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Abstract—This paper introduces a 3D-stacked logic-in-memory
(LiM) system that integrates the 3D die-stacked DRAM ar-
chitecture with the application-specific LiM IC to accelerate
important data-intensive computing. The system comprises a
fine-grained rank-level 3D die-stacked DRAM device and extra
LiM layers implementing logic-enhanced SRAM blocks that are
dedicated to a particular application. Through silicon vias (TSVs)
are used for vertical interconnections providing the required
bandwidth to support the high performance LiM computing. We
performed a comprehensive 3D DRAM design space exploration
and exploit the efficient architectures to accelerate the computing
that can balance the performance and power. Our experiments
demonstrate orders of magnitude of performance and power
efficiency improvements compared with the traditional multi-
threaded software implementation on modern CPU.

Index Terms—3D-Stacked DRAM; TSV; Logic-in-Memory;
Sparse Matrix Matrix Multiplication; FFT

I. INTRODUCTION

Emerging 3D die-stacked DRAM technology is one of the
most promising solutions to address the well-known memory
wall problem of the high-performance computing systems
[17], [30], [13]. It is a technology that enables heterogeneous
logic dies stacking within one DRAM package and allows
the vertical communication with the through-silicon via (TSV)
interconnections among the stacked chips [21], [29]. To fully
utilize the stacked logic die as well as the huge internal
bandwidth, many researchers have proposed to implement
additional memory hierarchies, or more aggressively, multi-
core processors on the logic layer [20], [28], [31], [22], [14].

In this paper, we extend the 3D DRAM technology to accel-
erate application-specific data intensive computing that have
notoriously inefficient memory access patterns. To achieve
that, we customize the logic layer to be highly specialized
and particularly optimized for a specific application. More im-
portantly, facilitated by the sub-20nm regular pattern construct
based IC design [24], we enhance the functionality of the logic
layer by tightly integrating the application-specific logic with
the embedded SRAM blocks, resulting in 3D-stacked logic-
in-memory accelerating layers (i.e., LiM-layer) (See Fig. 1).

The proposed 3D-stacked LiM system can be used to
accelerate both dense and sparse data-intensive computing.
For demonstration purpose, we choose dense 2D fast Fourier
transform (FFT) used in synthetic aperture radar (SAR) imag-
ing [23] and generalized sparse matrix- sparse matrix mul-
tiplication (or SpGEMM) that is a core primitive for many
graph algorithms [16]. Both problems are memory-inefficient
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Fig. 1. Illustration of the 3D-stacked Logic-in-Memory Computing System.
and challenge current architectures. More specifically, FFT
requires multiple passes through data with low arithmetic
density and strided memory access patterns, while SpGEMM
suffers from poor locality and low ratio of flops to memory
access due to its sparse and irregular data patterns [7]. We
address these problems via a 3D-stacked DRAM which offers
high bandwidth and low latency, and a stacked LiM layer that
is customized to specific applications through fine-grain inte-
gration of logic and memory. We also change the algorithms
to match the DRAM topology well. Eventually it allows us
to exploit the application knowledge to fully utilize the TSV
and the LiM layer silicon estate, and optimize the system to
achieve the best performance at the lowest possible cost.
The co-optimization of the algorithm, architecture and LiM
hardware gives rise to a huge design tradeoff space. We exploit
the CACTI-3DD tool to model the proposed 3D DRAM
architecture and to perform a comprehensive design space
exploration [10]. Optimal 3D DRAM architecture configu-
rations are identified to efficiently accelerate the selected
applications. In this paper, we also propose a TSV saturation
memory scheduling strategy to further enhance the sustained
memory bandwidth. Furthermore, we optimize the application
algorithms as well as their data structure and memory access
patterns in order to fully leverage the underlying hardware
capabilities. We also developed the LiM hardware synthesis
framework for fast design evaluations. Our experimental re-
sults demonstrate orders of magnitude of performance and
power efficiency improvements compared with the Intel MKL
Sparse BLAS Routines implemented on modern CPU.

II. L1M ACCELERATED 3D-DRAM ARCHITECTURE

In this section we will introduce the overall 3D-stacked LiM
architecture and its various design options and configurations.
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A. Overall Architecture

Fig. 2 (a) illustrates the overall system architecture. The
whole 3D-stacked LiM device implements a standard DRAM
interface so it can be transparently used instead of an usual
DDR DIMM that is accessed by CPU. The LiM layer is
designed to process the data-intensive but logic-simple parts
of a data-intensive problem in the most efficient way. This
is possible as the dense, short and fast TSV bus is able to
transfer a whole DRAM row buffer in a few clock cycles
without bandwidth and I/O pin count concerns, and the LiM
is designed to operate on DRAM row-buffer size data chunks
and orchestrate the DRAM reads and writes. After the LiM
processing, the processed data is transferred to the CPU for
high-level interpretation which are less memory-bound, greatly
alleviating the system bus traffic. The in-memory processing
nature of this approach, along with the dedicated hardware
acceleration, can deliver orders of magnitude of performance
improvements and energy savings.

B. 3D-DRAM Architecture Modeling

To fully utilize the huge internal bandwidth that the TSV
can offer, we exploit the fine-grained rank-level 3D die-stacked
DRAM main memory architecture, which re-partitions the
DRAM arrays and re-architects the DRAM dies by allowing
individual memory banks to be stacked in a 3D fashion [10].
Besides, such fine-grained 3D die-stacked DRAM also has a
separate logic layer to implement the complicated peripheral
circuitry [20], [3], [13]. The goal is to enable bank-level paral-
lelism, which can eliminate the I/O limitation of a conventional
DRAM where all banks in a rank share a common bus.

3D-stacked DRAM design space. As shown in Fig. 2
(b), a fine-grained die-stacked DRAM has Ny,.x DRAM dies
stacked vertically and each die implements Ny of DDR3
DRAM bank, and each bank has its own Nj,-bit data TSV I/O.
Every Ng.ck stacked banks form a 3D vertical rank. Therefore,
the overall system is composed of Ny, of vertical ranks. All
the banks in a 3D vertical rank share a single TSV bus, which
can largely relax the TSV pitch constraints [5].

We use the CACTI-3DD [10], an architecture-level 3D die-
stacked off-chip DRAM modeling framework to model the
3D DRAM architecture. Besides the architectural parameters
introduced above, the TSV geometry is also a critical 3D
feature that needs careful modeling to evaluate its impacts
on the timing, area, and power overhead [20], [29]. We
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Fig. 3. Timing Diagram of the 3D-stacked DRAM Access.

use “via-first” TSVs that are fabricated before the front-end
of line (FEOL) device fabrication processing [15] and the
geometry parameters are from ITRS projections [6]. In our
experiments we model two different TSV pitch sizes using
the parameter of TSV_projection, that is, ITRS aggressive
TSV pitch (TSV_projection = 0) and industrial conservative
TSV pitch (TSV_projection = 1). Besides, the configurations
of a 3D-stacked DRAM design also include the overall
DRAM _capacity and page_size, and technology_node. Dif-
ferent choices of parameters have different impacts on the
system. From an architect’s perspective, the main attributes of
interest of a 3D-stacked DRAM include the sustained memory
bandwidth, the DRAM area efficiency and its active power.
In order to find the optimal architectures that can be used
to efficiently accelerate our application-specific LiM designs,
we perform a comprehensive design space exploration of the
systems with respect to area, power and timing, the detail of
which will be described in Section IV-A.
Bandwidth-enhanced DRAM access. Before going into
the details of the design space exploration, we first introduce
a stack-staggered DRAM scheduling strategy that can signif-
icantly enhance the sustained memory bandwidth. To better
illustrate this approach, in Table 1 we present several example
3D DRAM systems. The first row of the table presents a base-
line architecture which has 4 stacked die counts (Ngucx = 4),
8 number of banks per die (Npak = 8) and 512 TSV-based
data I/O per bank (V;, = 512). And in the next two rows, we
show three improved architectures by doubling one parameter
while leaving the other two parameters unchanged. For each
design, we show the corresponding timing specifications and
the resulting achievable bandwidth (BWW'1). We see from the
table that the access latency is dominated by the row to column
command delay (trcp) to get the data ready at the sense
amplifier, as well as the column access strobe latency (tcas),
which is the time to move data between the sense amplifier
and TSV bus [26], while the trsy itself for vertical TSV data



transfer is fairly small. This indicates that the vertical TSV bus
stays idle for most of the time waiting for the data, limiting
the bandwidth. In [28], the authors proposed to decrease
tcas by further folding the subarrays of one bank to reduce
the wire lengths between the sense amplifiers and the TSV
bus. However, such bank-level die stacking requires breaking
the structure within a bank which will further deteriorate
the DRAM density and area efficiency [10]. On the other
hand, we observed that the increase of the Ny, does not
actually increase the bandwidth. The increases in Ny, and
N, contribute to the DRAM bandwidth, but at the cost of
area overhead (See the AE (Area Efficiency) in Table 1).

As trep and tcas are for intra-layer DRAM operations
within a single DRAM layer that do not involve inter-layer
TSV data transfer, they allow us to schedule the 3D DRAM
access in such a way that these intra-layer operations are
overlapped to reduce the TSV bus idle time, thus improve
the throughput. To achieve this, we stagger the activation
of successive stacked memory banks by a time step of trgy
successively in a work_cycle, such that the tgcp and fcas of
Nack banks in a single vertical rank are time-shared while the
shared TSV bus is kept busy as much as possible (see Fig. 3).
Here work_cycle is defined as the time to move the data from
all the active DRAM bank row buffers to the LiM layer, which
is determined by the ratio (P) between the DRAM row buffer
size and the I/O counts per bank (/V;,). At the end of each
work_cycle, it takes interval tgp to precharge the DRAM array
and get ready for another row access (next work_cycle). As
shown in Table 1, BW2 is the achieved memory bandwidth
with such staggered scheduling while BW1 is the original
3D DRAM memory that is limited by the intra-layer operation
latencies. We see that by careful scheduling the memory access
we can improve the memory bandwidth by 4 to 8 times without
any hardware overhead. Eventually, the increase of the Nk
also becomes an important factor to contribute to the system
bandwidth. As we can see from Table 1, all the three improved
architectures offer more than 256 GB/s memory bandwidth
(BW?2) while only consuming less than 15 Watts of power.

TABLE I
3D-DIE STACKED DRAM EXAMPLES

8 Gb memory with 8192b page size; technology node: 32nm
Nitack| Noank| Nio |[trep|tcas |t1sv| trp | AE | BWI | BW2 | Power
— - — |(ns)|(ns)|(ns)|(ns)] — |(GB/s)|(GB/s)|(Watts)
4 8 |512]7.912.7|0.67{16.8{0.517| 40.4 |144.1| 6.2
8 8 |512]8.3|12.5{1.91] 9.6 [0.434| 40.8 [299.7| 13.2
4 16 | 512 7.2 10.6/0.67] 8.4 [0.438] 96.7 |354.3| 13.1
4 8 (1024} 7.9 [12.1|0.67(16.8|0.445| 84.4 |269.2| 10.5

III. 3D LIM ACCELERATED
DATA INTENSIVE APPLICATIONS

To match the high bandwidth that TSV offers, it is necessary
to perform equivalently high performance computing on the
LiM layer. Moreover, to facilitate the proposed TSV-saturated
DRAM access scheduling, it requires regular and coarse-
grained row-wise memory access patterns. For demonstration
purpose we use two applications to represent both sparse and
dense data-intensive computing respectively, that is, SpPGEMM

Dk ‘ TR LT
EEEE 5o HEE-EE
[ B Limcore1 M [ N E

B e A B

‘m N NN CE

* B> -» = nlox W

-l 1M core2 SN

B L.¢ A B ]

] ‘ : [
‘W > - .=...x =

i . LiM Core 3
B

C A B C A

Stage 2: 'l

for use in graph algorithms [16] and 2D FFT for use in SAR
image reconstruction [23], [32]. Next we will introduce briefly
the two problems, their algorithm choices as well as the data
manipulation and hardware mapping strategies.

SpGEMM. Graphs are fundamental data structures used
in many data analysis problems (e.g. WWW graph, social
networks) [16]. These problems are important enough to
support architecture investments to surpass the traditional
computing which has reached the limit for increasing perfor-
mance without an increase in power [25], [19]. It is widely
accepted to exploit the duality between sparse matrix and
graph to solve graph algorithms [7]. However, the development
of sparse matrix algorithms poses numerous challenges due
to their sparse and irregular data structures and the low
ratio of flops to memory access. In this paper we focus
on the acceleration of the generalized sparse matrix-matrix
multiplication (SpGEMM) with the proposed 3D stacked LiM
architecture. To adapt to the row-wise 3D DRAM access, we
use a 2-dimensional (2D) block data decomposition of the
matrices based on the SRUMMA algorithm [18]. As shown
in Fig. 4, the matrix A, matrix B, and resulting matrix C
are tiled into small blocks which are mapped to the DRAM
rows. Each resulting block C(i, j) is computed from the i*"
block row of the matrix A and ;" block column of the
matrix B. To enable the parallel processing, we implement
multiple identical SpGEMM LiM cores and let each of them
work for one column of resulting block C. As illustrated in
the Fig. 4, different LiM cores start to compute the blocks
on different columns simultaneously by staggering one block
with each other and then continue the computation in the
sequential order in a column. Such block-staggered parallel
processing mechanism guarantees that each processor operates
on different source blocks without conflicts.

The tiled SpGEMM algorithm can be well mapped to the
3D-stacked LiM architecture. As matrix blocks are mapped
to DRAM rows which are accessed in the sequential order,
for each LiM core computation, we can access the two source
blocks from the carefully scheduled active row buffers via the
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Fig. 5. 2D-FFT with Tiled Data Layout.
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TSV bus. The corresponding LiM core then operates on the
two whole matrix blocks of data and computes the resulting
block at the highest possible throughput without any pipeline
stalls. Besides, the sequential block access order allows an
easy-scheduled 3D DRAM row access, which makes the
bandwidth-enhanced DRAM scheduling approach possible. It
also preserves good data locality which minimizes the DRAM
row miss and saves energy.

2D FFT. Next we focus on large size 2D-FFT which is
a dense computation used in SAR imaging [23], [4]. Image
sizes used in SAR image reconstruction are usually very large,
hence requires large-size 2D-FFT computation. Large size
2D-FFT, where the whole dataset cannot be held in local
SRAM, is performed as stages where only some portion of the
dataset which fits local SRAM is operated at once, requiring
roundtrip data transfers to and from DRAM. Furthermore,
traditional algorithms for 2D-FFT have inefficient memory
access patterns which puts pressure on memory bandwidth
and makes the memory the key aspect of the design [4]. We
address this problem via 3D-stacked DRAM which offers high
bandwidth and low latency off-chip data transfer.

We utilize the algorithm and architecture proposed in [4]
for large size 2D-FFT. Similar to our SpGEMM implementa-
tion, the proposed system for 2D-FFT exploits 2D-tiled data
mapping in DRAM and uses an efficient algorithm targeted
for such data mapping. The overall system reads and writes
DRAM row-buffer size tiles during the data transfer (see
Fig. 5), which minimizes the DRAM row misses. 2D-FFT
computation in the LiM layer and the data transfer from the
DRAM layer is overlapped by the help of double-buffering.
Hence, TSV bus bandwidth is utilized effectively making
the overall system an efficient fit for the 3D-stacked LiM
architecture. Furthermore, since 2D-FFT system is generated
by an automated design generator, we can easily match the
computation throughput to the high TSV bandwidth to create
balanced designs. We refer reader to [4] for the details of the
2D-FFT algorithm and architecture.

3D-stacked LiM design. Although the introduced two prob-

lems are for dense and sparse computing respectively, both
applications are challenged by the well-known memory wall
problem while implemented on modern computer architec-
tures. In terms of the implementation, both problems are based
on the block data decomposition of a 2-dimensional (2D)
data array (sparse matrix, or dense image). Moreover, both of
their algorithms involve regular block-wise data partition and
allocations over scalable parallel processing cores (see Fig. 4
and Fig. 5). Therefore, they can both potentially be accelerated
by similar 3D-stack LiM architectures.

Fig. 6 shows the corresponding functional diagram of the
3D-stacked core architecture, which is composed of a meta
data memory array, a memory interface and parallel LiM cores,
and interfaces with the DRAM stacks through TSV buses.
The memory controller is dedicated for the communication
among the meta-data memory array, the LiM cores and the
3D-DRAM. And the meta data memory array stores the infor-
mation which maps the blocks of data to DRAM rows. More
specifically, it provides the DRAM address information of each
requested blocks as well as the global block information (i.e.,
the block size, the data format, and the number of nonzero
elements in that block). The parallel LiM cores are carefully
designed to accelerate a particular application with our previ-
ously developed logic-in-memory synthesis framework [34].
Particular knowledge from a given algorithm allows us to
optimize the LiM designs to meet the required function, under
the performance, area and power requirements. At the bottom
of the Fig. 6, we show the structures of LiM core customized
for the 2D FFT and SpGEMM respectively [4], [33]. As we
can see, both LiM cores involve embedded memory arrays,
on-chip buffers, arithmetic units, as well as the control models
such as DRAM to Local Memory (D2L) and Local Memory
to Core (L2C). However, the size and organization of these
memory and logic components are designed in different ways
for different applications for efficiency. Take SpGEMM for ex-
ample, each LiM core is composed of two local memory arrays
for the storage of the source matrix block A and B, as well as
a SpGEMM core which has arithmetic units tightly integrated
with SRAM and content addressable memory (CAM) arrays to
compute and assemble the resulting matrix block. The CAM
based SpGEMM is designed to match the specific sparse data
access pattern, and it is able to process the sparse data in an
extremely high throughput to match the TSV bandwidth. The
design details are beyond the scope of this paper and can be
found in another accompanying work [33].

IV. EVALUATION AND RESULTS

In this section, we will evaluate the design space of the 3D-
stacked DRAM architecture and identify the optimal design
points. We will also evaluate the performance and energy
efficiency improvements of the accelerated applications.

A. 3D DRAM Architecture Design Space Exploration

The modeling of the 3D-stacked DRAM is a large design
tradeoff problem that involves a large number of design
parameters, the choices of which have significant impacts on
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different design metrics. We use the CACTI-3DD [10] which
explore the design space with the goal to identify the optimal
design points that can balance performance, power and area.

Area efficiency (AE) is a fundamental metric for a DRAM
device which is defined as the ratio of the cell array area to the
total die area and it is typically in the range of 45% to 55%
for a commodity DRAM [27]. In the proposed 3D DRAM,
the increase of both Ny« and Nj, will cause significant area
overhead. Fig. 7 (a) plots the AE for sweeping Ny from 8
to 128, and N, from 64 to 1024. We keep the total DRAM
capacity of each die fixed as 2 Gbits. We see that when
Npank 1s larger than 32, AE of all designs points are less
than 40% regardless the TSV counts. That implies that the
fined-grained bank partition cause too much area overhead.
Therefore the designs with Ny = 64 or Ny = 128 are
excluded and the remaining designs points have the bank size
of 256 Mb (Npank = 8), 128 Mb (Npayk = 16), and 64
Mb (Npak = 32). We then measure the sustained memory
bandwidth and the corresponding power consumption with
respect to the remaining Npynk and Ngck, as shown in Fig. 7
(b) and (c) respectively. We see that the DRAM bandwidth
keeps increasing when Ny, increases from 2 to 16, after
which the bandwidth starts to shrink, indicating that the
increased stack height is unable to supply higher bandwidth
due to the increased latency. Fig. 7 (c) shows the escalating
power consumption with the increasing Ng,cx. Due to both
of the latency and power limitations, Ng,x = 32 is excluded.
Nstack = 2 is also excluded due to the low bandwidth supplied.

To identify the optimal design points, it requires more
comprehensive optimization criteria to quantify the design
space. We use energy efficiency (EE = bandwidth/power) as
well as the product of the energy efficiency and area efficiency
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AE  Bandwidth Power EE EE* AE

Bank_size (Bank_count TSV per bank

(Mb) # # % GB/s W GB/) GB/)*%
256  |Bank-8 TSV-64 0.65 21.53 19 | 1099 7.09
128 |Bank-16  |TSV-64 0.54 45.52 378 | 12.04 6.53
128 |Bank-16  |TSV-128 0.53 90.62 4.8 1886 | 10.11
256  |Bank-8 TSV-512 0.6 164.82 638 | 2581 | 15.56
256  |Bank-8 TSV-1024 0.56 CIPNERN 1139 | 2746 | 1538
128 |Bank-16  |TSV-512 0.5 CLIRENN 1222 | 2867 | 1432
128 |Bank-16  |TSV-1024 0.46 668.4 21.81 | 30.64 | 14.03
Fig. 10. Potential Optimal 3D DRAM Design Points.

(EEXAE) and plot them with respect to the narrowed down
Nytack> Noank and Nj, in Fig. 8 (a) and (b), respectively. From
the figures it is straightforward to identify the optimal design
points in the remaining design space. As we highlighted in
the blue circles, the optimal design points are (Ngax = 4,
Npank = 16, N;o = 1024) for an optimized EE and (N = 4,
Noank = 8, N;o = 512) for an optimized EExAE.

We continue to evaluate the impacts of other design op-
tions. Besides technology_node and TSV_projection that we
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introduced in Section II-B, we use the parameter Partition to
specify two different DRAM partition strategies. Besides the
introduced fine-grained rank-level die-stacking (Partition = 1),
we also simulated the coarse-grained rank-level die-stacking
DRAM (Partition = 0) where TSVs is only used as inter-
rank interconnects while the rank still consists of the planar
dies as in a 2D design [10]. From Fig. 9, we clearly see
the advantages of the advanced technology node, the fine-
grained partition strategies and the smaller TSV pitch. Based
on all the exploration results, in Fig. 10 we summarize seven
potential optimal 3D DRAM architectures that we will use
to accelerate the applications and they are ordered with the
bandwidth values. As we can see, all the selected designs have
more than 45% area efficiencies and more than 10 GB/J energy
efficiency, and the offered bandwidth varied from 21 GB/s to
668 GB/s at 2 to 22 Watts of power consumption.

B. Application Evaluation

We build the cycle-accurate HDL model of the blocked
SpGEMM LiM and simulate it on the selected optimal 3D
DRAM architecture model. The LiM layer power numbers
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are based on HDL synthesis using a commercial 32nm library.
We first present the bandwidth-power tradeoff in Fig. 11 (a),
and it shows that not only the DRAM power but also the
LiM layer power consumption increase with the increasing
memory bandwidth, as it requires more active computational
resources on the LiM layer in order to consume the high
throughput data. In Fig. 11 (b) we simulate SpGEMM for two
benchmark matrices and plot their performance and energy
consumption over the seven selected DRAM architectures.
As expected, the achieved SpGEMM performance keeps in-
creasing on architectures with higher memory bandwidths.
But we know from Fig. 11 (a) that the corresponding power
consumption will increase as well. Interestingly, increase in the
performance overshadows the power consumption increase, as
the total energy consumption, which is the product of power
and latency, slightly decreases with higher memory bandwidth.

For comparison purpose, we run Intel Math Kernel Library
(MKL) Sparse Basic Linear Algebra Subprograms (BLAS)
Routines on Intel Xeon machines [1]. We then use the Sniper
multi-core simulator to model the processor simulating the
same SpGEMM and estimate the processor power [8]. We use
Intel Pin tool to generate the memory trace statistics and use
a modified USIMM DRAM simulator together with Micron
power calculator for the power estimation of the planar DRAM
system [12], [9], [2]. Fig. 12 (a) and (b) present the comparison
of performance and power efficiency of the two systems for a
wide variety of benchmark matrices which are collected from
the University of Florida sparse matrix collection [11]. We
see that the performance of the proposed SpGEMM imple-
mentation varies from 1 GFLOPS (FLoating-point Operations
Per Second) to 100 GFLOPS for different memory bandwidth
configurations. And for high-bandwidth implementations, it



can achieve more than one order of magnitude of performance
improvement as well as more than two orders of magnitude of
power efficiency improvements compared with the Intel MKL
Sparse BLAS Routines implemented on Intel Xeon machines.

To evaluate the impact on dense computing, we similarly
simulated the performance of the 2D-FFT using a custom
system performance model backed up by cycle-accurate HDL
simulation. We demonstrate simulated systems in Fig. 13,
where DRAM bandwidth is ranging from 64GB/s to 320GB/s
and 2D-FFT size is ranging from 256 x 256 to 8K x 8K. We
picked the optimal design parameters (frequency, parallelism
degree) that saturate the given bandwidth and problem size.
Results show that again the proposed system can achieve one
to two orders of magnitude power efficiency improvements
compared to optimized FPGA, GPU and CPU implementa-
tions which achieve only a few GFLOPS/W [4]. Also as we
expected, the dense computing delivers much higher power
efficiency than the sparse one on the same computing system.

V. CONCLUSION

This paper presents a TSV based 3D computing system
that stacks a 3D DRAM device with high performance LiM
chips to accelerate data intensive problems that are limited
by the “memory wall” bottleneck of the modern processor
architectures. The novelty lies in an application-specific 3D-
stacked DRAM architecture which offers high bandwidth and
low latency data transfer via TSV, and a stacked LiM layer
that is customized to the particular problem through a fine-
grain integration of logic and SRAM. In addition, we revised
the application algorithms to match the underlying hardware
and developed the necessary modeling and design framework
tools for fast design evaluations. The resulting system is a
transparent, energy efficient device for accelerating notoriously
memory-bound problems. This paper demonstrates that recent
cutting-edge IC design advances create opportunities to build
an extremely energy, power and performance-efficient com-
puting platform to accelerate data intensive computing.
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