
Quantifying the Benefits of Dynamic Partial
Reconfiguration for Embedded Vision Applications

Marie Nguyen, Robert Tamburo, Srinivasa Narasimhan, James C. Hoe
Carnegie Mellon University
Pittsburgh, Pennsylvania

Abstract—Dynamic partial reconfiguration (DPR) allows parts
of an FPGA to be reprogrammed at runtime (i.e., repurposed).
Though DPR has been supported by commercial devices and tools
for more than a decade, it has been underutilized, perhaps, due
to a shortage of demonstrated use-cases and quantified benefits
over static FPGA mapping (without DPR). In this paper, we
quantify the benefits of dynamic FPGA mapping (with DPR)
over traditional static FPGA mapping for two vision applications
deployed on systems with area/device cost, power or energy
constraints (i.e., smart car and smart robot). In both applications,
the FPGA needs to accelerate multiple tasks at 60 fps. However,
all tasks are not required at the same time. In this work, instead
of mapping all tasks statically on a large FPGA, the set of tasks
needed at a given time is (1) repurposed on a smaller FPGA and
(2) still meets the functional and performance requirements (i.e.,
60 fps). In the two application examples, we show that dynamic
mapping on smaller FPGAs reduces logic resource utilization by
up to 3.2x, device cost by up to 10x, and power and energy
consumption by up to 30% in comparison with static mapping
on larger FPGAs. These benefits are crucial for applications
deployed on systems where reducing area/device cost, power and
energy is as important as meeting performance requirement.

I. INTRODUCTION

Motivations. Current embedded real-time vision applications
need to support many tasks, and are deployed on systems
with stringent area/device cost, power and energy constraints.
In cost-constrained systems (e.g., smart automotive systems),
minimizing manufacturing costs (area/device cost and power/-
cooling cost) to maximize profit margin is a first-order priority.
In energy-constrained systems that operate on batteries (e.g.,
robotic systems), energy savings are crucial to prolong bat-
tery life and system operation. For these systems, reducing
area/device cost, power or energy is as important as meeting
performance requirement.

Due to their power/energy efficiency, FPGAs have been
increasingly used to accelerate embedded real-time vision
applications. Figures 1 and 2 show two examples of vision
applications with cost or energy constraints deployed on an
FPGA. In both applications, the FPGA needs to support many
tasks at 60 fps. However, all tasks are not needed at the
same time. In the interactive application example deployed on
an automotive Headlight system (Figure 1), the tasks needed
at a given time are requested by the user depending on the
environment (city vs highway & day vs night) which changes
infrequently (from minute to hour range). In contrast, in the
navigation application example deployed on a robotic system
(Figure 2), the task needed may change very frequently (every
tens of milliseconds) depending on the number of objects

Fig. 1: Example of an interactive application deployed on an
automotive Headlight system [1]. The tasks needed (in red)
are requested by the user based on the environment (city vs
highway & day vs night) which changes infrequently. Each
task is accelerated by one module (in parenthesis) except for
the glare-free task.

Fig. 2: Example of a navigation application deployed on a
robotic system. The task needed (in red) depends on the
objects encountered in the scene, and may change very fre-
quently. Each task is accelerated by one module (in parenthe-
sis).

encountered in the scene. In both applications, if the total
number of tasks required over time is very high, it may not
be possible to map all tasks statically on the FPGA. Even
when the FPGA is large enough to map all tasks statically,
it is inefficient and costly to do so, in terms of area/device
cost, power and energy, given that all tasks are not needed at
the same time. Not only does a larger FPGA dissipate more
leakage power, but idle regions of the design also consume
area, power and energy unnecessarily. (Leakage and non-
leakage power refer to static and dynamic power, respectively.)
This inefficiency represents a major problem in cost or energy-
constrained situations.



Area, Power and Energy Benefits of DPR. Dynamic par-
tial reconfiguration (DPR) allows FPGA regions, called re-
configurable partitions, to be reprogrammed at runtime (i.e
repurposed). Though DPR has been supported by commer-
cial devices and tools for more than a decade, it has been
underutilized, perhaps, due to a shortage of demonstrated use-
cases [2], [3], [4], [5] and quantified benefits over static FPGA
mapping (without DPR). Prior works [6], [7], [8] have shown
that vision applications tolerate current DPR overhead (tens
of milliseconds to reconfigure a partition) and still achieve
realtime rates (30+ fps).

In this paper, we focus on classes of vision applications
that benefit from dynamic FPGA mapping (with DPR). These
applications share two main characteristics: (1) all tasks are
not needed at the same time, and (2) the goal is to meet per-
formance requirement while reducing area/device cost, power
or energy. We develop a framework using DPR for dynamic
mapping of vision applications on FPGAs. In the framework,
multiple tasks can be mapped and accelerated simultaneously
on the FPGA. More importantly, the FPGA can be repurposed
with different sets of tasks over time. In this work, instead
of mapping all tasks required by an application statically on
a large FPGA, the set of tasks needed at a given time is
(1) repurposed on a smaller FPGA and (2) still meets the
functional and performance requirements (i.e., 60 fps). We
quantify the benefits of dynamic mapping on smaller FPGAs,
in terms of area/device cost, power and energy, over static
mapping on larger FPGAs for two applications built on top
of the framework: (1) an interactive application (Figure 1) in
which the total reconfiguration time is negligible compared
to the total execution time and (2) a navigation application
(Figure 2) in which the total reconfiguration time is significant
compared to the total execution time. Both applications are
representative of many rapidly emerging vision and AI-driven
applications that could benefit from DPR.
Contributions. Our results support the following conclusions:

• Applications that benefit from dynamic mapping on
smaller FPGAs have two main characteristics: (1) all
tasks are not needed at the same time, and (2) the
goal is to meet performance requirement while reducing
area/device cost, power or energy.

• Smaller FPGAs can be used for dynamic mapping, re-
sulting in area/device cost reduction (device cost savings
are greater than area savings) over static FPGA mapping.

• Dynamic mapping on smaller FPGAs consumes less
power/energy than static mapping on larger FPGAs since
(1) the smaller FPGA dissipates less leakage power than
the larger FPGA, and (2) the dynamic design is smaller
than the static design, uses fewer clocking resources, and
therefore, dissipates less non-leakage power. In this paper,
we refer to statically mapped and dynamically mapped
design as static and dynamic design, respectively.

• When the total reconfiguration time is significant com-
pared to the total execution time (the ratio of reconfigu-
ration to compute may be almost 1:1), the dynamic design
still consumes less energy than the static design because

Fig. 3: The framework is composed of (1) a repurposable
architecture, (2) a runtime system, and (3) a module library.

the total reconfiguration energy is very low.
• Tasks accelerated individually in our framework have

comparable performance to static designs, and are an
order of magnitude faster than a software implementation.

II. FRAMEWORK FOR VISION

We build two applications on top of our DPR framework.
In this section, we briefly present the design and the runtime
operation of this framework.
Overview. The framework has three main components (Figure
3): (1) a repurposable architecture in which reconfigurable
partitions (RPs) are connected to the external I/O via a soft-
ware configurable crossbar and DMA engines, (2) a runtime
system which manages the repurposing of the FPGA with
tasks specified in an application code, and (3) a module
library which contains pre-built vision modules that are used
to repurpose the reconfigurable partitions. A reconfigurable
partition hosts one module at a time. Modules from the library
have the same AXI-based I/O interfaces as the reconfigurable
partitions.
Runtime operation. In the framework, the process for dy-
namically executing a set of tasks needed by an application is
managed by the runtime system: (1) the runtime system first
parses the application code that contains the set of tasks to
accelerate, (2) the runtime system assigns the reconfigurable
partitions to all tasks, where each task is accelerated by one or
more modules from the module library, (3) the reconfigurable
partitions are repurposed with selected modules from the
module library, (4) the software configurable crossbar and the
DMA engines are configured, (5) the runtime system starts
the modules. This process is repeated for each set of tasks to
accelerate in an application.

III. IMPLEMENTATION

Experimental Setup. For this study, we deploy our framework
on the Zynq 706 and the Zynq 702 boards [9] to accelerate
the interactive and the navigation application, respectively.
Dynamic FPGA mapping provides most benefits if the FPGA
has just enough resources to fit the set of concurrent tasks
using the highest amount of resources in an application. The
Zynq 706 board has an XC7Z045 FPGA which is large enough
to fit the set of tasks using the highest amount of resources
in the interactive application. The Zynq 702 board has an



XC7Z020 FPGA (smaller than the XC7Z045 FPGA) which
is large enough to fit the module using the highest amount of
resources in the navigation application.

Two ARM CPUs are available on each board. We use one
CPU that runs Linux to load input test images into on-board
DRAM, and to save the output of vision applications. The
other bare-metal CPU executes the runtime system and the
application code which specifies the sets of tasks to accelerate
in an application. Each task is accelerated by one or more
modules from the module library. The module library is
loaded into DRAM at system boot up. The reconfigurable
partitions are reconfigured through the processor configuration
access port (PCAP). Data is streamed between DRAM and the
modules.
Dynamic Design Area. To quantify the area benefits of
dynamic FPGA mapping over static FPGA mapping, we first
characterize the resource utilization of the dynamic design.
Table I reports the resource utilization of the repurposable
architecture on the (1) the Zynq 706 board with an XC7Z045
FPGA and (2) the Zynq 702 board with an XC7Z020 FPGA.
On the XC7Z045 FPGA, the I/O infrastructure comprises a
software configurable crossbar with 16 endpoints and eight
DMA engines. We implement four reconfigurable partitions
which occupy more than 80% of the FPGA resources. Three
reconfigurable partitions have similar size and contain approx-
imately the same amount of logic and memory resources; the
fourth partition has approximately three times more resources
than the other partitions to fit the largest module needed in the
interactive application. When the set of tasks using the highest
amount of resources is mapped on the FPGA, the dynamic
design (including the I/O infrastructure) consumes 74%, 58%,
and 18% of LUT, BRAM, and DSP resources, respectively.

On the smaller XC7Z020 FPGA, the I/O infrastructure
comprises two DMA engines. We implement a single recon-
figurable partition that is large enough to fit the largest module
needed in the navigation application. When the largest module
is mapped on the FPGA, the dynamic design (including the
I/O infrastructure) consumes 62%, 33%, and 38% of LUT,
BRAM, and DSP resources, respectively.

In both cases, most of the FPGA resources are used for
compute. The I/O infrastructure uses less than 16% of logic
resources. Note that a similar amount of logic resources would
be needed to build the I/O infrastructure in a static design.
Individual Module Performance. To accelerate the tasks
required in our two applications, we implement the 12 modules
shown in Figures 1 and 2 using Vivado HLS [10]. A significant
amount of effort was placed into implementing and into
ensuring the functional correctness of these modules. More
information about the modules can be found in [1] and [11].

The 11 modules used in the interactive application are all
clocked at 169 MHz in the framework deployed on the Zynq
706 board. The 11 modules achieve a throughput that ranges
between 152 and 167 MPixels/s, which is sufficient to achieve
60 fps for full HD frames. Similarly, the six modules used in
the navigation application are all clocked at 169 MHz in the
framework deployed on the Zynq 702 board.

In our frameworks, the stereo and the flow modules achieve
a throughput of 152 and 161 MPixels/s, respectively. Our CPU
implementations of the stereo and the flow, based on OpenCV
and running on a i7-3770@3.40 GHz, achieve a throughput of
13 and 10 MPixels/s, respectively. In [12] and [13], the authors
report a throughput of 148 and 165 MPixels/s for their static
FPGA designs of the stereo and flow modules, respectively,
which is comparable to the performance we get.
Repurposing Overhead. The overhead for repurposing the
FPGA with a single module is the sum of the time for
reprogramming a partition with the module, and configuring
the crossbar links and the DMA engines. In practice, the time
for configuring the crossbar links and the DMA engines (in
the order of hundreds of microseconds) is negligible compared
to the time spent for reprogramming a partition. The time for
reprogramming a partition is proportional to its size.

In the framework deployed on the Zynq 706 board, the time
to reprogram (1) the three smaller partitions is approximately
22.2, 25 and 32.3 ms and (2) the largest partition is 73.4 ms.
In the framework deployed on the Zynq 702 board, the time
to reprogram a partition is 19.7 ms. Despite the non-trivial
time to reconfigure a partition, both applications meet their
performance requirements (more details in next section).

IV. EVALUATION

In this section, we quantify the benefits of dynamic mapping
on smaller FPGAs over static mapping on larger FPGAs for the
interactive and the navigation application examples. We show
that dynamic FPGA mapping reduces logic resource utilization
by 2.5x and 3.2x, device cost by approximately 10x and 4x,
and power/energy consumption by 28% and 30% (with impact
on cooling cost) compared to static FPGA mapping for the
interactive and the navigation application, respectively.

A. Case Study 1: Interactive Application

Overview. In this application, the user can pick one of the four
sets of tasks shown in Figure 1. In each set, up to four tasks are
requested simultaneously; each set is accelerated by up to four
modules. In the framework, when the FPGA is spatially shared
by up to four modules, each module achieves 60 fps for full
HD images. In this application, the FPGA is repurposed with a
different set of tasks within minute to hour range depending on
the user’s selection. The total reconfiguration time is negligible
over the total execution time. Therefore, the reconfiguration
time, power and energy overheads will not be considered for
this evaluation.
Area Model. Before presenting our results, we offer a simple
model to reason about the potential area benefits of dynamic
FPGA mapping over static FPGA mapping. We consider
an application with a total number Nmodules of modules to
accelerate on the FPGA. For this simple model only, we
assume that one module is needed at a time. We do not take
into account the area utilization of the I/O infrastructure. In the
static design, all modules are mapped simultaneously on the
FPGA; we use the smallest FPGA on which the static design
fits. For the dynamic design, we use the smallest FPGA that fits



TABLE I: Resource utilization of the repurposable architecture on (1) the Zynq 706 and (2) the Zynq 702 board. The percentage
of resource utilization is given in parenthesis. In both cases, most of the FPGA resources are used for compute.

Zynq 706 with four partitions Zynq 702 with one partition
I/O infrastructure Available for compute I/O infrastructure Available for compute

Crossbar DMA engines Misc Crossbar DMA engines Misc
LUT 5580 (3%) 18,270 (9%) 2428 (1%) 185,400 (85%) 0 7388 (14%) 1035 (2%) 26,000 (49%)
BRAM 0 36 (7%) 7 (1%) 500 (92%) 0 14 (10%) 6 (4%) 80 (57%)
DSP 0 0 0 840 (93%) 0 0 0 120 (55%)

TABLE II: Resource utilization of six modules used in the interactive application after place & route on the XC7Z045 FPGA.
The percentage of resource utilization is given in parenthesis. The six modules are not evenly sized.

lane highlighting speed sign detection car detection pedestrian detection animal detection bike detection
LUT 1185 (1%) 16,576 (8%) 84,258 (39%) 80,756 (39%) 81,432 (37 %) 37,122 (17%)
BRAM 16 (3%) 50 (9%) 104 (19%) 99 (18%) 99 (18%) 59 (11%)
DSP 0 10 (1%) 126 (14%) 156 (17%) 234 (26 %) 70 (8%)

TABLE III: Resource utilization of six modules used in the navigation application after place & route on the XC7Z020 FPGA.
The percentage of resource utilization is given in parenthesis. The six modules are almost evenly sized (in terms of LUT).

stereo flow color-based detection SIFT blob detection Gaussian pyramid
LUT 18,396 (34.6%) 17,509 (33%) 16,501 (31%) 23,513 (44%) 20,855 (39%) 19,135 (36%)
BRAM 61 (44%) 60 (43%) 25 (18%) 26.5 (19%) 33 (24%) 47 (34%)
DSP 0 39 (18%) 0 83 (38%) 41 (18%) 55 (25 %)

the largest module requiring the highest amount of resources
in the application.

We define RS/D as the ratio of the amount of resources
available on the FPGA used for static mapping to the amount
of resources available on the FPGA used for dynamic map-
ping. A larger ratio represents a greater saving. In the best-
case scenario, all modules are evenly sized (i.e. they consume
approximately the same amount of resources). In this case,
RS/D-bestcase = Nmodules. In the worst-case scenario, modules are
not evenly sized; the largest module is significantly larger than
all other modules combined. In this case, RS/D-worstcase = 1.
Finally,

1 < RS/D ≤ Nmodules

In the interactive application, RS/D is close to the worst-case
scenario since modules are not evenly sized (Table II). In the
navigation application, even though modules are evenly sized
(Table III), RS/D is not close to the best-case scenario due to
the quantization of FPGA sizes. In practice, using the smallest
possible FPGAs to map the static and the dynamic designs may
not be feasible.
Static Design Area. Since no FPGA is large enough in the
Zynq family to map the static design, we use the XC7VH870T
FPGA from the Virtex 7 family which is the smallest FPGA
on which the static design fits. The XC7VH870T FPGA uses
the same process node (28 nm) as the XC7Z045 FPGA.
The static design maps 13 modules to accelerate all tasks
shown in Figure 1, and has a software configurable crossbar
with 25 endpoints, eight DMAs and additional control logic
for enabling/disabling module combinations. We clock the
design at 169MHz (same frequency as in the dynamic design).
Table IV shows the resource and percentage utilization of the

static design after place & route on the XC7VH870T FPGA.
The XC7VH870T FPGA has 2.5x more LUT and BRAM
resources, and 2.8x more DSP blocks than the XC7Z045
FPGA. The XC7VH870T FPGA is approximately 10x more
expensive than the XC7Z045 FPGA.
Power Results. We estimate the power consumed by the static
and by the dynamic FPGA designs when one set of tasks is
active at a time (Figure 1). We use the Xilinx Power Estimation
tool [14] for estimating the power consumption of both designs
based on their resource utilization after place & route assuming
(1) nominal voltage, (2) same switching activity and frequency,
and (3) clock gating the inactive part of the static design.
Maximum effort for clock gating is applied so that amount
of non-leakage power consumed by the inactive part of the
design is minimized. (We perform many power measurements
on the actual Zynq 706 board when the design is running
in steady-state, calibrate the model with our measurements,
and find that our power estimations match with the power
measurements within 3%.)

Figure 4 reports our estimations of the total power con-
sumed by (1) the static design and (2) the dynamic design
for each set of tasks with corresponding percentage error. The
power consumption is broken down into the leakage and non-
leakage power. The static design consumes 28%, 29%, 30.5%,
and 30.5% more total power than the dynamic design for the
City & Day, Highway & Day, City & Night, and Highway &
Night environment, respectively. The static design consumes
more power/energy than the dynamic design for two reasons:
(1) the larger FPGA dissipates more leakage power than the
smaller FPGA and (2) the static design is larger than the
dynamic design and uses more clocking resources, resulting
in extra non-leakage power consumed. On average, the static



TABLE IV: Resource utilization of the statically mapped design after place & route on the XC7VH870T FPGA and on the
XC7Z035 FPGA for the interactive and navigation application, respectively. The percentage of resource utilization is given
in parenthesis. In both cases, the statically mapped design consumes more resources than available on the FPGA used for
dynamic mapping.

interactive navigation
I/O infrastructure only Modules only Total I/O infrastructure only Modules only Total

LUT 36,278 (7%) 449,026 (82%) 485,304 (89%) 8423 (5%) 115,899 (67.5%) 126,322 (72.5%)
BRAM 43 (3%) 835 (59%) 878 (62%) 20 (2%) 252.5 (28%) 272.5 (30%)
DSP 0 (0%) 770 (29%) 770 (29%) 0 218 (43.6%) 218 (43.6%)

Fig. 4: Power consumed when the design is mapped (1)
dynamically and (2) statically in four environments shown in
Figure 1. The power savings mainly result from a reduction
of leakage power.

design dissipates 50% more leakage power and consumes
14.5% more non-leakage power than the dynamic design.

B. Case Study 2: Navigation Application

Overview. We build a navigation application on top of the
framework running on the Zynq 702 board (Figure 2). Figure 5
illustrates the execution of this application during a fixed time
interval when the design is mapped statically and dynamically
on the FPGA. In the reference static design (Figure 5 (a)), the
system monitors the scene for changes. When an event hap-
pens (i.e. detection of a colored object), the system processes
this event (by executing one of the five possible tasks) and then
returns to its monitoring state. In the dynamic design (Figure
5 (b)), when an event happens, an idle phase starts. The active
module is turned off before starting the reconfiguration of the
partition with one of the five possible modules. The idle phase
ends when the partition is reconfigured. In this application,
an event needs to be processed in less than 34 ms. Though
the static design can return to its monitoring state faster than
the dynamic design, the dynamic design meets the application
requirement. (The time to reconfigure a partition is 19.7 ms
and the average time to process a frame is 12.2 ms.)

Depending on the number of objects to detect in the scene,
the FPGA may be repurposed very frequently. The total
reconfiguration time may not be negligible compared to the
total execution time. In the worst-case scenario, the ratio of
reconfiguration to compute is 1:1. In this evaluation, we take
into account the total energy spent for reconfiguration by the
design when mapped dynamically as a function of the number
of reconfigurations per second. For a fair comparison, we
also consider the conservative case where the compute time is
identical in both the static and the dynamic designs (Figure 5

Fig. 5: Example execution timeline of the navigation applica-
tion when the design is mapped (a) statically (reference case),
(b) dynamically and (c) statically (equalized case).

(c)).
Static Design Area. We use the XC7Z035 FPGA to map
the static design since it is the smallest FPGA from the
same family as the XC7Z020 FPGA on which the static
design fits. The static design maps six modules used in this
application, has two DMA engines and a software configurable
crossbar with eight endpoints to connect the six modules and
the DMA engines. We clock the design at 169MHz (same
frequency as in the dynamic design). Table IV shows the
resource and percentage utilization of the static design after
place & route on the XC7Z035 FPGA. The XC7Z035 FPGA
has 3.2x, 3.6x and 4x more LUT, BRAM and DSP resources,
respectively, than the XC7Z020 FPGA. The XC7Z035 FPGA
is approximately 4x more expensive than the XC7Z020 FPGA.
Energy Model. We develop an energy model to breakdown
the total energy into relevant components when designs are
mapped statically and dynamically. The model considers the
energy expended during a fixed time interval of length tinterval.
In this time interval, we enforce that the static and the dynamic
designs process the same number of events.

The total energy consumed by the reference static de-
sign (i.e. the system is never idle) Etotal, static reference dur-
ing tinterval is equal to the total energy spent for compute
Ecompute, static reference.

Etotal, static reference = Ecompute, static reference



Fig. 6: Total energy consumed when the design is mapped
dynamically (D) and statically (in the reference case (S1), in
the equalized case (S2)) vs frec (tinterval = 3600 s).

The total energy consumed by the equalized static design
(i.e. the system can be idle) Etotal, static equalized during tinterval
has two contributions: (1) the total energy spent for compute
Ecompute, static equalized and (2) the total energy spent when the
design is idle Eidle, static equalized.

Etotal, static equalized = Ecompute, static equalized + Eidle, static equalized

The total energy consumed by the dynamic design Etotal, dynamic
during tinterval has three contributions: (1) the total energy spent
for compute Ecompute, dynamic, (2) the total energy spent when
the design is idle Eidle, dynamic, and (3) the total energy spent
for reconfiguration Ereconfig.

Etotal, dynamic = Ecompute, dynamic + Eidle, dynamic + Ereconfig

Ereconfig depends on the number of reconfigurations during the
time interval considered and is rewritten as

Ereconfig = Erec,partition × frec × tinterval

Erec,partition is the energy for reconfiguring a single partition.
frec×tinterval is the number of partition reconfigurations during
the time interval considered. frec is the number of reconfigu-
rations per second in Hz.
Energy Results. We use the same methodology as in the
first study for power/energy estimations. Figure 6 reports
the total energy consumed in Joules (J) during a fixed time
interval of length tinterval = 3600 s when the design is
mapped (1) dynamically Etotal, dynamic, (2) statically (reference
case) Etotal, static reference, and (3) statically (equalized case)
Etotal, static equalized for different number of reconfigurations per
second frec (in Hz). We report the total energy spent (leak-
age and non leakage) (1) for compute and (2) when the
design is idle. We also report the total reconfiguration energy
Ereconfig. When no reconfiguration happens, Etotal, static reference
and Etotal, static equalized are greater than Etotal, dynamic since (1)
the statically mapped design dissipates more leakage power
than the dynamically mapped design due to the use of a larger
FPGA and (2) the statically mapped design uses more clocking
resources than the dynamically mapped design resulting in a
higher non-leakage power consumption.

As frec increases, we observe that both Etotal, static reference and
Etotal, static equalized remain greater than Etotal, dynamic even when
the compute to reconfiguration ratio is almost 1:1 (i.e. for

TABLE V: Energy breakdown when tinterval = 3600 s and
frec = 25 Hz. When the ratio of reconfiguration to compute is
almost 1:1, Etotal, dynamic is smaller than Etotal, static reference and
Etotal, static equalized due to Ereconfig being very small.

dynamic static reference static equalized

Ecompute (J)
non-leakage 1736 5491 2741
leakage 1462 3600 1827
total 3198 9091 4568

Eidle (J)
non-leakage 1064 N/A 1596
leakage 1418 N/A 1773
total 2482 N/A 3369

Ereconfig (J)
non-leakage 177 N/A N/A
leakage N/A N/A N/A
total 177 N/A N/A

Etotal (J)
non-leakage 2977 5491 4337
leakage 2880 3600 3600
total 5857 9091 7937

frec = 25 Hz, tcompute = 1827 s and trec = 1773 s). Table
V breaks down the total energy consumed when the design
is mapped statically and dynamically for frec = 25 Hz. We
observe that Ereconfig is very small compared to Ecompute, dynamic
and Eidle, dynamic even for a large number of reconfigurations.
(The total number of reconfigurations is 90,000.) The dy-
namically mapped design consumes 30% and 35.5% less
total energy than the statically mapped reference design in
the best-case scenario (frec = 0 Hz) and in the worst-case
scenario (frec = 25 Hz), respectively. (The modules used for
event processing consume slightly more power/energy than the
detection module.) The dynamically mapped design consumes
30% and 26% less total energy than the statically mapped
equalized design in the best-case scenario (frec = 0 Hz) and
in the worst-case scenario (frec = 25 Hz), respectively.

V. CONCLUSION

In this paper, we show that dynamic mapping on smaller
FPGAs reduces logic resource utilization by 2.5x and 3.2x,
device cost by approximately 10x and 4x, and power/energy
consumption by 28% and 30% compared to static mapping
on larger FPGAs for two applications with cost or energy
constraints. These applications benefit from dynamic FPGA
mapping since (1) all tasks are not needed at the same time,
and (2) reducing area, power or energy is as important as
meeting performance requirement.

VI. ACKNOWLEDGMENTS

This work was supported in part by the CONIX Research
Center, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA. We thank
Xilinx for their FPGA and tool donations.

REFERENCES

[1] R. Tamburo, E. Nurvitadhi, A. Chugh, M. Chen, A. Rowe, T. Kanade,
and S. G. Narasimhan, “Programmable automotive headlights,” in Com-
puter Vision – ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuyte-
laars, eds.), (Cham), pp. 750–765, Springer International Publishing,
2014.

[2] M. Ullmann, M. Huebner, B. Grimm, and J. Becker, “An fpga run-time
system for dynamical on-demand reconfiguration,” in 18th International
Parallel and Distributed Processing Symposium, 2004. Proceedings.,
pp. 135–, April 2004.



[3] D. Koch and J. Torresen, “FPGASort: A High Performance Sorting
Architecture Exploiting Run-time Reconfiguration on Fpgas for Large
Problem Sorting,” in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’11, (New York,
NY, USA), pp. 45–54, ACM, 2011.

[4] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“FPGAs in the Cloud: Booting Virtualized Hardware Accelerators with
OpenStack,” in 2014 IEEE 22nd Annual International Symposium on
Field-Programmable Custom Computing Machines, pp. 109–116, May
2014.

[5] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dy-
namically reconfigurable systolic array accelerators: A case study with
extended kalman filter and discrete wavelet transform algorithms,” IET
Computers Digital Techniques, vol. 4, pp. 126–142, March 2010.

[6] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, “The Erlangen Slot
Machine: A Dynamically Reconfigurable FPGA-based Computer,” J.
VLSI Signal Process. Syst., vol. 47, pp. 15–31, Apr. 2007.

[7] C. Claus, W. Stechele, and A. Herkersdorf, “Autovision a run-time
reconfigurable mpsoc architecture for future driver assistance systems
(autovision eine zur laufzeit rekonfigurierbare mpsoc architektur fr
zuknftige fahrerassistenzsysteme),” vol. 49, pp. 181–, 05 2007.

[8] M. Nguyen and J. C. Hoe, “Time-shared execution of realtime computer
vision pipelines by dynamic partial reconfiguration,” in 28th Interna-
tional Conference on Field Programmable Logic and Applications, FPL
2018, Dublin, Ireland, August 27-31, 2018, pp. 230–234, 2018.

[9] Xilinx, Zynq-7000 All Programmable SoC Technical Reference Manual,
2017.

[10] Xilinx, Vivado Design Suite User Guide: High-Level Synthesis (UG902),
2017.

[11] Itseez, The OpenCV Reference Manual, 2.4.9.0 ed., April 2014.
[12] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,

A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: Compiling
high-level image processing code into hardware pipelines,” ACM Trans.
Graph., vol. 33, pp. 144:1–144:11, July 2014.

[13] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and
P. Hanrahan, “Rigel: Flexible multi-rate image processing hardware,”
ACM Trans. Graph., vol. 35, pp. 85:1–85:11, July 2016.

[14] Xilinx, Xilinx Power Estimation, 2014.


