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ABSTRACT
Development of FPGA system is very complicated because
designers should manage sea of logics and bare-metal com-
ponents on FPGAs. CoRAM memory architecture is an en-
deavor to simplify the FPGA accelerator development. Its
soft-logic implementation for existing FPGAs gives an ab-
stract of on-chip/off-chip memory and on-chip interconnec-
tions. This paper presents PyCoRAM which is yet another
implementation of CoRAM memory architecture, for mod-
ern integrated development environments (IDE) provided by
the FPGA vendors. PyCoRAM supports AMBA AXI4, a
major commercial interconnect architecture, as the on-chip
interconnection. PyCoRAM synthesizes an application IP-
core from a user-defined application RTL designs with ab-
stracted CoRAM memory components and software threads
written in Python. Then the designer can easily use the
synthesized accelerator as a typical IP-core, as same as the
other IP-cores such like soft-core CPU. We evaluated the
current implementation of PyCoRAM on two actual FPGA
boards. The evaluation result shows that PyCoRAM can
sufficiently utilize the memory bandwidth by representation
of the memory access pattern in the minimal software model
of Python. This paper is for Category 1 (new unpublished
manuscript).

1. INTRODUCTION
With the growing demands for higher energy efficiency of
computing, computer architects have to explore a sophis-
ticated approach employing heterogeneous computing re-
sources, such as GPGPU, FPGA and ASIC[1]. FPGA-based
custom computing is a hopeful way for both high perfor-
mance and energy efficiency. In FPGA accelerator devel-
opment, system designers have to implement not only the
detailed computing logic, but also a time-consuming and
error-prone complicated control logic to manage the data
marshaling among the on-chip components and the off-chip
memory.

CoRAM[2] (Connected RAM) memory architecture is an en-
deavor to simplify the FPGA accelerator development flow.
Its soft-logic implementation[3] on existing FPGAs gives an

abstract of on-chip/off-chip memory components and on-
chip interconnections. In CoRAM, the application designer
can represent a complicated memory access pattern by us-
ing the C-like software model. It simplifies the development
with keeping the accelerator performance.

Aside from this, FPGA vendors provide integrated develop-
ment environments (IDE), such as Xilinx Platform Studio[4]
and Altera Qsys[5], for IP-core-based system development.
In the IDEs, most hardware components, including off-chip
memory interface and I/O interface, are handled as abstract
function units connected to the specified interconnection. It
helps developers to build a large system, such as FPGA-
based SoC.

To integrate CoRAM memory abstraction into modern IDE-
based development flow, we developed PyCoRAM, which is
yet another implementation of CoRAM memory architecture
for modern IDEs provided by the FPGA vendors. Certainly,
PyCoRAM also gives users the memory abstraction to sim-
plify the accelerator development, as same as the original
CoRAM. Unlike the original CoRAM, PyCoRAM supports
AMBA AXI4[6, 7] as FPGA on-chip interconnect way. Py-
CoRAM tool-chain automatically generates an AXI4 IP-core
module of the accelerator from the user-defined application
RTL design and a software program of memory access pat-
terns. As the name suggests, PyCoRAM uses Python as the
programming language to model the memory access pat-
terns.

In this paper, we present the architecture and microarchi-
tecture of PyCoRAM, including the Python-to-Verilog high-
level synthesis compiler to generate a hardware component
to manage on-chip/off-chip data movements. As an initial
evaluation, we implemented a very simple bandwidth in-
tensive kernel on two kinds of actual FPGA boards. The
evaluation result shows that the current PyCoRAM imple-
mentation can sufficiently utilize the memory bandwidth by
straightforward representation of the memory access pattern
in Python.

2. BACKGROUND
2.1 CoRAM Memory Architecture
CoRAM is a portable memory architecture for efficient FPGA-
based computing. The programing view of CoRAM is sim-
plified by the abstraction of memory fabrics, as illustrated
in Figure.1. Data movement behavior among on-chip mem-
ory fabrics and off-chip memory components is represented
in the software model. Application development concern is
split into two parts; (1) computing kernels and (2) control
threads. Computing kernels tightly connected to CoRAM
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Figure 1: CoRAM Programming Model

function units (CoRAM Memory, which is an abstract mem-
ory block, and CoRAM Channel, which is a communication
channel between computing kernels and control threads).
CoRAM abstract memory blocks are connected to off-chip
memory components via on-chip interconnection. Control
threads manage the on-chip data movements. Designers
specify the behavior of a control thread by the represen-
tation of software model of C. This separation simplifies the
development with keeping the accelerator performance. It
also improves the portability of accelerator design for the
other FPGA boards.

A CoRAM memory block has a standard interface as same
as on-chip SRAMs of FPGAs (BRAM). The user-logic can
be defined in a very simple structure, such like a computa-
tion pipeline and on-chip memory blocks supplying data for
them. CoRAM channels are used for control between user-
logic and control threads. For instance, the user-logic can
know that data for the computation are ready on on-chip
CoRAM memory block from control threads via the chan-
nels, and notify the completion of the computation to the
control threads.

Originally, CoRAM ideology is a standardization of memory
abstraction for future advanced FPGAs with hard-wired on-
chip memory interconnections and sophisticated CPU-based
data marshal units. In order to examine the CoRAM philos-
ophy, a soft-logic implementation on existing FPGAs is pro-
posed[3]. In the soft-logic implementation, a control thread
is realized as a logic unit of FSM (Finite State Machine) us-
ing FPGA reconfigurable resources. The soft-logic CoRAM
has an llvm-based HLS (high level synthesis) compiler to
translate a software model of control thread into an RTL
design with FSMs. As an interconnect system to the off-
chip memory, the soft-logic CoRAM employs CONNECT[8],
which is a well-tuned FPGA-oriented high throughput NoC
(network on chip). Additionally, an optimization method
called ShrinkWrap[9] is also proposed, which enhances the
on-chip network performance and reduces the resource con-
sumption.

2.2 Vendor-Provided IDE and On-chip Inter-
connection

FPGA vendors provide useful IDEs for IP-core-based sys-
tem development. A hardware component is treated as an
abstract function units connected to the specified on-chip
interconnection. Most IDEs provide also many useful IP-
cores as standard. System designers can effectively develop a
FPGA system, with the provided standard IP-cores and/or
soft-core CPUs. As an interconnection mechanism among
hardware components on an FPGA, the IDEs support stan-
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Figure 2: PyCoRAM Tool-chain

dardized on-chip interconnect architectures, such as AMBA
AXI[6, 7]. Designers can easily expand the system by ap-
pending original IP-cores into the design, if the original IP-
cores are designed for those standard interconnect architec-
ture.

Additionally, these interconnect architectures supported by
the vendor IDEs have large capability for accelerator devel-
opment. For instance, AMBA AXI4, supported by Xilinx
Platform Studio[4], has several useful functions to improve
the system throughput and development efficiency; auto-
matic data width conversion and frequency conversion be-
tween multiple interfaces, Out-of-Order transmission using
interface IDs, and so on.

3. PYCORAM: YET ANOTHER IMPLEMEN-
TATION OF CORAM

3.1 Overview
PyCoRAM is an orchestrated framework of CoRAM mem-
ory abstraction and a vendor-provided IDE with standard
on-chip interconnect interface. PyCoRAM synthesizes an
IP-core package from user-defined RTL designs of computing
kernels and software description of memory access patterns.

PyCoRAM does not generate an RTL design of on-chip net-
work. Instead, PyCoRAM utilizes a standard on-chip inter-
connection architecture supported by vender IDEs. In the
current implementation, PyCoRAM supports AMBA AXI4
as the interconnection. As the IDE, Xilinx Platform Stu-
dio (XPS) is supported. At synthesis time of FPGA circuit
image, XPS automatically synthesizes an AXI4 interconnec-
tion network and connects the IP-core instances.

Figure.2 illustrates the IP-core generation flow of PyCo-
RAM. PyCoRAM provides (1) a Python-to-Verilog high-
level synthesis compiler (Control Thread HLS Compiler)
to generate a hardware design to manage data movement
among on-chip memory components and off-chip DRAMs,
(2) an RTL design translator (User-logic Translator) to au-
tomatically insert CoRAM memory signals into the input
user design, and (3) a coordinated RTL synthesizer (System
Builder) to generate a top-level IP-core design with AXI4
interconnect bridges, a test-bench and some essential con-
figuration files for the IDE tool.

The microarchitecture overview of a generated IP-core is
illustrated in Figure.3. The hardware kernel that the de-
signer modeled with CoRAM memory abstraction is located
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Figure 3: PyCoRAM Microarchitecture Overview

on the top of design. Abstract CoRAM memory objects in
the user-defined design are replaced with a combination of
physical CoRAM memory objects (Block RAM) and DMA
controllers. Several CoRAM memory objects may work as
a cluster within a single DMA controller. The owner DMA
controller treats these CoRAM memory objects as a vir-
tual single Block RAM, in order to support scatter/gather
operation and multi-banked Block RAM. Additionally, Py-
CoRAM supports CoRAM stream interface connected with
off-chip DRAM in standard. CoRAM stream interfaces can
be accessed as FIFO from the user-defined logics.

Control threads, which represent the memory access pattern,
are synthesized into FSM-based units by the HLS compiler.
Control threads can send/receive tokens to/from the user-
defined logics via CoRAM channels. CoRAM channel has
a FIFO interface. The user-defined logics can be controlled
from the control thread, and the control threads can use the
dynamic value from the user-defined logics. Control thread
units should manage the data on physical CoRAM memory
objects, by using the DMA controllers. DMA controllers
receive a request of data movement between on-chip Block
RAM and off-chip DRAM. Then the DMA controllers send
a transfer request to the off-chip DRAM interface via AXI
interconnection.

AXI interface (AXI I/F) has a general port for handshaking
with the DMA controller and an AXI port that treats a raw
AXI4 protocol. Note that the data width of DMA controller
equals to the width of CoRAM memory object. However,
the data width of root AXI interconnection may be wider
than the width of DMA controller. In this case, the IDE
tool automatically inserts a data width converter between
two interfaces that the different data width have.

With PyCoRAM supports, PyCoRAM accelerator IP-core
and other IP-cores can share a same AXI4 interconnection
in a system. System designers can develop a heterogeneous
SoC with multiple IP-cores on a single FPGA, in direct way
using the vendor IDE.

3.2 Python-to-Verilog Compiler for Control
Thread

As described, every data movement between on-chip CoRAM
memory (Block RAM) and off-chip DRAM is managed by
control threads. In PyCoRAM, control threads’ behavior is
represented in Python, a major script programing language.
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Figure 4: PyCoRAM Control Thread

An actual control thread is implemented as a state-machine
by using some FPGA hardware resources. We developed
Python-to-Verilog HLS compiler to generate an RTL de-
sign with FSMs to control DMA controllers. Figure.4 shows
an example of acceptable Python code of control thread.
The example thread just transfers the data from an off-chip
DRAM to on-chip CoRAM memory for several times.

A control thread in PyCoRAM consists of (1) instance cre-
ations of CoRAM components (memory, stream, channel
and register), (2) method invocations of CoRAM instance,
and (3) general value definitions and method definitions. In
line 1 in Figure.4, CoRAM memory instance is defined for
this control thread. In line 2, CoRAM channel instance is
defined as a bridge between the control thread and the user-
defined logic. To issue a DMA transfer for CoRAM memory
object, read/write methods of them are called, as shown in
line 12. As arguments of the method, a local address on
the CoRAM memory, remote address of DRAM and trans-
fer size (in word) are passed. User-defined logics and con-
trol threads can communicate with each other. User-defined
logics accept their controls from control threads via CoRAM
channels. Control threads can use dynamic values sent from
the connected user-defined logics.

As well as general software programming, the basic con-
trol syntaxes (if/for/while statements and return/break/-
cotninue statements) are available. Designers can easily put
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Figure 5: HSL Compilation Example

memory access patterns of the application in software man-
ner.

The compiler creates a FSM (finite state machine) from
a software model. The compiler obtains AST (Abstract
Syntax Tree) by using the native code parser of Python.
The AST is scanned by the general visitor pattern, and is
converted to Verilog HDL. In the current implementation,
each value assignment is converted basically into an identical
state of FSM, as illustrated in Figure.5. Control syntaxes
are realized as conditional transitions. The generated RTL
contains two “always” statements: FSM definition and value
assignment at each FSM state.

The current compiler implementation is still naive, but it in-
cludes a basic optimizer that simplifies arithmetic/logic ex-
pressions, replaces high-cost operators (multiplication and
division) with equivalent low-cost operators, and converts
single-assigned value into constant. In Python, variable def-
inition should be done with a value assignment. Basically,
a register (“reg” entry in Verilog HDL) is prepared for every
variable, and the value of a register is assigned in the al-
ways statement. To handle constant value (like “parameter”
in Verilog HDL) in control threads, the compiler optimizer
automatically converts the definition of variables with just
a single assignment into constant definitions of parameter in
Verilog HDL.

The current compiler implementation has some limitations.
(1) Only “integer” is supported as the data type. Object-
oriented programming, such like class definition, is not sup-
ported. Array structures (“list”, “dict”, “tuple” and “set”)
are not supported. (2) Nested function definition is not sup-
ported. (3) Recursive call of methods is not supported.

3.3 User RTL Design Conversion
Hardware kernels are dominant logics of computing working
with CoRAM objects. Therefore they should have an opti-
mized computing pipeline implemented by traditional HDLs
or well-tuned HLS environments. In the current implemen-
tation of PyCoRAM, only Verilog HDL is supported as the
language of input hardware kernels. When HLS tools or
other HDLs are used, RTL codes of hardware kernels should
be translated into Verilog HDL in some way.

When a hardware kernel is modeled, designers can use stubs
as CoRAM objects in their kernel code. Figure.6(a) shows
an example instance creation of the CoRAM memory ob-
ject. To identify the personality of CoRAM object, some
parameters are essential; (1) thread name, (2) object id, (3)
data width of the interface and (4) address length to express
the capacity.

Table 1: Target FPGA Boards
Parameter Digilent Atlys[10] Xilinx ML605[11]

FPGA Xilinx Xilinx
Spartan-6 LX45 Virtex-6 LX240T

Logic Cells 43,661 241,152
BRAM Capacity 261 KB 1849 KB

DRAM DDR2-800 DDR3-800
DRAM Bandwidth 1.2 GB/s 6.4 GB/s
DRAM Capacity 128 MB 512 MB
Clock Frequency 100 MHz
Interconnection AMBA AXI4
Interconnection Crossbar

Type (Performance Optimized)
Interconnection 128 bit 256 bit

Width
Interconnection 100 MHz 200 MHz

Frequency
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In PyCoRAM compilation step, the user RTL translator,
shown in Figure.2, analyzes the kernel code to replace the
stubs. The translator automatically inserts additional sig-
nals of CoRAM objects into the design. As illustrated Fig-
ure.6(a), a “generate” statement can be used to represent a
parameterized module/instance hierarchy, unlike the current
soft-logic implementation of the original CoRAM. As shown
in Figure.6(b), some CoRAM-related signals are inserted to
the instance port. When a generate statement is used, some
“if” statements are appended to switch the inserted signals.
If a module with CoRAM objects is used twice or more, the
module definition in the design is replicated to avoid a name
confliction by additional signals.

In order to convert designs in this way, syntax parser and
dataflow analysis of Verilog HDL are used. We used Pyver-
ilog for design analysis in PyCoRAM, which is our original
Verilog HDL design analysis tool-kit.

4. EVALUATION
4.1 Methodology
We evaluated the performance of generated IP-core design
by PyCoRAM on two actual FPGA boards. We used Digi-
lent Atlys (Xilinx Spartan-6 LX45) and Xilinx ML605 (Xil-
inx Virtex-6 LX240T). The configurations of target FPGA
boards are listed in Table.1. We used Xilinx Platform Studio
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Figure 8: Control Thread for Array Sum

14.6 to synthesize a bit file and to generate an AXI inter-
connect.

In this study, we used array-sum illustrated in Figure.7, a
tiny application to measure the memory bandwidth utiliza-
tion. The array-sum calculates the summation value of an
array. We used a parameterized design to vary the number of
simultaneous computations at 1 cycle. The computing ker-
nel uses two CoRAM memory instances as double-buffered.
The data size for each computation is 32-bit. A data com-
bination is stored in a same row on CoRAM memory. The
total size of accessed data on the DRAM is 128MB. The con-
trol thread description in Python is very short, illustrated
in Figure.8. For double-buffered, two CoRAM memory in-
stances are defined. This control thread issues DMA re-
quests to transfer the data from the DRAM to the on-chip
CoRAM memories.

The operation frequency of computing kernels is 100 MHz
in both FPGA boards. However, each AXI4 interconnec-
tion to off-chip DRAM interface is optimized for each mem-
ory bandwidth. For Altys board, the maximum memory
bandwidth is 1.2 GB/s 1. The data width of AXI4 inter-

1Official maximum bandwidth is 1.6 GB/s. However, the
operation frequency of the memory clock is degraded to
300MHz from 400MHz. Therefore the maximum bandwidth

connection is 128 bit, and the clock frequency is 100MHz.
Therefore the interconnection bandwidth is 1.6 GB/s. For
ML605, the maximum memory bandwidth is 6.4 GB/s. The
data width is 256 bit, and the clock frequency is 200MHz.
Therefore the interconnection bandwidth is 6.4 GB/s. The
FPGA system is controlled by a host computer via RS-232C.
The execution cycle count is measured by using a hardware
counter, implemented as a user-logic on FPGA. The band-
width utilization is calculated as below.

BWUtil =
TotalDataSize[B] × Freq[Hz]

Cycle[Cycle] × MaxBW [B/s]

4.2 Memory Bandwidth Utilization
We observed the impact of the number of SIMD ways to the
memory bandwidth utilization. Figure.9 shows the mea-
sured bandwidth utilization on Digilent Atlys. Figure.10
shows the measured bandwidth utilization on Xilinx ML605.

On Atlys board, 85.5% of the maximum memory bandwidth
is utilized when the SIMD size is 16 bytes. When the SIMD
size is 32 bytes, 86.3% of the bandwidth is utilized. In these
cases, the required bandwidths are 1.6 GB/s and 3.2GB/s,
respectively. They are greater than the maximum mem-
ory bandwidth. The bandwidth inefficiency of 14% thought
to be due to manipulation overhead on the control thread,
interconnection latency and DRAM latency. On ML605,
84.9% of the maximum memory bandwidth is utilized, when
the SIMD size is 64 bytes. In this case, the required memory
bandwidth is 6.4 GB/s, which equals the maximum memory
bandwidth. As alike as Atlys, about 15% loss of bandwidth
is observed.

The current PyCoRAM can achieve sufficiently memory per-
formance with abstracted memory system and easy-to-use
software-like model. However, a certain amount of perfor-
mance inefficiency is observed. In the current implemen-
tation of PyCoRAM, the DMA controller cannot hide the
memory access latency because the DMA controller handles
up to only one memory transaction at a time. Due to the
memory intensive kernel in this evaluation, the elapsed time
of computation is smaller than the time of the data mar-
shaling for each memory block, so that the memory latency
impact directly affected the performance. In order to im-
prove the memory performance, the DMA controller should
have an advanced microarchitecture to handle multiple out-
standing requests, but it will introduce some extra hardware
overhead.

is limited up to 1.2 GB/s.
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Figure 9: Bandwidth Utilization (Digilent Atlys)
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Figure 10: Bandwidth Utilization (Xilinx ML605)

4.3 Resource Utilization
In the viewpoint of resource utilization, the generated IP-
core uses 50% of slices that whole the accelerator system
used. The rest 50% is used by the AXI interconnect gener-
ated by the IDE and system functions for DRAM, clocking
and reset. The AXI interconnect consumes 33% slices of
whole the system. In this evaluation, it is synthesized under
the performance optimized mode. Its resource utilization
can be reduced by using area optimized mode.

The user-logic consumes 42% of slices that the IP-core to-
tally used. The control thread utilizes 12% slices of whole
the IP-core. Both the DMA controllers and the AXI inter-
faces consume 37% slices of whole the IP-core. The rest is
used for glue logic to connect them. These results show that
the hardware overhead is not small, because the application
used for this evaluation is relatively small. If the more real-
istic and larger application is adopted, the ratio of hardware
overhead will be diminished.

5. CONCLUSION
This paper presented PyCoRAM which is yet another im-
plementation of CoRAM memory architecture for modern
IDEs. We evaluated the current implementation of PyCo-
RAM on two actual FPGA boards. The evaluation result
shows that PyCoRAM can sufficiently utilize the memory
bandwidth under the abstraction of memory and memory
access patterns in Python.

PyCoRAM is still under research and development. We have
to evaluate the performance and the hardware overhead in
more realistic applications. We already have implemented
some memory intensive applications, such like matrix-matrix
multiplication and stencil computation.

In order to establish a more sophisticated programming model

for FPGAs, the programmability of PyCoRAM should be
compared to the traditional HDLs and the other hardware
modeling environments. Actually CoRAM and PyCoRAM
can abstract complex memory systems by software-based
modeling. We think, however, another easy way should be
introduced to improve the programming efficiency to con-
struct a well-tuned pipeline design.

Finally, we are planning to make our PyCoRAM toolkit pub-
lic in the near future for efficient development of FPGA-
based computing system.
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