
DELPHI: A Framework for RTL-Based Architecture
Design Evaluation Using DSENT Models
Michael K. Papamichael∗ Cagla Cakir∗ Chen Sun† Chia-Hsin Owen Chen†

James C. Hoe∗ Ken Mai∗ Li-Shiuan Peh† Vladimir Stojanovic‡

∗Carnegie Mellon University, †Massachusetts Institute of Technology, ‡University of California, Berkeley

Abstract—Computer architects are increasingly interested in
evaluating their ideas at the register-transfer level (RTL) to gain
more precise insights on the key characteristics (frequency, area,
power) of a micro/architectural design proposal. However, the
RTL synthesis process is notoriously tedious, slow, and error-
prone and is often outside the area of expertise of a typical
computer architect, as it requires familiarity with complex CAD
flows, hard-to-get tools and standard cell libraries. The effort is
further multiplied when targeting multiple technology nodes and
standard cell variants to study technology dependence.

This paper presents DELPHI, a flexible, open framework
that leverages the DSENT modeling engine for faster, easier,
and more efficient characterization of RTL hardware designs.
DELPHI first synthesizes a Verilog or VHDL RTL design (either
using the industry-standard Synopsys Design Compiler tool or a
combination of open-source tools) to an intermediate structural
netlist. It then processes the resulting synthesized netlist to
generate a technology-independent DSENT design model. This
model can then be used within a modified version of the DSENT
flow to perform very fast—one to two orders of magnitude faster
than full RTL synthesis—estimation of hardware performance
characteristics, such as frequency, area, and power across a
variety of DSENT technology models (e.g., 65nm Bulk, 32nm
SOI, 11nm Tri-Gate, etc.). In our evaluation using 26 RTL
design examples, DELPHI and DSENT were consistently able
to closely track and capture design trends of conventional RTL
synthesis results without the associated delay and complexity.
We are releasing the full DELPHI framework (including a fully
open-source flow) at http://www.ece.cmu.edu/CALCM/delphi/.

I. INTRODUCTION

Computer architects have predominantly relied on software-
based simulation to evaluate the performance and other qual-
ities of design proposals. Unfortunately, simulators—even
high fidelity cycle-accurate ones—typically do not capture
low-level hardware implementation artifacts, such as area
overhead, increase in power consumption or timing-related
side-effects of micro/architectural design choices. To over-
come these limitations of simulation and gain more pre-
cise insight and deeper understanding of a proposed idea,
computer micro/architectural studies have increasingly incor-
porated register-transfer level (RTL) design investigation to
complement simulation studies.

Evaluating a design or sub-component of a system as RTL
models typically entails designing and developing a low-level
structural hardware implementation using a Hardware Descrip-
tion Language (HDL), such as Verilog or VHDL, and then
taking this HDL through an Electronic Design Automation

(EDA) flow. Even though EDA flows consist of multiple steps
and tools, architects typically only focus on the first step,
synthesis, which takes the HDL source and implements it
using a set of primitive logic standard cells. While still far
from the final chip, synthesis can provide a rough—Section II
elaborates on this—estimate on the quality of a design (power,
area, timing).

As is true for most steps of an EDA flow, synthesis can be
a tedious, time-consuming, slow, and error-prone process that
requires expert knowledge and access to costly and hard-to-
get tools, proprietary process design kits, and standard cell
libraries. Moreover, synthesis—which can take from a few
minutes to several hours depending on design size, complexity,
and implementation goals/constraints—has to be repeated for
each implementation variant targeting different technology
nodes and standard cell libraries. Finally, because synthesis
tools are designed to be chained and used in conjunction with
other commercial closed-source specialized EDA tools, they
maintain and operate on a low-level internal representation of
a design, which hinders integration with traditional software-
based simulation frameworks. This makes it very challeng-
ing to co-simulate or combine hardware RTL modules with
software-based components.

This paper presents DELPHI, a flexible open framework
that leverages DSENT electrical modeling for timing, area,
and power [20] for faster, easier, and more efficient character-
ization of RTL hardware designs. Previously, DSENT could
only be applied to hand-created DSENT design models in
a DSENT-specific format. DELPHI enables DSENT model-
ing to be applied to generic RTL designs by translating a
synthesized RTL-based design (in the form of a structural
netlist) into a software-based technology-independent DSENT
design model. This model can then be used within a modified
version of the DSENT flow to perform very fast—one to
two orders of magnitude faster than synthesis—estimation of
hardware performance characteristics, such as frequency, area,
and power.

Compared to traditional EDA flows, DELPHI is a sim-
pler and faster alternative that captures design trends and is
consistent with actual synthesis results. By utilizing DSENT
design models, DELPHI allows researchers to 1) use existing
or new custom-built DSENT technology models to quickly
sweep over a large number of target technology nodes and

standard cell variants without having to repeat the lengthy
and complex synthesis process. Conversely, researchers are
also able to quickly explore how low-level technology pa-
rameter changes impact high-level characteristics of designs.
The generated models seamlessly interface with the DSENT
framework and facilitate integration within larger software
simulation frameworks.

Paper outline. The rest of this paper is organized as
follows. Section II provides background on RTL synthesis
and characterization flows and known issues with relying on
RTL-synthesis results. Section III offers additional background
on the DSENT tool. In Section IV we present the DELPHI
flow and discuss its strengths and limitations. Section V
reports our evaluation methodology and experimental results.
Finally, we discuss related work in Section VI and conclude
in Section VII.

II. BACKGROUND

Detailed evaluation of a hardware design is a multi-step
process that involves taking a design through a series of
Electronic Design Automation (EDA) tools. This process starts
with a description of a design, typically using a Hardware
Description Language (HDL), such as Verilog or VHDL, and
ends with a hardware implementation, that corresponds to the
detailed layout of a chip. This description has to be at a suffi-
ciently low level, also known as register-transfer level (RTL),
in order for the tools to be able to map it or “synthesize” it
to hardware. As a design progresses through an EDA flow,
and gets closer to the final hardware implementation, more
details are incorporated, and thus the tools can do a better job
of accurately estimating implementation characteristics, such
as how much area it occupies, how much power it consumes,
and how fast it can run.

Logic synthesis is the first step in an EDA flow and is
responsible for turning an RTL description of a design into
a set of fundamental logic building blocks (logic gates and
registers), which, for an ASIC technology, are then mapped to
a collection of standard cells. The resulting standard cell in-
stantiations and their interconnections become what is known
as a (gate-level) netlist. This synthesized netlist can vary
significantly based on a number of factors, including tool
quality and user-specified design goals and constraints. While
this post-synthesis netlist corresponds to a functionally correct
implementation of the original RTL description, it does not
capture significant hardware implementation details pertaining
to the physical layout of a circuit, which are determined
in later steps of an EDA flow, such as “Place and Route
(P&R)”1. As such, hardware design characterization based on
synthesis output can often deviate significantly from the final
implementation produced at the end of the EDA flow.

Confidence in synthesis results. Hardware designers and the
EDA community are well aware of the “noisy” and speculative

1P&R refers to the EDA process of physically laying out a chip that includes
finding a valid placement of its standard cells, creating a network of wires to
connect them together, taking care of power distribution, and creating a clock
network.

0

500

1000

1500

2000

2500

ss
_p

cm
u

sb
_p

h
y

sa
sc

si
m

p
le

_s
p

i
i2

c
p

ci
sp

i
w

b
_d

m
a

tv
8

0
m

e
m

_c
tr

l
ac

9
7

_c
tr

l
s1

4
2

3
s1

5
8

5
0

s1
3

2
0

7
s9

2
3

4
_

1
s5

3
7

8
s3

5
9

3
2

s3
8

4
1

7
2

x2
_I

Q
2

x2
_V

C
4

x4
_I

Q
4

x4
_V

C

6
x6

_I
Q

6
x6

_V
C

8
x8

_I
Q

8
x8

_V
C

C
lo

ck
 P

e
ri

o
d

 (
p
s)

65nm (aggressive settings)

65nm (conservative settings)

Fig. 1. Clock period with aggressive vs. conservative synthesis settings.

nature of synthesis results, as well as of the gap between post-
synthesis and post-P&R results [3], [19], [8]. However, in the
architecture community, it is quite common for researchers to
place a lot of trust in synthesis results and treat them as the
“ground truth”. Moreover, given the complex nature of modern
synthesis tools and EDA flows, it is not uncommon for non-
experts to misconfigure or misuse synthesis tools, which only
exacerbates the observed variance and unrepresentative nature
of synthesis results.

Below we list the most important factors that can cause
variance or introduce “noise” in synthesis results, along with
some illustrative examples.

• Lack of physical layout information. Synthesis tools treat
a design at an abstract level as a collection of interconnected
standard cells. Layout and other implementation details
are determined at later stages of the EDA flow. As such,
synthesis tools either completely ignore layout artifacts (e.g.,
ignore wire length and assume an ideal clock network) or
use simplified models to estimate layout effects. In practice,
synthesis results usually tend to be “optimistic” and it is
not uncommon to see them deviate by 30%-40% compared
to post-layout results. As an example, in a recent ASIC
design effort within our group, our finalized design could
only achieve a clock frequency that was 38% lower than the
synthesis-based estimates.

• Optimization goals, constraints, and settings. Synthesis
is an iterative process that is guided by user-specified
optimization goals (e.g., optimize for area), constraints (e.g.,
run at 2GHz), and many other settings (e.g., effort level,
driving/load assumptions for circuit inputs/outputs, etc.),
which can all significantly affect the characteristics and
performance of the resulting netlist (e.g., different imple-
mentations of design subcomponents, standard cell sizing,
buffer insertion, register retiming, etc.). To illustrate this
point, Figure 1 compares the range of reported minimum
clock period for a variety of RTL designs, which are
synthesized targeting the same commercial 65nm standard
cell library; for each design, the differences between the red
and blue bars arise purely from using different synthesis
optimization/constraint settings.

0

200

400

600

800

1000

1200

1400

1600

ss
_p

cm

u
sb

_p
h

y

sa
sc

si
m
p
le
_…

i2
c

p
ci

sp
i

w
b

_d
m

a

tv
8

0

m
e

m
_c

tr
l

ac
9

7
_c

tr
l

s1
4

2
3

s1
5

8
5

0

s1
3

2
0

7

s9
2

3
4

_
1

s5
3

7
8

s3
5

9
3

2

s3
8

4
1

7

2
x2

_I
Q

2
x2

_V
C

4
x4

_I
Q

4
x4

_V
C

6
x6

_I
Q

6
x6

_V
C

8
x8

_I
Q

8
x8

_V
C

C
lo

ck
 P

e
ri

o
d

 (
p

s)

45nm (lower Vt)

45nm (higher Vt)

Fig. 2. Clock period with lower vs. higher Vt cells.

• Synthesis tool features and quality. Synthesis is a com-
plex, highly configurable process. Depending on the selected
options, different tools might use different algorithms and
employ models of varying fidelity (e.g., different wire and
clock tree models) during design optimization or perfor-
mance estimation. Moreover, commercial tools, such as
Synopsys Design Compiler, offer different variants of their
tools (e.g., DC Explorer or DC Ultra) and extensions (e.g.,
use of Designware components, topographical technology,
etc.), which can significantly affect both the generated netlist
and the characterization accuracy.

• Variance across standard cell libraries. For a particular
process technology, there are usually multiple standard cell
libraries from multiple sources. The foundry will often have
two distinct sets of libraries, one for internal use and one for
external customers. Further, there are third-party standard
cell vendors who produce libraries for a variety of process
technologies, and within each of these sets of libraries there
will be multiple versions (e.g., low power, high performance,
compact area). As a result, even within the realm of a single
process technology, synthesis results can vary dramatically.
To illustrate this point, Figure 2 shows the minimum clock
period achieved by a variety of designs, all targeting the
same 45nm process, but using cell variants with a different
threshold voltage (Vt).

In summary, when studying an RTL design at the synthesis
level, it is important to keep in mind the various factors that
can cause inaccuracies and variance. One must be knowledge-
able and diligent about properly setting the many configuration
options pertaining to synthesis. It should be noted that while
synthesis results are not to be taken at face value, they are
still very useful for performing first-order characterizations of
designs and help guide the RTL development and optimization
process.

III. THE DSENT TOOL

DSENT (Design Space Exploration for Network Tool) is an
open-source tool developed for rapid design space exploration
of photonic and conventional electrical Networks-on-Chip
(NoCs), which was released in 2012 [14]. DSENT can be

Fig. 2: The DSENT framework with examples of network-related user-defined models.

TABLE I: DSENT electrical parameters

Process Parameters 45 nm SOI 11 nm TG
Nominal Supply Voltage (VDD) 1.0V 0.6V
Minimum Gate Width 150 nm 40 nm
Contacted Gate Pitch 200 nm 44 nm
Gate Capacitance / Width 1.0 fF/um 2.42 fF/um
Drain Capacitance / Width 0.6 fF/um 1.15 fF/um
Effective On Current / Width [24] 650 uA/um 738 uA/um
Single-transistor Off Current 200 nA/um 100 nA/um
Subthreshold Swing 100 mV/dec 80 mV/dec
DIBL 150 mV/V 125 mV/V
Interconnect Parameters 45 nm SOI 11 nm TG
Minimum Wire Width 150 nm 120 nm
Minimum Wire Spacing 150 nm 120 nm
Wire Resistance (Min Pitch) 0.700 Ω/um 0.837 Ω/um
Wire Capacitance (Min Pitch) 0.150 fF/um 0.167 fF/um

Shown values are for NMOS transistors and the global wiring layer

Standard Cells

INV_X1

NAND2_X1

NOR2_X1

DFFQ_X1

LATQ_X1

INV_X2

NAND2_X2

NOR2_X2

DFFQ_X2

...

A B

Y

VDD

VSS

contacted gate pitch

W
n

W
p

S
ta

n
d
a
rd

 C
e
ll H

e
ig

h
t

Technology

NMOS/PMOS Ion

NMOS/PMOS Ioff

Gate Unit Cap

Drain Unit Cap

...

Design

Heuristics

Area

Elmore Delay

Model

Timing Abstract

Energy/Op

Leakage

Leakage Model

Equivalent Circuit

Expected

Transitions

Delay(A->Y)

Delay(B->Y)

Cin(A)

Cin(B)

Rout(Y)

Leak(A=0, B=0)

Leak(A=0, B=1)

Leak(A=1, B=0)

Leak(A=1, B=1) NAND2Event

NAND2 X1

Fig. 3: Standard cell model generation and characterization. In this example,
a NAND2 standard cell is generated.

Currently, DSENT supports the 45 nm, 32 nm, 22 nm, 14 nm
and 11 nm technology nodes. Technology parameters for the
45 nm node are extracted using SPICE models. Models for the
32 nm node and below are projected [26] using the virtual-
source transport of [27] and the parasitic capacitance model
of [28]. A switch from planar (bulk/SOI) to tri-gate transistors
is made for the 14 nm and 11 nm nodes.

B. Standard Cells

The standard-cell models (Figure 3) are portable across
technologies, and the library is constructed at run-time
based on design heuristics extrapolated from open-source
libraries [29] and calibrated with commercial standard cells.

We begin by picking a global standard cell height, H =
Hex + α · (1 + β) · Wmin, where β represents the P-to-N ratio,
Wmin is the minimum transistor width, and Hex is the extra
height needed to fit in supply rails and diffusion separation. α
is heuristically picked such that large (high driving strength)
standard cells do not require an excessive number of transistor
folds and small (low driving strength) cells do not waste too
much active silicon area. For each standard cell, given a drive
strength and function, we size transistors to match pull-up
and pull-down strengths, folding if necessary. As lithography
limitations at deep sub-100 nm force a fixed gate orientation
and periodicity, the width of the cell is determined by the max
of the number of NMOS or PMOS transistors multiplied by
the contacted gate pitch, with an extra gate pitch added for
separation between cells.

C. Delay Calculation and Timing Optimization

To allow models to scale with transistor performance and
clock frequency targets, we apply a first-order delay estimation
and timing optimization method. Using timing information in
the standard cell models, chains of logic are mapped to stages
of resistance-capacitance (RC) trees, shown in Figure 4a. An
Elmore delay estimate [30, 31] between two points i and k
can be formed by summing the product of each resistance and
the total downstream capacitance it sees:

td,i−k = ln(2) ·

k∑
n=i

k∑
m=n

Rn · Cm (2)

Note that any resistances or capacitances due to wiring
parasitics is automatically factored along the way. If a register-
to-register delay constraint, such as one imposed by the clock
period, is not satisfied, timing optimization is required to
meet the delay target. To this end, we employ a greedy
incremental timing optimization algorithm. We start with the
identification of a critical path. Next, we find a node to
optimize to improve the delay on the path, namely, a small
gate driving a large output load. Finally, we size up that node
and repeat these three steps until the delay constraint is met
or if we realize that it is not possible and give up. Our method
optimizes for minimum energy given a delay requirement,
as opposed to logical-effort based approaches employed by
existing models [18, 32, 33], which optimize for minimum
delay, oblivious to energy. Though lacking the rigorousness of
timing optimization algorithms used by commercial hardware
synthesis tools, our approach runs fast and performs well given
its simplicity.

D. Expected Transitions

The primary source of data-dependent energy consumption
in CMOS devices comes from the charging and discharg-
ing of transistor gate and wiring capacitances. For every
transition of a node with capacitance C to voltage V , we
dissipate an energy of E = 1

2 C · V 2. To calculate data-
dependent power usage, we sum the energy dissipation of all
such transitions multiplied by their frequency of occurrence,
PDD =

∑
Ci · V 2

i · fi. Node capacitance Ci can be calculated
for each model and, for digital logic, Vi is the supply voltage.
The frequency of occurrence, fi, however, is much more

Fig. 3. DSENT internal hierarchy (from [20]).

either used standalone as a dedicated NoC evaluation tool
or it may be integrated within an architectural simulator for
interconnect modeling [9]. In DELPHI, we take advantage of
DSENT’s design characterization technology and generalize it
to support arbitrary RTL design inputs.

DSENT is written in C++ and is internally organized
as three distinct parts shown in Figure 3 (from [20]) and
described below:

• User-defined design models serve as the “front-end” of
DSENT that most users interact with. Within the context
of NoC studies, this “front-end” contains a hierarchically
organized set of parameterized building blocks that can be
easily combined to assemble and experiment with a wide
range of on-chip networks. In general, users that wish to
extend DSENT’s design library with their own custom-
defined models are free to develop their own models in C++
or modify DSENT’s pre-existing design models.

• Support technology models rely on a set of technology
parameters to provide the fundamental building blocks that
are used to implement (either directly or indirectly) all user-
defined models. These building blocks come in the form of
standard cells and optical components, whose characteristics
are shaped based on a supplied technology model. The
technology models used by DSENT aim at capturing the
major characteristics of deep sub-100nm technologies based
on a minimal set of technology parameters. While DSENT
already includes technology models for 45nm, 32nm, 22nm,
and 11nm technology nodes, the simple nature of the models
allows users to define and calibrate their own technology
models based on ITRS [6] data, SPICE models or actual
process design kits.

• Tools provided by DSENT include a timing analysis and
optimization tool, as well as infrastructure for capturing
and propagating circuit switching activity information that is
used to obtain accurate power estimates. Tools and support
technology models form the “back-end” of DSENT, which
is responsible for estimating power and timing of a design.

Expanding DSENT’s front-end. DSENT’s “back-end” circuit
modeling engine is 1) fast, capable of characterizing a circuit
in matter of seconds; 2) high fidelity, as it performs modeling
at the standard cell level; and 3) flexible, allowing targeting
different technology nodes through the use of simple tech-
nology models. However, this powerful back-end is limited
by the library of available NoC-specific user-defined models.

Timing
Area

Power
Estimates

Timing
Area

Power
Estimates

Timing
Area

Power
Estimates

DSENT
Tech

Models

HW
Design
(RTL)

Synthesis
reports

Std. Cell
Mapping

Std. Cell
Library

YOSYS+ABC
Synthesis

Synopsys DC

Synthesis

Synthesized
Netlist

Synthesis
Reports

DSENT
Model
(C++) DSENT

Model
Generation

DSENT
Tech

Models

DSENT
Tech

Models

DSENT
Tech

Models

Timing
Area

Power
Estimates DSENT

Config.

DSENT Tool
(modified)

HW
Design

RTL
Source

Synthesis
Script

Synth. Script
& Constraints

Synopsys DC
Report Parser

Yosys Verilog
Netlist Parser

Netlist
analysis
and C++

Generation
Engine

DELPHI
Library

Fig. 4. The DELPHI flow. Parts shown in red were developed or modified in support of the DELPHI flow, or produced by the DELPHI flow.

Users that want to characterize their own (non-NoC) arbitrary
hardware designs have to write C++ from the ground up
to build new design models. This can be a tedious process
and essentially resembles performing “synthesis by hand”. To
bridge this gap, the subject of this paper, DELPHI, provides
an automated flow, that can take RTL descriptions of arbitrary
hardware designs and generate a DSENT-compatible design
model.

IV. DELPHI

DELPHI consists of a set of tools aimed at simplifying and
accelerating hardware design characterization (determining
area, clock frequency, and power). Like conventional RTL
synthesis, DELPHI starts from an RTL description of a design.
This RTL description is then processed through a conventional
synthesis tool (e.g., Synopsys Design Compiler) to produce a
netlist targeting a particular standard cell library. This netlist
along with other design information is then processed in
an automated manner to produce a technology-independent
representation of the original design, in the form of a DSENT
design model. A lightly modified version of DSENT can then
use this design model to perform very fast power, area, and
frequency estimations across multiple technology models.

As is the case with traditional synthesis tools, DELPHI is
useful for performing coarse characterizations of RTL designs
and obtaining first-order power, area, and timing results.
Despite their approximate nature, DELPHI, as well as DSENT,
retain and analyze a design at a low structural level. This offers
higher fidelity compared to other commonly-used architectural
modeling tools (e.g., [10], [15]) and allows for capturing
more subtle design trends as well as identifying more specific
potential areas for improvement (e.g., identify critical path in
a design).

Using DELPHI. DELPHI includes all of the necessary scripts
and tools required to take a design through all of the steps
of the flow summarized above, including synthesizing RTL
using commercial or open-source tools, generating DSENT
design models, and running DSENT. From a user-perspective,
DELPHI can be used in the form of a command-line utility.
The user only needs to specify a minimal set of details about

the RTL module to be processed (such as the name of the
top-level module and the name of clock and reset ports) and,
if not using the open-source flow, provide details about the
particular commercial standard cell library in use.

A. The DELPHI Flow

Internally, the DELPHI flow consists of a series of steps,
shown in Figure 4 and outlined below. Parts of the flow that
we developed (or extended) in support of the DELPHI flow
are colored in red.

Synthesis. As a starting step towards importing a hardware
design, DELPHI takes the RTL design through a customized
synthesis flow that ensures the resulting netlist is compatible
with later steps. DELPHI supports the commercial industry-
standard Synopsys Design Compiler (DC) tool, as well as
a combination of open-source tools. When working with
Synopsys DC, the user can synthesize a design either targeting
a commercial standard cell library or using one of the freely
available libraries, such as FreePDK [16] or the cell libraries
provided by SPORT Lab [21]. DELPHI generates custom
scripts that instruct Synopsys DC to only use the subset of
standard cells available in DSENT and to generate a set of
design reports that capture essential information about the
design used by DELPHI.

Once synthesis is completed, DELPHI parses the synthesis
output, including the generated netlist, as well as synthesis
reports that include port and clock-tree information pertaining
to a design, and recreates an intermediate representation of
the netlist. At this point, this intermediate representation still
corresponds to the standard cells belonging to the original stan-
dard cell library used during synthesis. In order for DELPHI
to generate a technology-independent DSENT design model,
it needs to map the vendor-specific standard cells to generic
DSENT standard cells. DELPHI captures this mapping in
a custom-defined specification file that assigns the various
standard cell variants to their equivalent DSENT counterparts.
This file also includes information on standard cell driving
strength and pin mapping.

For users that do not have access to commercial synthesis
tools or commercial standard cell libraries, DELPHI provides

an alternative flow based on open-source tools. In particular,
the tool YOSYS [22] is used to parse the RTL of a design and
then the ABC synthesis tool [2] is used with a custom-created
DELPHI library and script to directly target DSENT’s native
standard cells2. Since the output of these tools is different
from Synopsys DC, DELPHI includes a very basic Verilog
parser that supports the subset of Verilog used in the netlists
produced by these tools.

DSENT model generation. DELPHI analyzes the netlist and
other information produced during synthesis to automatically
generate the C++ code required to implement a DSENT design
model. The creation of this model starts with the definition
of input and output ports that form the model’s interface.
DELPHI then instantiates all of the design’s standard cells
and creates nets, which are used to connect all of the standard
cell pins with each other and with the input and output ports
of the design. If desired, DELPHI can size the instantiated
cells to match the driving strengths suggested by synthesis.

At this point, the DSENT design model is structurally
equivalent to the synthesized netlist. DELPHI now generates
auxiliary C++ code that takes care of defining model param-
eters, creating a clock tree, initializing transition info for the
input and output ports, as well as the clock and reset signals,
and defining the events that should be monitored, gathered, and
reported by DSENT. The remaining code that is generated per-
tains to properly propagating transition probability information
in the correct order across all of the instantiated standard cells,
which is necessary for performing static power analysis.

Proper propagation of switching activity information. Dy-
namic power is dissipated when internal nets are charged and
discharged with signal transitions. Thus, to estimate power
accurately, DSENT relies on annotating every input/output port
and internal net of a design with signal transition probability
information, which captures the likelihood of each possible
signal transition (0→0, 0→1, 1→1, 1→0). Based on the type
of standard cell and its input transition probability information,
DSENT can calculate the transition probabilities of its outputs,
which then has to be propagated to all downstream input ports
of other standard cells. This propagation needs to happen
in the correct order, to ensure all parts of the circuit are
annotated with the correct transition probability information,
which is eventually converted to a switching activity for a
given frequency and used for power estimation.

To this end, a challenge in the development of DELPHI
was to deduce the ordering constraints among all nodes in a
netlist and then use this information to generate DSENT C++
code that will trigger the propagation of transition probability
information in the correct order. DELPHI also takes special
care to detect and handle sequential logic (e.g., finite state
machines), which can form feedback loops that create circu-
lar dependencies. The examples that follow demonstrate the
importance of updating transition probability information in
the correct order. To keep matters simple in these examples,
instead of looking at transition probabilities, we only focus

2This flow currently supports Verilog, but not VHDL.

G1

A

G2

B

C

D

Y2

G1

A

G2

B

C

C

Y2

D

Y1

Y1 Q
FF

clk
(b)

(a)

Fig. 5. Probability propagation example circuits.

on the state probability that a logic signal is high, which still
exposes the problem at hand.

Consider the very simple circuit shown in Figure 5(a) that
consists of the two AND gates G1 and G2. For this example,
let’s assume that all inputs A, B and C have been annotated
with a 50% chance of being high, i.e., P(A)=P(B)=P(C)=0.5,
and internal probabilities are also initially set to 0.5, i.e.,
P(Y1)=P(Y2)=0.5. Our task is to find an order in which we
need to process the standard cells in this circuit to correctly
deduce the internal probabilities, P(Y1) and P(Y2). Since G1
depends on the output of G2, we first need to process G2
and then G1, which will set P(Y2)=0.25 and then process G1,
which will set P(Y1)=0.125. Note that if we processed G1
before G2, we would end up with the wrong probability on
the output of G1, i.e., P(Y1)=0.25, as we would be missing
the updated probability info for P(Y2).

Now consider a slightly modified version of the previous
circuit, shown in Figure 5(b), which now also includes a
register FF (D Flip-Flop) that forms a feedback loop. As
before, assume that all input probabilities are set to 50%, i.e.,
P(A)=P(B)=0.5. In this case, since G1 depends on G2 and G2
depends on the output of FF, which in turn depends on G1,
it is not clear anymore in what order to propagate the state
probabilities. To handle such cases, DELPHI takes a simple
approach where it detects such loops and then exercises them
in the correct order until the cells participating in the loop
have been processed up to a number of times, determined by
a user-configurable threshold3.

To see this in action, assume that we set this threshold
to five, which means that DELPHI will update the state
probability of the cells that are part of this loop up to five
times, respecting their ordering dependencies. Table I shows
how the state probabilities of the various internal nodes evolve
over each iteration, assuming we process the nodes in the order
G2, G1 and FF. After five iterations, all signals, Y2, Y1, and
C, have already been annotated with very low probabilities
(<1/1000). Intuitively, this makes sense because in this simple
circuit it is clear that if either A or B become low, it is then
impossible for any of the internal nodes to ever become high

3Static switching activity propagation and estimation is a critical part
of power estimation and has been studied extensively (e.g., [11]). While
DELPHI’s approach is simple and does not guarantee probability convergence,
it is sufficient for getting first-order power estimates.

again. Note that if we did not iterate over this part of the
circuit, we would have ended up with much higher, clearly
non-representative state probabilities, which would in turn
distort static power analysis and estimation.

Iteration# P(Y2) P(Y1) P(C)
1 0.25 0.125 0.125
2 0.0625 0.03125 0.03125
3 0.015625 0.0078125 0.0078125
4 0.00390625 0.001953125 0.001953125
5 0.0009765625 0.00048828125 0.00048828125

TABLE I
STATE PROBABILITIES OVER SUCCESSIVE ITERATIONS.

Running DSENT. The C++ code generated in the previous
step is now ready to be compiled along with the rest of the
DSENT components to get power, area, and timing estimates.
As the size of the generated code can reach several megabytes,
DELPHI takes special care to optimize the generated C++
for fast compilation, which typically finishes in a matter of
seconds even for large designs4. DELPHI also offers a special
“debug” mode that produces C++ code that is slower to
compile, but is much easier to read and work with for users that
wish to study or modify the resulting DSENT design model.

B. Strengths of the DELPHI Approach

Leverages DSENT’s speed, flexibility, and accuracy. After
the initial synthesis phase, which only needs to be performed
once, circuit characterization using DSENT technology models
only takes seconds and can be repeated targeting different tech-
nology models without requiring additional time-consuming
synthesis or recompilation of DSENT design models, as
DSENT constructs its library at run-time. Moreover, new
DSENT technology models are easy to define as they only
require specifying a minimal number of parameters. Finally,
when properly calibrated, DSENT’s integrated timing, area,
and power models have been shown to be accurate within
20% against SPICE simulations [20].

Harnessing the power of software. Creating a software-
based representation of an RTL design opens the doors to
many opportunities. Firstly, since the generated models appear
as standard “user-defined” DSENT design models, they can
be integrated and combined with all of DSENT’s existing
library of design models. Moreover, these models are portable,
meaning that DSENT users can exchange and instantiate them
along or inside their own DSENT models. Secondly, the entire
DSENT framework can be modified to be integrated with
software-based architectural simulation frameworks, as was
done in [1], [13], [9].

Fast, automatic model creation. When manually building
a DSENT model from scratch, users have to either assemble
their designs out of library components or directly build them
out of standard cells, which from a hardware development

4This was not a trivial task, as our initial implementations generated C++
code that could take up large amounts of memory and tens of minutes to
compile and would even occasionally crash g++ for very large designs.

perspective is analogous to writing assembly code in software.
This can be a tedious and time-consuming process that also
implicitly places limits on the size and complexity of user-
created models. By automating this process, DELPHI greatly
accelerates building DSENT design models, as a single synthe-
sis run is much faster than coding the necessary C++, and also
eliminates the inevitable introduction of bugs. Moreover, given
the abundance of freely available RTL hardware designs (e.g.,
from OpenCores [17]), it tremendously expands the potential
of DSENT.

Preserves synthesis optimizations. Traditional hand-written
DSENT models have to explicitly specify and fix all of the
implementation details of a given hardware design. Since
DELPHI relies on synthesis to build DSENT design mod-
els, it can preserve any low-level optimizations performed
during synthesis. For instance, given the same RTL design,
synthesis might implement subcomponents differently based
on optimization goals, (e.g., switch between different adder
implementations depending on power/area/timing trade-offs).
By using DELPHI, optimizations performed during synthesis
are preserved and can be carried onto and modeled within
DSENT.

C. Limitations of the DELPHI Approach

Only as accurate as synthesis. The fidelity at which a design
is modeled through DELPHI and DSENT is comparable to
synthesis tools. This means that design characterization in
DELPHI, like conventional RTL synthesis, ignores or makes
simplifying assumptions about physical layout artifacts, such
as long wire delays, congestion, and clock distribution.

Garbage in, garbage out. DELPHI and DSENT are only
as good as the design model and technology model that they
are used with. A low-quality poorly optimized RTL design or
a wrong (or badly calibrated) DSENT technology model will
obviously produce wrong or severely skewed results and could
even hide or distort trends.

Minimal set of standard cells. The minimal set of cells used
in DSENT’s technology-independent standard cell library is
not as rich as commercial standard cell libraries, which can
lead to suboptimal synthesis results, especially for designs that
make heavy use of cells that are not supported by DSENT.
However, as we show in Section V, this constraint does not
affect designs by much. Moreover, new standard cells can be
easily added to DSENT and supported by the DELPHI flow
to overcome this limitation.

Multiple clocks. DELPHI currently only supports designs
with a single clock domain. To work around this limitation,
designs with multiple clocks can be broken down across clock
boundaries and modeled piecewise.

Large memories. By default, synthesis tools build memo-
ries in an RTL design as collections of latch or flip-flop
standard cells. When dealing with RTL designs that contain
large memories, designers will sometimes use proprietary
vendor-provided tools, called “memory compilers”, to generate

optimized memory layouts that are typically more efficient
than large memories built using conventional standard cells.
DELPHI only supports “synthesized” memories, i.e., built out
of standard cells, as custom memories generated using memory
compilers are treated as “black boxes” during synthesis and
cannot be processed by DELPHI. As future work, to improve
large memory modeling, we are considering extending the
DELPHI flow to incorporate the use of CACTI [15] memory
models.

Limited to static analysis. DELPHI and DSENT support
static analysis for power estimation, which can provide sat-
isfactory estimates based on probabilistic models of signal
transitions. However, more accurate power modeling requires
performing simulations that stimulate the circuit using repre-
sentative inputs to capture actual switching activity informa-
tion, which is then fed to commercial power analysis tools,
such as PrimePower.

V. EVALUATION

This section presents our evaluations, based on actual
synthesis results targeting commercial standard cell libraries,
as well as results obtained through DELPHI and DSENT.
In the presentation below, we first validate the assumptions
underlying the DELPHI approach before directly evaluating
the accuracy of DELPHI estimates.

A. Methodology

All synthesis results were obtained using Synopsys De-
sign Compiler (Version I-2013.12-SP3) targeting 32nm, 45nm,
65nm, or 130nm commercial standard cell libraries that come
from three different vendors. When reporting timing results
we synthesize with aggressive constraints to force synthesis to
reach the highest possible operating frequency for each target
design. For all other results, we synthesize and obtain power
results targeting the same fixed frequency of 500MHz5. All
power estimation results assume a switching activity factor of
0.5 across all design inputs.

For DELPHI results, we use a lightly modified version
of DSENT (0.91) targeting the default 45nm, 32nm, 22nm,
and 11nm technology models that come bundled with the
publicly released version of DSENT, which, in our results,
we denote as “DSENT 45”, “DSENT 32”, “DSENT 22”, and
“DSENT 11”. Our evaluations span 26 hardware designs:
18 benchmarks from the IWLS2005 benchmark suite [5]
(including 11 designs from OpenCores and 7 from ISCAS)
and 6 on-chip router designs of varying size and architecture
obtained through the CONNECT NoC generator [18], [12].
Within each group, benchmarks are sorted according to their
size.

Finally, it is important to point out that the DELPHI
results shown in this section were obtained using the publicly
available DSENT “generic” technology models, which do not
correspond to any of the commercial standard cell libraries

5We pick this frequency as it was the highest frequency that could be met
for all designs and for all technology nodes used in our evaluation.

used in this evaluation (and which are protected under strict
NDA agreements). As such, when comparing DELPHI results
with actual synthesis results, emphasis is placed on captur-
ing the same trends, instead of matching the same absolute
numbers. While we focus our evaluation on the 32nm results,
the most modern technology node for which we have standard
cells, we observe similar results across all technology nodes
that we have access to.

B. Results

Constraining synthesis to DSENT standard cell subset. An
artifact of using DELPHI is that synthesis must be constrained
to target the DSENT-supported set of standard cells, typically
a subset of commercial libraries. The first set of results show
the effects of constraining synthesis to only using the subset
of standard cells that are available in DSENT. Figures 6, 7,
and 8 compare power, area, and timing results from baseline
(“unconstrained”) and “constrained” synthesis runs targeting a
commercial 32nm process.

Overall, “constrained” synthesis can experience approxi-
mately 5%-20% quality loss in the design metrics. This is
expected as, e.g., a design that could make use of a 3-input
AND gate will now have to switch to chaining two AND gates
to implement the same logic, which in turn can increase critical
path, area, and power. As will be shown later, these minor—in
light of the speculative nature of synthesis—distortions do not
prevent DELPHI from capturing design trends.

Independence from standard cell library choice for DSENT
model creation. DELPHI and the DSENT back-end provide
technology-independent flows and modeling that are tolerant
to using different RTL-synthesis standard cell library targets
when originally generating DSENT design models from RTL
synthesis. For this next set of results we assess this premise by
synthesizing each design targeting all four commercial stan-
dard cell libraries (32nm, 45nm, 65nm, and 130nm) and then
processing the synthesized netlists using the DELPHI flow to
generate four separate DSENT design models. We then use
these four models to target DSENT’s 32nm technology model
(DSENT 32) to obtain timing, area, and power estimates,
shown in Figures 9, 10, and 11.

The fact that these results show low variance and behave
consistently across all benchmarks and estimated metrics
(timing, area, and power), demonstrates that the DELPHI
flow is robust to using different RTL-synthesis standard cell
libraries as a proxy for generating a DSENT design model. The
extent of “technology independence” becomes more apparent
if one considers that these standard cells not only span a
wide range of technology nodes, but also come from three
different vendors, which vary significantly in their standard
cell offerings.

Capturing power, area, timing trends. After having estab-
lished the validity of the DELPHI/DSENT approach in the
above studies, this last triplet of Figures, 12, 13, and 14, show
how well DELPHI captures timing, area, and power trends by
juxtaposing results from baseline (“unconstrained”) full RTL

0

100

200

300

400

C
lo

ck
 P

e
ri

o
d

 (
p

s)

32nm (Unconstrained)
32nm (DELPHI Constrained)

Fig. 6. Timing estimates of regular vs. DELPHI-constrained synthesis.

0

2000

4000

6000

8000

10000

12000

A
re

a
(u

m
2
) 32nm (Unconstrained)

32nm (DELPHI Constrained)

Fig. 7. Area estimates of regular vs. DELPHI-constrained synthesis.

0

1

2

3

4

5

6

P
o

w
er

 (
m

W
) 32nm (Unconstrained)

32nm (DELPHI Constrained)

Fig. 8. Power estimates of regular vs. DELPHI-constrained synthesis.

0
50

100
150
200
250
300
350

ss
_p

cm

u
sb

_p
h

y

sa
sc

si
m

p
le

_s
p

i

i2
c

p
ci

sp
i

w
b

_d
m

a

tv
8

0

m
e

m
_c

tr
l

ac
9

7
_c

tr
l

s1
4

2
3

s1
5

8
50

s1
3

20
7

s9
2

34
_1

s5
3

7
8

s3
5

93
2

s3
8

41
7

2x
2_

IQ

2
x2

_V
C

4x
4_

IQ

4
x4

_V
C

6x
6_

IQ

6
x6

_V
C

8x
8_

IQ

8
x8

_V
C

C
lo

ck
 P

er
io

d
 (

p
s)

DSENT_32 (using 32nm)

DSENT_32 (using 45nm)

DSENT_32 (using 65nm)

DSENT_32 (using 130nm)

Fig. 9. Timing estimates of four DSENT design models all targeting DSENT 32, but generated using different intermediate synthesis results.

0
2000
4000
6000
8000

10000
12000
14000

ss
_p

cm

u
sb

_p
h

y

sa
sc

si
m

p
le

_s
p

i

i2
c

p
ci

sp
i

w
b

_d
m

a

tv
8

0

m
e

m
_c

tr
l

ac
9

7
_c

tr
l

s1
4

2
3

s1
5

8
50

s1
3

2
0

7

s9
2

3
4

_1

s5
3

7
8

s3
5

9
3

2

s3
8

4
1

7

2
x2

_I
Q

2
x2

_V
C

4
x4

_I
Q

4
x4

_V
C

6
x6

_I
Q

6
x6

_V
C

8
x8

_I
Q

8
x8

_V
C

A
re

a
(u

m
2
)

DSENT_32 (using 32nm)

DSENT_32 (using 45nm)

DSENT_32 (using 65nm)

DSENT_32 (using 130nm)

Fig. 10. Area estimates of four DSENT design models all targeting DSENT 32, but generated using different intermediate synthesis results.

0

2

4

6

8

10

ss
_p

cm

u
sb

_p
h

y

sa
sc

si
m

p
le

_s
p

i

i2
c

p
ci

sp
i

w
b

_d
m

a

tv
8

0

m
e

m
_c

tr
l

ac
97

_c
tr

l

s1
4

2
3

s1
5

85
0

s1
3

20
7

s9
2

34
_1

s5
3

7
8

s3
5

93
2

s3
8

41
7

2
x2

_I
Q

2x
2_

V
C

4
x4

_I
Q

4x
4_

V
C

6
x6

_I
Q

6x
6_

V
C

8
x8

_I
Q

8x
8_

V
C

P
o

w
er

 (
m

W
)

DSENT_32 (using 32nm)

DSENT_32 (using 45nm)

DSENT_32 (using 65nm)

DSENT_32 (using 130nm)

Fig. 11. Power estimates of four DSENT design models all targeting DSENT 32, but generated using different intermediate synthesis results.

0

100

200

300

400

ss
_p

cm

u
sb

_p
h

y

sa
sc

si
m

p
le

_s
p

i

i2
c

p
ci

sp
i

w
b

_d
m

a

tv
8

0

m
e

m
_c

tr
l

ac
9

7
_c

tr
l

s1
4

2
3

s1
5

8
5

0

s1
3

2
07

s9
2

3
4

_1

s5
3

7
8

s3
5

9
3

2

s3
8

4
1

7

2
x2

_
IQ

2x
2

_V
C

4
x4

_
IQ

4x
4

_V
C

6
x6

_
IQ

6x
6

_V
C

8
x8

_
IQ

8x
8

_V
C

C
lo

ck
 P

er
io

d
(p
s)

32nm synthesis

DSENT_32 (average)

Fig. 12. Comparing trends between the average timing estimates of four DSENT models targeting DSENT 32 vs. 32nm synthesis results.

0
2000
4000
6000
8000

10000
12000
14000

ss
_p

cm

u
sb

_p
h

y

sa
sc

si
m

p
le

_s
p

i

i2
c

p
ci

sp
i

w
b

_d
m

a

tv
8

0

m
e

m
_c

tr
l

ac
97

_c
tr

l

s1
4

23

s1
5

85
0

s1
3

20
7

s9
2

3
4

_
1

s5
3

78

s3
5

93
2

s3
8

4
17

2x
2_

IQ

2x
2

_V
C

4x
4_

IQ

4x
4

_V
C

6x
6_

IQ

6x
6

_V
C

8x
8_

IQ

8x
8

_V
C

A
re

a
(u
m

2
)

32nm synthesis

DSENT_32 (average)

Fig. 13. Comparing trends between the average area estimates of four DSENT models targeting DSENT 32 vs. 32nm synthesis results.

0

2

4

6

8

10

ss
_p

cm

u
sb

_p
h

y

sa
sc

si
m

p
le

_s
p

i

i2
c

p
ci

sp
i

w
b

_d
m

a

tv
8

0

m
e

m
_c

tr
l

ac
97

_c
tr

l

s1
4

23

s1
5

85
0

s1
3

20
7

s9
2

3
4_

1

s5
3

78

s3
5

93
2

s3
8

41
7

2x
2_

IQ

2x
2_

V
C

4x
4_

IQ

4x
4_

V
C

6x
6_

IQ

6x
6_

V
C

8x
8_

IQ

8x
8_

V
C

P
o

w
er

 (
m
W
)

32nm synthesis

DSENT_32 (average)

Fig. 14. Comparing trends between the average power estimates of four DSENT models targeting DSENT 32 vs. 32nm synthesis results.

synthesis targeting a commercial 32nm standard cell library
against the average of the DSENT 32 estimates presented in
the previous set of results. Note that the DSENT estimates
behave consistently and exhibit similar trends with the actual
synthesis results. As was mentioned earlier, it is important
to note that the absolute values of the presented data are not
meant to match, as the DSENT 32 model does not correspond
and was not calibrated to match the commercial 32nm cell
library used for synthesis.

DELPHI usage example. As an example usage case for
DELPHI, consider a hypothetical scenario where a computer
architecture researcher is interested in obtaining coarse power
trends for two different Network-on-Chip (NoC) router RTL
designs as technology nodes scale, including future technology
nodes or nodes for which she or he does not have access to.
The first router is based on a simple minimal low-performance
Input-Queued (IQ) router architecture and the second router
is based on a high-performance Virtual-Channel (VC) router
architecture.

Assuming DELPHI is used, as a first step, these designs
would have to be synthesized targeting some available standard
cell library, a process that would take in the order of tens of

minutes and would have to be repeated separately for each of
the two router variants. The two synthesized netlists are then
taken through the DELPHI flow to generate DSENT design
models and compile DSENT, which typically takes less than
two minutes for both models. These DSENT design models
are then used to target five DSENT technology models (65nm,
45nm, 32nm, 22nm, and 11nm) and obtain power estimation
results, which are shown in Table II. From these results,
it is clear that the high-performance VC router becomes
increasingly more attractive (from a power perspective) in
future technology nodes, especially at 11nm, where the power
difference compared to the IC router has decreased by an order
of magnitude and has become negligible.

If the same characterization was to be performed through
traditional full synthesis, it would have taken many orders
of magnitude longer to perform an equivalent characteriza-
tion, which would require running 10 synthesis jobs (not to
mention the overhead of properly configuring the synthesis
environment for five different standard cell libraries). In fact,
this technology forecast study may not be possible at all
using traditional synthesis, since it would require a prohibitive
investment to create standard cell libraries for future non-
existent technology nodes.

Power Estimates (mW)

Technology Model 8x8 IQ Router 8x8 VC Router
DSENT 65 11.88 21.92

DSENT 45 8.65 15.94

DSENT 32 5.49 10.10

DSENT 22 3.34 6.16

DSENT 11 1.03 1.88

TABLE II
SAMPLE NOC POWER STUDY USING THE DELPHI FLOW.

Summary. Overall, in our experiments DELPHI exhibits
consistent and robust estimates across a variety of benchmarks,
standard cell libraries, and technology nodes. Please keep in
mind, however, that DELPHI, like post-synthesis evaluation,
is meant only to expose trends and perform first-order char-
acterization of a design. Our hope is that the results presented
in this section will aid in calibrating expectations with regards
to DELPHI’s capabilities and the extent to which it is able to
perform hardware design characterization and capture trends.

VI. RELATED WORK

To overcome complexity and speed limitations, the archi-
tecture community has a history of building and relying on
models of varying fidelity to gauge the performance and
characteristics of hardware components, such as processors,
memories, adders, Networks-on-Chip, etc. Examples of such
models include McPat [10], an integrated power, area, and
timing modeling framework specific to multicore processor
architectures, and CACTI [15], a tool for modeling power,
area, and timing characteristics of cache memories. Other tools
place particular focus on specific metrics and types of mod-
eling, such as Wattch [4], which focuses on power estimation
for microprocessors, or Orion 2.0 [7], which focuses on power
and area for interconnection networks.

Compared to such models, DELPHI combined with DSENT
can be thought of as a “meta-model” in the sense that it can
be used to generate fast power, area, and timing estimation
models based on any existing RTL-based hardware design.
While previous models are either high-level, such as McPat,
which introduces abstraction errors, or limited to very specific
hardware subcomponents, such as CACTI, DELPHI sidesteps
these issues and offers both high-fidelity and generality by
operating directly at the register-transfer level.

VII. CONCLUSIONS

In this paper we presented DELPHI, a framework which
leverages DSENT modeling to perform fast timing, area, and
power estimation for arbitrary RTL designs. We first discuss
the limitations of RTL synthesis-based estimations. We next
show that the results obtained through DELPHI can capture
trends and first-order effects, and are comparable to post-
synthesis estimates. DELPHI combined with DSENT allows
for performing rapid design space exploration across multiple
technology nodes in a fraction of the time that would be
required using a synthesis-based approach.

We are releasing the DELPHI framework along with any
modifications to DSENT. For more information please visit
http://www.ece.cmu.edu/CALCM/delphi/.

ACKNOWLEDGMENTS

Funding for this work was provided by NSF CCF-1012851.
We thank the anonymous reviewers for their feedback and
comments. We also thank Kaushik Vaidyanathan and Mark
McCartney for the helpful discussions and sharing their EDA
tool knowledge.

REFERENCES

[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha. Garnet: A detailed on-
chip network model inside a full-system simulator. In ISPASS, April
2009.

[2] Berkeley Logic Synthesis and Verification Group. ABC: A System
for Sequential Synthesis and Verification. http://www.eecs.berkeley.edu/
∼alanmi/abc/.

[3] D. Brand and C. Visweswariah. Inaccuracies in Power Estimation During
Logic Synthesis. In ICCAD, November 1996.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In ISCA, June
2000.

[5] Christoph Albrecht, Cadence Research Laboratories at Berkeley. IWLS
2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html.

[6] International Technology Roadmap for Semiconductors. http://www.itrs.
net.

[7] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A Fast and
Accurate NoC Power and Area Model for Early-Stage Design Space
Exploration. In DATE, June 2009.

[8] E. Kounalakis. The Mythical IP Block: An Investigation of Contem-
porary IP Characteristics. Technical Report ICS-TR366, Institute of
Computer Science, Foundation for Research and Technology - Hellas
(FORTH), October 2005.

[9] G. Kurian, S. Neuman, G. Bezerra, A. Giovinazzo, S. Devadas, and
J. Miller. Power Modeling and Other New Features in the Graphite
Simulator. In ISPASS, March 2014.

[10] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures. In MICRO,
December 2009.

[11] R. Marculescu, D. Marculescu, and M. Pedram. Probabilistic Modeling
of Dependencies During Switching Activity Analysis. IEEE Transac-
tions on CAD, 17:73–83, Feb 1998.

[12] Michael K. Papamichael. The CONNECT NoC Generation Framework.
http://users.ece.cmu.edu/∼mpapamic/connect/.

[13] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal. Graphite: A Distributed Parallel Simulator
for Multicores. In HPCA, Jan 2010.

[14] MIT. DSENT (Design Space Exploration for Network Tool). https:
//sites.google.com/site/mitdsent/.

[15] Naveen Muralimanohar, Rajeev Balasubramonian and Norman P. Jouppi.
CACTI 6.0: A Tool to Model Large Caches. Technical Report HPL-
2009-85, 2009.

[16] North Carolina State University. NCSU FreePDK. http://www.eda.ncsu.
edu/wiki/FreePDK.

[17] OpenCores. OpenCores: Open Source Hardware IP-Cores. http:
//opencores.org/.

[18] M. K. Papamichael and J. C. Hoe. CONNECT: Re-Examining Conven-
tional Wisdom for Designing NoCs in the Context of FPGAs. In FPGA,
February 2012.

[19] I. Ratkovic, O. Palomar, M. Stanic, O. Unsal, A. Cristal, and M. Valero.
Physical vs. Physically-Aware Estimation Flow: Case Study of Design
Space Exploration of Adders. In VLSI (ISVLSI), July 2014.

[20] C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh,
and V. Stojanovic. DSENT - A Tool Connecting Emerging Photonics
with Electronics for Opto-Electronic Networks-on-Chip Modeling. In
NOCS, 2012.

[21] University of Southern California. System Power Optimization and
Regulation Technology (SPORT) Lab. http://sportlab.usc.edu/.

[22] C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

