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ABSTRACT
An FPGA is a peculiar hardware realization substrate in
terms of the relative speed and cost of logic vs. wires
vs. memory. In this paper, we present a Network-on-Chip
(NoC) design study from the mindset of NoC as a synthesiz-
able infrastructural element to support emerging System-on-
Chip (SoC) applications on FPGAs. To support our study,
we developed CONNECT, an NoC generator that can pro-
duce synthesizable RTL designs of FPGA-tuned multi-node
NoCs of arbitrary topology. The CONNECT NoC architec-
ture embodies a set of FPGA-motivated design principles
that uniquely influence key NoC design decisions, such as
topology, link width, router pipeline depth, network buffer
sizing, and flow control. We evaluate CONNECT against a
high-quality publicly available synthesizable RTL-level NoC
design intended for ASICs. Our evaluation shows a signif-
icant gain in specializing NoC design decisions to FPGAs’
unique mapping and operating characteristics. For exam-
ple, in the case of a 4x4 mesh configuration evaluated using
a set of synthetic traffic patterns, we obtain comparable or
better performance than the state-of-the-art NoC while re-
ducing logic resource cost by 58%, or alternatively, achieve
3-4x better performance for approximately the same logic
resource usage. Finally, to demonstrate CONNECT’s flex-
ibility and extensive design space coverage, we also report
synthesis and network performance results for several router
configurations and for entire CONNECT networks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Packet-switching networks

General Terms
Design, Experimentation, Performance
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1. INTRODUCTION
The rapidly-growing capacity of Field Programmable

Gate Arrays (FPGAs), combined with the steady introduc-
tion of hardwired support for a multitude of diverse inter-
faces and functionalities, has promoted FPGAs to an attrac-
tive and capable platform for hosting even extended System-
on-Chip (SoC) designs [9]. As the scale of designs target-
ing FPGAs grows, designers need a systematic and flexible
Network-on-Chip (NoC) infrastructure to support commu-
nication between the tens and in the future potentially hun-
dreds of interacting modules. In this paper, we present our
investigation in synthesizable NoC designs specifically archi-
tected and tuned for FPGAs for use with the development
of SoCs and other demanding systems applications, such as
full-system prototyping [5] and high performance comput-
ing [4].

The research literature offers a large body of work on
NoCs mapped onto FPGAs for the purpose of NoC simula-
tion studies [25, 31] and for the purpose of prototyping and
SoC emulation [24, 30, 15]. In these cases, the actual per-
formance and efficiency of the originally ASIC-oriented NoC
designs when mapped to FPGA is not a first-order concern;
instead these prior works are motivated to instantiate largely
unmodified ASIC-oriented NoC designs to ensure modeling
fidelity. There have been only relatively few papers that
point out FPGA-specific NoC design issues. We refer to
them in our discussions in Sections 3 and 6.

Although the FPGA design flow and the ASIC design flow
have much in common in their similar-looking RTL-based
design and synthesis environments, they are in fact very dif-
ferent when it comes to making design decisions affecting
cost and performance optimizations. A “literal” adaptation
of an ASIC-optimized RTL-level NoC design on an FPGA
will almost certainly prove to be suboptimal. What may
be a compactly optimized router on an ASIC can incur a
disproportionately high cost when synthesized for an FPGA
because of the FPGA’s very different relative cost trade-
off between logic, wires and memory. Worse yet, ASIC-
motivated optimizaitons will likely not be as effective due
to the FPGA’s also very different relative speeds in logic,
wires and memory. FPGA design optimizations are further
complicated by quantization effects because user logic and
memory are realized using discretized underlying physical
structures of fixed capacity and geometry.

In this work, we take full consideration of FPGAs’ special
hardware mapping and operating characteristics to identify
their own specialized NoC design sweet spot, which we will
show is very different from the conventional wisdom stem-
ming from NoC designs on ASICs. Specifically, the con-



siderations that have motivated this work to rethink NoC
design for FPGAs are (1) FPGAs’ relative abundance of
wires compared to logic and memory; (2) the scarcity of
on-die storage resources in the form of a large number of
modest-sized buffers; (3) the rapidly diminishing return on
performance from deep pipelining; and (4) the field recon-
figurability that allows for an extreme degree of application-
specific fine-tuning.

To support this investigation, we created the CONNECT
NoC design generator that can generate synthesizable RTL-
level designs of multi-node NoCs based on a simple but
flexible fully-parameterized router architecture. The CON-
NECT NoC architecture embodies a set of FPGA-motivated
design principles that uniquely influence key NoC design de-
cisions, such as topology, link width, router pipeline depth,
network buffer sizing, and flow control.

In the results section, we compare FPGA synthesis re-
source usage and network performance results for two in-
stances of CONNECT NoCs to a high-quality state-of-the-
art ASIC-oriented NoC design, to demonstrate the effec-
tiveness of the FPGA-specialized tuning and features of the
CONNECT NoC architecture. In addition, to highlight the
flexibility and adaptability of the CONNECT NoC archi-
tecture, we also include synthesis and network performance
results for a variety of diverse router and network configura-
tions. Overall, the results of our investigation support that
through FPGA specialization, we can gain approximately a
factor of two savings in implementation cost without experi-
encing any significant performance penalty—in many cases,
the CONNECT FPGA-tuned router design can actually lead
to better performance at a lower implementation cost.

The rest of this paper is organized as follows. Section 2
provides a brief review of key NoC terminology and concepts.
Section 3 introduces the motivations behind the CONNECT
NoC architecture, and Section 4 presents the architecture
of CONNECT-based routers and NoCs. In Section 5 we
evaluate a CONNECT-based 4x4 mesh network against an
equivalent NoC implemented using publicly available high-
quality state-of-the-art RTL and show FPGA synthesis and
network performance results for various CONNECT router
and NoC configurations. Finally, we examine related work in
Section 6, discuss future directions in Section 7 and conclude
in Section 8.

2. NOC BACKGROUND
This section offers a brief review of key NoC terminology

and concepts relevant to this paper. For a more compre-
hensive introduction please see [8]. Readers already familiar
with NoCs may continue directly to Section 3.

Packets. Packets are the basic logical unit of transmis-
sion at the endpoints of a network.

Flits. When traversing a network, packets, especially
large ones, are broken into flits (flow control digits), which
are the basic unit of resource allocation and flow control
within the network. Some NoCs require special additional
“header” or “tail” flits to carry control information and to
mark the beginning and end of a packet.

Virtual Channels. A channel corresponds to a path
between two points in a network. NoCs often employ a tech-
nique called virtual channels (VCs) to provide the abstrac-
tion of multiple logical channels over a physical underlying
channel. Routers implement VCs by having non-interfering
flit buffers for different VCs and time-multiplexed sharing of
the switches and links. Thus, the number of implemented

VCs has a large impact on the buffer requirements of an
NoC. Employing VCs can help in the implementation of pro-
tocols that require traffic isolation between different message
classes (e.g. to prevent deadlock [7]), but can also increase
network performance by reducing the effects of head-of-line
blocking [22].

Flow Control. In lossless networks a router can only
send a flit to a downstream receiving router if it is known
that the downstream router’s buffer has space to receive the
flit. “Flow control” refers to the protocol for managing and
negotiating the available buffer space between routers. Due
to physical separation and the speed of router operation, it
is not always possible for the sending router to have immedi-
ate, up-to-date knowledge of the buffer status at the receiv-
ing router. In credit-based flow-control, the sending router
tracks credits from its downstream receiving routers. At
any moment, the number of accumulated credits indicates
the guaranteed available buffer space (equal to or less than
what is actually available due to delay in receiving credits)
at the downstream router’s buffer. Flow control is typically
performed on a per-VC basis.

Input-Output Allocation. Allocation refers to the pro-
cess or algorithm of matching a router’s input requests with
the available router outputs. Different allocators offer differ-
ent trade-offs in terms of hardware cost, speed and matching
efficiency. Separable allocators [8] form a class of allocators
that are popular in NoCs. They perform matching in two
independent steps, which sacrifices matching efficiency for
speed and low hardware cost.

Performance characterization. The most common
way of characterizing an NoC is through load-delay curves,
which are obtained by measuring packet delay under varying
degrees of load for a set of traffic patterns. A common met-
ric for load is the average number of injected flits per cycle
per network input port. Packet delay represents the elapsed
time from the cycle the first flit of a packet is injected into
the network until the cycle its last flit is delivered. For a
given clock frequency, load and delay are often reported in
absolute terms, e.g. Gbits/s and ns.

3. TAILORING TO FPGAS
Compared to ASICs, an FPGA is a peculiar hardware

realization substrate because it dictates a very different set
of design tradeoffs between logic, wires, memory and clock
frequency. In this section we focus on specific FPGA char-
acteristics and show how they have influenced fundamental
CONNECT design decisions.

3.1 “Free” Wires
FPGAs are expected to be able to handle a wide range of

designs with varying degrees of connectivity. Consequently,
as previously also noted by other work [26, 20], FPGAs
are provisioned, even over-provisioned, with a highly and
densely connected wiring substrate. For the average appli-
cation, this routing resource is likely to be underutilized. In
these cases, one could view wires as plentiful or even “free”,
especially relative to the availability of other resources like
configurable logic blocks and on-chip storage (flip-flops and
SRAMs). This relative abundance of wires speaks against
the conventional wisdom in NoC design where routers are
typically viewed as internally densely connected components
that are linked to each other through narrow channels that
try to multiplex a lot of information through a small set of
wires.



Implications. A NoC for FPGAs should attempt to
make maximal use of the routing substrate by making the
datapaths and channels between routers as wide as possible
to consume the largest possible fraction of the available (oth-
erwise unused) wires. Moreover, flow control mechanisms
could also be adapted to use a wider interface, which as we
show later, can indirectly also reduce router storage require-
ments. Design decisions such as widening the datapath can
even have an indirect effect on issues like packet format. For
instance, information that would otherwise be carried in a
separate header flit could instead be carried through addi-
tional dedicated control wires that run along the data wires.
Furthermore, on FPGAs (as well as ASICs actually), the
boundaries between one router and another are not sharp—
there is not a 10-foot cable separating them like in the old
days. We will see later where the CONNECT NoC archi-
tecture allows the logic in one router to reach directly into
another router for a more efficient implementation of buffer
flow control.

3.2 Storage Shortage
Modern FPGAs provide storage in two forms: (1) SRAM

macros with tens of kilo-bits of capacity, and (2) small tens-
of-bits SRAMs based on logic lookup tables. In this paper,
we refer to the former as Block RAMs and the latter as Dis-
tributed RAMs, following Xilinx’s terminology. The bulk
of the available storage capacity (in terms of bits) come in
the form of a modest number of Block RAMs. These mono-
lithic memory macros can not be subdivided. This leads
to an inefficiency because a full Block RAM must be con-
sumed, even if only a fraction of its capacity is required.
Compared to Block RAMs, the Distributed RAMs are very
expensive, especially when forming large buffers, since every
Distributed RAM consumed is taking away from valuable
logic implementation resources. This sets up a situation
where NoCs on FPGAs pay a disproportionately high pre-
mium for storage because NoCs typically require a large
number of buffers whose capacities are each much bigger
than Distributed RAMs but much smaller than the Block
RAMs. This premium has the consequences of not only
limiting the scale of NoCs that can be practically built, but
also reducing the resources available to the user logic.

Implications. Given the comparatively high premium
for storage, a NoC tuned for FPGA should have a higher
threshold for optimizations that increase buffer size in ex-
change for performance or functionality (e.g., number of
VCs), especially when the increase requires consuming Block
RAMs that are likely to be in high-demand from the user
logic as well. The CONNECT NoC Architecture avoids us-
ing Block RAMs entirely and uses Distributed RAMs ex-
clusively for its packet buffers. Furthermore, the choice of
buffer sizing and configurations in the CONNECT NoC ar-
chitecture takes into consideration the specific dimensions
and sizes of the Distributed RAM building blocks to make
the most efficient use of each consumed LUT.

3.3 Frequency Challenged
A design on an FPGA will operate at a much lower clock

frequency than when implemented in ASIC; this was one of
the gaps studied in [19]. First of all, Look-Up Tables used
to implement arbitrary logic functions are inherently slower
compared to fixed-function ASIC standard cells. Secondly,
in order to emulate arbitrary logic blocks, FPGAs often need
to chain a large number of LUT elements, which in turn re-
quires using long interconnect wires. The time spent travers-

ing these wires often ends up being the largest fraction of
the critical path in FPGA designs.

Implications. From the perspective of this work, the
most important implication from the difference in perfor-
mance between ASICs and FPGAs actually manifests most
strongly in the rapid diminishing return when attempting
to deeply pipeline a FPGA design to improve its frequency.
In most cases, beyond a small number of stages, it becomes
impossible to further subdivide into balanced finer pipeline
stages due to the quantization effects of the underlying re-
alization structures and the difficulty in controlling physical
details like logic placement, wiring routing, and driver siz-
ing. We will see later that in fact, for FPGA synthesis, the
single-stage router used in the CONNECT NoC architecture
reaches lower, but still comparable frequency as an ASIC-
tuned 3-stage-pipelined router. The FPGA’s performance
penalty from running at lower frequency is much more ef-
ficiently made up by increasing the width of the datapath
and links. The shallow pipeline in the CONNECT NoC ar-
chitecture has the added benefit of reducing network latency
as well as greatly reducing the number of precious flip-flops
consumed by a router.

3.4 Reconfigurability
The reconfigurable nature of FPGAs sets them apart from

ASICs and creates unique opportunities and challenges for
implementing an FPGA-oriented NoC. Given the flexibility
of FPGAs, an effective NoC design is likely to be called
to match up against a diverse range of applications. Fortu-
nately, the NoC itself, making use of the same reconfigurabil-
ity, can also go to an extreme degree of application-specific
customizations that no one would ever consider for a design
to be committed to ASICs.

Implications. Instead of a single design instance library
IP, the CONNECT NoC Architecture relies on a design gen-
erator that can produce NoC instances specifically adapted
to match the application or even the specific run-by-run
workload. To cover the needs of such a diverse and rapidly
changing set of applications, the CONNECT NoC genera-
tor is fully parameterized and more importantly topology-
agnostic, which means that individual routers can be com-
posed to form arbitrary custom network topologies. More-
over, to minimize changes in the user logic, all CONNECT
networks adhere to the same simple standard common in-
terface. From the user’s perspective the NoC appears to be
a plug-and-play black box device that receives and delivers
packets. Rapid prototyping and design space exploration
become effortless as any CONNECT network can be seam-
lessly swapped for another CONNECT network that has the
same number of endpoints.

4. CONNECT NOC ARCHITECTURE
CONNECT-based NoCs are meant to be part of larger

FPGA-based systems and, as such, must co-exist with the
rest of the FPGA-resident components. This means that
CONNECT NoCs need to balance between two conflicting
goals: (1) provide sufficient network performance to satisfy
the communication requirements of the target application;
and (2) minimize the use of FPGA resources to maximize
the resources available to the rest of the system. CONNECT
addresses both goals by making the NoC implementation
as efficient as possible, following the principles discussed in
the previous section. When compared to ASIC-optimized
NoC designs, in many places, the CONNECT NoC archi-



tecture goes directly against conventional NoC design wis-
dom. These differences can be attributed to two fundamen-
tal CONNECT router design decisions, which are summa-
rized below:

• Single pipeline stage. Instead of the typical three to
five stage pipeline found in most contemporary VC-based
router designs, CONNECT employs a single stage router
pipeline, leading to lower hardware cost, lower latency and
opportunities for simpler flow control and more efficient
buffer usage, due to the reduced round-trip time between
routers.

• Tightly-Coupled Routers. Instead of treating the NoC
as a collection of decoupled routers connected through
narrow links, CONNECT tries to maximize wire usage,
by using wider interfaces, leading to tighter coupling be-
tween routers. This includes carrying flit control infor-
mation (that would traditionally be carried in separate
header flits) on additional wires that run along the data
wires. This decoupling is also the driving idea behind
CONNECT’s “peek” flow control mechanism, that allows
routers to directly peek at the buffer occupancy informa-
tion of their downstream receiving routers.

4.1 CONNECT Router Architecture
Driven by the special characteristics of FPGAs, we de-

veloped a simple router architecture to serve as the basic
building block for composing CONNECT networks. Our
router design was implemented using Bluespec System Ver-
ilog (BSV) [3], which allowed us to maintain a flexible pa-
rameterizable design. CONNECT routers are heavily con-
figurable and among other parameters, they support:

• Variable number of input and output ports
• Variable Number of virtual channels (VCs)
• Variable flit width
• Variable flit buffer depth
• Two flow control mechanisms
• Flexible user-specified routing
• Four allocation algorithms

Router Datapath. Figure 1 shows the architectural
block diagram of a CONNECT router. Communication with
other routers happens through input and output port inter-
faces, which can vary in number depending on the router
configuration. Each input or output port interface consists
of two channels; one channel for sending or receiving data
and one side channel running in the opposite direction used
to handle flow control. Input and output interfaces are ei-
ther connected to network endpoints or are used to form
links with other routers in the network.

CONNECT routers are organized as a single-stage
pipeline to minimize hardware costs, minimize latency and
simplify flow control. During each clock cycle a router re-
ceives and stores new flits from its input ports and forwards
previously received flits through its output ports. Upon en-
tering the router, each incoming flit is first processed by the
routing logic to be tagged with the proper output port and
is then stored in flit buffers that are organized per input and
per virtual channel. To determine which flits will be sched-
uled to depart from the router, arbitration logic considers
flit buffer occupancy and credit availability to decide which
flits will traverse the switch and be forwarded through the
switch to the output ports. In addition to scheduling flits,
the arbitration logic is also responsible for respecting VC
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Figure 1: CONNECT Router Architecture

and port priorities, as well as preventing flits from different
multi-flit packets from being interleaved on the same virtual
channel (when virtual links are enabled).

Each individual router component is optimized to make
the most efficient use of FPGA resources. Below we discuss
implementation details about some specific router compo-
nents of interest.

Packet Routing. Routing in CONNECT routers is han-
dled by look-up tables that hold output ports for each possi-
ble destination in the network. Look-up based routing pro-
vides flexibility to construct arbitrary networks with custom
routing. Even though routing look-up tables can grow to
require a large number of entries for large networks, CON-
NECT implements them in an efficient manner by exploit-
ing the geometry of FPGA Distributed RAMs. Each Dis-
tributed RAM is typically a single-bit wide memory element
with 16 to 64 entries, depending on the specific FPGA fam-
ily. Since routing tables tend to have many entries (one entry
per network node), each being 2-3 bits wide (wide enough
to encode a router output port), they map very efficiently to
Distributed RAM and in almost all cases they occupy less
than 10 LUTs. In many regular topologies, such as mesh
or torus, these look-up tables could be easily replaced by
topology-specific routing functions implemented in logic.

Flit Buffers. Flit Buffers in CONNECT are organized
per input. CONNECT efficiently implements flit buffers us-
ing Distributed RAM by implementing multiple logical FI-
FOs, one per VC, in each single-read single-write Distributed
RAM. Each Distributed RAM is split into fixed regions, and
each VC-specific FIFO is implemented as a circular buffer
within one of these regions. The head and tail pointers re-
quired to provide a logical FIFO abstraction occupy minimal
area and are stored in discrete registers. This careful buffer
space management, allows CONNECT to efficiently scale to
large numbers of VCs.

Buffer Allocation. CONNECT supports four variations
of separable input-output allocation algorithms [8]. The al-
location module consists of two submodules; one that han-
dles input arbitration and one for output arbitration. Dur-
ing each clock cycle the two input and output allocation
submodules are triggered in sequence and the results of one
submodule are fed to the other in order to produce a valid
matching of eligible inputs with available outputs.

4.2 Highlights and Discussion
Below, we focus on some of the most interesting features

of the CONNECT NoC Architecture.



Topology-agnostic. A major benefit of allowing any
number of input or output ports and being flexible with
respect to the routing algorithm is the ability to support
arbitrary topologies. As long as flit widths match, CON-
NECT routers can be hooked to each other and form custom
topologies that can better serve the needs of the application
at hand. Similarly, all CONNECT networks that connect
the same number of endpoints are interchangeable, which
can greatly accelerate design space exploration.

Virtual Channels. In order to meet the diverse commu-
nication requirements of various applications, CONNECT
has support for multiple VCs1 , which, as explained earlier,
are implemented in a very FPGA-efficient manner. Multiple
VCs are fundamental for ensuring deadlock freedom, imple-
menting protocols that require traffic isolation between dif-
ferent message classes (e.g., memory requests and responses)
and can also be used to increase network performance by
reducing the effects of head-of-line blocking [22].

Virtual Links. In order to ease the implementation of
receive endpoints in NoCs that use multi-flit packets and
employ multiple VCs, CONNECT offers a feature called
“Virtual Links”. When enabled, this feature guarantees con-
tiguous transmission and delivery of multi-flit packets. In
other words, this guarantees that once a packet starts being
delivered it will finish before any other packet is delivered.
Enabling virtual links can cause a slight increase in hardware
cost, but, in return, can significantly reduce the reassembly
buffering and logic requirements at the receive endpoints.

Peek Flow Control. In addition to offering traditional
credit-based flow control, CONNECT also supports another
flow control mechanism, which we call “peek” flow control.
Although effective, credit-based flow control can be inef-
ficient in the context of CONNECT, as credit-based flow
control is designed to: (1) tolerate long round-trip delays,
caused by multi-cycle link latencies and deep router pipelines
and (2) minimize the number of required wires between
neighboring routers by multiplexing flow-control informa-
tion pertaining to different VCs over the same set of wires.

In peek flow control, instead of having routers exchange
credits, routers effectively expose the occupancy informa-
tion of all of their buffers to its upstream sending routers.
This way, instead of maintaining credits and using them as
a proxy to determine how much buffer space is available
at the downstream receiving routers, sending routers can
directly observe the buffer availability. The peek flow con-
trol scheme reduces storage requirements by eliminating the
multiple credit counters that are normally maintained for
each output and VC pair.

CONNECT currently employs a single-bit version of peek
flow control, which is very similar to stop-and-go queuing
[14] or simple XON/XOFF flow control schemes [13]. The
flow control information exposed by each router corresponds
to a single bit per buffer that indicates if the specific buffer is
full or not. If round-trip communication delay is high, such
a simplistic scheme can severely under-utilize the available

1In addition to user-exposed VCs (a.k.a. message classes),
NoCs often also employ a number of internal VCs within
each router to improve network performance. Such VCs are
typically only visible and allocated within the network and
are not exposed to the network clients. To reduce hardware
cost, CONNECT exposes all VC handling to the network
clients. As a result, applications seeking to use additional
VCs for performance improvements need to manually handle
VC allocation at the NoC endpoints.

buffer space. This is not an issue for CONNECT routers
which only introduce a single cycle of delay.

5. EVALUATION AND RESULTS
To demonstrate the effectiveness of CONNECT’s FPGA-

centric design choices, we first compare FPGA synthe-
sis results and network performance of two instances of a
CONNECT-based NoC against a high-quality state-of-the-
art ASIC-oriented NoC [29], both before and after mod-
ifying their ASIC-style RTL for efficient FPGA synthesis
while maintaining bit and cycle accuracy to their original
RTL. To further evaluate the CONNECT NoC architecture
and highlight its flexibility and extensive design space cov-
erage, we examine multiple router configurations, as well
as entire CONNECT networks and report FPGA synthe-
sis results and network performance results. Synthesis re-
sults include FPGA resource usage and clock frequency esti-
mates for a moderately sized Xilinx Virtex-6 LX240T FPGA
(part xc6vlx240t, speed grade -1) and a large Xilinx Virtex-
6 LX760 FPGA (part xc6vlx760, speed grade -2). To assess
network performance, we drive the NoCs with various traffic
patterns and show the resulting load-delay curves.

5.1 Methodology
FPGA synthesis results are obtained using Xilinx XST

13.1i. Network performance results are collected through
cycle-accurate RTL-level simulations. Each load-delay curve
is generated through multiple simulations that sweep a range
of different network loads. For each simulation, a traffic gen-
erator feeds traffic traces through the NoC endpoints and
collects statistics as the packets are drained from the net-
work. For each experiment the simulator is initially warmed
up for 100,000 cycles, after which delay measurements are
collected for 1,000,000 cycles. The duration of warmup and
measurement periods were empirically set to be long enough
to ensure that the reported metrics had stabilized.

5.2 Comparing to ASIC State-Of-The-Art
To put the FPGA hardware cost and network performance

of CONNECT into perspective, we compare it against pub-
licly available RTL of a high-quality state-of-the-art VC-
based router [29], which we will refer to as SOTA. This
router is written in highly-parameterized Verilog and is mod-
eled after the VC-based router described in [8]. It employs a
3-stage pipeline and supports many advanced features, that
are not present or not applicable in CONNECT, such as
a larger collection of allocators or adaptive routing. The
router supports single or multi-dimensional mesh and torus
topologies, as well as the flattened butterfly topology [18].

In the presentation below, we first compare FPGA syn-
thesis results for different configurations of a single router
in isolation. We then compare a 4x4 mesh network built
using CONNECT routers against a similarly configured 4x4
mesh composed of SOTA routers. Our comparison includes
FPGA synthesis results, as well as network performance re-
sults under synthetic traffic patterns.

Router comparison. Since the original SOTA router
RTL is ASIC-oriented and was thus not optimized for FPGA
synthesis, to make the comparison more fair, we modified the
SOTA router RTL by applying RTL coding discipline suit-
able for FPGA synthesis. In particular, our changes only
affect storage elements; we ensured that all register files
properly mapped to Distributed RAM, instead of discrete
registers or Block RAM.
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Figure 2: FPGA cost of SOTA and CONNECT 5-
port router variants.

The bar graph in Figure 2 shows the difference in FPGA
hardware cost in terms of the number of LUTs for a 32-bit 4-
VC and a 128-bit 4-VC CONNECT and SOTA router. Both
routers have 5 input and output ports ,which corresponds to
the typical configuration used in mesh or torus topologies.
In all cases we configure the CONNECT and SOTA routers
to be as similar as possible, including buffer depths, link
widths, allocator type and number of VCs. For each de-
sign we examine two router variations: 1)typical, which uses
SOTA’s default parameter settings (for any remaining pa-
rameters) and 2) minimal, which picks those parameter set-
tings that absolutely minimize hardware cost. Even though
the minimal configurations do not necessarily constitute re-
alistic design points, they provide a sense of the absolute
lower-bound in terms of SOTA’s hardware cost. We also
include the results for the original RTL (SOTA orig), before
applying the above-mentioned FPGA coding style changes.

In the case of CONNECT, the only change between typical
and minimal is the allocator choice; in minimal we use a
variation of a separable output-first allocator that minimizes
LUT count at the cost of lower router performance. In the
case of the SOTA router, for the minimal configuration, we
performed a sweep of all router parameters and picked the
combination that yielded the lowest FPGA hardware cost.

First of all, it is interesting to note the vast reduction
in the SOTA hardware cost from just applying proper RTL
coding discipline, which ranges from 57% to 76%. After cor-
recting for FPGA-coding style, the SOTA routers are still al-
most twice as costly compared to the equivalent CONNECT
routers in terms of LUT usage. For typical configurations,
CONNECT routers use between 40% to 50% fewer LUTs,
for typical and minimal configurations respectively. It is
worth mentioning that a 128-bit wide CONNECT router
uses approximately the same amount or even fewer FPGA
resources than its 32-bit SOTA counterpart. As we will see
later, these “saved” FPGA resources can be used to build
a more aggressive CONNECT NoC that uses aproximately
the same FPGA resources as a SOTA NoC, but can offer
3-4x higher network performance.

Mesh Network Comparison. To compare the two de-
signs at the network level we use CONNECT and SOTA
routers to build three 4x4 mesh networks with 4 VCs, 8-
entry flit buffers and seperable allocators. Table 1 shows
synthesis results for the resulting networks targeting Xil-
inx Virtex-6 LX240T and LX760 FPGAs. When configured
with the same 32-bit flit width (SOTA and CONNECT 32),
the SOTA network is more than twice as costly in terms
of LUT usage, but can achieve approximately 50% higher

clock frequency. The potential performance loss due to the
maximum clock frequency difference can be easily regained
by adapting other CONNECT NoC parameters, such as flit
width. To demonstrate this, we also include results for a
128-bit wide version of the CONNECT mesh NoC (CON-
NECT 128), that uses aproximately the same FPGA re-
sources as its SOTA 32-bit counterpart, but offers three to
four times higher network performance.

We should point out that the endpoints in a SOTA net-
work are required to precompute routing information for
each packet injected into the network. This incurs a small
additional hardware cost that is, however, excluded from our
reported results, since it affects the network endpoints and
not the network itself.

Xilinx LX240T Xilinx LX760

4x4 Mesh w/ 4VCs %LUTs MHz %LUTs MHz

SOTA (32-bit) 36% 158 12% 181

CONNECT 32 (32-bit) 15% 101 5% 113

CONNECT 128 (128-bit) 36% 98 12% 113

Table 1: Synthesis Results for CONNECT and
SOTA Mesh Network.

To compare the example CONNECT and SOTA NoCs
in terms of network performance, we examine the load-
delay behavior of the networks under uniform random traffic,
where the destination for each packet is randomly selected,
and an instance of the unbalanced traffic pattern, where a
fraction of the generated packets determined by the Unbal-
ance Factor are local and are sent to neighboring nodes. In
our experiments we set the Unbalance Factor to 90%, which
represents a system where nodes communicate heavily with
their neighbors and occasionally also send packets to other
randomly chosen nodes in the system. We size packets to
half the flit buffer depth, which corresponds to 4 flits, and
pick the VC randomly for each injected packet.

Since NoCs are typically used within larger systems hosted
on an FPGA, their clock frequency is oftentimes dictated
by other components and constraints in the system. This
is especially true in FPGA environments, where the clock
frequency gains of running each component at its maximum
frequency are likely to be outweighed by the added synchro-
nization latency increase and hardware cost. To properly
capture this potential frequency disparity, we report network
performance results for both 1) assuming the studied NoCs
are all running at a common clock frequency of 100MHz,
possibly dictated by some other system component, and 2)
assuming each NoC is running in isolation and can be pre-
cisely clocked at its maximum frequency, which provides an
upper bound for performance.

All packets in the SOTA network require an additional
header flit that carries control information, which brings
the total number of flits per packet to five; one header flit
and four data flits. CONNECT does not require this ex-
tra header flit; instead it carries flit control information ”on
the side” using wider links. Since the header overhead can
change depending on the specific packet size, we also report
the SOTA raw curve, which eliminates SOTA’s header over-
head and captures raw flit throughput, providing an upper
bound for the fully amortized performance of SOTA.

Figures 3 and 4 present load-delay curves for the CON-
NECT and SOTA networks all running at the same fre-
quency of 100MHz under the two traffic patterns introduced
above. Interestingly, when operating at the same frequency,
even CONNECT 32, which shares the same 32 bit flit width
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Figure 3: Load-Delay Curves for SOTA & CON-
NECT @ 100MHz with Unif. Random Traffic.
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Figure 4: Load-Delay Curves for SOTA & CON-
NECT @ 100MHz with Unbalanced 90% Traffic.

with SOTA and occupies about half the FPGA resources,
yields better network performance, both in terms of latency
and saturation throughput. This is due to the additional
header flit overhead on the SOTA network. When com-
pared to SOTA raw, which excludes the header overhead,
CONNECT’s performance is comparable to SOTA.

Figures 5 and 6 show the equivalent results when each
network is running at its maximum clock frequency. In this
case CONNECT 32 still offers significantly lower latency
(59% lower) for the majority of operating loads, because
of its reduced pipeline stages. At higher loads, as the load
approaches the saturation point, SOTA outperforms CON-
NECT 32, due to its higher clock frequency.

However, notice that in all cases CONNECT 128, which
occupies about the same FPGA resources as SOTA, can eas-
ily outperform all other networks by a wide margin across
all traffic patterns and regardless of frequency adjustments;
it consistently offers three to four times higher saturation
throughput and more than three times lower latency.

Overall, for comparable configurations, CONNECT can
offer similar network performance to SOTA with consistently
lower latency at approximately half the FPGA resource us-
age. Alternatively, for the same FPGA resource budget,
CONNECT can offer much higher performance than SOTA
– three to four times higher saturation throughput and more
than three times lower latency. In all cases the unbalanced
traffic pattern, which consists of mostly local traffic, in-
creases the saturation throughput across all networks, which
is expected for the mesh topology that performs better under
increased neighbor-to-neighbor traffic.

5.3 CONNECT Router Synthesis Results
As mentioned earlier, in addition to the mesh topology

studied above, CONNECT supports a variety of different
router and network configurations to better suit the diverse
communication needs of emerging SoCs. To get a better
feel for the cost and performance of different CONNECT-
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Figure 5: Load-Delay Curves for SOTA & CON-
NECT @ Max. Freq. with Unif. Random Traffic.
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Figure 6: Load-Delay Curves for SOTA & CON-
NECT @ Max. Freq. with Unbalanced 90% Traffic.

based routers, Table 2 shows FPGA resource usage and
clock frequency synthesis results for a range of different
CONNECT router configurations targeting a Xilinx Virtex-
6 LX760 FPGA. All reported results are for a single router
to be used in a 64-node network. As expected, increasing
the number of router ports, VCs, flit width or buffer depth
all contribute to higher LUT counts and negatively impact
clock frequency.

The number of router ports has the largest impact in hard-
ware cost, followed by the number of VCs. Both of these
parameters influence the buffering requirements, as well as
the allocation and flow control logic. Changes in flit width
and buffer depth only affect buffering requirements and as
such have a lower relative impact. It is interesting to note
that buffer depth affects LUT count in a more unpredictable
manner due to quantization effects of Distributed RAMs;
intuitively, wider memory arrays scale smoothly in terms of
LUT cost, while taller memory arrays scale in a more abrupt
step-wise manner.

5.4 CONNECT Network Synthesis Results
In this section, to demonstrate the flexibility and exten-

sive design space coverage of CONNECT, we examine a few
different examples of CONNECT-based networks in terms of
hardware cost and network performance. Table 3 lists the
selected network configurations, which range from a low-
cost low-performance ring network (Ring16) all the way to
a high-performance fully-connected network (HighRadix16),
as well as an indirect multistage network (FatTree16). The
number next to each network name indicates the number
of supported network endpoints. The HighRadix16 network
corresponds to a network with eight fully connected routers,
where each router is shared by two network endpoints, i.e.
with a concentration factor of two.

Table 4 shows synthesis results for these eight sample
network configurations targeting a moderately sized Xilinx
Virtex-6 LX240T FPGA, as well as a larger Xilinx Virtex-6



Flit Width 32 bits 128 bits

Num. VCs 2 VCs 4 VCs 2 VCs 4 VCs

Buf. Depth 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

2 In/Out LUTs 242 292 340 485 373 427 564 952 562 612 659 936 693 739 1020 1861

Ports MHz 306 284 247 218 260 240 217 195 306 283 245 221 260 232 219 193

4 In/Out LUTs 688 813 893 1236 938 1137 1454 2408 1424 1550 1629 2230 1672 1872 2460 4310

Ports MHz 180 183 154 143 169 167 147 139 180 183 154 143 166 165 147 139

6 In/Out LUTs 1893 2005 2161 2812 2000 2351 2861 4399 3705 3839 4018 4987 4055 4442 5364 8439

Ports MHz 150 142 130 126 122 123 115 109 149 140 127 122 122 124 117 110

8 In/Out LUTs 3012 3171 3439 4149 3767 3953 4849 6565 5368 5544 5780 7035 6134 6322 7753 11280

Ports MHz 117 114 103 101 107 102 103 95 117 114 102 101 107 102 103 94

Table 2: Synthesis results for various CONNECT router configurations.

Network Routers Ports/Router VCs Width

Ring64 64 2 4 128

DoubleRing16 16 3 4 32

DoubleRing32 32 3 2 32

FatTree16 20 4 2 32

Mesh16 16 5 4 32

Torus16 16 5 2 64

HighRadix8 8 8 2 32

HighRadix16 8 9 2 32

Table 3: Sample Network Configurations.

LX760 FPGA. For each network we report the LUT usage as
a percentage of the total amount of LUTs on the respective
FPGA, as well as synthesis clock frequency.

The synthesis results indicate that all networks easily fit
within both FPGAs, with plenty of room to spare for plac-
ing many other pieces of user logic. In fact, when target-
ing the LX760 FPGA, all networks occupy less than 10%
of the available LUTs. Finally, it is also worth mentioning
that CONNECT networks do not occupy even a single Block
RAM, which leaves a great amount of on-chip storage avail-
able to other FPGA-resident components.

Xilinx LX240T Xilinx LX760

Network %LUTs MHz %LUTs MHz

Ring64 30% 175 9% 200

DoubleRing16 9% 139 3% 158

DoubleRing32 11% 146 4% 169

FatTree16 12% 117 4% 143

Mesh16 15% 101 5% 113

Torus16 25% 91 8% 100

HighRadix8 20% 73 5% 76

HighRadix16 28% 67 9% 75

Table 4: Synthesis results for sample networks.

5.5 CONNECT Network Performance
In this section, we focus on a subset of four networks

(DoubleRing16, Mesh16, FatTree16 and HighRadix16), that
all support 16 network clients, and as such would be inter-
changable when used as the interconnect within an FPGA-
based system. To study network performance we use the
same two traffic patterns described earlier, uniform random
and unbalanced (with an UnbalanceFactor of 90%), which
can be thought of as corresponding to two different classes
of FPGA applications, each with different degrees of local
communication. Once again, we size packets to half the flit
buffer depth, which corresponds to 4 flits, and pick the VC
randomly for each injected packet.

Figure 7 shows the load-delay curves for the four selected
networks under uniform random traffic. Given the low bi-
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Figure 7: Load-Delay Curves for CONNECT Net-
works with Uniform Random Traffic.
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Figure 8: Load-Delay Curves for CONNECT Net-
works with Unbalanced 90% Traffic.

section bandwidth of the double ring topology, the Doub-
leRing16 network is the first to saturate at a load of ap-
proximately 30%. The Mesh16 and FatTree16 networks can
sustain much higher loads before they saturate at roughly
55% load. This can be both attributed to the higher con-
nectivity and bisection bandwidth of the mesh and fat tree
topology, as well as the higher number of VCs in the case of
the Mesh16 network (4 instead of 2). Finally, as expected,
the HighRadix16 network achieves the highest performance,
offering lower latency across all loads and saturating at a
load of 70%. This should come as no surprise, given that the
HighRadix16 network is fully-connected (maintains single-
hop point-to-point links between all routers in the network),
which means that the only source for loss of performance is
output contention [8].

Figure 8 shows the equivalent load-delay curves under the
unbalanced traffic pattern, which favors mostly neighbor-
to-neighbor communication. As expected, the increased lo-
cality allows all networks to perform better, with the Dou-
bleRing16 network experiencing the largest relative perfor-
mance gains. In fact, under unbalanced traffic the DoubleR-
ing16 network outperfoms the more FPGA resource inten-
sive Mesh16 and FatTree16 networks.

Even though these results are mainly presented to demon-
strate the flexibility of CONNECT and, as such, are not ex-



haustive or might omit other implementation details, such as
frequency-related constraints, they do show that NoC per-
formance can be highly dependent on network topology and
configuration, but more importantly on the specific traffic
patterns and requirements of an application. This observa-
tion is especially important in the context of FPGAs, where
NoC topology and configuration can be easily adapted to
suite the requirements of the given application.

6. RELATED WORK
Although there has been extensive previous work that

combines FPGAs and NoCs, a large part of this work ei-
ther examines the use of FPGAs for efficient NoC modeling
[25, 31] or simply presents a larger FPGA-based design that
also happens to include an application-specific ad-hoc NoC
[30]. There is only a limited amount of previous studies that
focus on FPGA-tailored NoC architectures to support SoC
emulation or other FPGA applications.

In the context of FPGA-oriented NoC architectures, No-
Cem [11, 12] presents a very simple router block that can be
used to compose larger networks on FPGAs. Compared to
CONNECT it lacks more advanced features, such as support
for virtual channels or selectable allocation and flow control
schemes. More importantly, for equivalent networks, com-
pared to CONNECT, it appears to incur a much higher cost
after a rough normalization for the differeneces in the FP-
GAs used. (A more exact quantitiatve comparision is hard
because the NoCem synthesis results were obtained on the
much older Virtex-2 FPGAs.)

PNoC [15] is an interesting proposal for building
lightweight networks to support FPGA-based applications.
Even though PNoC can also yield low-cost FPGA-friendly
networks, the fundamental difference compared to CON-
NECT is that it can only be used to create circuit-switched
networks, instead of packet-based. Circuit-switched net-
works can be useful for the classes of FPGA applications
that have structured non-conflicting traffic patterns and
are willing to tolerate the additional setup and tear-down
delay and connection management associated with circuit-
switched networks.

In the context of FPGA-related NoC studies, previous
work has developed analytical models for predicting NoC
performance on FPGAs [21], as well as examined the effect
of various NoC parameters, such as topology and number of
nodes, on the performance of an FPGA-resident multipro-
cessor system [20]. Morever, previous work has also studied
the trade-offs between FPGA implementations of packet-
switched and time-multiplexed networks [17].

Previous work has also looked at leveraging or modi-
fying the FPGA configuration circuitry to build efficient
FPGA-based NoCs. Metawire [28] overlays a communi-
cation network on top of the configuration network in a
Virtex-4 FPGA. However, such an approach yields lower
performance and is inevitably tied to the specific FPGA ar-
chitecture and vendor. Francis et al. [10] propose replacing
the statically configured FPGA wiring with time-division
multiplexed wiring that can enable the implementation of
efficient low-overhead NoCs for future FPGAs.

Finally, there is also a large body of commercial inter-
connect approaches, such as Spidergon STNoC [6], ARM’s
AMBA [2] or even FPGA-specific approaches, such as the
CoreConnect [16] PLB and OPB buses, commonly found in
Xilinx FPGAs, or Altera’s Qsys [1]. CONNECT offers a
more lightweight, fine-grain and flexible FPGA-tailored so-

lution for building soft NoCs, that can synergistically coexist
with the above approaches to cover the diverse communica-
tion needs of emerging SOCs.

7. FUTURE DIRECTIONS
As FPGAs continue to gain more traction as computing

and SoC platforms, the role of NoCs will inevitably be-
come more central in future FPGA-based systems. This
can happen both in the form of efficient flexible architec-
tures tailored for soft-logic implementations, such as the
one presented in this paper, but can potentially also trigger
the transition to future FPGA devices with fixed hardened
NoCs.

Our immediate plan is to release a current version of CON-
NECT in the form of a web-based flexible RTL NoC gener-
ator.i Moreover, we are interested in experimenting with a
2-stage pipeline router design that will yield improved clock
frequency while still keeping FPGA resource usage at a min-
imum. Another interesting future direction is to study how
we can apply the FPGA-oriented design guidelines and dis-
ciplines used in CONNECT to other common FPGA com-
ponents in order to improve their efficiency.

As a longer term goal, we are interested in examining
the form of future FPGA devices and their underlying
switching fabric. Other researches have suggested that fu-
ture FPGAs will consist of islands of reconfigurable logic
connected through a dedicated high-performance NoC [27],
which raises a few fundamental interesting questions: What
will this NoC look like and how will its architecture and im-
plementation be affected by the use of silicon interposers [23]
in modern FPGAs? Which parts does it make sense to im-
plement in hard-logic and which parts should be left to be
implemented in soft-logic?

8. CONCLUSION
In this paper, we presented CONNECT, a flexible and effi-

cient approach for building NoCs for FPGA-based systems.
CONNECT embodies a set of design guidelines and disci-
plines that try to make the most efficient use of the FPGA
substrate and in many cases go against ASIC-driven conven-
tional wisdom in NoC design. We compare a high-quality
state-of-the-art NoC design against our design both in terms
of FPGA cost, as well as network performance for a similarly
configured 4x4 mesh NoC. Across a wide range of config-
uration parameters, we find that CONNECT consistently
offers lower latencies and can achieve comparable network
performance at one-half the FPGA resource cost; or alter-
natively, three to four times higher network performance at
approximately the same FPGA resource cost. Moreover, to
demonstrate the flexibility and extensive design space cover-
age of CONNECT we report synthesis and network perfor-
mance results for a wide range of router configurations and
a variety of diverse CONNECT-based networks.
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