operations�
Figure � plots the results of the experiment� The Y�axis
represents the percentage of CPU utilization in each run�
and the X�axis marks increased ratio of computation versus

�
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communication� Comparing the curves� we see that FUNet
exhibits normalized behavior similar to CM��� In all cases�
processor utilization quickly approaches optimal�


���� Scalability

In this next experiment� square matrix multiplies of increas�
ing dimensions are carried out on systems of varying size to
determine the scalability of the FUNet cluster� Figures �� ��
and � plot the result frommultiplying two square�matrices of
���by���� ���by��� and ���by���� respectively� In Fig�
ure � for square matrix multiply of dimension ���by���� all
three curves break from linear speedup because the problem
size is simply too small for the computation to amortize the
communication overhead on larger systems� In Figure � and
Figure � for larger square matrix multiplies� we begin to see
an improvement in the linearity of speedup in all cases as
problem size is increased�

 Related Work

PVM ��	 and Linda ��	 are examples of software systems that
enable parallel processing on a cluster of workstations using
existing LAN facilities� Interworkstation communication is
accomplished through interface routines implemented over
existing Unix interprocessor communication and network�
ing facilities� These systems have the advantages of not
requiring additional hardware� However� the scalability and
granularity of parallel processing are restricted by the over�
head of communication�

The high communication overhead has been attributed
to the poor implementations of transport and network pro�
tocols ��	� Afterburner ��	 combines hardware and software
techniques to improve the performance of TCP�IP com�
munications� The Afterburner project investigated several
software techniques for reducing redundant data movement
in the TCP�IP protocol and implemented an accompany�
ing network�independent network interface card for HP se�
ries ��� workstations� For packets in the KByte range� they
have shown signi�cant improvement over traditional imple�
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mentations�
Nevertheless� these communication facilities involving

operating system calls and heavyweight protocols fail to ad�
dress the needs of �ne�grain parallel processing� The in�
terprocessor communication in �ne�grain parallel processing
occurs in frequent and small�size messages� The communica�
tion overhead must be further minimized by giving the user
processes direct control of the network interface� These low�
overhead user�level network interface designs can be found
in many contemporary MPP architectures ��� ��	� However�
these designs typically involve the support of custom system
or CPU design�

In most contemporary workstation designs� the RISC mi�
croprocessors are optimized for cached accesses while the
bus architectures are optimized for blocked transfers� The
network interface design must take these constraints into ac�
count and use the available features to its advantage� FUNi
uses the DVMA feature of the SBus to replace the costly
memory�mapped accesses� The SHRIMP multicomputer
project ��	 speci�es another user�level network interface
that involves the memory system to reduce the communica�
tion overhead in a constrained environment� The SHRIMP
network interface is designed for a network of Pentium PC�s
with Xpress Bus and EISA bus� Communication between
any two PC�s is accomplished by mapping the virtual mem�
ory of one PC into the other� The network interface on the
source PC snoops the bus for writes into the mapped area of
memory and automatically formats an outbound packet to
the target PC associated with that memory location� The
target network interface delivers the message to the corre�
sponding mapped area of memory with DMA�

� Conclusion

In an attempt to design a network interface that would
retro�t commercial workstation hardware� our design space
was limited� By relying on split�phased transactions to tol�
erate network latency� we focused on minimizing commu�
nication overhead in the FUNi design� even at the cost of
increased latency� The result is a network interface based
on software circular queues and an active network interface
device with the ability to directly access these queues in the
virtual memory� Based on the preliminary simulation� by
keeping the overhead low� a FUNi�equipped FUNet cluster
is able to successfully execute a relatively �ne�grained paral�
lel program with good performance and scalability� despite
the moderately long communication latency�

We believe we have produced a satisfactory design that
supports e
cient and scalable �ne�grained message�passing
on a cluster of workstations and other platforms where long
network access latency needs to be tolerated� However� in
the long run� no network interface design� if constrained by
the bus bottleneck� will be able to keep up with future mi�
croprocessors� communication demands� Future generations
of microprocessors and workstations need to facilitate par�
allel processing by incorporating a tightly coupled network
interface as an integral part of their design�
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