STATISTICAL SAMPLING OF

MICROARCHITECTURE PERFORMANCE SIMULATION

ROLAND E. WUNDERLICH

MAy 2010

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

CARNEGIE MELLON UNIVERSITY

CARNEGIE INSTITUTE OF TECHNOLOGY

ELECTRICAL AND COMPUTER ENGINEERING

© 2010 RoLAND WUNDERLICH

ALL RIGHTS RESERVED

ii

Abstract

Software-based microarchitecture performance simulators are many orders of magnitude
slower than the hardware they simulate. Hence, most microarchitecture design studies
draw their conclusions from simulations of truncated benchmark applications or ad-hoc
instruction stream subsets that produce misleading or inaccurate results. We developed a
statistical sampling based framework for microarchitecture simulation to enable fast,
accurate, and reliable performance (cycles and energy per instruction) measurements of
full-length benchmarks. We found that large samples of random brief measurements is the
most effective sample design allowing measurement of far less than 0.1% of benchmark
application instructions while achieving 99.7% confidence of +3% error. We investigated
several bias-free warming methodologies, and developed an experimental methodology to
empirically determine warming needs. Finally, we evaluated the effectiveness of phase

detection and stratified sampling at reducing sample size while maintaining accuracy.

iii

Acknowledgements

[would like to thank my committee for their assistance with this thesis: James Hoe, Babak
Falsafi, Markus Piischel, and David Brooks. [have benefitted significantly from the teaching,

mentorship, and most of all, the example of my advisor James Hoe.

The SMARTS work was done in close collaboration with fellow graduate student, Thomas
Wenisch, who was advised by Babak Falsafi.. Funding for this work was provided by an Intel

Corporation PhD Fellowship.

My collaborations with and the support of my fellow students at Carnegie Mellon were
especially valuable. Thank you Chi Chen, Shelley Chen, Eric Chung, Mike Ferdman, Chris
Gniady, Brian Gold, Nikos Hardavellas, Jangwoo Kim, Peter Milder, Eriko Nurvitadhi, Joy-

deep Ray, Jared Smolens, Stephen Somogyi, Tom Wenisch, and Se-Hyun Yang.

iv

Contents

Abstract iii
Acknowledgements iv
Contents v
List of tables ix
List of figures X
1 Introduction 1
0 A 01019 01c) o T ') o) 0 Ul =X 2

1.2 The SMARTS QPPTIOACK ..cceuieicereeeeeeseeeeesseese e st sees s s s s s essse s bbb s s 3

1.3 ChecKpOoint SAMPIIIEoovureeeeeeeeseeesseeeseessesss s essssessssssessssess e ssss s s s ssssss s sssessssasssssssans 5

1.4 Stratified SAMPIIG ... ettt es e ss s ee s bbb 7
1.5 High-1reSOIUtiON TraCiNEocveeeeeereeereeeeseeeseersessseiseesssees s sesssses bbb s es s ss s snaes 8

1.6 THESIS OULIIIE ...ttt s s s s bbb 8

2 Background 10
2.1 Microarchitecture SIMUIAtION ... ss s ss e ses s seees 10
2.2 StatiStiCal SAMPLING ..o eereeseerseerseerseees e ssess s ses s ssses st e s s sssss s sassessnens 11

2.3 SAMPlING APPIOACHES. ..ottt s s s s s 16

3 SMARTS sampling 19
3.1 FramMEWOTK . et sseesse s s ese s ss s bR R b e 19
3,11 TECHNIQUE coeeeeeeeeeeeeeetete et bbb s s bbb s 19

00 I £ 13 4 ol sV 6 = U o <3 22

3.1.3 SPEEAUD OPPOTTUNILY ..ccereereereeeeesreesrerseessesseessesees s sessssessessssesse s ssss s ssssssesssssssasans 25

R T S 0 =TT U o1 o T 1= PP 28

IS T2 14 o) 1 1=) 4 1<) o Uic= Y (o) o V000 OO 29
3.2, 1 SMARTSIIT cooveeeseeruseesssesssseessssessssesssssesesssesssssesss s bbb e e s sese s n s 30
3.2.2 Optimal SAMPIING UNIET SIZE . ruureererereerrreesseerseerseesseessesesseesseesseessssssssesssesssssssssssssssssssess 30
3.2.3 Effectiveness of detailed Warming.......oocneeeneeseesnssseessesseesssessessesssessssssseenns 32
3.2.4 Bounded detailed Warming.......oeeerneereesssesessssesssesssessssssssssssssssssssssssssssssssess 33
3.2.5 Effectiveness of functional Warming........ccoeeoneseesneenseeseesssessssssessssssesssssssesans 34

3.3 RSUILS coeuureeeeuretees e eesseetsees s s es s s b bR RS RS R R R R 35
3.3.1 SMARTS PIOCEAUIE w.oueeueereerseeeseesessseessesssesssessessssssssssssssesssssssessssesss bbbt s st sesssssssesass 35
3.3.2 Performance and aCCUTACY ... sssssssssssssssssssssssssssssssssns 37
3.3.3 Comparison t0 SIMPOINT......crs e nens 40
3.3.4 Beyond SPEC CPUZ000rereerreessseessssesssssessssesssssesssssesssssesssssesssssssssssssssssssssssess 42

3.4 RElAted WOTK .ottt s e 43
4 Checkpoint sampling 46
4.1 IMPIEMENTAtION. .ttt 46
200 T 1 1 o o e (o] o .0 PP 46
4.1.2 Why checkpointed Warming......oeneeneeeneemseesseessesssesssessessssssssssssesssssssesssssssesssssses 48
4.1.3 Simulation sampling warming methodseneneseeeeseeseeseeseenes 48
4.1.4 AdaPLiVe WaAITIIIZ ..o reeeeereeesreeseerssesssssesessssessssesssessssesssse s s ssssessssssssas st sssessassssans 52
4.1.5 Checkpointed WarmiNg. ... iereenseeneeersessecsseessesssessse s ssesssssssssssssssssssssesssssssesssssanes 54
4.1.6 Live points With liVe STate.....ussssss s ssssssssssssssssssssssssssssssssns 56

4.2 FrAIMEWOTK. e ieeecetieieeceseeseesse s eesse s s ess s s ss s s s bR bbb 59
4.2.1 Absolute performance eStimates. ... ————————- 60

vi

4.2.2 Comparative performance eStimates ... eeerereeseessesssseesssessssesssssssesans 61

4.2.3 EXPEriment ProCEAUIE ... sss 63
4.3 RESULILS . iuieieeesetee sttt sssses st b s s s s bR bbb 64
4.3.1 LiVE STALE FESUILS oottt sssse s s e ss s 64
4.3.2 Live POINtS PETTOITNANCEveueeereeereeeeeeeeseessecsseesseesseesse s sses s ssss s sesssssssesssssssesasesanes 66
4.4 REIALEA WOTK oooueercenrersreseeessectsess s sssse s s ssss s sss s s s s R bbb b 68
Stratified sampling 70
5.1 FramMEWOT K. ouieeieesceeetseesseessseesse s sssssssss s sss s s ss e e s s s s b 72
5.2 Optimal StratifiCation... o eeeseeesesseiese e ss s sse s ss s s s sss s sesanes 75
5.3 RESUILS oottt ettt et b bbb R RS R RS e R 78
5.3.1 SimPoint program phase deteCtioncreneeneeseensseeseessessesessesseessesssssssesans 79
5.3.2 Dynamic program phase deteCtion......cereeeeseeesmeesssesssesssessssessssssssesssssesssess 81
5.3.3 IPC PIOfIlING cceuieeieeereeeecereesees e es s ss s sssessesss s s a s 85
High-resolution tracing 88
6.1 FramMEWOTK. ettt eesses s ese s ssss s b s b e 91
6.1.1 Performance COUNTETS ...t sessses st st sesssssssssans 91
6.1.2 SOUICES Of BITOT .coureeeceereeseesseessesssessse e s s ss s ss s ss s s bbb 97
6.1.3 ImMage SUPEr-TESOIULION w..vveueeeeeeer e e sesesessesssseesssssssessssessssessseenas 100
6.1.4 Performance trace notation and variables..........neseneeeeneeens 102
6.2 IMPIEIMENTATION. cieueereteeeseetreeseesseeseesseese b b eesseess s esse s bbb s s s e 105
LT R o U=) 4 o TP OSSP 109
6.2.2 Error CharacteriZation. ... e seesssssssseessessssssessssessesssssssssssssssssssssssssassssssnas 116
6.2.3 Median reCONSIIUCTION ... eereeseesseresseeessees s esssssssessessssessssesssessssesssssssasesnas 118
6.2.4 Super-resolution reCONSIIUCTION ... et seese e sess s sesssssssessseeaes 119
6.3 RESUILS coouureerceusetreeseess st sss s b s ses e b s R AR E RSB 122

vil

6.3.1 PerfOrmancCe COUNTET EITOT .ireerresessssssssesesessssesessssssssssessssssssesssssssssesssssssssssasaes 122

6.3.2 Initial reconstruction performance...... i ———————— 125
6.3.3 Super-resolution reconstruction performarnceoeeereeeseeens 127
7 Conclusion 132
Bibliography 136

viii

List of tables

Table 2.1:

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 3.5:

Table 3.6:

Table 4.1:

Table 4.2:

Table 5.1:

Table 6.1:

Table 6.2:

Table 6.3:

Table 6.4:

Table 6.5:

Table 6.6:

Table 6.7:

Statistical sampling terminology and variables ... 13
Variables introduced or redefined in the SMARTS frameworK.........ccoceneeenmeeermeerreeenees 20
Simulated SPEC CPU2000 benchmarks ... 24
Simulated microarchitecture cOnfigurations........co e sesssessseeans 25
Microarchitecture warming requirements without functional warming................. 32
CPI bias with functional warming and minimal detailed warmingccooeceseeuneenn. 35
SMARTS runtimes compared to detailed and functional simulation...........m.. 40
Live-points runtimes compared to SMARTS and adaptive warming..........ccoueeseenn. 66
Summary of simulation sampling warming methods ... 67
Performance comparison between dynamic and systematic sampling..........c..co..... 83
Performance COUNTET VECLOTS ...orssnsssss 104
Selected Intel Core 2 performance COUNTETS. ... 110
Performance trace file format BNFoeeeneeeesseeessesssesseesssessssssssssssees 114
Performance counter error categories and SOUICES.......oueerneeersesseesseesseesseessesssennes 117
Reconstruction sensitivity to number of measurements ... 127
Reconstruction sensitivity to order of consecutive measurement constraints... 127
Reconstruction sensitivity to magnificationccoeoeeeenmeenseeeeeseeneeseeesseeesseeees 127

ix

List of figures

Figure 1.1:
Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 5.1:
Figure 5.2:
Figure 5.3:

Figure 5.4:

SMARTS two-tier Warming Strategy ... mnemrneessssssssessssssssssssesssssssssssssssssssesssssssssesses 5
Confidence interval for uniform sampling error.....eeeeeeeeeseesesseesseees 14
Systematic sampling as performed in SMARTS......c.couuemeenmenmeenseenseensesssssssessessseessssssesans 21
Coefficient of variation of CPI of SPEC CPU2000 benchmarks.......coucueneeereeuseesreenne 26
Minimum sampled iNStIUCHIONS. ... ssssssssns 27
Modeled SMARTS SIMULATION TALE ... iieriereererreeseeeeeeseessessessseeseesse s sssssesssssssssans 28
Optimal sampling UNIt SiZe (U] ..ocveeeernmeereeeseeeeesssessseessesssessssssssesssesssssssssssssssssssssssssssssans 31
SMARTS CPI results with n = 10,000 INSEIUCTIONS...cocovrrreeeissrrereesese s ssssssssssns 38
SMARTS EPI results with n = 10,000 iNStrUCtiONSccoveeerreeseeeseernneesseeesseeeseesssessseessseesns 39
Comparison of SMARTS With SIMPOINT......eec s eseseessesseeans 41
Simulation sampling warming mMethods ... sssssseesns 50
Relative merits of warming methods ... seesseesseeans 51
Adaptive Warming DIASeeeeereeseeesseessessssessseesssesssssssssssessssssssesssssssssssssssssssssssessssesssesess 53
ReStricted liVe-State DIas ... ssssesssssssesans 58
Live-point experimental pProCedUIe ... eeereeemeesssesseeseesseesseesssesssseesssesssssssessans 63
Breakdown of a typical live-point (UNCOMPresSed)ceeenmeenrerneeessesneesseesseesseenns 65
Compressed checkpoint size and processing time.......coceneeeeesseeesseesssessseesseess 65
Stratified random SAMPIING PrOCESS.....couinreenmerneerreeeseeseessesssesse e sssssesssssssssans 73
Optimal stratification for a particular benchmark and microarchitecture 77
Optimal stratification’s mean sample size vs. simple random sampling................. 77
Total measured instructions per benchmark with optimal stratification 78

Figure 5.5: BBV program phase stratification mean sample SiZe........oeneeeeeeeenmeeesnessseeennees 81
Figure 5.6: Increasing accuracy advantage of dynamic sampling........cccoecmeenneereenmeenseenserneeessesseees 84
Figure 5.7: Mean sample size for IPC profile stratificationceeeeereernseesseeesseesseesssessseesnees 86
Figure 5.8: Total measured instructions per benchmark with IPC profile stratification......... 86
Figure 6.1: Performance tracing mMethods. ... sssessse s ssessssesssssssseses 89
Figure 6.2: SUPEr-reSOIUtION CONCEPL ..ccuuimereerineisseteseessssesessssessssesssasens 89
Figure 6.3: Performance counter microarChit@CtUre ... reenneenseessessecsseeseesseese e sssessesseees 92
Figure 6.4: Profiling using performance counter overflow interruptscoenmeeseeennees 95
Figure 6.5: Direct measurements of intervals using performance counters...........e. 96
Figure 6.6: Image super-resolution reCONSIIUCTION ... reeemeeenerseerseesssessesesseesssesssssssessssessssessas 101
Figure 6.7: Image Super-reSOIUtioN FESUILS.... .o ieeeseereeseiseeeeeseessesssessssesse e sssessse s ssesssesens 102
Figure 6.8: Synthetic trace and reconstruction parameter CONtrolS......eeeseeeseessseenns 115
Figure 6.9: Main window of visualiZation tOO0] ... sssssseseseseeens 116
Figure 6.10: Super-resolution problem SELUPoeeeereesmeessereseessessssessseesssessssssssssessssesssseees 121
Figure 6.11: Super-resolution reconstruction linear programming..........ooeeeseesseesessseesseens 122
Figure 6.12: Performance counter error vs. measurement lengthcoenmeenmeeseeesseessnennns 123
Figure 6.13: Performance counter error deviation from medianccooomenreeeneenseenseenseesecereenns 124
Figure 6.14: Distribution of error deviation from median........eeeneeneeeeseeseenns 125
Figure 6.15: Performance counter resolution lMits ... seessesseeseens 128
Figure 6.16: Super-resolution magnification SENSItIVILYccoeereermernseenneeneeeneesseesseeseeseeseeeeseens 129
Figure 6.17: Super-resolution program iteration SeNSIitiVityeeesneenseersseessseesessseeesseees 130
Figure 6.18: Super-resolution reconstruction runtime ... seeseens 131

Xi

1 Introduction

Computer architects have long relied on software simulation to study the functionality and
performance of proposed microarchitecture designs. Despite phenomenal improvement in
processor performance over the last decades, the disproportionate growth in hardware
complexity that needs to be modeled, most specifically parallelism, has steadily eroded
simulation speed. Today, the fastest cycle-accurate uniprocessor performance simulators
are more than five orders of magnitude slower than the hardware they model—requiring
thousands of executed instructions per simulated instruction. Full system simulators and
register-transfer-level simulators are easily six or more orders of magnitude slower than
the proposed hardware. One minute of execution in real time can correspond to days, if not

weeks, of simulation time.

Simulators of larger, and more parallel, processors such as systems on a chip and multi-
core processors have even greater performance issues. The obvious optimization of using
multiple threads in the software simulator to take advantage of parallel execution resources
is very difficult due to the constant cycle level communication between chip resources.
Thus, it is not anticipated that simulators will trend towards a smaller performance gap

with the hardware they model.

We decided to view the performance of processors running benchmark applications as a
large data set that we can statistically sample to more rapidly estimate overall performance.
We have analyzed the statistical properties of both time and energy performance of super-
scalar out-of-order microprocessors to determine the optimal random sampling and

stratified sampling strategies.

We discovered that a large sample size (e.g., 10,000) of short performance measure-
ments over the full length of a benchmark minimized the number of instruction executions
that need to be measured. However, the accurate warming of microarchitectural state
before each of these measurements was challenging. The warming overhead requirements

for each measurement reduce the optimal sample size when optimizing simulation latency.

1.1 Current approaches

To mitigate prohibitively slow simulation speeds, researchers often use abbreviated or ad-
hoc subsets of instruction execution streams of benchmarks as representative workloads in
design studies. Unfortunately, many studies [Lauterbach 1994; Conte, Hirsch, and Menezes
1996; Lafage and Seznec 2000; Sherwood et al. 2002] have repeatedly concluded that
results based only on a single abbreviated execution stream are inaccurate or misleading

because they fail to capture global variations in program behavior and performance.

Another common approach to curtail simulation time is to use fewer or smaller input
sets (i.e., the test or train sets rather than all of the reference sets in SPEC CPU2000).
However, research has shown benchmark behavior varies significantly across test, train and
reference inputs for a number of SPEC CPU2000 benchmarks [Hsu, Chen, and Yew 2002;

Sherwood et al. 2002].

To obtain performance results based on complete benchmarks and input sets, many
proposals have advocated statistical [Laha, Patel, and Iyer 1988; Lauterbach 1994; Conte,
Hirsch, and Menezes 1996; Haskins and Skadron 2001] or profile-driven [Lafage and Seznec
2000; Hamerly et al. 2005; Falcén, Faraboschi, and Ortega 2007] simulation sampling.
Simulation sampling measures only chosen sections (called sampling units) from a bench-

mark’s full execution stream. The sections in between sampling units are “fast-forwarded”

using functional simulation that only maintains programmer-visible architectural state. We
faced two key challenges to simulation sampling: (1) choosing an appropriate subset with
the minimum number of instructions to meet a given error bound, and (2) reconstructing an
accurate microarchitectural state (e.g., branch predictor and cache hierarchy contents) for

unbiased sample measurement following an extended period of functional fast-forwarding.

Existing proposals for simulation sampling suffer from several key shortcomings. On the
efficiency front, most proposals sample several orders of magnitude more instructions than
are statistically necessary for their stated error [Laha, Patel, and Iyer 1988; Lauterbach
1994; Lafage and Seznec 2000; Haskins and Skadron 2001; Hamerly et al. 2005]. This
inefficiency is often rooted in their excessively large sampling units, either to amortize the
overhead of reconstructing microarchitectural state or to capture coarse-grain performance
variations by brute force. On the accuracy front, most proposals either do not offer tight
error bounds on their performance estimations [Laha, Patel, and Iyer 1988; Lauterbach
1994; Lafage and Seznec 2000; Hamerly et al. 2005; Falcén, Faraboschi, and Ortega 2007],
or require unrealistic assumptions about the microarchitecture (e.g., perfect branch predic-

tion or cache hierarchies) [Conte, Hirsch, and Menezes 1996].

1.2 The SMARTS approach

We propose the Sampling Microarchitecture Simulation (SMARTS) framework which applies
statistical sampling theory to address the aforementioned issues in simulation sampling.
Unlike prior approaches to simulation sampling, SMARTS prescribes an exact and construc-
tive procedure for selecting a minimal subset from a benchmark’s instruction execution
stream to achieve a desired confidence interval. SMARTS uses a measure of variability

(coefficient of variation) to determine the optimal sample that captures a program’s inher-

ent variation. An optimal sample generally consists of a large number of small sampling

units. Unbiased measurement of sampling units as small as 1000 instructions is possible by

applying careful functional warming—maintaining large microarchitectural state, such as
branch predictors and the cache hierarchy—during fast-forwarding between sampling

units.

We evaluate SMARTS in the context of a wide-issue superscalar out-of-order timing simu-
lator called SMARTSim. We employed SMARTSim to estimate the CPI and energy per
instruction (EPI) for 41 out of 45 SPEC CPU2000 benchmark/input combinations [Henning
2000] on two microarchitecture configurations. We make the following primary observa-

tions:

1. Optimal sampling: SMARTSim achieves an actual average error of only 0.64% on
CPI and 0.59% on EPI by simulating fewer than 50 million instructions in detail for
each of the 41 SPEC CPU2000 benchmarks. This represents an exceedingly small
fraction of the complete benchmark streams, which are 174 billion instructions on
average (Alpha ISA).

2. Simulation speedup: SMARTSim can achieve average speeds of 35 and 60 times
faster relative to sim-outorder for 8-way and 16-way superscalar processor models,
respectively.

3. Implications: SMARTS sampling simulation rate is, for all practical purposes, decou-
pled from the speed of the detailed simulator. This result has fundamental bearings
on future simulator designs. First, designers should focus less on elaborate perform-
ance shortcuts in detailed simulators, and more on increasing the detailed
simulator’s overall design flexibility and accuracy. Second, designers should focus

on developing techniques which speed up fast-forwarding and functional warming

(e.g., native execution [Reinhardt et al. 1993; Chen 2004; Falcén, Faraboschi, and Or-
tega 2007], simulator synthesis [Burtscher and Ganusov 2004], and checkpointing
[Van Biesbrouck, Eeckhout, and Calder 2005] (Chapter 4), as these ultimately de-

termine sampling simulation rate.

1.3 Checkpoint sampling

Although functional warming enables accurate performance estimation, it limits SMARTS’
speed, occupying more than 99% of simulation runtime. Functional warming dominates
simulation time because SMARTS must functionally simulate the entire benchmark’s execu-
tion, even though it will simulate only a tiny fraction of the execution using detailed

microarchitecture timing models.

Detailed
; Detailed warming (~2000 instructions of detailed simulation) window
SMARTS warming strategy = 1 | I
Functional warming t Measurement
(~50x faster than detailed sim.) (~1000 instructions of detailed simulation)

Figure 1.1: SMARTS two-tier warming strategy

Functional warming dominates runtime since it must cover billions of instructions per benchmark application.

The second shortcoming of the SMARTS framework is that functional warming requires
simulation time proportional to benchmark length rather than sample size. As a result, the
overall runtime of a SMARTS experiment remains constant even when we reduce the meas-
ured sample size—for example, by relaxing an experiment’s statistical confidence
requirements. Moreover, functional warming time increases with the adoption of bench-
mark suites, such as SPEC CPU2006, that lengthen benchmarks to scale with hardware

performance improvement.

We developed our own version of checkpoints, live points, to enable rapid loading of

warm microarchitecture state before each measurement. This approach also enables

random measurement ordering and parallel simulation. Live points provide an alternative
to functional warming that reduces simulation turnaround time without sacrificing accu-
racy. A live point stores the necessary data to reconstruct warm state for a simulation
sampling execution window. Although modern computer architecture simulators frequently
provide checkpoint creation and loading capabilities, existing checkpoint implementations

have two limitations:

1. They don’t provide complete microarchitectural model state.
2. They cannot scale to the required checkpoint library size (about 10,000 checkpoints

per benchmark), which would require multiple terabytes of storage.

We address the first limitation by storing only selected microarchitectural state in live
points, an approach we call checkpointed warming. The key challenge of checkpointed
warming lies in storing microarchitectural state such that live points can still simulate the
range of microarchitectural configurations of interest. Fortunately, with the exception of the
branch predictor and memory hierarchy, most microarchitectural state can be recon-
structed dynamically with minimal simulation (a few thousand instructions of detailed
warming), and thus need not be stored. For the exceptional structures, researchers can
often place limits on the configurations of interest (for example, through trace-based
studies). We’ve designed checkpointed warming to reproduce these structures under user-

specified limits.

We reduce the size of conventional checkpoints by three orders of magnitude through
storing in live points only the subset of state necessary for limited execution windows, an
approach we call live state. Live state exploits the brevity of simulation sampling execution

windows (thousands of instructions) to omit most state.

1.4 Stratified sampling

Simple random sampling does not exploit the often repetitive behaviors of benchmarks,
collecting many redundant measurements. By identifying repetitive behaviors, we can apply
stratified random sampling to achieve the same confidence as simple random sampling with

far fewer measurements.

Our oracle limit study of optimal stratified sampling of SPEC CPU2000 benchmarks
demonstrates an opportunity to reduce required measurement by 43 times over simple
random sampling. Using our oracle results as a basis for comparison, we evaluate three
practical approaches for selecting strata, offline online and program phase detection, and

IPC profiling.

Offline phase detection involves profiling a benchmark application to determine mi-
croarchitecture independent phases in the instruction stream. We evaluated the SimPoint
approach [Sherman et al. 2002] that identifies phases with similar groups of dynamic
instruction basic blocks and compared it’s confidence intervals versus simple random
sampling. We find that approaches based on microarchitecture dependant features for
phase detection will fundamentally have a large potential for error and only have limited

improvement in sample size due to a lack of phase variance minimization.

Online phase detection performs the phase identification simultaneously with the per-
formance simulation itself. We evaluated the dynamic sampling approach [Falcon,
Faraboschi, and Ortega 2007] that identifies measurement periods by monitoring the an
instruction translation cache miss rate. Dynamic sampling also does not provide an obvious

way to estimate confidence intervals.

Finally, we developed a framework called IPC profiling that directly minimizes stratum
variance, therefore minimizing sample size. Our results indicate that: (1) program phase
stratification falls short of optimal opportunity, (2) IPC profiling requires expensive mi-
croarchitecture-specific analysis, and (3) all three methods require large sampling unit sizes
to make strata selection feasible, offsetting their reductions of sample size. We conclude
that, without better stratification approaches, stratified sampling does not provide a clear

advantage over simple random sampling.

1.5 High-resolution tracing

Simulation sampling provides high level aggregate performance estimates that are most
effective when comparing microarchitecture or software changes. We present a digression
in the opposite direction, our efforts on novel approaches to capturing detailed perform-
ance data in-band on real computer processors, not simulations, to aid in the tuning of

software applications and microarchitectures.

We investigated the fidelity of hardware performance counter data on the Intel Core 2
processor architecture. At resolutions smaller than 100,000 instruction, the signal to noise
ratio (SNR) is over 10dB, producing unreliable and unusable data for further analysis. We
developed two reconstruction approaches, median reconstruction and super-resolution
reconstruction, that can improve the SNR and resolution of performance counter trace data.

We present our preliminary results with these techniques.

1.6 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 presents background on

microarchitecture simulation and statistical sampling theory. Chapter 3 presents our initial

8

studies of uni-processor simulation sampling (SMARTS) using two-phase warming that we
call functional warming. Chapter 4 presents our investigation of the advantages and best
design of checkpoints for sampling, including checkpointed warming, and parallelizable
sample design. Chapter 5 presents our most recent work on stratified sampling approaches
that reduce sample size. Finally, we present our tangent work on high-resolution perform-

ance tracing in Chapter 6. Our conclusions are presented in Chapter 7.

2 Background

2.1 Microarchitecture simulation

Designing the microarchitectures of modern processors requires the evaluation of many
complex engineering decisions that calls for large research efforts. Assessing design trade-
offs and architectural options is a multi-year process for each new project. This evaluation
effort spans many levels of abstraction between concept and implementation. Academic and
industrial design efforts tackle the complexity of evaluating new CPU architectures by
progressively reducing the level of abstraction being studied. Starting with simple architec-
tural concepts, new ideas are evaluated through simulation and implementations at various
levels of detail. The accuracy of performance metrics is improved by increasing the level of
detail being modeled. The more detailed models often require large leaps in complexity or
description size, and thus, require a large effort to produce. Hence, in many cases early
design decisions, ones that influence the broad direction of a project, are made with only

loose estimates of performance.

Software simulation is the most commonly used tool in early microarchitecture evalua-
tion. Simulations are extremely flexible, and can be developed and modified with only
modest effort. In addition, they offer great flexibility in the level of detail they can model.
The two most common types of software simulation are those that are functionally accurate,
and those that are timing accurate. Functional simulators implement the semantics of the
target instruction set architecture. Timing simulators attempt to estimate the performance

of microarchitectures with varying levels of detail and accuracy.

10

The parallel nature of simulating processor logic in software is not a good fit for the se-
quential execution of the simulator’s instruction stream. Coupled with the thousands of
instructions necessary to simulate the performance characteristics of each simulated
instruction, the reasons for the speed gap between simulators and processors is evident.
Full system simulators which encompass the entire computer system, and not just the

processor, encounter even larger slowdowns.

Two often used approaches to speeding up simulation are checkpointing and native
execution. Checkpointing stores all needed simulator state on disk for later use to rapidly
resume simulation deep within a benchmark application, instead of always starting at the
beginning of a benchmark (Chapter 4). This enables simulation of more interesting portions

of a benchmark with lower latency.

Native execution, as well as just-in-time translation or compiling, is most effective for
functional simulation [Chen 2004]. Native execution involves performing the semantics of
the “simulated” instructions directly on an underlying processor. Therefore, the direct
execution requires ISA compatibility between the underlying computer system with the
simulated ISA. Native execution is also largely incompatible with producing timing accurate
results since the means of instrumenting the “simulated” instructions execution is with
inline instrumentation or traps. These instrumentations are essentially a non-native

execution simulator, thus amortizing any speed advantage of native execution.

2.2 Statistical sampling

The field of inferential statistics offers well-defined procedures to quantify and to ensure

the quality of sample-derived estimates. This section provides basic background on statisti-

11

cal sampling. We describe procedures for selecting a sample for mean estimation and the

mathematics for calculating the confidence in an estimate.

Statistical sampling attempts to estimate a given cumulative property of a population by
measuring only a sample, a subset of the population [Jain 2001]. By examining an appropri-
ately selected sample, one can infer the nature of the property over the whole population in
terms of total, mean, and proportion. The theory of sampling is concerned with choosing a
minimal but representative sample to achieve a quantifiable accuracy and precision in the
estimate. The theory does not presume a normally-distributed population. Our goal is to
apply this theory to: (1) identify a minimal but representative sample from the population
for microarchitecture simulation, and (2) establish a confidence level for the error on

sample estimates.

12

Table 2.1: Statistical sampling terminology and variables

Sampling terminology
population

sample
element / sampling unit

Sample types
simple random sampling
systematic sampling
uniform sampling
representative sampling
stratified sampling

complete set of elements with a property to be estimated
measured subset of a population
quantum of the population that is measured in a sample

sampling units chosen at random from whole population
sampling units chosen at a periodic interval

sampling units chosen with equal probability from entire pop.
sampling units chosen from weighted regions of the pop.
sampling units chosen from strata [Wunderlich et al. 2004]

Population variables /Sample typei
N population size uniform representative
- - ~
X mean simple random systematic stratified
o, standard deviation
V, coeff. of variation (o, / X) Sample variables
n sample size
Useful relations X sample mean
_ z- VX X ' sample coeff. of variation (g, / X)
te- X=1 " (1-a) confidence level (95% z=1.97, 99.7% z=3)
confidence interval for a sample te- X confidence interval
~ J, k systematic sampling offset, interval
z-V, - .
= () B(x) bias of sample mean
£

sample size for a subsequent experiment

Table 2.1 summarizes the standard statistical sampling terminology and variables rele-
vant to this study. Simple random sampling selects a sample of n elements (a.k.a. sampling
units) at random from a population of N elements. Measurements are taken on the selected
sampling units, and for a sufficiently large sample size (i.e., n > 30) the sampled results can
be meaningfully extrapolated to provide an estimate for the whole population. In particular,
the true population mean X of a property X is estimated by the sample mean x. The
coefficient of variation is the standard deviation of X normalized by X, V, =0, /X. The
likelihood that x is a good estimate of X improves with sample size and decreases with V..

SMARTS leverages the relationship between n, V, and desired confidence to minimize the

required sample size for a benchmark.

13

population { 2.4 40 9.3 0.8 45 1.8 7.8 3.2 6.3 6.0 58 29 35 4.0 31} N=15 X=4.36
sample { 4.0 4.5 7.8 3.2 31} n=5 x=4.52

<— average of x from the random samples (4.37)
y &
N -
+ +) —sampleswith4.9<x<53
++ +

95% confidence +1.9 +++

(5% of samples may have error > 1.9) +++
+ + +

+++
F+++++
++++++
++++++

L L L L ELLEX S

UBUSUSUSL T
2125293337 4145495357 6165

X
Histogram of x from 60 random samples withn =5

frequency

+++++++++

++++
++ + +F

Figure 2.1: Confidence interval for uniform sampling error
The confidence interval represents the probability of a sample’s estimate being within a specified range of the

actual population’s property value.

Formally, the confidence in a mean estimate is jointly quantified by two interdependent
terms: confidence level (1 - o) and confidence interval =¢-X. The interpretation of confi-
dence level and interval is that, over a large number of random sampling trials, a (1 - a)
fraction of the trials should produce x that is within =¢-X of X.! Figure 2.1 graphically
illustrates obtaining an estimate of X with a sample, and an interpretation of the confi-
dence interval. The confidence interval achieved by a sample is =([(z- Vx)/w/;] -X) where z is
the 100[1 - (o / 2)] percentile of the standard normal distribution. (We assume N» n» 1 to
simplify the expressions in this study.) For a sample with a given V, and size n, one can

choose a desired confidence level and solve for the achieved confidence interval.

1 A less rigorous, but acceptable interpretation is that for a given sample there is a (1 - o) probability that x

is within =¢ - X of X.

14

To design a sampling simulation to meet a certain confidence, one begins by determin-
ing an appropriate n based on the required confidence and V,, using the same equations
above. (Note that the population size does not impact the determination of n.) The true
coefficient of variation of a population is rarely available in practice unless the entire
population is examined. Instead, \}X of a sufficiently large initial sample is commonly used in
place of V, in computing the confidence of that sample. If the initial sample does not achieve
the desired confidence, the required size of a subsequent sample can be computed using \7x,
where n= ((z-\}x)/s)z. In practice, the required sample size can typically be found after one

test sample.

An approximation of random sampling of practical interest in microarchitecture simula-
tion is systematic sampling due to its ease of implementation. This approach selects
sampling units from an ordered population at a fixed sampling interval k such that n = N/k.
Systematic sampling is most effective if the population exhibits low homogeneity. In other
words, the measured property X should not vary cyclically over the population sequence at
the same periodicity as k or its higher harmonics. Homogeneity in a population is quantified
by the intraclass correlation coefficient §,; when the magnitude of §, is negligible, the
confidence calculations for systematic sampling are the same as described for random
sampling. We verified experimentally that in our sampling results the population exhibits
negligible homogeneity on the order of -1x107. This observation agrees with our intuition
that realistic benchmarks do not have sufficiently regular cyclic behavior at the periodicity

relevant to simulation sampling (tens of millions of instructions).

Measurement error is another source of inaccuracy for both random and systematic

sampling. Random errors lead to an increase in V, and are accounted for by a correspond-

ingly lowered confidence in the estimate. On the other hand, systematic errors—for

15

example, due to incorrect cache hierarchy state prior to the start of a sampling unit [Laha,

Patel, and Iyer 1988]—introduce a bias in the estimate. The bias B(x) is the average differ-

ence between X and x over all possible sampling trials of a given configuration. For
systematic sampling, there are exactly k possible systematic sample phases, and hence,

B(¥) = ¥/k- X . If bias is known, it can be accounted for by subtracting it from the estimate,

without affecting confidence. If the bias can only be bounded, then it introduces a propor-

tional amount of uncertainty in the estimate beyond the confidence interval.

2.3 Sampling approaches

A rigorous approach to obtaining representative estimates when sampling was performed
by Conte, Hirsch, and Menezes [1996]. In addition, their study used execution-driven
microarchitecture simulation as opposed to trace-based simulation. Conte’s sample design
addressed both sampling error from insufficient sample size, and non-sampling bias due to
unwarmed state at the start of measurements. Sampling error was effectively brought to
reasonable levels by taking ~1000 measurements of at least 2000 instructions each while
simulating SPEC CPU95. SMARTS extends the sampling parameter search across a much
larger range of possible sample sizes and sampling unit sizes to determine the optimal
values for SPEC CPU2000 with a more complex and modern microarchitecture simulator.
The Conte study does not address cold-start bias for caches, and assumes a perfect memory
hierarchy. However, Conte found that a two-level branch predictor was effectively warmed
by 7000 instructions of detailed simulation before each measurement, a warming technique

similar to Smart’s detailed warming.

All the works cited in this section, Section 3.4, and SMARTS, use a uniform sampling ap-

proach where measurements are taken randomly or systematically from the whole

16

instruction stream. However, it is possible to reduce the required amount of measurement if
low-variance phases can be identified [Wunderlich et al. 2004]. Alternatively, practical
constraints sometimes make the simulation of 1000’s of measurements undesirable in
comparison to fewer carefully-selected measurements. For example, it may be difficult to
extract 1000’s of checkpoints collected by scanning architectural and microarchitectural
state from a physical processor. Instead, careful profiling may identify performance-critical
program phases, allowing only a few checkpoints corresponding to the selected phases. The
use of individual measurements of program phases may also be appropriate when the goal
is simply to simulate a design on various types of dominant program behavior, and repre-

sentative benchmark performance is not required.

Two significant works in identifying program phases for representative sampling are
[lyengar, Trevillyan, and Bose 1996] and [Hamerly et al. 2005]. Iyengar, Trevillyan, and
Bose [1996] developed a composite metric, the R-metric, to measure how representative
trace-subsets are as compared to the whole instruction stream. The R-metric compared the
basic-block occurrence frequencies between each subset versus the whole program. lyengar
developed a graph-based selection algorithm for subsets with optimal R-metric values.
Hamerly et al. [2005], describe a clustering-based algorithm to identify instruction stream
regions that have similar basic block occurrence frequencies. Hamerly et al. selected
measurement locations after identifying similar program regions by clustering basic-block
relative frequency vectors. Both of these approaches cannot achieve the high level of
accuracy and reliability of statistical sampling, but are advantageous when collecting many

measurements is infeasible.

Both [Ilyengar, Trevillyan, and Bose 1996] and [Hamerly et al. 2005] rely on a high
correlation of performance to repeated program instructions to achieve accurate

performance estimates. The program phases they identify are composed of program regions

17

estimates. The program phases they identify are composed of program regions with similar
basic-block occurrence frequencies. If these phases do not contain homogeneous perform-
ance then small samples will not produce accurate estimates, as seen in Section 3.3.3.
However, it has been shown that in most cases there is a strong correlation between BBV-
identified phases and performance [Lau et al. 2005]. A survey of prevailing simulation-
sampling approaches by Yi et al. [2005] concluded that the SMARTS simulation-sampling

approach provides the highest estimation accuracy.

18

3 SMARTS sampling

This chapter describes our investigation of simple random sampling of uniprocessor
microarchitecture performance simulations with an aim to minimizing the number of

measured instructions.

3.1 Framework

This section presents a framework for Sampling Microarchitecture Simulation (SMARTS).
SMARTS applies statistical sampling to accelerate simulation-based performance measure-
ments. Our presentation of SMARTS is primarily developed around estimating average cycles
per instruction (CPI), but we provide results in Section 3.3.2 for estimating both CPI and
energy per instruction (EPI). The SMARTS framework is generally applicable to other per-

formance metrics, such as pipeline resource utilization or average memory latency.

3.1.1 Technique

Measuring the CPI of a benchmark’s full instruction stream on a detailed microarchitecture
simulator is a time-consuming proposition. SMARTS estimates the CPI in significantly less
time by simulating and measuring only a tiny fraction of the stream on the detailed mi-
croarchitecture simulator. SMARTS assumes an execution-driven simulator that supports
detailed simulation and functional simulation (a.k.a. fast-forwarding). In the detailed mode
all relevant microarchitecture details are accounted for. Only programmer-visible architec-
tural state (e.g., architectural registers and memory) is updated in the functional mode.

SMARTS uses the two simulation modes to sample CPI systematically at a fixed interval—

19

detailed simulation of the sampled instructions and functional simulation of the remaining

instructions.

Table 3.1: Variables introduced or redefined in the SMARTS framework

U sampling unit size (instructions)
W detailed warming (instructions)
N benchmark length (instructions) / U

SMARTS uses systematic sampling rather than random sampling because systematic
sampling is more straight-forward to implement in execution-driven simulators. In SMARTS,
a sampling unit is defined as U consecutive instructions in a benchmark’s dynamic instruc-
tion stream such that the population size N is the length of the stream divided by U. The
exact number of instructions per sampling unit may vary slightly to align sampling units on
clock cycle boundaries. For systematic sampling at an interval k, beginning at offset j,
SMARTS repeatedly alternates between a functional simulation period of U(k - 1) instruc-
tions and a detailed simulation/measurement period of U instructions. A primary reason we
base the population on instructions rather than clock cycles is that one cannot meaningfully

count the number of detailed cycles elapsed during functional simulation.

Evaluating benchmarks in SMARTS provides an estimated average CPI based on the n-U
sampled instructions. Equally important, the results include the measured coefficient of
variation ‘}CP,, that allows us to calculate the confidence of the CPI estimate, and if neces-
sary, determine a new sample size to meet a specific degree of confidence. Section 3.3.1
describes how to set SMARTS sampling parameters and prescribes an exact procedure to
generate an accurate performance estimate by measuring only a minimal subset of a

benchmark’s instruction stream.

20

A key challenge in SMARTS is how to compute the correct microarchitectural state prior
to detailed measurement of each sampling unit. Between sampling units, functional simula-
tion computes all architectural state updates of the program, but leaves microarchitectural
state (e.g., cache hierarchy, branch predictors and target buffers, or pipeline state) un-
changed. Stale microarchitectural state introduces a large bias in the measurement of
individual sampling units and, consequently, the final estimate. We have observed stale-

state induced bias as high as 50% for sampling units of 10,000 instructions.

Benchmark dynamic instruction stream

0 j jtk j+ 2k N
: ; e _— ; e —
[I B ..n sampling units
— k } i
U instructions U(k—1)— Winstructions W instructions

functional warming — functional simulation plus large structures are warmed
detailed warming — detailed simulation warms all types of state before each sampling unit

O sampling unit — measured using detailed simulation

Figure 3.1: Systematic sampling as performed in SMARTS
Two modes of simulation are used: functional simulation, and detailed simulation. The need to determine
warming requirements for large structures, such as caches, is eliminated by performing continuous functional
warming.

The stale-state effect can be ameliorated by introducing a warming period where W
instructions are simulated in detail to refresh the microarchitectural state just prior to the
measurement of a sampling unit [Laha, Patel, and Iyer 1988]. We refer to this solution as
detailed warming. Figure 3.1 graphically illustrates how SMARTS alternates between func-
tional simulation of [U(k-1)- W] instructions, detailed simulation of W warming

instructions (without measurement), and detailed simulation and measurement of U

instructions. Increasing W can gradually reduce the bias below an acceptable threshold.

Unfortunately, detailed warming has two major shortcomings: (1) detailed warming can

be expensive because it increases the amount of detailed simulation, and (2) in general the

21

appropriate value of W is difficult to derive analytically because some microarchitectural
state has extremely long history. We will return to this discussion in Section 3.2.3, where we

measure the effect of W on bias in a reference implementation of SMARTS.

Between detailed simulation periods, select microarchitectural state could instead be
maintained by functional simulation with only a small overhead. We refer to this warming
approach as functional warming. The cache hierarchies and branch predictors are prime
candidates for functional warming. By continuously warming microarchitectural state with
very long history, we can analytically bound W for the remaining state to a manageably

small value.

A caveat to the functional warming approach is that it may not always be able to accu-
rately reproduce the correct microarchitectural state if correct warming requires exact
knowledge of detailed execution. Moreover, timing-dependant behavior (e.g., operating
system scheduling activity) require timer approximation. If functional warming simulates
instructions in order, it also may not accurately reflect the artifacts of out-of-order and
speculative event ordering. Cain et al. [2002] have suggested that out-of-order and specula-
tive ordering has minimal impact on CPI and other performance metrics. In Section 3.2.5 we
corroborate these results and present our own analysis of the residual biases after func-
tional warming. We believe functional warming is the most cost-effective approach to

achieve accurate CPI estimation with simulation sampling.

3.1.2 Benchmarks

In this study, we demonstrate the effectiveness of SMARTS by attempting to estimate the CPI
and EPI of the SPEC CPU2000 integer and floating-point benchmarks [Henning 2000] as

measured on the SimpleScalar 3.0 sim-outorder simulator [Burger and Austin 1997] with

22

the Wattch 1.02 power estimation extensions [Brooks, Tiwari, and Martonosi 2000]. For
improved realism, we modified the memory subsystem to include a store buffer and miss
status holding registers (MSHR), and model interconnect bottlenecks in the memory
hierarchy. Our study includes the cross product of two microarchitecture configurations
and all 26 SPEC CPU2000 benchmarks as in Table 3.2. We evaluate all reference inputs
except vpr-place and three perlbmk inputs, as these inputs fail to simulate correctly in sim-
outorder. Overall, 41 benchmark/input set combinations are included in this study. To
provide a reference data set for this study, we collect cycle-by-cycle traces of instruction
commits in sim-outorder for the entire length of each benchmark. Simulating these
SPEC CPU2000 benchmarks resulted in more than 7 trillion simulated instructions per

machine configuration.

23

Table 3.2: Simulated SPEC CPU2000 benchmarks

Benchmark Input Instructions (bil.) | 8-way IPC 16-way IPC 8-way EPI (nJ/Inst.)
ammp 326.5 1.04 1.60 42.7
applu 2239 1.17 1.75 42.1
apsi 3479 1.58 2.40 359
art-1 startx 110 41.8 0.39 0.66 88.0
art-2 startx 470 45.0 0.39 0.66 87.6
bzip2-1 source 108.9 1.48 1.77 39.5
bzip2-2 graphic 143.6 1.56 1.95 37.2
bzip2-3 program 124.9 1.70 2.08 36.9
crafty 191.9 2.34 2.94 34.6
eon-1 kajiya 101.3 2.50 3.11 36.5
eon-2 cook 80.6 3.01 4.81 31.8
eon-3 rushmeier 57.9 2.85 4.11 33.2
equake 131.5 0.79 1.23 50.3
facerec 211.0 1.86 3.31 332
fma3d 268.4 1.53 2.57 38.0
galgel 409.4 0.96 1.77 452
gap 269.0 1.48 1.74 39.5
gee-1 166 46.9 1.45 1.41 40.7
gee-2 200 108.6 1.60 1.82 39.6
gee-3 expr 12.1 1.63 1.73 40.1
gee-4 integrate 13.2 1.64 1.62 38.9
gee-5 scilab 62.0 1.64 1.80 40.2
gzip-1 source 84.4 1.76 1.91 37.2
gzip-2 log 39.5 1.81 1.94 359
gzip-3 graphic 103.7 2.26 2.54 35.7
gzip-4 random 82.2 222 2.48 36.0
gzip-5 program 168.9 1.81 2.00 36.1
lucas 142.4 0.11 0.11 207.1
mcf 61.9 0.10 0.14 2452
mesa 281.7 292 444 29.6
mgrid 419.2 1.75 291 36.3
parser 546.7 1.32 1.58 41.4
perlbmk makerand 2.1 2.01 2.27 36.4
sixtrack 470.9 2.50 5.79 31.1
swim 225.8 1.03 1.51 42.8
twolf 346.5 0.76 0.83 52.7
vortex-1 lendianl 119.0 2.13 3.38 314
vortex-2 lendian2 138.7 2.35 3.89 30.7
vortex-3 lendian3 133.0 2.12 3.36 315
vpr route 84.1 0.56 0.64 63.8
wupwise 349.6 2.37 426 30.4
mean 173.8

24

The baseline microarchitecture configuration in this study is an 8-way superscalar
model that represents a processor in the current technology generation. A 16-way super-
scalar configuration also is included to reflect an aggressive future design point. This
configuration has a wider data path, larger out-of-order window, and larger caches, to test
the effects of an enlarged state set. The details of the 8-way and 16-way configurations are

summarized in Table 3.3.

Table 3.3: Simulated microarchitecture configurations

Parameter 8-way (baseline) 16-way

RUU/LSQ 128/64 256/128

Memory system 32KB 2-way L11/D 2 ports |64KB 2-way L11/D 4 ports
8 MSHR, IM 4-way L2 16 MSHR, 2M 8-way L2

16-entry store buffer 32-entry store buffer
ITLB/DTLB 4-way 128 entries/ 4-way 128 entries/

4-way 256 entries 4-way 256 entries

200 cycle miss 200 cycle miss
L1/L2/mem. latency | 1/12/100 cycles 2/16/100 cycles

Functional units 41-ALU, 2 I-MUL/DIV 16 I-ALU, 8 -MUL/DIV
2 FP-ALU, 1 FP-MUL/DIV |8 FP-ALU, 4 FP-MUL/DIV

Branch predictor Combined 2K tables Combined 8K tables
7 cycle mispred. 10 cycle mispred.
1 prediction/cycle 2 predictions/cycle

3.1.3 Speedup opportunity

The required sample size to estimate CPI at a given confidence is directly proportional to
the square of the population’s coefficient of variation, n «V,,,*. A benchmark with a small
Vep; implies a greater opportunity for accelerated simulation because fewer instructions

from the benchmark need be simulated and measured in detail. To assess the potential

speedup of SMARTS, we study V,,, of all benchmarks in our test suite. A benchmark’s in-

struction stream can be divided into a population using different values of U. Figure 3.2

plots V., of all benchmarks on the 8-way configuration as a function of U in the range of 10

instructions to 1 billion instructions. V,,, decreases with increasing U because short-term

25

CPI variations within a window of U instructions are hidden by averaging over the sampling

unit. The Vp, curves for all benchmarks share the same general shape, with a steep nega-

tive slope for U less than 1000, leveling off thereafter.

6.0 4 8-way
5.0-
4.0

3.0

2.0 4
average

1.0

CPI coefficient of variation, ¥/,

0.0

1000 10K 100K ™M 10M 100M 1B
Sampling unit size (instructions), U

10 100

Figure 3.2: Coefficient of variation of CPI of SPEC CPU2000 benchmarks
Increasing the sampling unit size above 1000 instructions yields little reduction in Vcpi, and correspondingly
small decreases in the required sample size. Therefore, simulation time usually increases for
U > 1000 instructions.

The shapes of the V,,, curves argue against sampling approaches that use large sample
unit sizes because for U greater than 1000, V. (and hence n) does not decrease rapidly
enough to compensate for the increased sample unit size. For instance, although very few
sampling units are required in the extreme case of U =1x10’, the total number of sampled
instructions »-U is much greater than when U is less than 1000. Figure 3.2 further makes
the case that single-sampling-unit approaches, the most commonly employed approaches,

cannot ensure accurate estimates since the coefficients of variation of many benchmarks

are non-negligible even for sampling units of over one billion instructions.

26

7]
c X
o 40 8 way 99.7% confidence CEPI E{;’r
® percent of benchmark length for 95% confidence— — °
2 w30 +3% error with 99.7% confidence o 3%
w- O
2820 £ 5 5 5 5 5 8 5 o8
g sNeNenNenNenene g &
TEN > L{s 118 e e s e He e ~8
%‘v o o o o o o o o o
0 - -
£ = N e ~ 0 [0} o T o o i
m S x § x x £ 8 5 & £ ¢
%) Qo E Q [0} = £ O £ <
=t T € a o & .
o e 9 ¢ 3 >
> > 2 o
2]
5 16-way
= 40
S %30
- C R N * °) ° ° ° ° °
g220 g llaliRlIs1S|IE|BIIElIEB]IE &
- SHEME HE He HE HE W2 HE Hg -8
sSe0 2SS IETIS e e e As ne M8
Q= o = =] =] =] =] S =] S S
Q.
€ 0 ~ ™ N N 4= Q (e2] o} < = B
| 1 | [e) IS I I I, (o8
© x X X Q Q Q Q > [0)
»n & © ® &6 2 £ & o 3] <
t £ £ o S © o O %
2 o o N
> > > ©

Figure 3.3: Minimum sampled instructions
The minimum number of instructions that must be measured to achieve commonly used confidence intervals,
assuming no warming is needed for measurement, is an exceedingly small fraction of the SPEC CPU2000
benchmarks.

For U= 10, Figure 3.3 reports the values of »n-U for all benchmarks, assuming several
commonly used confidence targets. Even for a stringent confidence requirement of 1%
error with 99.7% confidence, the worst-case benchmark on the 8-way configuration in our
study requires no more than 0.1% of its instruction stream to be measured. The number of

instructions required to achieve a particular level of confidence does not vary significantly

across benchmarks because, for the most part, the benchmarks have similar values of V,.

The exceedingly low detailed simulation requirement suggests that the simulation rate of
SMARTS is insensitive to the speed of the detailed microarchitecture simulation. Rather, the
rate depends on the speed of the functional simulation performed for the great majority of
the instruction stream between sampling units. This optimistic assessment of speedup
opportunity does not factor in the detailed simulation cost for microarchitectural state
warming. We next present an analytical performance model for SMARTS to take into account

the cost of detailed and functional warming.

27

3.1.4 Speedup model

We develop a SMARTS performance model to consider the trade-off presented by functional
warming. Let S, =1.0 represent the simulation rate of functional simulation, and Sp repre-
sent the simulation rate of detailed simulation relative to Sr. (Therefore, 1 /Sp is the
slowdown of detailed simulation with respect to functional simulation.) The simulation rate
of SMARTS wusing only detailed and no functional warming is given by
SN -nU+W)]/N)+S,[(n(U+W))/N]. This expression is a weighted average of Sr and Sp
over the fraction of the instruction stream simulated functionally versus in detail. Figure 3.4
plots the SMARTS simulation rates for W between 0 and 10 million instructions for gcc-1,
with Sp=1/60 (corresponding to today’s fastest detailed simulators) and Sp=1 /600
(projected simulation rate of future processor cores). The right-hand-side vertical axis

estimates the corresponding runtimes.

HA10 6 0 o o gce-1 Arming
S . e
- 08 | B 1 hour - T
) O
0.6 2
> § A A A4 5 ®
Z 04 - 2 hrs - g
o - S, =1/60 S
]
lz_ 0.2 - =S, =1/600 1.9 days cc.
£ — - — 12 hrs g
3 o, + Sew 9.55, So 1‘/60 LM SR
' 0 1K 10K 100K 1M 10M

W Detailed Warming (Instructions)
More warming ——p»

Figure 3.4: Modeled SMARTS simulation rate
The two Sp plots show the simulation rate without functional warming. The Srw plot shows the simulation rate
when using functional warming to bound W. The plot shows that when W is greater than approximately
100,000 instructions, functional warming is faster than fast-forwarding because W can be bounded when using

functional warming.

28

The plot shows that SMARTS simulation speed decreases from Sr to Sp as W is increased;
furthermore, the anticipated future Sp results in an earlier and sharper decrease. Therefore,
unless W can be bounded to a reasonably small value, full benchmark measurement by

simulation sampling would remain prohibitively slow.

The simulation rate of SMARTS with functional warming can be derived from the expres-
sion for detailed warming by substituting Srw (the functional warming simulation rate) for

Sr. Functional warming allows us to bound W to less than a few thousand instructions—

sufficiently few such that detailed warming does not affect the simulation rate. This implies
that the simulation rate of SMARTS with functional warming stays close to the simulation
rate of Spw and is relatively insensitive to the performance of the detailed simulator. In other
words, the SMARTS framework enables researchers to apply otherwise prohibitively slow
detailed simulators to study complete benchmarks, provided efficient functional warming is
possible. In the next section, we will present our implementation of SMARTS where

Spy =0.55.

3.2 Implementation

To study and demonstrate the effectiveness of the SMARTS framework, we developed
SMARTSim, a concrete implementation of a sampling microarchitecture simulator. In this
section, we describe the implementation of SMARTSim and revisit the issues of microarchi-
tectural state generation in greater detail. In particular, we explain the effect of detailed
warming on the choice of sampling unit size and analyze the effectiveness of detailed
warming and functional warming in generating accurate microarchitectural state for

sample measurements.

29

3.2.1 SMARTSIm

SMARTSim is built on our enhanced sim-outorder as described in Section 3.1.2. sim-outorder
supports a functional simulation mode, similar to the operation of sim-fast in SimpleScalar,
that runs approximately 60 times faster than detailed simulation. However, sim-outorder
only supports functional simulation prior to starting detailed simulation. SMARTSim allows

repeated transitions back-and-forth between functional and detailed simulation modes.

SMARTSim accepts sim-outorder command line arguments and configuration files. In ad-
dition, SMARTSim accepts the systematic sampling parameters U, k, W, and j (described in
Section 3.1.1). SMARTSim also supports two fast-forwarding options: functional simulation
only, and functional simulation with warming (a.k.a. functional warming). For functional
warming, SMARTSim performs in-order functional instruction execution and maintains the
state of L1/L2 I/D caches, TLBs, and branch predictors in a fashion similar to sim-cache and
sim-bpred of SimpleScalar. In SMARTSim, functional warming operations introduce an

overhead of approximately 75% over functional simulation alone.

3.2.2 Optimal sampling unit size

SMARTSim allows the user to specify the sampling unit size U. In the analysis in Section 3.1.3,
we have shown that smaller unit sizes reduce the number of instructions simulated in detail
if the cost of detailed warming is ignored. However, because detailed warming adds an
overhead of W instructions of detailed simulation per sampling unit, the optimal value for U

increases with increased W to amortize the overhead of detailed warming.

30

& 100%

a

£ 10% =

3 §

5 1% - m

S —

E 01% P

® 001% + W=100,000

S ' X = /= 10,000

© 0.001% A— W=1000

g X W=0

2 0.0001% T T T T 1

- 10 100 1K 10K 100K ™
U Sampling Unit Size (Instructions)

W=100,000 W= 1000

= ¢ gcc-3 -~ gcc-3

& 100% ® bzip2-1 -®- bzip2-1

a A mesa -A- mesa &

£ 10% -) "”’**77—,,‘7 o 47,,,/”———"- ‘.

g o s \l - " - ‘) .

- 1%$ e e m

R S A

7] AETON B S L v p L

© 0.01%A.. H-o----- & A ‘.-1'

o AN Lot

s 0 k- .ok

g 0.001% S

% 0.0001% - ‘ ‘ ‘ ‘

= 10 100 1K 10K 100K ™M

U Sampling Unit Size (Instructions)
Figure 3.5: Optimal sampling unit size (U)
The top chart shows that the optimal U increases with detailed warming per measurement (W). The bottom
chart illustrates that U = 1000 instructions is a reasonable choice across benchmarks (extremes and the median
are plotted) and W.

To illustrate the effect of W on the choice of U, Figure 3.5 (top) plots the fraction of in-
structions simulated in detail (i.e,, n(W+ U) / N) for various values of U and W. The data
points are based on SMARTSim execution of gcc-1 on the 8-way configuration, with n chosen
for 99.7% confidence interval of 3% in the CPI estimate. In the idealized case where W =0,
the minimum U leads to the fewest detail-simulated instructions. For non-ideal W, however,
the optimal value of U lies in the range of 100 to 10,000 instructions. Figure 3.5 (bottom)
locates the optimal values of U for three other benchmarks, gcc-3, bzip2-1, and mesa. Each

benchmark is plotted for two values of W (1000 and 100,000) that are approximately the

magnitudes needed for sampling with and without functional warming, as discussed in the

31

following two sections. The optimal choice of U is not fixed across benchmarks. However, in
all cases, including other SPEC CPU2000 benchmarks not shown, fixing U to 1000 leads to a
sufficiently small fraction of detail-simulated instructions such that choosing the optimal U
gains at most tens of minutes in SMARTSim run time. Therefore, we suggest using U = 1000

in all cases.

3.2.3 Effectiveness of detailed warming

Microarchitectural state can always be warmed to an arbitrary degree of accuracy given
sufficient detailed warming. Unfortunately, the required amount of detailed warming to
obtain a given degree of accuracy cannot be determined analytically. The required amount
is a function of both the benchmark behavior and the microarchitectural mechanisms
involved. As a rule of thumb, we expect the amount of detailed warming to scale with the
size of the microarchitectural state; however, there are counter-examples.

Table 3.4: Microarchitecture warming requirements without functional warming

The warming requirements of SPEC CPU2000 vary widely and unpredictably. Functional warming removed the

need to predict warming requirements for new benchmarks.

W to achieve

<1.5% bias Benchmarks

applu, apsi, art-1, art-2, eon-1, eon-2, equake, fma3d, gzip-1,

3
<
W<30x10 gzip-2, gzip-3, gzip-4, lucas, mesa, sixtrack, twolf

W <250 x 1()3 crafty, eon-3, gap, gcc-1, gee-3, gee-4, mef, swim, vortex-3, vpr

ammp, bzip2-1, bzip2-2, galgel, gcc-2, gece-5, gzip-5,

W <500 x 10°
vortex-1, vortex-2

W > 500 x 1()3 bzip2-3, facerec, mgrid, parser, perlbmk, wupwise

To better understand the requirements of detailed warming (unaided by functional
warming), we experimentally determine the minimum acceptable value of W for the
benchmarks with the 8-way configuration such that the bias due to residual microarchitec-

tural state error is just below +1.5%. (We choose U=1000 and n sufficient for a 99.7%

32

confidence interval of +3%.) In systematic sampling, the true bias is the average error over
all k possible systematic samples. Exact determination of bias is prohibitively expensive,
since k is typically on the order of 10,000 in this study. Therefore, we approximate the
procedure by averaging the errors of 5 evenly distributed systematic sampling runs (i.e.,
j={0, k/5, 2k/5, 3k/5, 4k/5}). Table 3.4 categorizes the studied benchmarks according to

their required values of W.

Without functional warming, the required W varies widely across benchmarks and in-
puts. Many benchmarks are insensitive to the accuracy of microarchitectural state,
requiring less than 50,000 instructions of detailed warming per measurement period. For
some benchmarks, however, even W = 500,000 results in unacceptable bias, as high as 25%

for mgrid.

With the exception of the benchmarks requiring more than 500,000 instructions of de-
tailed warming, detailed warming does not significantly impact the simulation rate of
SMARTSim. Even 500,000 instructions warmed per sampling unit is a small fraction of the
full benchmark. Nevertheless, Table 3.4 does highlight a key shortcoming of the detailed-
warming-only approach: the unpredictability of W. Our empirical determination of W is
impractical because it requires a priori knowledge of the true unbiased CPI derived from

prohibitively time-consuming detailed simulation of complete benchmarks.

3.2.4 Bounded detailed warming

Functional warming helps redress the unpredictability of W in detailed warming. Functional
warming of problematic microarchitectural state allows us to bound W safely for the
remaining state by analyzing the details of the microarchitecture model. For example, to

estimate CPI, W needs to be chosen such that an instruction’s latency cannot be influenced

33

by unwarmed microarchitectural state. This requires W to exceed the maximum instruction

stream distance that latency-influencing state can propagate.

An instruction can only affect the latency of another instruction if there is some history
of the former still present at the time the latter is fetched. Outside of long-term architectural
(register, memory, etc.) and microarchitectural state (cache, TLB, branch predictor, etc.)
maintained by functional warming, the effects of an instruction are bounded by the instruc-
tion’s lifetime in the microprocessor. With the exception of store instructions, when an
instruction commits, its associated short-term state is freed. A committed store instruction
that misses in the cache might stall a later store instruction by causing the store buffer to
overflow. Hence, a worst-case bound on W is the product of store-buffer depth, memory
latency in cycles, and the maximum IPC. For our 8-way configuration, this upper bound is
12,800 (16 x100 x 8) instructions. In practice, this worst-case behavior does not occur; all the
8-way results presented in this study were achieved with only 2000 instructions of detailed

warming, and 16-way results with 4000.

3.2.5 Effectiveness of functional warming

Even with both functional and detailed warming, some inaccuracies in microarchitectural
state remain and contribute to errors in the estimates as bias. Table 3.5 reports the residual
bias in the CPI estimated by SMARTSim when functional warming is employed in conjunction
with detailed warming of the aforementioned values of W. Benchmarks are presented in
sorted-order by the worst bias. All benchmarks have bias under +2.0% and only 6 bench-
marks in each configuration exceed *#1.0%. The bias is predominantly due to wrong-path
and out-of-order effects in caches and the branch predictor. This set of results corroborates
our conclusion that functional-warming with bounded W is effective in reducing

microarchitectural state warming bias.

34

Table 3.5: CPI bias with functional warming and minimal detailed warming
Detailed warming of a few thousand instructions is sufficient to reduce bias to acceptable levels for all

SPEC CPU2000 benchmarks.

8-way 16-way . .
W= 12k CPI Bias EPI Bias 8-way CPI Bias EPI Bias W= 4k CPI Bias | 16-way CPI Bias

vpr -1.56% 0.52% | vortex-1 -0.29% 0.80% mcf 1.88% gzip-1 -0.25%
galgel 1.37% 0.04% gee-4 -0.29% -0.09% gee2 -1.60% galgel -0.25%
gee-2 -1.07% 0.63% mgrid 0.28% 0.09% /|| vortex-3 1.18% gee-4 0.24%

bzip2-2 -1.04% 0.94% | bzip2-1 -0.25% 0.55% eon-2 -1.11%| bzip2-2 -0.19%
parser 1.01% 0.56% gzip-3 -0.25% 0.05% gee-5 -1.10% mgrid -0.17%
gzip-5 0.94% 2.31% ammp 0.18% -2.42%|| sixtrack -0.93% art-1 ~ -0.15%
facerec 0.86% 0.96% | sixtrack 0.17% -0.27%|| wupwise 0.85% gzip-2 0.14%
gee-5 -0.81% 0.04% | wupwise -0.17% -0.05%]|| bzip2-1 0.78% | gzip-5 -0.12%
vortex-3 -0.55% 0.63% | equake 0.13% 1.46% applu 0.65% | vortex-2 -0.12%
gee-1 -0.53% -1.03% applu -0.12% -0.04% mesa -0.58% lucas 0.09%
bzip2-3 -0.51% 036% | gzip-4 -0.11% 0.09% eon-1 -0.56% art-2 0.07%
perlbmk -0.40% -0.09% eon-2 -0.10% -0.10%|| vortex-1 -0.54% apsi -0.07%
swim 0.38% 0.19% twolf 0.09% 0.00% ammp -0.53% parser 0.06%
gzip-1 0.38% 1.43% | gzip-2 -0.09% 0.23% swim 0.44% | gzip-3 -0.05%

mcf 0.36% 1.14% mesa -0.07% 0.11% vpr 0.38% twolf 0.04%
eon-1 -0.36% -0.14% gap 0.07% 2.49% gee-3 -0.36% | bzip2-3 -0.04%
fma3d -0.35% -0.22% gee-3 -0.05% 0.00% crafty 0.32% eon-3 0.04%
crafty -0.35% -0.14% eon-3 -0.04% -0.15%]|| perlbmk -0.30% | facerec 0.03%

art-2 0.31% 0.13% lucas 0.03% 0.13% fma3d 0.28% | equake 0.02%
art-1 -0.30% -0.40% | vortex-2 0.02% 1.09% gap 0.28% | gzip-4 0.00%
apsi 0.29% -0.42% gee-1 0.25%

3.3 Results

This section outlines an exact procedure for estimating a target metric using statistical
simulation sampling. We evaluate the effectiveness of this procedure by estimating the CPI

and energy per instruction (EPI) of SPEC CPU2000 using SMARTSim.

3.3.1 SMARTS procedure

One iteration of a SMARTS measurement run requires the user to supply three sampling
simulation parameters: W, U, and n. First, W is selected to exceed the bounded history of the
microarchitectural state as described in Section 3.2.4. We recommend utilizing functional

warming (see Section 3.2.5) whenever possible, as it greatly simplifies the determination of

35

W. Our 8-way results were achieved with W= 2000 instructions, and 16-way results with
W =4000. Second, we suggest setting U=1000. We have shown in Section 3.2.2 that
U =1000 is appropriate for all SPEC CPU2000 benchmarks. Lastly, we elaborate on how to
determine n, and correspondingly k, to meet a desired confidence in the following para-

graphs.

In general, the correct value for n must be determined in a two-step process. First, a

sampling measurement is made using a generic initial value n,, that is a compromise

init
between simulation rate and the likelihood of meeting the confidence requirement on the

first try. If the choice of n,, is shown to be insufficient after one sampling simulation, a

init
second step is required where n,,,, for a second sample is calculated from the \}X of the

initial run.

A priori, the minimum value of n to achieve a given confidence is unknown for an arbi-
trary benchmark and simulated microarchitecture. Given a fixed confidence target, n must
be adjusted according to the coefficient of variation V., of the population. Based on our
analysis of V., of SPEC CPU2000 benchmarks (in Section 3.1.3), we conjecture that the
values of V,,, tend to cluster around 1.0 for most benchmarks and simulated microarchitec-

tures when U = 1000. Hence, from n,,, = (z/¢)*, we infer that n,, = 10,000 is likely to yield

init

99.7% confidence interval of *3%. Given N=9,420,910 for the smallest of our

SPEC CPU2000 benchmarks, .

init

=10,000 still represents a very small fraction of detail-

simulated instructions and hence has minimal impact on simulation turnaround time.

One run of SMARTS measurement with k = N/n,,, produces an initial estimate of average

init

CPI and \7CP, of the sample. Because the confidence of an estimate is jointly quantified by the

two interdependent terms confidence level (1 - o) and confidence interval =¢-X, one can

36

either set a desired confidence level and calculate the obtained confidence interval for a
given sample, or vice versa. For a set confidence level (1 - a), the confidence interval is
*=(z-V,)_c)/w/; where z is the 100[1 - (o / 2)] percentile of the standard normal distribution.
Commonly used confidence levels are 95% and 99.7% (a.k.a. 30 or virtually-certain).
Corresponding values of z are 1.97 and 3, respectively. If the confidence level and interval
yielded by the initial sample are unacceptable, the n,,,, to achieve a desired confidence on
the next sample is ((z-V,)/e)>. If the initial confidence is overly below target, we suggest
slightly overestimating n,,,, for the subsequent run. In any case, the actual confidence

achieved by the subsequent sample must be checked using the subsequent sample’s new

VCPI .

The above treatment of confidence considers only the error introduced by statistical
sampling. In practice, the true error margin in an estimate must also account for any bias in
the measurements. Recall from Chapter 2 that if the bias is known, it can be accounted for
by subtracting it from the estimate, without affecting confidence. If the bias can only be
bounded, then it introduces a proportional amount of uncertainty in the estimate beyond

the confidence interval.

3.3.2 Performance and accuracy

We applied the procedure outlined above to SPEC CPU2000 benchmarks using SMARTSim.

Figure 3.6 reports results of CPI estimated using SMARTSim in one run with »,,, =10,000.

init
Benchmarks are shown in sorted order by worse confidence intervals. For each benchmark,
we show the actual achieved error and the predicted confidence interval calculated from

17CP, for 99.7% confidence. The confidence interval accounts for random error in the

estimated CPI that is introduced by systematic sampling. Notice that actual error resulting

37

from 10,000 sampling units is generally much less than the predicted confidence interval. A
large part of this error can be attributed to the residual bias of imperfect microarchitectural
state warming (functional warming with fixed W), with only a very small component caused

by statistical sampling.

6% ™\99.7% confidence interval 8-way
b3 (]
£
w 4%
o
o MMMHHMMH i
0% El ITDIEEETEIEIEITITEI
Q NN~ S QM- F~MO<F 0OTF O N~ Nm TP LT NT SO — > X - XN
ESSd o 88 X8 8o 8L 885¢505000a8asEt 322
5 5£55 £5°C553ESS88 EEEEGRCERRRRERERa58583
N o N O N O = ST a o o O o)) oD 0 O [] X
o a > o 8 00 5 9] o >
>>§
10%)
™\ 99.7% confidence interval 16-way
58%
L 6%
w
o 4%
ITRITATARITAL AL
0% DBIEIIIIGIZaTIIaxs
LT a5~ NN OMIT—— =M AOTN OO — N T 5 T > DMV OT N SO - M N X X
§§&*&¢e&g¢&gag¢¢;g;u':e%8%aﬁ_&jgg%gégggeeeggg
£ 2993285958 S$9L8528ccZE " ESTSNINNRNNGS SET
s B - No 5] 5 © a o g oo o O X o
> w > > g n

Figure 3.6: SMARTS CPI results with n = 10,000 instructions
Unacceptably large confidence intervals (e.g., 8-way ammp, vpr, and gcc-2) can be improved by simulating with

Ntuned.

For most of the benchmarks, n,,, achieves a confidence interval within +3%. For bench-
marks with confidence intervals greater than *3%, simulation sampling needs to be
repeated using n,,,,, —calculated from the VCP, of the initial sample. For example, rerunning
simulations for the 8-way configuration with »,,,, of 66,531 (ammp), 23,321 (vpr), and

21,789 (gcc-2) achieve actual errors of 1.1%, 0.1%, and -0.9% with confidence intervals of
3.0%, 2.9%, and 2.6%. To this confidence interval, we add an uncertainty due to microarchi-

tectural state warming bias, which we empirically bound to below 2%.

38

8-way

1\997% confidence interval
~— Q N

@ L

° 5

= 4%
3%
829,
21%
20%
Q.
€
£
[

Verr tended to be lower than Vep, leading to tighter confidence intervals when sampling EPL

S N 0 N o —~ PO E T MV O TOFTON_ TNST® T~ 10 > - O N X X =
a 7 o v O 2 = € [}
WSS BB ey R iE055884828Cb2a85 L5880
g~ 9589 82 "L 0 cdO0 03T L SENGNNESBENNG SZSSSTE G
N = N O N 0 PE QDOT D55 3 o o o o o O O 0O G X g
Q Q Q > Y o > > Qn

Figure 3.7: SMARTS EPI results with n = 10,000 instructions

Figure 3.7 presents the results of applying SMARTS to estimating energy per instruction
(EPI). As in CPI estimations, we find in most cases initial sampling simulations using
n,; = 10,000 achieves confidence intervals tighter than +3%. Confidence intervals for EPI
estimation tend to be tighter than CPI confidence intervals because of less variability in EPI.
Unfortunately, the smaller predicted confidence intervals are overshadowed by the mi-
croarchitectural state warming bias. With the exception of gap, equake, and gzip, the actual
errors are within the confidence interval. For these exceptions, we have determined ex-

perimentally that the error is almost entirely due to bias as shown in Table 3.5.

Table 3.6 compares simulation runtimes for functional (i.e., sim-fast), detailed (i.e., sim-
outorder with detailed memory models), and SMARTSim simulation on a 2 GHz Pentium 4.
SPEC CPU2000 benchmarks on the 8-way configuration are shown in sorted by length in
instructions. As shown in Table 3.6, detailed simulation takes on average 7.2 days and can
take as long as 23 days. In contrast, SMARTSim takes on average 5.0 hours and in the worst-
case slightly less than 16 hours. SMARTSim simulation speed is around 50% of functional-

only simulation for most microarchitecture configurations.

39

Table 3.6: SMARTS runtimes compared to detailed and functional simulation

Runtime (hrs.) Detailed Functional SMARTS | Runtime (hrs.) Detailed Functional SMARTS
parser 541 9.2 15.8 bzip2-3 123 2.1 3.6
sixtrack 466 7.9 13.6 vortex-1 118 2.0 35
mgrid 414 7.0 12.1 bzip2-1 108 1.8 32
galgel 405 6.9 11.8 gee-2 107 1.8 32
wupwise 346 59 10.1 gzip-3 103 1.7 3.0
apsi 344 5.8 10.1 eon-1 100 1.7 29
twolf 343 5.8 10.0 gzip-1 83 1.4 2.4
ammp 323 5.5 9.6 vpr 83 1.4 2.5
mesa 278 4.7 8.1 gzip-4 81 1.4 2.4
gap 266 4.5 7.8 eon-2 80 1.4 23
fma3d 265 4.5 7.8 gce-5 61 1.0 1.8
swim 223 3.8 6.5 mcf 61 1.0 1.8
applu 221 3.8 6.5 eon-3 57 1.0 1.7
facerec 209 3.5 6.1 gee-1 46 0.8 1.4
crafty 190 32 5.5 art-2 45 0.8 1.3
gzip-5 167 2.8 4.9 art-1 41 0.7 12
bzip2-2 142 2.4 42 gzip-2 39 0.7 1.2
lucas 141 2.4 4.1 geec-4 13 0.2 0.4
vortex-2 137 2.3 4.0 gee-3 12 0.2 0.4
vortex-3 132 2.2 3.9 perlbmk 2 0.1 0.1
equake 130 2.2 3.8 mean 171.8 2.9 5.0

3.3.3 Comparison to SimPoint

SimPoint [Hamerly et al. 2005], also enables reduced simulation turnaround time. SimPoint
selects representative subsets of benchmark traces via offline analysis of basic blocks. Using
clustering algorithms, SimPoint selects and weights several large sampling units such that
the frequency of each static basic block across the weighted units matches that block’s
frequency in the full dynamic stream. A fundamental assumption of SimPoint is that all
dynamic instances of basic block sequences with similar profiles have the same behavior,
therefore a particular sequence can be measured once and weighted appropriately to

represent all remaining instances [Lau et al. 2005].

40

SimPoint has two key advantages: (1) due to large sampling units, SimPoint obviates the
need for functional warming and can be more quickly integrated into a simulation infra-

structure, and (2) SimPoint allows early termination of simulation after all selected sections

have been visited.

We implemented SimPoint with our SimpleScalar toolset and verified our implementa-
tion against the published configuration and results in the first SimPoint work [Sherwood et
al. 2002]. This work recommended up to ten 100M-instruction sampling units. SimPoint
resulted in an average improvement of 1.8 times in simulation speed over SMARTS for our 8-
way configuration. An updated procedure and software release for SimPoint, version 3.0,
now recommend approximately thirty 10M-instruction sampling units and use an improved
clustering heuristic. The 10M-instruction sampling units and improved clustering results in
half the error on average, and reduce the amount of detailed simulation by roughly three

times [Hamerly et al. 2005].

However, SimPoint has several shortcomings: (1) it may result in arbitrarily high CPI
error, (2) it does not offer quantifiable confidence in estimates, and (3) it does not allow
trading off confidence in results for speed which becomes a limitation when using check-

points instead of fast-forwarding (see Section 4.4).

12% 8-way ESMARTS

S o

£ 9% OSimPoint

i

T 6%

o J10d14

0% I:UI:I[[IJ]:HJ] 1 O = e Y .
N T BY T AR B YRN BT S0 2V 02085 Ts SER 2R ST ET T
R R N r T TR TR RS R R R PSR RN A PR P T
>Eo5Eoy ocodBNS SFEL2L£2cs8 B » N8 EZFETH

» Qo £ e} g SB ogo_

Figure 3.8: Comparison of SMARTs with SimPoint

SimPoint’s mean runtime per benchmark is 2.8 hours compared to 5.0 hours for SMARTS.

41

Comparison of SMARTS with SimPoint presents a comparison of CPI error between Sim-
Point and SMARTS for the benchmarks presented in [Sherwood et al. 2002] running on our 8-
way configuration. The comparison shows that SimPoint has a higher average error (3.7%

vs. our 0.6%) and considerably higher worst-case error (-14.3% for gcc-2).

Gce-2 is an example where SimPoint produces an unacceptably high CPI error when
running on our 8-way configuration. However, simulation using the published microarchi-
tecture configuration in [Sherwood et al. 2002] only results in a 1.6% error. In gcc-2, we
observed that the program phases chosen by SimPoint to be measured with a single sam-
pling unit exhibit large variations in their L2 miss rate. The large variations within each
phase results from too few sampling units being selected by SimPoint to measure all the
different behaviors of gcc-2. Different behaviors were clustered together, and only one
measurement was taken per phase to represent these diverse behaviors. Therefore, in this
case, the SimPoint estimate based on few large sampling units yields a large error. In
contrast, independent of benchmark and microarchitecture configuration, SMARTS uses the
measured coefficient of variation to help gauge both the required sample size and the

confidence in the estimates.

3.3.4 Beyond SPEC CPU2000

While SPEC CPU2000 is still the most widely used suite of general purpose CPU bench-
marks, there are many other benchmarks used in the computer architecture community. In
addition, SPEC CPU2006 contains applications with longer runtimes and larger memory
footprints. We expect these benchmarks to require minimal, if any, changes to the SMARTS

framework.

42

SMARTS has three parameters that should be revisited when measuring a new bench-
mark, W, U, and n. The procedure for selecting these parameters is presented in
Section 3.3.1. The detailed warming interval length, I, is a function of the microarchitecture
under study, and may increase with more complex architectures but will not vary with new
benchmarks. Benchmarks longer than SPEC CPU2000 do not cause an increase in sample
size, n; only an increase in performance variability (e.g., Vcpr and Vip) will require larger
sample sizes. We do not expect performance variability to increase markedly with new
benchmarks. Finally, the optimal value for the sampling unit size, U, is governed mostly by
the magnitude of W, and the rate of change in performance variability across potential
sampling unit sizes (e.g., Figure 3.2). We expect that U = 1000 or U = 10,000 instructions will

continue to be optimal or near optimal for most other benchmarks.

3.4 Related work

This study investigated the optimal sampling parameters for microarchitecture simulation.
The SMARTS framework also prescribes an effective warming strategy that supports many
small measurements. The framework’s combination of sample design and practical imple-
mentation produce highly accurate and reliable results for timing-accurate
microarchitecture simulation. There is a large volume of previous work on performance
simulation sampling that we extend with our tuning of sampling parameters and our design
of an appropriate warming technique for a contemporary simulator and benchmark suite.
Note that simulation sampling is distinct from analytic modeling approaches often referred

to as statistical simulation [Eeckhout et al. 2003].

Much of the early work in simulation sampling was performed in the context of trace-

based simulators [Smith 1982]. The inputs used by these simulators were traces like

43

memory access or branch direction data captured from real machines or functional emula-
tors. Only portions of a microarchitecture can be simulated from such traces, and thus trace-
based simulators were used in studies of stand-alone components such as caches and
branch predictors. Trace-based simulators generally cannot be used to estimate runtime on
modern CPUs. However, these simulators can easily sample a recorded trace without the
overhead of fast-forwarding between measurements. The ability to quickly seek to any part
of a trace leaves only a sample design and a warming strategy that eliminates cold-start bias

[Easton and Fagin 1978] to be devised.

Kessler, Hill, and Wood [1994] performed a comprehensive survey and comparison of
memory access trace-sampling techniques. One of the two evaluated sample designs was set
sampling, an approach specific to cache simulation. The second sample design, time sam-
pling, systematically sampled contiguous groups (a sampling unit) of cache accesses [Laha,
Patel, and Iyer 1988]. Five warming techniques were compared across several sampling
unit sizes (sample size was fixed to 30 measurements): cold assumed an empty initial cache;
half warmed an empty cache for the first half of a sampling unit, and measures performance
for the second half; prime measured only fully-warmed cache sets [Laha, Patel, and Iyer
1988]; stitch preserved the cache state between sampling units [Agarwal, Hennessy, and
Horowitz 1988]; and initmr used Wood et al.’s [1991] analytic model to estimate cold-start
miss rates. The resulting bias of these warming approaches was compared for 1, 4, and
16 MiB caches with sampling unit sizes of 0.1, 1, 10, and 100 million instructions. The initmr
warming approach was found to be the least biased on average; it produced less than 10%

bias in miss rate for two-thirds of the tested cases.

Completing the warming phase before the start of measurement (like the half tech-

nique) can decouple the amount of warming from the sample unit size. Haskins and Skadron

44

[2003] propose an analysis to probabilistically determine the amount of warming required
before a measurement to ensure a warmed cache. An amount of warming is determined for
each sampling unit based on the distribution of memory reference reuse latencies (MRRL)
of the instruction stream prior to the sampling unit. Haskins and Skadron recommend the
99.9th percentile of reuse latencies, in terms of instruction count, for warming. Experimental
results show very low bias in estimated IPC, however the analysis of MRRL was performed
with large sampling units (1 million instructions) that can amortize bias, and no direct
comparison to initmr was done. MRRL requires a functional simulation of the entire bench-

mark before producing warming requirements output.

We investigated applying MRRL to the SMARTS framework and found double the bias as
functional warming, 1.1% on average as compared to 0.6% (Section 4.1.4). In addition,
MRRL required tens of millions of instructions of warming for each 1000 instruction

sampling unit on average.

A more recent work in the same vein as MRRL is boundary line reuse latency (BLRL) by
Eeckhout et al. [2005] which considers only the reuse latencies that cross the boundary line
between the region before a sampling unit and the sampling unit to compute warming
requirements. BLRL achieves approximately the same bias of MRRL with half the warming

requirements.

45

4 Checkpoint sampling

Functional warming is the main performance bottleneck of simulation sampling and re-
quires hours of runtime while the detailed simulation of the sample requires only minutes.
Existing simulators can avoid functional simulation by jumping directly to particular
instruction stream locations with architectural state checkpoints. To replace functional
warming, these checkpoints must additionally provide microarchitectural model state that

is accurate and reusable across experiments while meeting tight storage constraints.

This chapter describes our simulation sampling framework that replaces functional
warming with live points without sacrificing accuracy. A live point stores the bare minimum
of functionally-warmed state for accurate simulation of a limited execution window while
placing minimal restrictions on microarchitectural configuration. Live points can be proc-
essed in random rather than program order, allowing simulation results and their statistical

confidence to be reported while simulations are in progress.

4.1 Implementation

In this section we present our approach for creating small, fast-loading, independent,

reusable, and accurate checkpoints to enable effective sampling.

4.1.1 Methodology

We evaluate live points in a sampling simulator based on the SimpleScalar 3.0 sim-outorder
simulator [Burger and Austin 1997] for the Alpha ISA. We modify sim-outorder’s memory

subsystem to include a store buffer and miss status holding registers (MSHRs), and model

46

interconnect bottlenecks in the memory hierarchy. We encode live points using ASN.1 DER
format [International Organization for Standardization 2002] and gzip compression, which
incur minimal storage and processing time overhead. We use all 26 SPEC CPU2000 bench-
marks [Henning 2000] and evaluate all reference inputs except vpr-place and three perlbmk
inputs, as these inputs fail to simulate correctly in sim-outorder. Overall, we include

41 benchmark/input set combinations in this study.

Without loss of generality, we use CPI (cycles-per-instruction) as our target metric for
estimation. We measure CPI bias by averaging actual error (relative to full sim-outorder
simulations) over five different samples, according to the methodology described in Sec-

tion 3.3.1.

We evaluate live points with two microarchitectural configurations. Our baseline 8-way
out-of-order superscalar model represents a processor in the current technology genera-
tion. The 16-way out-of-order superscalar configuration is included to reflect an aggressive
future design point. This configuration has a wider data path, larger out-of-order window,
and larger caches, to exercise the effects of enlarged microarchitectural state. The details of

the 8-way and 16-way configurations are summarized in Table 3.3.

We use the sampling approach from Section 3.3.1., periodic 1000 instruction measure-
ment intervals, to identify measurement locations for all experiments. This sample design
has been demonstrated to minimize the total number of instructions in detailed windows,
and thus, detailed simulation time. However, live points can also be applied to other sample
designs (e.g., random sampling). We choose sample size to achieve precisely 99.7% confi-
dence of *#3% error for each result. We report simulation runtimes for systems with

2.80 GHz Intel Xeon (512 KiB L2) processors.

47

4.1.2 Why checkpointed warming

Functional warming repeats architectural state updates across different simulations of the
same benchmark. (Simulating workloads for which architectural state varies across re-
peated runs—i.e., because of interrupt timing or different interleaving of multiprocessor
instruction streams—is beyond the scope of this work.) Frequently, microarchitectural
state updates are also identical across runs. Checkpoints can memoize the redundant
calculation across runs, amortizing the one-time cost of computing warmed state. We are

interested in finding the best way to take advantage of checkpoints to accelerate warming.

Although some microarchitecture studies have suggested or used checkpoints to accel-
erate simulation [Barr et al. 2005; Ekman and Stenstrém 2005; Girbal et al. 2003; Perelman,
Hamerly, and Calder 2003], none have explored the space of microarchitecture warming
solutions in the context of checkpointing. For each portion of model state generated by
functional warming, we may choose either to construct the state dynamically, or store it in
checkpoints. This choice impacts simulation sampling along three dimensions: the accuracy
of the warmed state, the reusability of checkpoints across microarchitectural configura-
tions, and the speed of simulation. In this section, we explore the warming method design
space with respect to these three dimensions and justify our choice of checkpointed warm-

ing to implement live points.

4.1.3 Simulation sampling warming methods

There is a rich design space of possible warming strategies that combine checkpoints and
dynamic warming for various portions of architectural and microarchitectural model state.
We restrict our exploration to strategies that use detailed warming to initialize queue and

pipeline state. Detailed warming can reconstruct state for the vast majority of microarchi-

48

tectural structures rapidly, and the amount of required warming can be determined via
worst-case analysis. By warming most structures dynamically, we avoid storing any state

for these structures, and do not constrain model parameters that affect this state.

Evaluation criteria. We focus our design exploration on warming alternatives for long-
history structures, such as caches and branch predictors, for which detailed warming is
prohibitively slow. We evaluate alternatives based on their accuracy, checkpoint reusability,

and speed.

With respect to accuracy, we consider only the bias introduced by the warming strategy.
SMARTS demonstrated low bias—0.6% on average, 1.6% worst case—using functional
warming. It is essential to maintain this high accuracy when accelerating warming because

we cannot detect bias through statistical confidence calculations.

We evaluate the reusability of a warming methodology in terms of the restrictions it
places on simulator configuration. When we store the warmed state of microarchitectural
structures in a checkpoint, we may be forced to limit some of the configuration parameters

for that structure.

Finally, we evaluate the speed of warming alternatives in two ways. First, we consider
how fast measurements can be processed. For all alternatives, time to simulate the detailed
window is the same, while functional warming and checkpoint decompression/loading time
varies. Second, we consider whether detailed windows are independent, or must be simu-
lated in program order. Independent windows can be simulated in parallel, and enable

online reporting of measurement results.

Warming methods. Figure 4.1 depicts alternatives in the warming strategy design space.

At one extreme, functional warming is used for the entire duration between measurements,

49

without checkpoints (as in SMARTS). We refer to this method as full warming. The opposite
extreme, checkpointed warming, eliminates all functional warming and stores long-history
state in checkpoints. This approach requires limiting some design parameters of the check-

pointed structures.

FuII warmin
(e.g., SMARTS il i |

| Measurement

Adaptive warming e Me Mo M-

I Detailed warming
Functional warming

Checkpointed warming efijejije]] - ® Checkpoint load

Figure 4.1: Simulation sampling warming methods
All methods use the same sample design and confidence intervals, only bias differs.

Functionally-warming microarchitectural state for the entire duration between meas-
urements is usually not necessary. In adaptive warming, we store architectural state in
checkpoints, and reconstruct long-history state with a reduced functional warming period.
Adaptive warming requires a mechanism to determine precisely how little functional

warming each detailed window requires.

Trade-offs. Figure 4.2 illustrates the relationship between each warming alternative and
our three evaluation criteria. Each alternative optimizes for two of the design criteria (the

two depicted nearest it), at the expense of the third.

50

/ Accuracy \

Full warming Checkpointed warming
Checkpoint
reusability Speed

AN e

Figure 4.2: Relative merits of warming methods

Adaptive warming

Full warming maximizes accuracy and flexibility, but its need for long periods of func-
tional warming makes it slow, and its turnaround time scales with benchmark length. As full

warming requires no checkpoints, no configuration parameters are fixed.

Adaptive warming maintains the reusability of full warming and improves speed, but
we show that it sacrifices accuracy. The accuracy and speed of adaptive warming depend on
a rigorous determination of the minimal functional warming period for each detailed
window. Unfortunately, determining the correct amount of warming remains a difficult and

unsolved problem [Kessler, Hill, and Wood 1994].

Checkpointed warming matches the accuracy of full warming and maximizes speed, at
the expense of checkpoint reusability. Checkpointed warming achieves this accuracy

because it uses full warming simulation to generate the checkpointed state.

Because checkpointed warming spends no time performing functional warming, it is the
fastest alternative. The drawback of checkpointed warming is that it imposes limits on some
aspects of the simulated microarchitectural parameters (e.g., the maximum size or associa-

tivity of a cache), which constrains checkpoint reusability. Reusability is important because

51

we must amortize the one-time cost of checkpoint creation (roughly the cost of a full-

warming simulation) over a series of experiments.

Each of the three warming approaches suffers from a different key weakness. The speed
of full warming has been quantified in Section 3.1.4. We evaluate the accuracy of adaptive
warming in Section 4.1.4. We then explore the reusability of checkpointed warming in

Section 4.1.5.

4.1.4 Adaptive warming

The key challenge of achieving accuracy with adaptive warming lies in determining the
functional warming period length. If the warming period is underestimated, simulation

results will be biased. If the warming period is overestimated, we sacrifice simulation speed.

A recently-proposed technique for determining cache warming requirements is Memory
Reference Reuse Latency (MRRL) [Haskins and Skadron 2003]. MRRL collects a histogram
of memory access reuse distances between each pair of detailed windows during a func-
tional simulation of a benchmark. The warming length reported by MRRL is the length
sufficient to cover 99.9% of the observed reuse distances. This probabilistic bound on cache
warming requirements is configuration independent, because reuse latency is measured by
instruction count in a functional simulator. The MRRL analysis outputs specific warming
lengths (in instructions) for each detailed window, and must be run once per benchmark
and sample design. The offline analysis pass takes roughly the same time as a full-warming

simulation.

MRRL has demonstrated low bias on large detailed windows (worst-case error of 2%

for 50 million instruction windows). This paper evaluates MRRL on the small detailed

52

windows required by the optimal sample design. Small windows are more susceptible to

bias because warming errors are not amortized over a large measurement interval.

We evaluate MRRL with a reuse probability of 99.9% as recommended in [Haskins and
Skadron 2003]. This reuse probability results in an average of 4.1 million instructions of
warming prior to each detailed window, which is 20% of the average full warming interval
(20.5 million instructions). Thus, an approximation for the runtime of the adaptive warming
strategy is 20% of the functional warming time of SMARTS, plus detailed simulation time, or

about 1.5 hours on average per benchmark (8-way).

Additional CPI bias

;; DDDDDDD_

@{“bb&oc_,’bb"\ﬂ,j\fb@é\

o
O° 7 QTR R <
S TP & say

Figure 4.3: Adaptive warming bias
Additional error is introduced by adaptive warming using MRRL vs. full warming.
We present the results of our accuracy evaluation of adaptive warming with MRRL for
small windows in Figure 4.3. Both average (1.1%) and worst-case error (5.4%) are consid-
erably worse than full warming (0.6% on average; 1.6% worst-case). Error is high because

short detailed windows are sensitive to accurate cache state.

MRRL does not allow detailed windows to be simulated independently because cache
state must be stitched [Kessler, Hill, and Wood 1994] between consecutive windows. To
obtain low bias, detailed windows must be simulated in program order, precluding paral-

lelization and online result reporting (see Section 4.2). If MRRL is used without stitched

53

state (thereby assuming an empty cache at the start of each functional warming period) we

observe a considerably higher CPI bias of 1.9% on average, with a worst case of 11%.

Because of the high worst-case error and relatively modest speedup of adaptive warm-
ing, we do not choose adaptive warming to implement live points. Increasing warming over
MRRL (or increasing the MRRL reuse probability threshold) will improve accuracy, but

further reduces the speed of adaptive warming.

4.1.5 Checkpointed warming

The key concern in evaluating checkpointed warming is the reusability of a set of check-
points across a series of experiments. Because checkpointed warming uses a full-warming
simulation to generate microarchitectural state for large structures, its accuracy is identical
to full warming. When the generated live points can be used for at least two experiments,

checkpointed warming provides a net speed gain over full warming.

To maximize the reusability of live points, we wish to place as few constraints as possi-
ble on microarchitectural configuration. Checkpointed warming dynamically reconstructs
the vast majority of microarchitectural structures (e.g., queues, ROB, etc.) through detailed
warming. As such, the configurations of these dynamically-warmed structures are not
constrained. For the remaining few structures, for which detailed warming requirements
are large or cannot be determined (e.g., caches and branch predictors), we store a represen-
tation of the structure in each live point. The reusability of a live point library is limited by

the flexibility of these representations.

There are two basic approaches to increasing live point reusability. First, we can collect
state snapshots for multiple component configurations in a single creation pass. The second,

preferable approach is to modify the saved representation such that a range of organiza-

54

tions can be reconstructed when a live point is loaded. However, we cannot easily apply this
adaptable approach to some structures, such as modern branch predictors, and so we must
store multiple warmed configurations. Cache-like structures, including the TLB, can typi-

cally be stored using adaptable data structures.

Storing multiple configurations. The first approach is straight-forward and effective if the
number of configurations of interest is relatively small. The major cost of live point creation
is the traversal of the entire benchmark instruction stream. Warming additional copies of a
microarchitectural structure incurs a relatively small overhead. If the slowdown is less than
a factor of two, it is a net win to collect state for both configurations in a single pass. We

recommend this approach for storing branch predictor state.

Storing adaptable warmed state. With cache-like structures, it is possible to exploit the
properties of cache replacement algorithms to create a representation of cache state from
which one can accurately reconstruct a range of configurations [Hill and Smith 1989]. Barr
et al. propose a data structure, called the Memory Timestamp Record (MTR), that records
the timestamp of the last access to each cache block during functional warming [Barr et al.
2005]. The MTR allows a simulator to reconstruct a cache hierarchy of arbitrary sizes and
associativities assuming least-recently-used replacement and a lower bound on cache block

size.

Storing an MTR in each live point enables reusability across nearly arbitrary cache hier-
archy organizations, but incurs a storage cost proportional to the application’s memory
footprint. However, researchers can often place an upper bound on the maximum cache size
of interest. For a given maximum size and associativity, we can instead store a timestamp-
sorted list of the most recent accesses mapping to each set, referred to as a Cache Set

Record (CSR) by Barr et al. [2005]. A CSR requires the same storage as the tag array for the

55

selected maximum cache size, and allows reconstruction of all smaller and/or less associa-

tive caches.

Our analysis of simulation sampling warming methods demonstrates that checkpointed
warming is both fast and accurate. The reusability weakness of checkpointed warming can
be mitigated through careful planning of microarchitectural state representation. Thus, we

choose to use checkpointed warming to implement live points.

4.1.6 Live points with live state

Current publicly-available computer architecture simulators already provide a checkpoint
creation and loading capability that allows the simulator to move to a particular program
trace location in constant time [Burger and Austin 1997; Magnusson et al. 2002]. These
checkpoint implementations store only architecturally-visible system state (i.e., memory,
architectural register and peripheral device state). A straightforward approach to imple-
ment checkpointed warming is to extend these existing checkpoints with functionally-

warmed microarchitectural state as described in Section 4.1.5.

Unfortunately, this straightforward approach is not practical because conventional
checkpoints require prohibitive storage, proportional to the total memory footprint of an
application (up to 200 MiB for SPEC CPU2000 [Henning 2000]). We measured an average
SPEC CPU2000 memory footprint of 105 MiB. Thus, for SMARTS-like samples (~10,000
measurements), conventional checkpoints for all of SPEC CPU2000 require 33 TB of storage
(7.2 TB with gzip compression). Sampling optimizations [Ekman and Stenstrém 2005;
Perelman, Hamerly, and Calder 2003] (Chapter 5) reduce this cost by an order of magnitude
at best. With these checkpoint sizes, simulations are I/0 bound, and checkpointed warming

can provide little, if any, speedup over functional warming. It may be possible to save space

56

by storing only changes to memory between checkpoints, but this approach introduces
dependence among checkpoints, precluding parallel simulation and other sampling optimi-

zations (see Section 4.2).

Reducing storage with live state. We can drastically reduce checkpoint storage cost for
live points by storing only the state that will be accessed during the brief simulation win-
dow, an approach we call live state. Because the detailed windows are just a few thousand
instructions, only a tiny subset of state is accessed. Simulation state that is never referenced
during measurement or detailed warming can be omitted from the checkpoint without

affecting the simulation.

The live state approach stores the minimal set of accessed state for each live point’s
specified simulation window. Live points can accurately simulate only the instructions
within this pre-selected window. The restriction to a pre-selected window does not impact
simulation sampling because the window locations and measurement/detailed warming

periods are specified in advance by the sample design.

We can identify precisely which instructions will commit during the selected window
when we construct a live point. Thus, it is straightforward to identify all the memory and
microarchitectural state these instructions will access—generally less than 32 KB per live

point (uncompressed, including ASN.1 encoding overhead).

However, we cannot identify the state that is accessed on non-committed speculative
paths (wrong-path instructions). It is not possible to identify a priori the set of wrong-path
instructions that will execute in all future simulations at live point creation time. To do so
requires either fixing all simulation parameters (queue sizes and latencies), or exploring all

possible speculative paths to the depth they might be followed (as bounded by, for example,

57

ROB size). The former eliminates checkpoint reusability, while the latter requires analysis

that grows exponentially with speculation depth.

Effects of wrong-path instructions. Although the effects of wrong-path instructions on the
commit instruction stream are generally small [Cain et al. 2002], they cannot be ignored
given our tight bias goals. Errors in wrong-path modeling cause the schedule of wrong-path
execution to differ from a simulation where all state is available, which in turn perturbs the

execution schedule of the commit instruction stream.

We measure the bias introduced if we restrict live state to contain only state accessed
by correct path instructions. With restricted live state, we omit all architectural state
(memory values) and microarchitectural state (cache tags and branch predictor entries)
that are not accessed in the simulation window during live point creation, leaving this state
uninitialized (effectively random). A live point with restricted live state contains the small-
est possible subset of state that can still simulate correct-path instructions (but will not
accurately simulate wrong-path). Although the average bias increase for CPI is only 0.1%,
the worst case is 3.3%. Figure 4.4 shows the bias results for the benchmarks with the most

error.

5%
4%
3%
2%

;j D000 mEme _

Additional CPI bias

N L X S B N 4 N D
@) %) . " . . ’ ’ ’ s)
® g ¢ ¢ ¢ g g ; S
N Q,b\ s s § qq,\Q :q,\Q :/1>Q\\ <
> S-way

Figure 4.4: Restricted live-state bias

If only correct-path state is stored, wrong-path instructions are not accurately simulated.

58

Wrong-path instructions interact with the commit stream through resource contention
and in the cache tag arrays. In the vast majority of cases, we can use branch predictor
outcomes to identify the wrong-path instruction sequence, and cache tag arrays to identify
wrong-path load latency. This information is sufficient to identify contention and cache tag
array updates arising from speculative execution, without the need for the values accessed

by wrong-path loads.

In our live state approach, we include the microarchitectural state necessary to reflect
wrong-path effects (branch predictor, cache tag arrays, TLBs), but omit memory values
unless they are accessed on the correct-path. By omitting the vast majority of memory
values, the live state approach reduces storage requirements from over 100 MB to 142 KB
per live point (uncompressed; assuming cache hierarchy and branch predictor of our 8-way
baseline). Under this approach, unavailable memory values enter the microarchitecture (via
a wrong-path load) on average less frequently than once per detailed window. We meas-

ured no appreciable increase, < 0.1% difference, in CPI bias over full warming.

4.2 Framework

One of the benefits of the live point design is that each live point is independent of all other
live points, and can thus be processed in isolation. As others have noted [Girbal et al. 2003;
Lafage and Seznec 2000; Lauterbach 1994], window independence allows a simulation to be
parallelized across hosts (with parallelism degree up to the sample size). However, we can
also leverage live point independence to minimize the runtime of absolute and comparative
experiments, and provide results from simulations that are still in progress. The following
subsections present a sampling methodology for absolute and comparative performance

studies.

59

4.2.1 Absolute performance estimates

To report meaningful estimated results, a sampled simulation must complete processing of
an unbiased sample of the complete benchmark. With functional warming, where the
measurements must be processed in strict program order, the measured sample represents

the entire benchmark only after the entire simulation is complete.

With independent live points, we are not forced to process detailed windows in pro-
gram order. We can exploit this property to rearrange the live point processing order so
that we can report unbiased performance estimates (with lower statistical confidence than

final results) at any time.

A complete live point library forms an unbiased random (or systematic) sample of a
benchmark. If we select a random sub-sample from the live point library, we arrive at a
smaller, but still unbiased, random sample of the benchmark. Based on this principle, if we
shuffle a live point library into random order, after each live point is simulated, the live

points processed thus far form an unbiased random sample of the benchmark.

We exploit random-order live point processing to allow a simulation to report results at
any time. As live points are processed, we calculate the confidence achieved in the sample
observed thus far. As the sample size grows, the confidence improves, and the estimated
results converge to their true values. As soon as we are satisfied with the current confi-
dence, we can terminate the simulation. We impose a minimum sample size of 30 live points
to ensure that the central limit theorem holds and our confidence calculations are valid [Jain

2001].

Online monitoring of simulation results and their current confidence has proven valu-

able during simulator development to get quick-and-dirty performance estimates and

60

detect simulator bugs. Even after processing a small sample (100’s of live points), confi-

dence intervals will be tight enough to identify gross performance bugs reliably.

To maximize simulation processing speed, we recommend shuffling live points on disk,
prior to simulation. Live points should be stored in a single compressed file to maximize /0

performance (which is the performance-limiting bottleneck in our environment).

4.2.2 Comparative performance estimates

When a live point library is created, we set an upper bound on the sample size that can be
measured with that library (i.e., the number of live points in the library). The upper bound
is typically based on the sample size required to meet a desired statistical confidence for a
benchmark and baseline microarchitecture combination. Because the required sample size
will increase when a new microarchitecture has higher target metric variability (e.g., CPI
variance), a live point library sized for the baseline configuration may fall short of the

sample required for an experimental case.

In such comparative studies, researchers are often more interested in the relative
performance of two designs than absolute performance. We can take advantage of this
observation through a sampling procedure called matched-pair comparison, first proposed
for computer architecture simulation sampling by Ekman and Stenstrom [2005]. Matched-
pair comparison exploits the phenomenon that the change in performance from design x to
design y tends to vary less than the absolute performance of either design. As a result, the
change in performance can be assessed to a given confidence with a smaller sample than

absolute performance.

Under matched-pair comparison, we build a confidence interval directly on the change

in performance. Unlike an unpaired comparison of two different samples, in matched-pair

61

comparison, we measure the same sample (i.e., same live points) in each of two designs and
compute the performance delta on each measurement interval. In the common case, the
design change has a similar effect in all measurement intervals (e.g., a larger cache tends to
improve performance uniformly by a small increment). Thus, the variance of the perform-
ance deltas, and required sample size, is small. The calculations and procedure for applying

matched-pair comparison are detailed fully in [Ekman and Stenstrom 2005].

Ekman and Stenstrém report that matched-pair comparison typically reduces sample
size by an order of magnitude compared to absolute performance estimates over a range of
microarchitectural design changes. We performed a similar set of sensitivity studies (e.g.,
varying latencies, queue sizes, functional unit mix, etc.). Our results corroborate [Eckman
and Stenstrom 2005], indicating that matched-pair comparison reduces sample size by a
factor of 3.5 to 150. We note that matched-pair comparison is particularly effective for
detecting that a design change has no appreciable impact (i.e., less than 3% CPI change).
When a design change has little effect, nearly all measurement intervals behave identically

under the base and experimental cases, resulting in low CPI-delta variance.

Matched-pair comparison addresses the risk that a comparative performance study will
exhaust the available live point library without achieving the desired confidence. If we size a
live point library such that it can achieve a particular confidence in an absolute estimate of
the base case, we will typically require only a fraction of this library for comparative

studies.

We can combine matched-pair comparison with random-order processing to report re-
sults online for comparative studies. The combined optimizations are particularly effective

for rapidly searching a design space to eliminate designs that do not differ significantly from

62

the base case. A 50 measurement sample can rapidly distinguish design changes with no

impact from those that require further simulation.

4.2.3 Experiment procedure

We now summarize our complete procedure for experimentation with live points. Figure

4.5 illustrates the steps in the procedure.

1. Measure baseline variance f | il

2. Collect live-points ° ° ° ° °

I Measurement

vepointlbrary [l S ()

3. Shuffle live-point library _/"\ I Detailed warming
Functional warming

4. Baseline experiment oflle[llefellelfellel] -- ® Live-point

5. Matched-pair experiments i||§||..

Figure 4.5: Live-point experimental procedure
Matched-pair experiments produce estimates of performance deltas from the baseline.
First, we must measure the target metric variance for the baseline configuration to
determine an appropriate live point library size. We can measure variance using prior
simulation sampling approaches, or estimate it from published results (Section 3.3). In our

implementation, these simulations require seven hours on average for SPEC CPU2000.

Second, we must generate a live point library. We choose the maximum cache hierarchy
and set of branch predictors of interest, and run a full-warming simulation that outputs
compressed live points. Live point generation requires on average 8.5 hours per bench-

mark.

Third, we shuffle these live points into a random order and store them in a single com-
pressed stream. Optionally, the live point library can be split into multiple compressed
streams for parallel processing. Shuffling is compression-speed bound, and requires several

minutes per benchmark.

63

Fourth, we measure the baseline configuration with our live point library. We record
metrics of interest (e.g., CPI) for each live point. This simulation can be parallelized and can
employ the random-order processing optimization. For our 8-way microarchitecture, this
simulation reaches 99.7% confidence of #3% error in an average of 91 seconds per bench-

mark (without parallelization).

Finally, we can perform comparative studies relative to the baseline microarchitecture
using the live point library. These simulations can employ parallelization, random-order
processing, and matched-pair comparison optimizations. Furthermore, we can monitor
simulation results online, and terminate simulations at any time to report results with
reduced confidence. If we assess our 16-way microarchitecture relative to our 8-way
baseline, the simulation reaches target confidence in an average of 2.4 minutes per bench-
mark, while an absolute measurement of the 16-way microarchitecture requires

7.6 minutes per benchmark.

4.3 Results

In this section, we report results on the effectiveness of the live state approach in reducing
storage cost and compare the performance of live points to other simulation sampling

approaches.

4.3.1 Live state results

The live state approach is highly effective at reducing the storage cost of live points. Because
the simulation window covered by each live point is short (a few thousand instructions),

only ~16 KiB of memory state must be stored.

64

S o)
o \\e\f&% ¥ S o
Register files, TLBs, @ ?

2 5 W\ £
system call updates | \ WO g™ ¢ Memory data

Live-point 3KB 4KB 8KB 46KB 64KB 16KB 142KB
AW-MRRL 3KB 360 KB 363 KB

Figure 4.6: Breakdown of a typical live-point (uncompressed)
For comparison, a conventional checkpoint is 105 MiB on average.

Live state can also be used in conjunction with adaptive warming. However, because the
simulation window required for cache warming is large (on average 4.1 million instructions
per window), the required memory state is much larger, on average 360 KiB. Figure 4.6
compares the uncompressed size of live points (assumes cache/branch predictor of the 8-
way microarchitecture) and live state for adaptive warming using MRRL (AW-MRRL;

microarchitecture independent). We typically obtain 5:1 compression with gzip.

m 400 1,000

¥4 AW-MRRL

9 300 —a— Live-points =0

o Ve-por £ E100

- 2 o

£ 200 % g k,_‘//—‘/‘/t

o 9 =

=3 = 10 -

3 100 52 AW-MRR

2 / E] K —A— Live-points
2 0 g3 1

© > 5

g 1MB L2 2MB L2 4MB L2 SMBL2 16MBL2 = s 1MB L2 2MB L2 4MB L2 8MBL2 16MBL2
>

= 1KBPred 2KBPred 4KBPred 8K BPred 16K BPred 1KBPred 2KBPred 4KBPred 8K BPred 16K BPred

8-way
Figure 4.7: Compressed checkpoint size and processing time
Live points have a size advantage until large cache tag arrays are required. However, even for large caches, live
points are much faster than adaptive warming using MRRL because no functional warming is needed.

The storage cost (and thus decompression/load time) of live points grows as the size of
the stored microarchitectural structures increases. With adaptive warming, no
microarchitecture-specific state is stored, and thus storage cost is fixed. As a result, there is
a break-even point where the storage cost of live points and adaptive warming become
equal. Figure 4.7 (left) shows that this break-even threshold occurs around a 4 MiB

maximum cache size. However, for microarchitecture state larger than this threshold, live

points remain an order of magnitude faster (Figure 4.7 right) because generating cache

65

of magnitude faster (Figure 4.7 right) because generating cache state dynamically is much

slower than loading it from disk.

4.3.2 Live points performance

We use live points to estimate the absolute CPI of our benchmark suite to the same accuracy
and confidence as previous simulation sampling techniques as described in Section 4.1.1.
Table 4.1 presents measured run-time results for live points. Runtime results were collected
with serial live point processing and only a single simulation running per system. We
compare live points to non-sampled runs of the complete benchmark with SimpleScalar’s
sim-outorder, full warming using SMARTSim, and adaptive warming using MRRL (AW-
MRRL). We show the best, average, and worst runtimes for the two microarchitectural
configurations introduced in Section 4.1.1.

Table 4.1: Live-points runtimes compared to SMARTS and adaptive warming

We include the fastest and slowest runtimes of SPEK2K benchmarks to show the variability of each technique.

8-way (IMB L2)

16-way (4MB L2)

Minimum Average Maximum Minimum Average Maximum
sim-outorder pezl;lzb;llk g1c3c—hZ >3 d ngr?d p%lél‘;s(il‘ p;;lgbf;k g2c2c—h2 6 d n%;'(iid p?z%sgr
SMARTSim p‘e‘;"l‘brlﬁk égcg 7oh m1 gr?d p%t?‘s}c}r pg;‘?bl;;k gclcl—g 73h ni ;llld p%zgsl;r
AW-MRRL pe?llb?nk e%i-s2 L3h chhlml;) p%ﬁv?r pe?*?b?nk e?)i-SZ toh Jmsml;y p%?s?r
Live-points svlvism eozns-2 o Sv(]));n alr%u;l;) slvgjizi 610?1-52 76m 23;7121 czlrh3n1};)

Times are specified in days (d), hours (h), minutes (m), or seconds (s).

Live points eliminate the functional warming bottleneck in SMARTSim, reducing average
simulation time for SPEC CPU2000 benchmarks from 7 hours to just 1.5 minutes (8-way
baseline microarchitecture). Live points are 50 times faster than AW-MRRL. Live point
simulations often complete faster than native execution of benchmarks on our host plat-

form, which typically requires several minutes per benchmark.

66

For both SMARTSim and sim-outorder, simulation time varies linearly with benchmark
length. Thus, we can expect simulation times to grow with longer benchmarks. In contrast,
runtime with live points and AW-MRRL depends on sample size, and thus CPI variability.
We do not observe any relationship between CPI variability and benchmark length; there-

fore, we do not expect live points’ runtimes to increase for longer benchmarks.

Table 4.2: Summary of simulation sampling warming methods

C.omple.te Full Warming Adaptgve Checkpo.lnted
Simulation (SMARTS) Warming Warming
(sim-outorder) (AW-MRRL) (Live-points)
Average (worst) CPI bias None 0.6% (1.6%) 1.1% (5.4%)* 0.6% (1.6%)
Average benchmark runtime 5.5 days 7.0 hours 1.5 hours 91 seconds
Scaling behavior O(BxDS) O(B) o(1) o(0)
Independent checkpoints N/A N/A No* Yes
SPEC2K checkpoint library size N/A N/A 30 GB 12 GB (1 MB L2)
Scaling behavior N/A N/A o(1) o(0)
Fixed microarchitecture parameters None None None Max cache, TLB,
branch predictors

B =benchmark length, C = max cache size, DS = detailed simulation speed
*AW-MRRL can produce independent checkpoints, but bias increases to 1.9% average, 11% worst.

Table 4.2 summarizes the characteristics of the warming approaches evaluated in this
paper. The table shows the live point library sizes, run times, and biases measured for each

technique.

Live points match the bias of SMARTSim. AW-MRRL with a reuse distance threshold of
99.9% does not match this tight error. Adaptive warming accuracy may improve with a
higher reuse threshold, at the cost of further slowdown relative to live points. Sampling
error can be made arbitrarily small with all three warming approaches by increasing

sample size.

Table 4.2 also indicates the scaling behavior of live point size and processing time with
respect to microarchitectural model and benchmark characteristics, and indicates what

microarchitecture model parameters must be fixed when live points are created. A live

67

point library restricts maximum cache and TLB sizes and must include state for each branch
predictor used in subsequent simulations. However, other microarchitectural configuration
parameters are not fixed. Live points are independent of one-another, enabling parallel

simulation and online results reporting.

4.4 Related work

Van Biesbrouck, Eeckhout, and Calder [2005] apply a checkpointed warming approach
similar to live points to accelerate SimPoint measurement. They report that checkpoint
libraries for SimPoint-derived samples typically require less storage than high-confidence
(i-e., 99.7% confidence of #3% error) uniform samples, whereas uniform samples simulate
fewer instructions in detail per benchmark (~30 million rather than ~300 million instruc-
tions) and result in shorter simulation turnaround. Our experiments corroborate these
results. However, with uniform sampling, we can trade off confidence in results to reduce
turnaround time and live point storage cost. Existing representative sampling techniques do
not provide quantitative measures of confidence with each result. Moreover, online result

reporting is not applicable to representative sampling.

Wenisch et al. [2006] describes our extension of the SMARTS sample design to a critical
class of multiprocessor server workload. We provide a new sampling population definition
for throughput applications—the server side of client-server applications, such as the
Transaction Processing Performance Council (TPC) database and SPECweb workloads. We
leveraged the random nature of transaction arrivals in these applications to construct a
meaningful random sample despite deterministic simulation models. Furthermore, to
obtain tractable samples for these applications, we measured and validated fine-grain

progress metrics that are proportional to transaction completion rates. We used the full-

68

system multiprocessor simulator, Flexus [Hardavellas et al. 2004], and our multiprocessor
checkpoint implementation. Checkpoint sampling enable a multiprocessor simulation
turnaround of only 10 to 100 CPU hours rather than the 10 to 20 CPU years required

without sampling.

69

5 Stratified sampling

Two different approaches to sample selection are: (1) statistical uniform sampling of a
benchmark’s instruction stream, and (2) targeted sampling of non-repetitive benchmark
behaviors. Uniform sampling, such as the SMARTS framework, has the advantage that it
requires no foreknowledge or analysis of benchmark applications, and it provides a statisti-
cal measure of the reliability of each experimental result. However, this approach ignores
the vast amount of repetition within most benchmark’s instruction streams, taking many
redundant measurements. Targeted sampling instead categorizes program behaviors to
select fewer measurements, reducing redundant measurements. The SimPoint approach
[Sherwood, Perelman, and Calder 2002] identifies repetitive behaviors by summarizing
fixed-size regions of the dynamic instruction stream as basic block vectors (BBV), building

clusters of regions with similar vectors, and taking one measurement within each cluster.

Benefits of both sampling approaches, statistical confidence and reduced measurement,
can be achieved by placing the phase identification techniques of targeted sampling in a
statistical framework that provides a confidence estimate with each experiment. Stratified
random sampling is this statistical framework. Stratified sampling breaks a population into
strata, analogous to targeted sampling, and then randomly samples within each stratum, as
in uniform sampling. By separating the distinct behaviors of a benchmark into different
strata, each behavior can be characterized by a small number of measurements. Each of
these characterizations is then weighted by the size of the stratum to compute an overall
estimate. The aggregate number of measurements can be lower than the number required

by uniform sampling.

70

The effectiveness of stratified sampling can be evaluated along two dimensions. First, it
might reduce the total quantity of measurements required. For simulators where a large
number of measurements implies significant cost—for example, the storage of large archi-
tectural state checkpoints to launch each measurement—a reduction of measurements

would imply cost savings.

More commonly, the total number of instructions measured has the larger impact on
simulation cost. To improve total measurement, a stratification approach must reduce the
quantity of required measurements while maintaining the small measurement sizes achiev-

able with simple random sampling.

We evaluate the practical merit of combining sample targeting with statistical sampling
in the form of stratified random sampling. We perform an oracle limit study to establish
bounds on improvement from stratification and evaluate two practical stratification ap-
proaches: program phase detection and IPC profiling. We evaluate both approaches
quantitatively in terms of sample size (measurement quantity) and sampling unit size
(measurement size), and qualitatively in terms of the upfront cost of creating a stratifica-

tion. We demonstrate:

1. Limited gains in sample size: We show that stratifying via program phase detec-
tion achieves only a small reduction in sample size over uniform sampling, 2.2 times,
in comparison to the oracle opportunity of 43 times. Phase detection assures that
each stratum has a homogenous instruction footprint. Unfortunately, data effects
and other sources of performance variation remain. The reduction in CPI variability
achieved by stratifying on instruction footprint is not sufficient to approach the full

opportunity of stratification.

71

2. Expensive analysis and limited applicability: We show that IPC profiling requires
an expensive analysis that is microarchitecture specific, and its gains do not justify
this cost.

3. No improvement in total measurement: We show that neither stratification ap-
proach improves over simple random sampling in terms of total instructions
measured. Because of the computational complexity of clustering, neither stratifica-
tion approach can be applied at the lowest sampling unit sizes achievable with
random sampling. This increase in sampling unit size offsets reductions in sample

size for stratified sampling.

The remainder of this chapter is organized as follows. Section 5.1 presents stratified
random sampling theory and details how to correctly achieve confidence in results from a
stratified population. Section 5.2 discusses our optimal stratification study, while Sec-
tion 5.3 covers our evaluations of two practical stratification techniques. Both sections
cover the improvements to sample size and total measured instructions as compared to

simple random sampling for each technique.

5.1 Framework

The confidence in results of a simple random sample is directly proportional to the sample
size and the variance of the property being measured. The sample size is the number of
measurements taken to make up a sample, and variance is the square of standard deviation.
Significant reductions in sample size can often be achieved when a population can be split

into segments of lower variance than the whole.

Stratified random sampling of a population is performed by taking simple random sam-

ples of strata, mutually exclusive segments of the population, and aggregating the resulting

72

estimates to produce estimates applicable to the entire population. Strata do not need to
consist of contiguous segments of the population, rather every population member is
independently assigned to a stratum by some selection criteria. If stratifying the population
results in strata with relatively low variance, a small sample can measure each stratum to a
desired confidence. By combining the measurements of individual strata, we can compute
an overall estimate and confidence. With low variance strata, the aggregate size of a strati-
fied sample can be much smaller than a simple random sample with equivalent confidence.
A population whose distinct behaviors are assigned to separate strata will see the largest

decreases in sample size when using stratified sampling.

Step 1 Step 2 Step 3
Benchmark . Stratify Strata / Random Stratatspecin Aggregate
instruction i sampling of i [¢ » imates &
M stream membership |nd|V|duaI strata estimates calc confidence
We examined optimal, Opt/ma/ sample sizes (1,2)

program phase detection, determined by (3)
and IPC profiling stratification.

Benchmark
estimates

Figure 5.1: Stratified random sampling process
We focus on the relative effectiveness of two practical stratification approaches for step 1 in this work. The
referenced equations for steps 2 & 3 are in Section 5.1.

The process of stratified random sampling is illustrated in Figure 5.1. The first of three
steps is to stratify the population into K strata. We discuss various techniques for stratifying
populations in the context of microarchitecture simulation in Sections 5.2 and 5.3. Second,
we collect a simple random sample of each stratum. We represent the variable of interest as
x, and strata-specific variables with the subscript h, where h ranges from 1 to K. Therefore,
N, is the population size of stratum h, np is the sample size for stratum h, while o, is that
stratum’s standard deviation of x. The final step is to aggregate the individual stratum
estimates to produce estimates of the entire population. A simple weighted mean is used to

produce a population mean estimate:

73

S (N, /N5,
K

Equation 1: Estimated stratified population mean

where the summation is over all strata of the population (h=1 to K); thus, YNy =N, and
Y'np = n. Note, we assume N, » n,» 1 to simplify the stratified sampling expressions. The
confidence interval of a mean estimate from a stratified random sample is determined by:

G%x)

e B~z 5522

np
Equation 2: Confidence interval of estimated stratified population mean
where z is the 100[1 - (a / 2)] percentile of the standard normal distribution (z = 2.0 for
95% and z = 3.0 for 99.7% confidence). Note that a sampling estimate of a stratum’s stan-

dard deviation is marked with a hat as 0.

The required sample size for each stratum, n, which produces a desired overall confi-
dence interval with minimum total sample size n can be calculated if the standard deviation
of each stratum oy, is known or can be estimated. The procedure for calculating the optimal
stratified sample is known as optimal sample allocation [Levy and Lemeshow 1999]. To
determine an optimally-allocated stratified sample for a desired confidence interval we first

calculate the total stratified sample size:

(2)[ZN%G;%X]
N2 nh)_(z
n where t, =

g +(22)(2Nh6%0 2 Nh

N2 X2

NGy

Equation 3: Optimal stratified sample size

The sample size of each stratum is the fraction m; of the total stratified sample size n;

individual stratum sample sizes are n, =, * n.

74

5.2 Optimal stratification

In order to evaluate practical stratification approaches for the experimental procedure
presented in Section 5.3, we first quantify the upper bound reduction in sample size achiev-
able with an optimal stratification. We focus on CPI as the target metric for our estimation,
and use the same 8-way and 16-way out-of-order superscalar processor configurations,

SPEC CPU2000 benchmarks, and simulator codebase described in Section 3.1.2.

Determining an optimal stratification for CPI requires knowledge of the CPI distribution
for the full length of an application—knowledge which obviates the need to estimate CPI via
sampling. To perform this study, we have recorded complete traces of the per-unit IPC (not
CPI, for reasons explained later) of every benchmark on both configurations. While not a
practically applicable technique, this study establishes the bounds within which all practical
stratification methods will fall. At worst, an arbitrary stratification approach will match
simple random sampling, as random assignment of sampling units to strata is equivalent to

simple random sampling. At best, any approach will match the bound established here.

Optimal stratified sampling: To minimize total sample size, we need to determine an
optimal number of strata, and minimize their respective variances. Then, we calculate the
correct sample size for a desired confidence using the optimal stratified sample allocation
Equation 3. This equation provides the best sample size for each stratum, given their
variances and relative sizes. Larger and higher variance strata receive proportionally larger
samples. We constrain sample size for each stratum to a minimum of 30 (or the entire
stratum, if it contains fewer than 30 elements) to ensure that the central limit theorem

holds, and that our confidence calculations are valid [Levy and Lemeshow 1999].

75

The optimal number of strata, K, cannot be determined in closed form. Intuitively, more
strata allows finer classification of application behavior, reducing variance within each
stratum, and therefore reducing sample size. However, at some critical K, the floor of
30 measurements per stratum dominates and increasing K increases sample size. For each
combination of benchmark, microarchitecture, and sampling unit size, U, we determine the
total stratified sample size for each value of K up to the optimal value, by starting with K=1

and stopping when total sample size decreases to a minimum.

For each value of K, we determine the optimal assignment of sampling units to strata
such that the CPI variance of each stratum is minimized. We employ the k-means clustering
algorithm, using the implementation described in [Pelleg and Moor 1999] that utilizes kd-
trees and blacklisting optimizations. The k-means algorithm is one of the fastest clustering
algorithms, and the implementation in [Pelleg and Moor 1999] is optimized for clustering
large data sets, up to approximately 1 million elements. (Beyond 1 million elements, the
memory and computation requirements render the approach infeasible.) Each k-means
clustering was performed with 50 random seeds to ensure an optimal clustering result. To
stratify the large populations of SPEC CPU2000 benchmarks at small U (on average
174 million sampling units per benchmark at U =1000 instructions), we must reduce the
data set before clustering. Figure 5.2 illustrates how we reduce the data set without impact-
ing clustering results. We assign sampling units to bins of size 0.001 IPC, and then cluster
the bins using their center and membership count. We bin based on IPC rather than CPI as
IPC varies over a finite range for a particular microarchitecture (i.e., 0 to 8 for our 8-way
configuration, thus, 8000 bins). As long as the number of bins is much larger than K, and the
variance within a bin is negligible relative to overall variance, binning does not adversely

affect the results of the clustering algorithm.

76

1. Collect benchmark IPC profile 2. Stratify by clustering IPC histogram

Stratum 1 » Optimal number of strata, K, determined
by incrementing K until total stratified

sample size is minimized
5‘ Stratum 2 P

= For each K, strata are partitioned using

? ‘Stratum 3 k-means clustering

* Minimum strata sample size of 30
3. Sample each stratum individually, aggregate estimates is best for rellaple_ confidence estimates
due to central limit theorem

Stratum 1 Stratum 3 Stratum 2 Stratum 3
Figure 5.2: Optimal stratification for a particular benchmark and microarchitecture
Collecting the IPC profile requires performance simulation of the full length of the target benchmark.
After each clustering, we calculate the variance of the resulting strata and determine an
optimal sample size as previously described. We iterate until the critical value for K is
encountered. The optimal K lies between one and ten clusters for all benchmarks and

configurations that we studied, and tends to decrease slightly with increasing U. Note that

the optimal K is independent of the target confidence interval.

10,000
S
& 1,000
<
o
E D\D‘G\D\D\D
& 100
< —&— Simple Random Sampling

—{— Optimal Stratification
10

1K 10K 100K ™M 10M 100M
U Sampling Unit Size (Instructions)

Figure 5.3: Optimal stratification’s mean sample size vs. simple random sampling
Mean sample size per benchmark for SPEC CPU2000 with the 8-way processor configuration.

Impact on sample size: Figure 5.3 illustrates the impact of stratification on sample
size, n, for the 8-way configuration. The top line in the figure represents the average sample
size required for a simple random sample to achieve 99.7% confidence of +3% error across
all benchmarks. The bottom line depicts the average sample size with optimal stratification.
Stratification can provide a 43 times improvement in sample size for U = 1000 instructions,

reducing average sample size from ~8000 to 185 measurements per benchmark. This result

77

demonstrates that random sampling takes many redundant measurements, and that there

is significant opportunity for improvement with an effective stratification technique.

—3— Optimal Stratification

n-U Instructions Measured

1K 10K 100K ™ 10M 100M
U Sampling Unit Size (Instructions)

Figure 5.4: Total measured instructions per benchmark with optimal stratification
Impact on total measured instructions: Figure 5.4 illustrates the impact of stratifica-
tion on total measured instructions, n - U. The dashed line illustrates the total instructions
required for the SMARTS technique, which performs systematic sampling at U= 1000 in-
structions. The graph shows that any practical stratification approach must be applied at a

unit size of 10,000 instructions or smaller in order to have a possibility of outperforming

existing sampling methodology.

5.3 Results

The optimal stratification study presented in Section 5.2 establishes upper and lower
bounds by which we can measure the effectiveness of any stratification approach. However,
creating the optimal stratification requires knowledge of the CPI distribution for the full
length of an application, and is optimal only for that specific microarchitecture configura-
tion. In order for stratification to be useful, we must balance the cost of producing a
stratification with the time saved relative to simple random sampling over the set of ex-

periments which can use the stratification. Thus, we desire stratifications that can be

78

computed cheaply and can be applied across a wide range of microarchitecture configura-

tions. In the following subsections, we analyze three stratification approaches.

5.3.1 SimPoint program phase detection

SimPoint [Sherwood, Perelman, and Hamerly 2002] presents program phase detection as a
promising approach for identifying and exploiting repetitive behavior in benchmarks to
enable acceleration of microarchitecture simulation. SimPoint identifies program phases
based upon a basic-block vector profile. SimPoint clusters measurement units based on the

similarity of portions of the BBV profiles.

Statistically Valid SimPoint [Perelman, Hamerly, and Calder 2003] presents a method
for evaluating the statistical confidence of SimPoint simulations where only a single unit is
measured from each cluster. However, the proposed use of parametric boot-strapping only
provides confidence interval estimates for the specific microarchitecture where the boot-
strap is performed, and does not account for individual experiment’s variations in
performance. In addition, this analysis requires CPI data for many points within each

cluster.

Instead, by applying BBV phase detection in the context of stratified random sampling,
we can obtain a confidence estimate with every experiment. By measuring at least 30 units
from each stratum (BBV cluster), we satisfy the conditions of the central limit theorem and
obtain a confidence estimate with each simulation experiment. The number of strata was
optimally selected using the same technique as our optimal stratification study in Sec-
tion 5.2. SimPoint seems a promising approach for stratification, as it achieves both of the
goals outlined earlier. First, basic block vector analysis is relatively low cost, as it can be

accomplished using a BBV trace obtained by functional simulation or native execution of

79

instrumented binaries (if experimenting with an implemented ISA). Second, basic block
vectors are independent of microarchitecture, and thus, the resulting stratification can be

applied across many experiments.

Practical costs: The primary costs of program phase stratification are the collection of a
benchmark’s raw BBV data and the clustering analysis time. Collection of BBV data can be
done with native execution for existing instruction set architectures, otherwise functional
simulation is required. For the unit sizes advocated in [Perelman, Hamerly, and Calder
2003] and [Sherwood, Perelman, and Hamerly 2002] of 1 million to 100 million instruc-
tions, analysis time for clustering is a few hours at most. However, clustering quickly
becomes intractable as we reduce U further. It is infeasible to compute a k-means clustering
for U< 100,000 instructions, since, for most SPEC CPU2000 benchmarks, this results in
more than 1 million sampling units. The high dimensionality (15 dimensions after random
linear projection) of BBV data prevents the binning optimization done for the optimal

stratification study in Section 5.2 due to the sparseness of the vector space.

Impact on sample size: Program phase detection does provide a modest improvement
in sample size over simple random sampling. However, phase detection falls short of
optimal stratification since it seeks to ensure the homogeneity of the instruction footprint of
each stratum. This does not necessarily lead to minimal CPI variance within each stratum.
On average, program phase clustering improves sample size by only 2.2 times over simple
random sampling as shown in Figure 5.5. The average sample size at U = 1 million instruc-
tions was 3590 for simple random sampling and 1615 for BBV stratified random sampling,

as compared to 125 for optimal stratified sampling.

80

—&— Simple Random Sampling
10,000 —— BBV Stratification
—3— Optimal Stratification

g T
& 1,000 be—
o
Q.
& 100 O— 0
<
10
™ 10M

U Sampling Unit Size (Instructions)
Figure 5.5: BBV program phase stratification mean sample size
BBV stratification reduces average sample size by 2.2 times over simple random sampling, but it requires
U>100,000.

Impact on total measured instructions: Because the BBV clustering analysis cannot
be performed for U below 100,000, stratification based on program phase cannot match the
total measured instructions achievable with simple random sampling. With U =1 million,
BBV stratification results in an average of 1.6 billion instructions measured per benchmark,

while a simple random sample with U=1000 requires only 8 million instructions per

benchmark to be measured.

5.3.2 Dynamic program phase detection

Dynamic Sampling [Falcon, Faraboschi, and Ortega 2007] presents an alternative phase
detection approach to SimPoint. Phases, and corresponding measurement locations, are
dynamically chosen during the simulation of the benchmark application instead of prior to
the simulation. Execution statistics are collected during simulation for fixed-sized instruc-
tion windows. When the rate of a selected execution event changes by more than a
threshold percentage between windows, a new phase is considered to have begun. Warm-
ing and the measurement of the following pair of fixed-size window is performed, and fast

forwarding is then resumed.

81

Several execution statistics, and threshold values were studied by Falcén et al,, but the
best performing and recommended configuration used the miss rate of the simulator’s code
translation cache to detect phase changes. The fixed-size execution windows were set to
1 million instructions each, and a 300% change in miss rate between windows indicated a
new phase. Upon detecting the phase change, the detailed simulator performed 1 million

instructions warming, then 1 million instructions measurement.

Our analysis of their runtime results indicate that for SPEC CPU2000, each benchmark
had approximately 1,000 phase changes on average, and therefore, approximately 1,000
measurements of 1 million instructions each. Falcon et al. evaluated their dynamic sampling
framework on an x86 instruction set simulation of an out-of-order superscalar microarchi-
tecture. Their results show an average error of 1.1%, as compared to 0.5% for SMARTS, and
1.7% for SimPoint. Their advantage over SMARTS lies in their speedup due to their use of
native execution to fast forward between detected phases, as opposed to functional warm-
ing. Their implementation of SMARTS obtained a 7.4 times speedup versus a full detailed
simulation, versus 158 times speedup for dynamic sampling. As a point of comparison, Chen
[2004] implemented and evaluates SMARTS with native execution support of functional

warming achieving a 96 times speedup.

Given that dynamic sampling uses a sample size of 1,000 that is as large as the recom-
mended sample size for simple random sampling at U = 1 million instruction (derived from
the V¢pr illustrated in Figure 3.2), we expect accurate performance estimates from dynamic
sampling. We investigated how much of their accuracy is due to their large sample size, and
how much accuracy was gained by using their dynamic sampling phase detection versus

systematic sampling. We performed our comparison using the 8-way out-of-order supersca-

82

lar processor configuration, SPEC CPU2000 benchmarks, and simulator codebase described

in Section 3.1.2.

Practical costs: We configured a systematic sampling experiment to have the same cost
as dynamic sampling in order to compare the two approaches with an equal number of
measured instructions. In addition, we did not use functional warming, but rather we used
the same 1 million instructions of detailed warming for both dynamic sampling and system-
atic sampling. We configured SMARTSim to track the miss rate of an equivalent structure to a
code translation cache (a supplementary 256 MiB instruction cache) to determine phase
changes for dynamic sampling. Both sampling approaches has measurement units of
1 million instructions, and both were calibrated to take an average of 1,000 measurements

per benchmark (1 billion instructions total per benchmark).

Table 5.1: Performance comparison between dynamic and systematic sampling

Configuration Mean IPC error Can use native execution

Systematic sampling with functional warming (SMARTS) 0.66% no
Systematic sampling 1.9% yes [Chen 2004]
Dynamic sampling 2.1% yes [Falcon et al. 2007]

Table 5.1 lists the results of our comparison between dynamic sampling and systematic
sampling. Both approaches achieve relatively low error, but systematic sampling does not
rely on a heuristically chosen phase detection approach. Both approaches can use native
execution, and will achieve the exact same speedups over full detailed simulation. Our
conclusion is that dynamic sampling does not provide an advantage over systematic sam-

pling when the sample size is as large as 1,000.

83

Impact on sample size: To determine if the phase detection approach of dynamic sam-
pling can provide an advantage over systematic sampling at under different constraints, we
examined the effect of drastically reducing the sample size. For dynamic sampling we
increased the miss rate threshold that determines the beginning of new execution phases to
reduce the sample size. We matched dynamic sampling’s sample sizes with systematic

sampling by lengthening the periods of fast forwarding between measurements.

25%
=&=Uniform sampling (mean)

20% =@ Dynamic sampling (mean)

Uniform sampling (95%
15% pling (95%) o

Tt
o > Dynamic sampling (95%)
S X
; 10%
5%
0%
1000 800 600 400 200 0

Sample size (U)

Figure 5.6: Increasing accuracy advantage of dynamic sampling

The accuracy improvements provided by dynamic sampling’s phase detection algorithm become evident as
smaller sample sizes are used. However, the error outliers for dynamic sampling are larger than uniform
sampling at small sample sizes (the 95t percentile errors are shown among the SPEC CPU2000 benchmarks).

Figure 5.6 plots our results when we reduced the sample sizes of both systematic and
dynamic sampling. The accuracy advantage of systematic sampling is lost as the sample size
is greatly reduced, showing that dynamic sampling’s phase detection approach is more
effective than systematic or simple random sampling when the number of measurements is
constrained. Systematic sampling does not perform as well with small sample sizes because

it has a low probability of measuring all the different phase behaviors in a benchmark, while

dynamic sampling attempts to target these behaviors.

84

5.3.3 IPC profiling

The optimal stratification study in Section 5.2 achieves large gains with stratification by
stratifying directly on the target metric, in this case CPI. Optimal stratification can not be
done for each experiment in practice because it requires the very same detailed simulation
that we are trying to accelerate. However, if it were possible to perform this expensive
stratification once per benchmark on a test microarchitecture, and then apply this stratifica-
tion to many other microarchitecture configurations over many experiments, the long term
savings might justify the one time cost. The key question is whether strata with minimal
variance on one microarchitecture also have low variance on another microarchitecture. We
evaluate the promise of this approach by computing a stratification using an IPC profile of
our 8-way processor configuration and evaluating this stratification when applied to the 16-
way configuration. The two microarchitectures differ in their fetch, issue and commit
widths, functional units, memory ports, branch predictor and cache configurations, and

cache latency (details in Section 3.1.2).

Practical costs. This approach needs a trace of the IPC of every block of U instructions,
requiring a detailed simulation of the entirety of every benchmark. The longest
SPEC CPU2000 benchmarks require up to a month to simulate in detail. We have success-
fully clustered sampling units for U = 10,000, but storage requirements and processing time
prevent clustering at U = 1000 instructions. Unlike the optimal stratification experiment of
Section 5.2, practical use of IPC profile stratification requires storing the strata assignment
of every sampling unit to disk (to allow strata selection for a second experiment), and the

storage needs becomes prohibitive at U = 1000.

85

10,000 ~—

A
N
o 1,000
2 O— —0
aQ
& o —
@ 100 —— Simple Random 16-Way
S —0— IPC Profile 8->16-w ay
—{— Optimal 16-Way
10

10K 100K
U Sampling Unit Size (Instructions)

Figure 5.7: Mean sample size for IPC profile stratification
The 8-way profile’s stratification was applied to the 16-way microarchitecture to determine if the stratifications
were similar enough to produce an effective sampling result.

Impact on sample size. Two measurements units which have identical performance on
one microarchitecture, and are thus members of the same stratum, may be affected differ-
ently by microarchitectural changes, increasing variance in the stratum. Thus, a larger
sample is required to accurately assess the stratum. Figure 5.7 compares the sample size
obtained with an 8-way IPC profile stratification to the optimum stratification and simple
random sampling for the 16-way configuration. The 8-way stratification improves over
purely random sampling by a factor of 15 times, as compared to an opportunity of 48 times
for the 16-way microarchitecture. An IPC profile stratification will provide large returns

only for microarchitectures very similar to the test microarchitecture that generated the

profile.
s 1TE¥10 e SMARTS 16-Way
g —O—CPI Trace 8->16-w ay
7 1.E+09 —— Optimal 16-Way
3
= 1E+08
=
8 _—2
% 1.E+07 O/
2
® 1.E+06
£
2 1.E+05
<

1K 10K 100K
U Sampling Unit Size (Instructions)

Figure 5.8: Total measured instructions per benchmark with IPC profile stratification

86

Impact on total measured instructions. As Figure 5.8 shows, IPC profile stratification
at U =10,000 roughly breaks even with SMARTS in terms of total measured instructions. This
performance does not justify the significant one time cost of creating the stratification. Even
if a method were developed which could stratify at U = 1000, the limited microarchitecture
portability of the stratification renders it unlikely that the high cost of generating an IPC

profile will be worthwhile.

87

6 High-resolution tracing

The “smart” features in modern microprocessors that enhance the runtime of typical
applications actually increase the effort and expertise needed to hand-tune high perform-
ance applications. It is difficult for a programmer to fully anticipate dynamic effects: the
overlapping interactions of caches, branch predictors, load/store units and queues, TLBs,
prefetchers, and many unexposed mechanisms in the underlying hardware. Without such
knowledge, seemingly sound code/algorithm optimizations to correct a supposed perform-

ance bottleneck can perform below expectations, or worse, have the opposite outcome.

Performance traces of program execution help software developers and computer ar-
chitects improve their designs by identifying and explaining execution bottlenecks. In most
computer systems, traces are collected by in-band performance counters, where the meas-
ured program’s performance is perturbed by the interruptions needed to collect a trace. The
perturbations result in low-fidelity traces, where error increases with trace resolution
(interruption frequency) until the true program performance is indiscernible. The perturba-
tions introduced by the measurement process cannot be directly eliminated as long as
system cost limitations prevent out-of-band performance probes and memory for perform-

ance trace data from being included in commodity computers.

We present two reconstruction algorithms that improve the resolution limit of high-
fidelity performance traces. Median reconstruction improves the signal-to-noise ratio of
repeated high-resolution traces of a program. Super-resolution reconstruction has a higher
computational cost, but can combine staggered traces into an even higher-resolution trace.

Both algorithms specifically target the skewed and heavy-tailed error distributions of CPU

88

microarchitectural performance measurements. Our goal is to obtain high-fidelity, high-
resolution performance traces from commodity hardware using median and super-

resolution reconstruction individually and in combination.

improving SNR

direct : best
event tracing = > median K

reconstruction ,.**
inputs

super-resolution
reconstruction

increasing computation

Figure 6.1: Performance tracing methods
Super-resolution trades error-tolerance for magnification.

Super-resolution reconstruction was inspired by existing image processing algorithms
for super-resolution where multiple images of the same subject, with sub-pixel offsets, are
used to reconstruct a higher-resolution resulting image. We attempt to collect and register
multiple performance traces of a benchmark application using performance counters. These

traces can then be used the conditions of a reconstruction problem that we solve to provide

a higher-resolution trace.

high event frequency 2. Interrupt, measure counters

1. Execute QNS ¢ >

multiple

iterations .__ ‘

low event frequency

3. Reconstruct high-resolution trace

a o a a
) 4 v v) 4 <+

Figure 6.2: Super-resolution concept

89

Repeated executions of a benchmark application allow a high-resolution reconstruction of performance to
pinpoint performance bottlenecks and use as input for further analysis.

We characterized the error observed on the an Intel Core 2 processor when executing
the Intel Performance Primitive (IPP) kernels, and periodically interrupting to record the
performance counter values to memory. The error of each individual measurement is
defined as the event count deviation from the “ground truth” event count; the stable and
unperturbed event count for each window of execution. The signal-to-noise ratio is used as
a normalized metric to quantify and compare the fidelity of performance counter traces
collected at various resolutions. Our objective is maximize resolution (i.e., minimize the size
of each window of execution measured) while maintaining a SNR of 10 dB or greater. A SNR
of 10 dB allows for accurate identification of program segments with exceptional perform-

ance and accurate characterization of performance bottlenecks.

We define the (directly-measured) “resolution limit” of a performance counter and exe-
cuting application to be the maximum resolution that we can measure with a SNR of 10 dB
for a given application. We called the approach of executing a program once, and periodi-
cally interrupting it to collect a performance trace, “direct measurement.” Our two new
algorithms for post-processing multiple sets of directly measured performance traces are
called “median reconstruction” and “super-resolution reconstruction.” Super-resolution
reconstruction can use either direct measurements or median reconstructed measurements

as input.

High-fidelity high-resolution performance traces can be used to empirically determine
linear performance models of program segments. The linear models are solved using
regression analysis, and can be used by programmers and architects to evaluate design

tradeoffs.

90

6.1 Framework

This section presents background on the performance counters built into general purpose
processors in Section 6.1.1, the sources of error that affect their accuracy in Section 6.1.2,
the concept of super-resolution reconstruction in Section 6.1.3, and the notation and

variables we use in Section 6.1.4.

6.1.1 Performance counters

General purpose, high performance, processors contain internal performance measuring
hardware that is controllable via software. The x86, Power, 1A-64 (Itanium), UltraSPARC,
Cray, MIPS, and Alpha instruction set architectures all have vendor or model specific
extensions that provide access to dynamic performance data. Most performance data is
collected by simply counting execution events and signals (e.g., memory accesses, instruc-
tion retirements). Thus, the relevant components of performance measuring hardware are

generally referred to as “performance counters.”

Performance counters are usually comprised of three components: a counter register,
event trigger sources, and configuration registers. The counter register is usually a 32-
48 bit signed integer register with a dedicated adder circuit. Event trigger sources are
microarchitectural components that are monitored by connecting wires from the compo-
nent to the bank of counter registers. Configuration registers are associated with the event
counters to control their behavior. Figure 6.3 illustrates the connections between these
three components within a processor core. Most processors have from 2 to 4 performance

counters that can be used simultaneously.

91

counter register . . .
g configuration register

Processor core

— event trigger source

predictive

Figure 6.3: Performance counter microarchitecture

Event trigger sources exist throughout a processor, sometimes accompanied by masking configuration registers.
The counters and their configuration registers are usually located together, and connected to the register file.

Event trigger sources: Event trigger sources exists throughout most processor compo-
nents, and entail very little logic. In many cases, all that is required is a single-bit wire
connected to the performance counter logic to indicate on which cycles a given event has
occurred. Some sources may report more than one event per cycle, and require a multi-bit
connection to the performance counters (e.g., instruction retirements). Finally, some event
trigger sources report a type identifier that may be used by the counter to mask some
subset of events. For example, a cache eviction event trigger source may want to differenti-
ate evictions due to coherency to allow the performance counter to count just this subset of

events.

Operating system support: The operating system must cooperate with the performance
counter hardware in two ways. The first relates to a programmer’s decision either to

perform system-wide measurement, or to perform measurement of a single process.

92

System-wide measurement simply requires the privilege level mask to be set to allow all

privilege levels to be measured.

The operating system must save and restore all configuration and counter state upon
each context switch to allow measurement of a single process. The operating system
support is necessary because there is no concept of a process ID that the performance

counters can use as a mask in an operating system independent way.

The second reason that the operating system must cooperate with the performance
counter hardware is to implement the interrupt service routine that is executed when a
performance counter overflows and is configured to trigger an interrupt. The service
routine will perform different functions depending on whether profiling or direct meas-

urement will be performed.

Instruction set: Special purpose instructions are used to control and query performance
counters. These instructions are privileged since the performance counters are not virtual-
ized for each process. As a result, performance counter software libraries typically require

kernel level modifications.

Instructions are required to read and write values to the configuration registers. Addi-
tionally, instructions are required to read and write values to the counter registers. Often,
these instructions are implemented as register-to-register move instructions. For read
operations, the source would be the machine specific configuration or counter register, and
the destination would be the general-purpose register file. Writes would be implemented by

reversing the source and destination.

Usage modes: Programmers can use performance counters for time and event profiling,

direct measurements of execution intervals, and performance tracing. These usage models

93

provide different performance data to the programmer interested in optimizing an applica-

tion.

The simplest usage of performance counters is to use them to merely count the quantity
of execution events during an application’s execution or an interval of time. This informs the
user of the presence and magnitude of various execution events. However, the precise
execution location of many execution events cannot be directly determined at a resolution
better than millions of cycles due to the disruptive effects of polling the performance
counters [Korn, Teller, and Castillo 2001; Maxwel et al. 2002; Callister 2006]. The execution
of the measurement code introduces residual effects in the processor such as empty queues
and altered caches. In addition, external interrupts and context switches can introduce
more errors into measurements. We quantify this resolution limit of performance counters

due to these measurement errors in Section 6.3.

Profiling: Precise counter based sampling has overcome the above shortcoming to attribute
events accurately to static program-counter locations in a program [Dean et al. 1997; Sprunt
2002, Fields et al. 2004; Sander et al. 2006]. Sampling relies upon periodic interrupts of
execution, where the interruption is triggered by the overflow of a selected program
counter (PC). A performance counter is programmed to trigger an interrupt when its value
first exceeds a set threshold. Each time an overflow interrupts occurs, the program-counter
location is logged to determine the static program location. After numerous interrupts, a
distribution of the most common, or time consuming, portions of a program are determined.
When the cycle performance counter is used as the overflow interrupt trigger, the sampling
is called time-based sampling, and the resulting data indicates where execution is concen-

trated. When other performance counters are used, such as cache misses, the sampling is

94

called event-based sampling, and the resulting data indicates which program locations incur

many of the specified event.

Interrupt from Capture the PC
counter overflow at each interrupt

Call stack depth

Time or events

Function Frequency
foo() ®
bar() ®

run_loop()
main()

Figure 6.4: Profiling using performance counter overflow interrupts

The resulting data set provides the programmer with an approximate breakdown of execution time (or events).
Programmers can target optimization efforts on functions that make up a significant proportion of execution
time or a significant proportion of execution events.

Direct measurement: Direct measurements of program execution intervals are simple in
comparison to profiling. Performance counters are reset at a chosen starting point within a
program, and their values read at a chosen ending point. The entire execution of a program,
or just a particular interval, can be measured. The programmer can simultaneously capture
data from as many performance counters that exist for a given processor. Direct measure-
ment data can indicate that certain performance degrading events are occurring at high

frequency, thus directing the type of optimization efforts. Figure 6.5 illustrates direct

measurements taken with performance counters.

95

Start and stop counters Capture event counts
Q\ using debug breakpoints upon stopping the counters

Call stack depth

Time or events

Function Event Count
foo() cycles 1,113
foo() L2 misses 42
bar() cycles 3,112

bar() L2 misses 19
Figure 6.5: Direct measurements of intervals using performance counters
The resulting data set provides the programmer with metrics that can suggest which properties of the program
to optimize (e.g. data locality, code size, register allocation, code scheduling).

External tools can measure an entire program’s execution. However, a programmer calls
start and stop performance counter library functions within a program to chose a smaller
interval to measure. An alternative to modifying a program’s source code is to use the debug
breakpoint capabilities of modern processors. Breakpoints can be configured at start-
ing/stopping PCs or specific data address accesses within a program. The breakpoint

interrupt then starts/stops the performance counters.

Tracing: Collecting consecutive direct measurements produces a performance trace.
Measurement boundaries are created by execution interrupts on performance counter
overflows. Program execution is interrupted just as in profiling, but performance counter
values are captured during each interrupt (like in direct measurements). We attribute
events to dynamic locations in a program’s execution. Our methods improve resolution and
error tolerance beyond current limits using redundant, overlapping performance counter

measurements of lower resolution with non-coincidental endpoints.

96

The main distinction between static and dynamic program locations is the usage of the
PC versus an instruction counter respectively to determine program location. The PC
defines which line of code a program’s execution is at (it is also possible to determine the
call stack during a measurement interrupt). We use an instruction performance counter to
report the dynamic instruction count since the start of measurement. The instruction count
provides a dynamic program location, for example we can distinguish the first and last

iterations of a loop, something that cannot be done by examining the PC and call stack.

6.1.2 Sources of error

We now consider the sources of error that will affect the measurements collected for super-

resolution reconstruction..

Ground truth: Our target of zero error (the ground truth) is when, for repeated executions
of a program, the measured performance traces are identical for all possible measurement

boundaries.

Total error: The total error in our measurements will be the sum of the performance
counter implementation error sources described in this section plus all nondeterministic
effects in the computer system (effects that differ between repeated executions). Perform-
ance counter implementation error imparts error relative to the number of measurements
taken. Longer interrupt intervals can amortize these sources of error. All nondeterministic
effects impart error at a constant average rate. Longer interrupt intervals will not amortize

nondeterministic error.

Hardware error sources: There are two types of error due to the hardware design of

processors. First, using performance counters results in some overhead and inaccuracies

97

due to their implementation. Second, processors are not perfectly deterministic, leading to

some error relative to our ground truth target of exactly repeatable performance.

1. Interrupt service routine overhead: The first source of error for profiling is the per-
formance impact of the interrupt service routine. An interrupt requires hundreds to
thousands of instructions to execute in a modern operating system. As a result, the
cache, branch predictor, and other predictive structures are polluted upon the exit
of the interrupt service routine. The pollution of these performance-enhancing
structures alters the performance of the program being measured [Dongarra et al.,
2003]. The altered performance is error when we are interested in profiling the per-
formance of an application. The only solution is to ensure the interrupt interval is
large enough to amortize the effects of the interrupt service routine.

2. Overflow event to instruction capture delay: The second source of error for profiling
is that the PC captured upon a performance counter overflow is usually not the PC of
the instruction that incurred final overflow event. The PC may be for a preceding in-
struction when the events being measured occur early in the pipeline. On the other
hand, the overflow interrupt may not be handled immediately, resulting in a PC that
follows the instruction that caused the overflow. This unknown latency prevents ac-
curate identification of instructions that cause important events such as L2 cache
misses.

3. Nondeterministic hardware performance: Executing the same instructions on a
processor, with the same starting microarchitectural state, does not always result in
the same performance. The nondeterministic behavior of a processor is due to asyn-
chronous events that affect performance. For example, memory bus traffic from
other devices and DRAM timing make main memory access latencies nondetermin-

istic. Another example is thermal throttling control logic that slows a processor’s

98

clock speed when overheating occurs. Nondeterministic performance of the proces-
sor hardware results in small, but non-zero amounts of constant average rate error.
Running nothing else, or a very steady state load, simultaneously with the execution
thread of interest, can minimize these effects.

4. Shared execution resources: Multi-core processors that have shared resources like
L2 caches, or simultaneous multithreading pipelines will have context sensitive per-
formance that depends on the execution of other threads side-by-side with the
execution thread of interest. Running nothing else, or a very steady state load, si-

multaneously with the execution thread of interest, can minimize these effects.

Operating system error sources: Operating system architecture directly affects the
performance cost of interrupt service routines and context switches. Low cost interrupt
service routines reduce the error impact of each interrupt on the measured program. Low
cost context switches, and good processor affinity for executing processes minimizes the

constant average rate error from other processes.

Application error sources: Applications that have a deterministic instruction execution
path for a given input are well suited to super-resolution reconstruction. Applications that
have nondeterministic execution paths will not have consistent performance traces be-
tween repeated executions. Examples of nondeterministic applications include: multi-
threaded programs with synchronization, self-tuning programs, networked programs, and
any program that depends on input from outside asynchronous systems. Effective super-
resolution reconstruction for nondeterministic, and multi-threaded applications is future

work.

99

6.1.3 Image super-resolution

Electronic imaging applications often demand high-resolution data, in other words, high
pixel densities. Super-resolution image reconstruction, a.k.a. resolution enhancement, is a
widely-researched technique that improves the resolution of images beyond the limits of
the capturing device by combining data from multiple images of the same subject. The set of
images must differ in some way to contain the additional information used in the super-
resolution reconstruction. For example, the images must be offset, have varying perspec-
tives, differing focus, etc. to enable super-resolution results that are better than the source
images. Super-resolution methods have been developed for 1D signals, 2D images, and
video. However, 2D image super-resolution is the primary focus of the signal processing

research field [Park et al. 2003].

There are two phases of interest in super-resolution reconstruction: first, registering
(a.k.a. aligning) the low-resolution input images, and second, fusing the inputs to produce a
high-resolution output image. Registration involves computing the relative positions of each
input image so that they can be overlaid with precision. The relative offsets may be known
or unknown depending on the source of the low-resolution images. There are techniques
for estimating the offsets if they are unknown. If the offsets are known, then registration is
simply a matter of shifting the source images. (In hardware performance counter super-

resolution, precise registration is essentially known, as we will describe later.)

The second step in image super-resolution is fusion. This step usually comprises of both
deblurring and reconstruction steps. Deblurring is often used because of the assumption of
limited aperture when capturing low-resolution data, but we are not concerned about this
problem in the context hardware performance counters. Reconstruction takes multiple low-

resolution “pixels,” with varying sub-pixel offsets, and solves for the underlying high-

100

resolution, i.e., smaller, pixels. In the context of our work, the low-resolution raw counter
measurements correspond to the low-resolution pixels, and the high-resolution perform-

ance profile corresponds to the reconstructed high-resolution image.

Registration Fusion

Figure 6.6: Image super-resolution reconstruction
Image super-resolution takes several images captured at low resolution, registers (a.k.a. aligns) them, and then
fuses them into a high-resolution image. (Note: Resolution differences and number of captured images have
been exaggerated for illustration purposes.)

There are many proposed algorithms for the fusion phase of super-resolution. The algo-
rithms can be roughly categorized as interpolation approaches, frequency domain
approaches, iterative approaches, stochastic approaches, and filtering approaches. Each
class of algorithm makes different assumptions about the expected high-resolution result to
deal with the ill-posed problem of too few inputs compared to the output. Our approach for

performance counters is based on the iterative approaches because they can use the most

flexible constraints.

General-purpose super-resolution algorithms produce mixed results, and in practice,
can achieve maximum resolution increases of less than ten-times magnification. In addition,

the algorithms tolerate only small amounts of random noise [Baker and Kanade 2002].

101

42 low-resolution images >\

Figure 6.7: Image super-resolution results

[NASA]

At least in theory, applying existing image processing super-resolution algorithms to
performance counter measurements only requires modifying the algorithms to work in a
single dimension instead of two dimensions. However, existing super-resolution algorithms
for image processor do not meet our super-resolution requirements, so we developed our
own method that is suited to the properties of performance counter measurements. Our

algorithm is based on a formulation in linear programming as described later.

6.1.4 Performance trace notation and variables

Matrix notation: Matrices are rectangular arrays of real numbers. We represent matrices
with bold, upper case, letters. Matrix elements are identified by their row and column

position, i and j, respectively.

A

The size (order) of a matrix is defined as m rows by n columns.

[mxn]

Vector notation: Vectors are ordered columns of real numbers. Vectors are represented by
bold, lower case, letters. Row vectors are represented by the transpose of a column vector.

Vector elements are identified by their position i.

102

b;
The size (dimension) of a vector is defined as m rows.
[m]
We indicate vectors that belong to a lexicographic set with a superscript index k.
b

We define several vector to scalar operations as follows.

Ib]l; L!'norm(b) = 3;b;| manhattan distance
IIbll, L?norm(b) =/ ;b? euclidean distance
b mean(b) = i >ibi arithmatic mean

0'12) var(b) = Z,-(b,— - 5)2 variance

o stdev(b) = I(sz standard deviation

Vy, CV(b)=o0y/ b coefficient of variance

M, median(b) = Q,(b) 2" quartile
We define abbreviated notations for vector conditional tests.

b =c allelements equality bi=c¢;Vi
b =0 allelements non-negative b; =0V i

We define a lexicographic vector set to vector operation as follows.

M,y medianVector(b®) = M(bgl), . bgK)) Vi

Performance counter variables: We represent performance trace data as a vector of

measurements with several associated metadata vectors.

103

Table 6.1: Performance counter vectors

variable name units of elements
m measurements events
em measurement error events

sm start position of measurements instructions
/m length of measurements instructions

bm boundaries of measurements instructions

Captured measurements are nonnegative, but can have positive or negative error rela-
tive to the ground truth (GT). Error is introduced by the execution interruptions necessary
to capture measurements as well as the non-deterministic performance of repeated execu-

tion of the same instruction stream.

m=m%" +em where m=0, m®T>0

An effective measure of the quality of a measurement vector is its signal-to-noise ratio,

often expressed in decibels.

2
T Gr 0 cr
SNRy, = 10 1oglO[L] =20 1og,0[L]
2

Tom Tem

The SNR indicates the relative magnitude of the GT “signal” to the error. SNR is effective
at measuring usefulness to a user of measurement data because SNR is correlated to the
accuracy of outlier identification. A SNR of 0 dB indicates equal magnitude standard devia-
tion of the GT and error, 20 dB indicates 10 times greater GT standard deviation, 40 dB
indicates 100 times greater GT standard deviation, and -20 dB indicates 10 times smaller GT

standard deviation.

104

6.2 Implementation

An experiment consists of a performance trace of repeated executions of the same instruc-
tion stream and all the corresponding properties. The measured instruction stream is the
complete instruction stream of an application under analysis or a limited window of the

application's instruction stream.

When we measure Y iterations of a complete application,

N
/m; = YX(itcrulion
E i =

i=1

where /""" is the length of each iteration of the application's execution in retired in-

structions and N is the number of captured measurements.

We can define an estimate of the ground truth met if we capture K repeated experiments

with the same boundaries.

m® ={m®, . m®} where pm® =pm® vk

mé = Mm®

We formally define the ground truth as the median vector of “all possible” experiments,

i.e, infinite repeated experiments.

mCT =Mm® where K = oo

We define SNR more precisely in the presence of K experiments.

o-fnGT
SNRm(“ =10 10g10 5

o em®)

105

Regions: We wish to reconstruct high-resolution measurements from low-resolution
captured measurements. We call the high-resolution measurements regions to distinguish
them from the low-resolution measurements. Thus, super-resolution reconstruction solves

the number of events in high-resolution regions given low-resolution measurements.

We represent the solved region events as vector r, along with the corresponding meta-

data vectors er, fr, and br. Our reconstruction objective,
minimize |ler||; where r=0, r¥>0, r=r& +er

The primary relationship between regions and measurements if represented by u for

magnification.

fm
u=— typically pu>1
r

When we measure a complete application, we can solve for V regions such that,

Vv
__ piteration
Dirj=¢
J=1

Finally, the user's objective may be to minimize mean region length while meeting a

minimum SNR;.

o-r()T
SNR; = 101og,,
0.2

er

There are other possible user objectives, but all user objectives require selecting an ef-

fective combination of ¢ and Y.

106

Characterization variables: We introduce ¢ to represent the measurement length, also

referred to as the "resolution” of an experiment. For a given experiment,

We label the ground truth event rate as R¢T. The mean number of events per measure-
ment as a function of measurement length should be directly proportional to the mean

event rate if there is no measurement error.

m() =R x¢ when em=0

mGT
‘RGT —
{
Measurement error has two Components, interrupt error and Steady state error as we

describe in Section 6.2.2.

interrupt

em = ¢ m +esleady state 1)

The mean of steady state error is near zero because this error is relative to the ground
truth (the median of nondeterministic performance of repeated executions). The mean of

interrupt error is positive because measurement interrupts typically cause extra events to

occur during application execution.

steady state

e m=~0 , emten‘upt m:=0

We model mean measurement error as a linear function that we empirically verifiy in

Section 6.3.1.

ﬁ(() — RGT x{ + eimcrrupt m

107

First, we measure R6T and the mean measurement events for multiple values of /. Then
we solve for the mean measurement interrupt error using regression. Deviation from the
regression indicates destructive interference from measurement interrupts. The resolution
where this deviation becomes severe is the resolution limit (for median reconstruction) in

conjunction with SNR.

As we reconstruct super-resolution results we wish to estimate the magnitude of error
of the solved regions. When calculating the median/mean inverse of ill-conditioned linear
systems with constant point-spread functions, we can establish the approximate relation-
ship between measurement error and reconstruction error:

2_“2 2 vm Z 2
O‘R_NO‘M"' gt Oreg

where u is magnification, and N is the number of iterations. The first term is the event
error, the second term is the registration noise. The second term is the registration error
that is the mean gradient energy of the ground truth times the registration error variance

[Pham, van Vliet, and Schutte 2005]. Thus, we can roughly estimate the reconstructed SNR:

Var(Rgt

—2) =20log var(Rgt)

SNR, =20log
§ O Var(R1 - Rgt)

The second form indicates that we can determine SNRp experimentally, without a

known ground truth, using k-fold cross-validation.

It is interesting to note that the median is the central point that minimizes absolute de-
viations, i.e., the L1 norm, also, there exists a GLRT test that distinguishes if L1 or L2 norm is

superior based on better fit of Laplacian or Gaussian PDF [Farsiu 2003].

108

Our reconstruction problems are underconstrained, which does not prevent an LP solu-
tion, but does not provide stable, or even desirable results. We selected a smoothing
function compatible with linear programming: bilateral total variation (BTV) regularization

[Farsiu 2004]:

BTV(R)= i aMHR ~S*'R

x=-P

1

where S¢ is the shift operator by x units. Parameter P determines the number of resolu-
tion scales to compute derivatives, usually set P=2. Parameter a determines the fall-off

effect, 0<a<1, and usually set a=%. This reduces the BTV function to:

BTV(R)= .ZSHR _S™R

- .SHR—S‘lR

1+4@—§R

-+ .ZSHR—SZR

1

which we convert to the second objective function of a lexicographical goal program-

ming model.

6.2.1 Platform

Super-resolution reconstruction is most applicable to computational kernels that a pro-
grammer would want to optimize for performance on a particular processor. Computational
kernels are the performance critical portions of scientific computing, multimedia data
processing, and communications applications. They are often written in C or assembly code
for maximum performance, despite the increased programming effort, due to their perva-

sive reuse.

We focused our study on obtaining performance traces of an array of numerical applica-

tion kernels from the Intel Performance Primitives (IPP) library. The performance of these

109

kernels is typically compute bound, and their performance has high value to many applica-
tions. Thus, the kernels are hand tuned for individual computer platforms on which they
will be executed. Performance traces are useful for further performance exploration and

tuning of both the kernels and the CPU microarchitectures that execute them.

The IPP library provides hundreds of numerical functions in a broad array of applica-
tion domains. We selected a representative subset of functions for study from fourteen
distinct domains, that process integer and floating-point vectors, matrices, 1D signals, 2D
images, and 3D rendering geometry: vector math, small matrix, audio coding, data compres-
sion, signal processing, speech coding, speech recognition, strings, color conversion,

computer vision, image processing, JPEG, video coding, and rendering.

We performed most of our measurements using 20 of the most important performance
counters of the Intel Core 2 CPU architecture. The performance counters can measure over
200 architectural and microarchitectural performance events, including pipeline events,
memory events, and predictive structure events. Experiments were also performed using

dynamically instrumented binaries, and synthetically generated data.

Table 6.2: Selected Intel Core 2 performance counters

Definition
Category (pfmon name) Description
Architectural Instructions retired This event counts the number of instructions
(instructions_retired) that retire execution. For instructions that

consist of multiple micro-ops, this event counts
the retirement of the last micro-op of the
instruction. The counter continues counting
during hardware interrupts, traps, and inside
interrupt handlers.

Architectural Instructions retired, which contain This event counts the number of instructions
aload (inst_retired:loads) retired that contain a load operation.

Architectural Instructions retired, which contain This event counts the number of instructions
a store (inst_retired:stores) retired that contain a store operation.

Architectural Retired branch instructions This event counts the number of branch instruc-

110

Category

Definition
(pfmon name)

Description

Architectural

Time

Pipeline

Pipeline

Pipeline

(branch_instructions_retired)

Retired streaming
SIMD instructions
(simd_inst_retired:any)

Core cycles when core is not halted
(unhalted_core_cycles)

Cycles during which the instruction
queue is full
(inst_queue:full)

Cycles during which the reserva-
tion station is full
(resource_stalls:rs_full)

Cycles during which the pipeline
has exceeded the load or store limit
or is waiting to commit all stores
(resource_stalls:1d_st)

tions retired.

This event counts the overall number of SIMD
instructions retired.

This event counts the number of core cycles
while the core is not in a halt state. The core
enters the halt state when it is running the HLT
instruction. This event is a component in many
key event ratios. The core frequency may change
due to transitions associated with Enhanced
Intel SpeedStep Technology or TM2. For this
reason, this event may have a changing ratio in
regard to time. When the core frequency is
constant, this event can give approximate
elapsed time while the core not in halt state.

This event counts the number of cycles during
which the instruction queue is full. In this
situation, the core front-end stops fetching more
instructions. This is an indication of very long
stalls in the back-end pipeline stages.

This event counts the number of cycles when the
number of instructions in the pipeline waiting
for execution reaches the limit the processor can
handle. A high count of this event indicates that
there are long latency operations in the pipe
(possibly load and store operations that miss the
L2 cache, and other instructions that depend on
these cannot execute until the former instruc-
tions complete execution). In this situation, new
instructions can not enter the pipe and start
execution.

This event counts the number of cycles while

resource-related stalls occur due to:

* The number of load instructions in the
pipeline reached the limit the processor can
handle. The stall ends when a loading in-
struction retires.

* The number of store instructions in the
pipeline reached the limit the processor can
handle. The stall ends when a storing in-
struction commits its data to the cache or
memory.

* There is an instruction in the pipe that can
be executed only when all previous stores
complete and their data is committed in the
caches or memory. For example, the SFENCE
and MFENCE instructions require this be-
havior.

111

Definition

Category (pfmon name)

Description

Pipeline Cycles while stores are blocked due
to store buffer drain

(sb_drain_cycles)

Instruction TLB misses
(itlb:misses)

Memory

Instruction fetch unit misses
(11i_misses)

Memory

Memory Loads blocked by the L1 data cache

(load_block:11d)

Memory Cycles while store is waiting for a
preceding store to be globally
observed

(store_block:order)

Memory Memory accesses that missed the
data TLB

(dtlb_misses:any)

Memory L2 cache demand requests from

this core

This event counts every cycle during which the
store buffer is draining. This includes:

* Serializing operations such as CPUID

* Synchronizing operations such as XCHG

* Interrupt acknowledgment

e Other conditions, such as cache flushing

This event counts the number of instruction
fetches from either small or large pages that
miss the ITLB.

This event counts all instruction fetches that
miss the instruction fetch unit or produce
memory requests. This includes uncacheable
fetches. An instruction fetch miss is counted only
once, not once for every cycle it is outstanding.

This event indicates that loads are blocked due
to one or more reasons. Some triggers for this
event are:

* The number of L1 data cache misses exceeds
the maximum number of outstanding misses
supported by the processor. This includes
misses generated as result of demand
fetches, software prefetches or hardware
prefetches.

* Cache line split loads.

e Partial reads, such as reads to uncacheable
memory, [/0 instructions and more.

* Alocked load operation is in progress. The
number of events is greater or equal to the
number of load operations that were
blocked.

This event counts the total duration, in number
of cycles, which stores are waiting for a preced-
ing stored cache line to be observed by other
cores. This situation happens as a result of the
strong store ordering behavior. The stall may
occur and be noticeable if there are many cases
when a store either misses the L1 data cache or
hits a cache line in the Shared state. If the store
requires a bus transaction to read the cache line
then the stall ends when snoop response for the
bus transaction arrives.

This event counts the number of DTLB misses.
The count includes misses detected as a result of
speculative accesses. Typically a high count for
this event indicates that the code accesses a
large number of data pages.

This event counts all completed L2 cache
demand requests from this core. This includes

112

Definition

Category (pfmon name) Description
(last_level_cache_references) L1 data cache reads, writes, and locked accesses,
L1 data prefetch requests, and instruction
fetches.
Memory L2 cache demand requests from This event counts all completed L2 cache
this core that missed the L2 demand requests from this core that miss the L2
(last_level_cache_misses) cache. This includes L1 data cache reads, writes,
and locked accesses, L1 data prefetch requests,
and instruction fetches.
Memory All bus transactions for this core This event counts all bus transactions for this
(bus_trans_any:self) core. This includes:
* Memory transactions
* 10 transactions (non memory-mapped)
* Deferred transaction completion
* Other less frequent transactions, such as
interrupts
Predictive Retired mispredicted branch This event counts the number of retired branch
instructions instructions that were mispredicted by the
(mispredicted_branch_retired) processor. A branch misprediction occurs when
the processor predicts that the branch would be
taken, but it is not, or vice-versa.
Predictive L1 data cache prefetch requests This event counts the number of times the L1

(11d_prefetch:requests)

data cache requested to prefetch a data cache
line. Requests can be rejected when the L2 cache
is busy and resubmitted later or lost. All
requests are counted, including those that are
rejected.

We collect performance trace measurements using the perfmon2 project on Linux. We

use Python scripts to setup and initiate the performance trace that is performed by the

pfmon tool of perfmon2. The same scripts also capture and convert the performance trace

output to a simple tab-separated format suitable for analysis in statistical software (e.g., R)

and for performance counter super-resolution.

We use a common file format to represent measured performance counter traces, me-

dian reconstructed traces, and super-resolution reconstructed traces. Each file that follows

our format is called an ‘event trace’ file. The trace format is based upon ASCII-encoded text

with tab and newline delimiters.

113

A trace file has four sequential sections called type, metadata, field attributes, and field

data. Each section has a unique line format that allows identification of the start of each

section. We document the trace file syntax using Extended Backus-Naur Form.

Table 6.3: Performance trace file format BNF

Symbol

Expression

event-trace-file

type-section

type

metadata-section
iteration-length

metadata

field-attribute-section
field-names

field-attribute

field-data-section

measurement

name
number

value

type-section metadata-section field-attribute-section
field-data-section

type NEWLINE

“measurements” | “measurements (synthetic) |
“measurements (median)” | “regions”

iteration-length {metadata}
“iteration length” TAB INTEGER NEWLINE

name TAB value NEWLINE

field-names {field-attribute}
“events” TAB “start” TAB “length” {TAB name} NEWLINE

name TAB TAB {TAB value} NEWLINE

{measurement}

TAB INTEGER TAB INTEGER {TAB number} NEWLINE

STRING
INTEGER | FLOATING-POINT
STRING | INTEGER | FLOATING-POINT

(x NOTE: all field-names, field-attribute, and measurement expressions must
have an equal number of name, value, and number fields, respectivly *)

Visualization: We have created a graphical user interface to display the collected meas-
urements, allow a user to specify fusion parameters, and view the resulting super-
resolution reconstruction. The rapid feedback of results as we change the fusion parameters
has been a great help in designing our linear programming formulation and debugging the
entire super-resolution approach. The tool is written in Java, and uses the Mosek library

(written in C) for the linear programming optimizations.

114

F| en6 New synthetic experiment

Synthetic function _Sine wave

006 Reconstruction parameters
Random number generator seed E

X-axis units instruction

Measurements

- -

o

Objective function options

Mean measurement length 1,000,000 z) Use 2-phase delta objective

1,000,000,000 Event rate constraint

2"
=

Measurement length variance . 0.0

O
oF

0.00 | Consecutive measurement constraints

Mean measurement overhead

O
"

0.0

Region boundry options

[} Use uniform-sized regions

Measurement overhead variance . Number of regions

Save to file... ! Show report

Figure 6.8: Synthetic trace and reconstruction parameter controls
Our visualization tool allows the generation of synthetic data sets for study (sine waves, impulse functions, and
instruction mixes from 210, 215, and 219-point DFTs). In addition, there are several parameters for the fu-

sion/reconstruction computation. The controllable parameters are shown.

115

" @ Performance super-resolution e <y 4 @FG0w FrigazPM @
r 3
806

Performance super-resolution

& {g} »

Synthetic Open exp./result Reconstruction idle

Save result

Experiment fields
instruction
floating-point micro-op
integer micro-op
branch micro-op

Reconstruction result

Show all

. [T integer micro-op
v

Reset view

Event rate == Tight measurements === Slack measurements == Regions == Ground truth [I Boundaries

¥ Measurement statistics

0.452% error
0.0 errors per instruction

1,000.0 iterations N 0 errars pe
10.01x resolution increase
Coin-CLP LP solver > 446.6 integer micro-ops
m 5693, 500, 0 e, r57... parameters > 444.6 integer micro-op truth
B 32 77 seconds > 2.011 integer micro-op error
¥ Source upe”mﬂ'“ 0.14712 > 0.089 integer micro-op rate
-0.0 I
Spiral DFT 1K - 5 0, w ... name : Lo rvI\arimﬂ
.011 slac
1,000.0 iterations
5.693 measurements per ite > 3,886.0 active measurements
. Selected 1
28,429 instructions per iterat... ¥ Selected measurements
> 2 meta data 0 measurements
> 5,693 measurements 0.0 integer micro-ops
¥ Measurements used 0.0 integer micra-op truth

0.0 integer micro-op error

>
>
5,693 measurements < "
> 0.0 integer micro-op rate
> 0 meta data -
> 0.0 marginal A
> 4,993.7 length = 5% > 00y +
» 4,993.7 effective length 1 E N :
: 'ng.;ﬁ :v:r:a:,g. factar X 0.23819 ¥ Region statistics M
- av 3.714% error
Selection statistics Reset view 0.0 errors per instruction
¥ Selected measurements = > 3 attributes
0 measurements | C — > 44.4 integer micro-ops
> 0.0 index o M Il > 44.4 integer micro-op truth
> 0.0 length W integer micro-op error
> 0.0 effective length B ™ 1.649 abs. mean
> 0.0 overhang ol = 2.457 std. deviation
> 0.0 overhang factor = L 0.0y
¥ Selected regions = - = 0.0 sum
0 regions -5.0 minimum
> 0.0 index 0.0 median o
> 0.0 length = 7.0 maximum
> 0.0 coverage factor > 0.089 integer micro-op rate
) > -0.0 marginal
Il = »> 0.0 underdetermined regi...__
| | ¥ Selected regions A
0.0 _— 0 regians v
4 0.0 10,000.0 20,000.0 28,429.0 instructions

»
Spiral DFT 1K - s 0, w 28429, | 5000:0.14cv, +0+ 2.0 reconstructed using the Coin-CLP LP - m 5693, 5i 0, o e, r 57, nb

Figure 6.9: Main window of visualization tool
The top plot shows the branch instruction measurements (blue) taken for a portion of a 215-point DFT. The
horizontal axis is the dynamic instruction location of each measurement in SSE2 instructions. The vertical axis is
the rate of branch instructions per SSE2 instructions. Each measurement is 1 million SSE2 instructions long. The
bottom plot shows the reconstruction results (green) and the reference/correct results (grey) for regions with
an average length of 116,163 SSE2 instructions, for a magnification factor of 8.6 times. We used 150 measure-
ments taken from 26 repeated executions of the DFT, and the final reconstruction error is 2.5%.

(Note: See Figure 6.8 for the reconstruction parameters used).

6.2.2 Error characterization

The error imparted by all sources falls into two categories: measurement interrupt error
and steady state error (constant average rate error). In addition, both categories are
variable throughout a program’s execution. Thus, both the mean value and variance of
measurement interrupt error and steady state error are of interest. Table 6.4 summarizes

these four error properties, and their sources.

116

Table 6.4: Performance counter error categories and sources

Measurement interrupt error is amortizable, but longer measurements do not affect steady state error.

Error type Component Sources

Measurement interrupt error fixed amount interrupt service routine overhead
overflow event to instruction capture delay

Measurement interrupt error variable interrupt service routine overhead
overflow event to instruction capture delay

Steady state error fixed rate preemptive multitasking context switches*

Steady state error variable nondeterministic hardware performance
shared execution resources
external interrupts*
voluntary context switches*
nondeterministic execution paths

* sources of large error outliers

Sensitivity to measurement length: We expect that increasing the interval between
overflow interrupts will amortize measurement interrupt error. Thus, we expect total error
to decrease as we increase measurement length. We cannot amortize steady state error,
therefore making measurements longer will never decrease total error below the steady

state error rate.

Individual measurement error distribution: We expect that most measurements will
have low error, with low variance. However, there will be large outliers (many standard
deviations from the mean) due to infrequent, but large impact, occurrences that disrupt
performance. Specifically, external interrupts and non-measurement related context
switches are the major sources of this type of behavior due to their pollution of microarchi-

tectural state.

Sensitivity to platform: We expect the general characteristics of error (sensitivity to
measurement length and error distribution) to be similar across different measured pro-
grams, event trigger sources, and the hardware platforms (processor microarchitectures).

The fundamental sources of error remain the same across all of these dimensions. However,

117

the mean, variance, and exact distribution of error are expected to vary with respect to each

dimension.

6.2.3 Median reconstruction

Median reconstruction of performance traces uses multiple traces, with equal measurement
offsets, to reconstruct a performance trace with a higher signal to noise ratio that the
individual input traces. The measurement-wise median estimator is effective at producing
stable results when given data with large and skewed outliers. A successful median recon-

struction result is defined by:

1. High signal to noise ratio
2. High confidence in median estimates

3. Low input trace collection cost

We collect and reconstruct median performance traces in an adaptive fashion to achieve
a desired level of confidence in the resulting trace. Input traces are collected using direct
event tracing, and the confidence intervals of the median estimates are determined as each
trace is added to the input set. Collection is completed when a desired fraction of measure-

ments meet the target confidence interval, or if a maximum input trace count is reached.

The median reconstruction algorithm has three phases:

1. Acquire a performance trace using direct event tracing.
2. Compute the measurement-wise median confidence intervals using all traces.

3. Repeatsteps 1 & 2 until confidence targets are met.

118

These steps are sufficient to compute a median reconstruction with high confidence in
the result given the following requirements are met (in addition to the direct event tracing

requirements):

1. The measured program has a deterministic instruction stream.
2. Measurement interrupts can be performed at reproducible offsets.

3. Six or more traces are needed to compute the median confidence intervals.

For our experiments to determine the effectiveness of median reconstruction, we
needed to estimate the signal to noise ratio. The computation of the signal to noise ratio
needs accurate estimates of variance. Good variance estimates need large sample sizes,
adding an additional requirement, and additional algorithm steps, to our experimental

methodology.

6.2.4 Super-resolution reconstruction

Performance tracing using performance counters has resolution limits when a given
measurement fidelity is required. A higher fidelity, and/or higher resolution, result can be
reconstructed from multiple sets of low fidelity, low resolution data. This enhancement
process is called super-resolution because it produces higher resolution results than are

possible via direct capture.

We apply super-resolution to performance tracing data to reconstruct lower error and
higher resolution data than is directly measurable. The reconstruction should be robust to
measurement noise and registration error, and require a tractable amount of computation.

A successful super-resolution reconstruction result is defined by:

1. High resolution

119

2. High signal to noise ratio

3. Low computational cost

We reconstruct high-resolution performance traces in four major phases.

1. Acquire and register low-resolution measurements
2. Choose high-resolution regions to reconstruct
3. Solve the reconstruction program

4. Cross-validate to determine confidence of results

We acquire contiguous measurements at a frequency (resolution) that has a low pro-
portion of noise from the interrupts necessary for measurement. Each performance
measurement is made up of: the performance event count, the measurement start position,

and the measurement length.

The performance event count is the integer number of execution events that occur dur-
ing a measurement interval. For example, if we are measuring cache miss events, the event
count is the number of cache misses that occurred between the start and end of a measure-

ment interval.

Event counts are collected at regular intervals using performance counter interrupt on
overflow. Ideally, this event count only includes events caused by the execution of the
instruction stream under study, and does not include noise from the measurement process

or other sources.

The measurement start position and length align (register) each measurement with re-
spect to the execution of the instruction stream under study. The start and length are

collected using the executed instruction performance counter simultaneously with the

120

performance event count. The executed instruction counter must provide deterministic

results for repeated executions of the instruction stream under study to allow for accurate

registration.
fiteration = 73 instructions
I mo = 78 events m; =47 m;
my =65 ms=72
m®.75 = (78, 47, 65, 72) N =4 measurements
sm=(0, 10, 20, 35) Y =1.96 iterations
fm= (10, 10, 15, 10) /m = 8.75 instructions/meas.
| ro I r I3 ry4
r460=(ry, ry, ry rs rg Q =5 regions
sr=(0, 5 9 14, 18) w1 = 1.9x magnification
fr=(5 4, 5 4, 5) fr = 4.60 instructions/region

Solver given {m, sm, fm, sr, fr}
requires: Y > 1, 3fr = fiteration

typically: u>1, N> Q

Figure 6.10: Super-resolution problem setup
An illustrative example of a super-resolution reconstruction problem, with 4 measurement inputs, solving for 5
smaller regions. This experiment has few iterations, and is therefore is under-constrained, to keep its size down

for clarity.

121

lexmin w'¥) subject to Ax = b
X

lexicographic minimize: objectives
w(t) = em*;+ em*; + em*; + em*; + em + em'; + em’ + em’s
w = 45dr*+45dr* +45dr* + 45dr* s+ 45drl o+ 45 drl + 4.5 drly + 4.5 drls +

2.25dr?*o + 2.25 dr?ty + 2.25 dr?*; + 2.25 dr¥ + 2.25 dr?y + 2.25 dr?,

subject to: constraints variables
78 = rp+r1+Gp,2+10 em* - 10 emy i
47 = G1,2+r3+Gy 4+ 10em*; - 10 em; J
65 = Gya+rg+ri1+Gy+15em*; -15em>;
72 = G3,,+r3+Gz 4+ 10 em*s - 10 em: T
G
0 = r2-Go,2-Gy,2 em®;
0=r-G2-Gs2 em’;
0= r4-G1,4-Gz_4 drl"j
0< -Gz dl‘l'j
dr?;
0< I'z-Goyz—Gg,z drz',-

= Ysro-ari+drto - drly
= Yari-Ysry+drtty - drly
= Ysry-Yars +drtt - drl,
= Yars-Ysra+drits - dris

o O o o
|

0 = Ysro-Ysra+dr?y - dr¥y
0 = Yari-Yars+dr?* - drry
0 = Ysry-Ysra+dr?, - dr¥,

Figure 6.11: Super-resolution reconstruction linear programming

The constraint and objective equations for the previous illustrative example.

6.3 Results

We present our initial results in performance counter error characterization and super-

resolution reconstruction performance.

6.3.1 Performance counter error

We required a more detailed empirical characterization of performance counter error than

previous work. In this section, we examine performance counter error when collecting

122

performance traces. There are four dimensions to study: measurement length, applications,

event trigger sources, and processor microarchitecture.

Our goal is to minimize measurement length to provide the best input resolution for su-
per-resolution reconstruction. We will determine empirical values for the fixed and variable
components of measurement input error and steady state error. Finally, we will evaluate
performance counter error characteristics across a range of applications, event trigger

sources, and processor microarchitectures.

— 1200 A
3
(8]
S 1000 1
S
S 800 - y = 0.004x + 333.2
= R2=0.986
[}
£ 600 T
o
2 ‘ -
g 400 D~
E W &F
& 200 T
[}
S
0 T T T T T T 1
0 25,000 50,000 75,000 100,000 125,000 150,000 175,000

Measurement length (instructions)

Figure 6.12: Performance counter error vs. measurement length
IntersetMO() with the cycle counter on a Core 2.

We selected one representative function and the one event source (cycles) since the cy-
cle count is a summation of all other performance related events. Total error matches our
hypothesis of constant average rate of steady state error plus a relatively stable amount of
measurement interrupt error (fixed overhead). The regression equation tells us the steady
state error rate (the error floor), and the size of the measurement interrupt error. We can

also convert the R? value to a variance number for the measurement interrupt error.

123

X
15% - J * maximum x
99th percentiles +

minimum x

10% —

5% x

Deviation from median

i+
o+
i+
oA+
A+ x
A
i
Ax
Ax
A<

x|+

x|
]

0 FL rL VI‘ X i
0% median
1

1k 10 k 100 k 1M 10M 100 M
Measurement length (instructions)

Figure 6.13: Performance counter error deviation from median

Next we look at the distribution of error at each point. In the previous charts we only
looked at the mean error value. In this chart we use box plots, plus plots of the minimum
and maximum errors to show the distribution characteristics of error. First, we see our
hypothesis of a few large outliers is true. There is a big gap between the 99t percentile and
the maximum value. Each measurement length has roughly the same distribution, with a
cluster of points at the minimum value (note the exact overlap of the minimum and 99t

percentile), and then a heavy positive tail.

124

3.5% ~
3%
2.5%
2%
1.5% 4
1% -
0.5% -
0%

Probability

0% 2% 4% 6% 8% 10% 12%

Cumulative distribution
()]
o
x
| I T N N N I I |
—

0% 2% 4% 6% 8% 10% 12%
Deviation from median

Figure 6.14: Distribution of error deviation from median

Finally, we take a look at the exact distribution of error for just one data point (100,000
instructions measurement length, in this case). We see a large concentration of measure-
ments that match at a minimum value. Note that the measurements used in all the plots for
section 2.5 are collected throughout the entire function, covering many different types of
execution, and normalized to provide this convenient data set. Next, we see a normal
distribution around the median, and a very heavy tail to the maximum. This portrays the
same data as the previous plot. The 99t percentile is at about 1% deviation from the

median, while the maximum is at 11%.

6.3.2 Initial reconstruction performance

We can verify the correct functioning of our super-resolution algorithms only if we know

the ‘correct’ number of events for the small regions of execution that we reconstruct. We

125

can ‘know’ the correct values in two ways (1) by measuring at the same high resolution as
the super-resolution reconstruction, or (2) by collecting a reference data set with emulation
or simulation. The first approach of simply trying to measure at the same high resolution as
our reconstruction will not work well because of the additional error in high-resolution
measurements. This error is exactly what we hope to reduce with super-resolution. The
second approach requires a cycle accurate simulator to produce the ‘correct’ number of
microarchitectural events. However, functional instruction emulation is sufficient to vali-
date super-resolution on architectural events such as instruction mix performance

counters.

Purely synthetic data sets can also be used to tune our super-resolution algorithms. In
addition, we can add controllable amounts of variability to the measurements to determine
the error response of our algorithms. We have begun validation of our best to date super-
resolution algorithms on synthetic data sets (sine wave and impulse functions) and real
data collected on a Core 2 Duo running a SPIRAL [Piischel et al. 2005] generated 215-point,
double precision, complex discreet Fourier transform. However, for brevity we present only
our results on real data collected from the Core 2 Duo processor executing the 215-point

DFT.

We collect a dynamic instruction trace from the same binary that we measure with the
performance counters. The trace is collected by instrumenting the binary in memory using
the Pin 2.0 for [A-32 binary instrumentation tool. We collect every PC that is executed,
including system call code. We then lookup the assembly code of each PC from the disas-
sembly of the binary. Finally, we classify each opcode to match the instruction mix
performance counters for branches and SSE2 instructions, as well as memory load and store

operations.

126

Table 6.5: Reconstruction sensitivity to number of measurements
215-point DFT super-resolution, error generally decreases with more measurements, but reconstruction runtime

increases.

Super-resolution reconstruction error

Measurements () Magnification | Instructions retired Branches retired Reconstruction runtime
1000 40 6.9x 4.6% 3.5% 15 sec
500 40 6.9x 4.9% 2.6% 6.9 sec
200 40 6.9x 5.3% 2.1% 2.9 sec
75 40 6.9x 31% 16% 0.951 sec

Table 6.6: Reconstruction sensitivity to order of consecutive measurement constraints

Error generally decreases with higher order constraints, but reconstruction runtime increases.

Super-resolution reconstruction error

Measurements = Q Magnification | Instructions retired Branches retired Reconstruction runtime
500 100 6.9x 4.9% 2.5% 23 sec
500 40 6.9x 4.9% 2.6% 6.9 sec
500 20 6.9x 8.7% 3.2% 3.4 sec
500 2 6.9x 14% 6.5% 0.16 sec

Table 6.7: Reconstruction sensitivity to magnification

Error generally increases with higher magnification, and reconstruction runtime increases.

Super-resolution reconstruction error

Measurements () = Magnification | Instructions retired Branchesretired Reconstruction runtime
500 40 17.2x 13% 8.1% 22 sec
500 40 6.9x 4.9% 2.6% 6.9 sec
500 40 5.2x 3.2% 2.3% 5.3 sec
500 40 1.7x 3.0% 1.4% 1.8 sec

6.3.3 Super-resolution reconstruction performance

We present our initial results of our super-resolution reconstruction algorithm on the Core
2 platform while measuring the Intel IPP benchmark suite. Figure 6.15 illustrates the
increasing perturbation introduced by performance counter interrupts. The effective
resolution of approximately 100,000 instructions is evident from the mean error per

measurement as compared to the median value for each measurement. A variable number

127

of repeated runs (minimum 30) were collected to compute the median measurement value

with high confidence.

2.66 GHz Core 2 Conroe
Intel IPP ray-scene intersection engine
IntersectMO()

20%

15% . .
Mispredicted branches

s Error per measurement

10%
5%
Prefetch requests
0%
1,000 10,000 100,000 1,000,000 10,000,000

s \leasurement size (instructions)

Figure 6.15: Performance counter resolution limits
Effective resolution limit is at approximately 100,000 instruction resolution.

Next, we investigate the sensitivity of reconstruction error to input measurement error.
We introduced synthetic error that matched the empirical distributions measured to a
performance trace of the IPP benchmark IntersectMO. Figure 6.16 shows the linear rela-
tionship between magnification and reconstruction error for multiple values of input

measurement error.

128

20%
5.0% meas. error

15%

10%

0.5% meas. error

5%

0.0% meas. error

e Reconstruction error
o

0%
20 40 60 80 100
Magnification of reconstruction g
1x =100,000 instructions 100x = 1,000 instructions

Figure 6.16: Super-resolution magnification sensitivity

Worse reconstruction results as input measurement error increases.

The slope of the linear correlation between magnification and reconstruction error is
plotted in Figure 6.17 to show how we can increase the number of input program iterations

to improve reconstruction error.

129

-8 1,000 program iterations 5% measurement error
© 0.25 0.25
§ X
% 0.20 0.20
S ® ®
O
g 0.15 % 0.15 x
§ 0.10 x 0.10
o X
@ 0,05 0.05
= X
¢ 0 0
0 1.25 2.5 3.75 5 0 1000 2000 3000 4000
Measurement errors==p- <= Program iterations

Figure 6.17: Super-resolution program iteration sensitivity
Better results with more iterations, but longer computation is required to perform the reconstruction.
Finally, the super-linear impact on the reconstruction runtime of increasing the input
size, and thus the number of constraints, is plotted in Figure 6.18. Thus, while collection of
data may not be a constraining factor, the runtime requirements of the reconstruction are

usually the limiting factor in super-resolution.

130

200s
Coin CLP linear program solver

X

2.0 GHz Core 2
o 160s X
= X
£
el pas
c 120s X
(@]
] X
S
S 80s "EBS
s X
o X
o X

40s y %
x X *
Os x X X
0 1000 2000 3000 4000

Program iterations s

Figure 6.18: Super-resolution reconstruction runtime

There is significant future work in reducing the reconstruction runtime with LP refac-
toring. In addition, better model-fitted solutions than the bilateral total variation
regularization may reduce reconstruction error. Finally, support for multi-threaded, non-

deterministic programs would increase the applicability of this approach.

131

7 Conclusion

To address the need for improved simulation accuracy and performance, we propose the
Sampling Microarchitecture Simulation (SMARTS) framework that applies statistical sam-
pling to microarchitecture simulation. Unlike prior approaches to simulation sampling,
SMARTS prescribes an exact and constructive procedure for sampling a minimal subset of a
benchmark’s instruction execution stream to estimate the performance of the complete
benchmark with quantifiable confidence. The SMARTS procedure obviates the need for full-
stream simulation by basing the strategy for optimal simulation sampling on the outcomes

of fast sampling simulation runs.

We evaluated the SMARTS framework in the context of a wide-issue out-of-order super-
scalar simulator running the SPEC CPU2000 benchmark suite under two simulated
processor configurations, as well as a full system 16-way multiprocessor simulation.
SMARTSim, an implementation of SMARTS, is created by modifying SimpleScalar’s sim-
outorder to support systematic sampling. The results of our evaluations demonstrated the
following: (1) SMARTSim achieves an actual average error of only 0.64% on CPI and 0.59%
on EPI by simulating fewer than 50 million instructions in detail per benchmark. (2) By
simulating exceedingly small fractions of complete benchmarks, SMARTSim achieves speed-
ups of 35 and 60 times over full-stream simulation with sim-outorder for the two

configurations.

The main performance bottleneck of SMARTS is the construction of accurate model state
for each measurement by continuously warming large microarchitectural structures (e.g.,

caches and the branch predictor) while functionally simulating the billions of instructions

132

between measurements. This conservative approach, called functional warming, is applied
to over 99% of each benchmark application. The speed of functional warming can be greatly
accelerated using direct execution, or even hardware prototypes with limited detail except

for the large, but simple, microarchitecture structures to be warmed.

We investigated replacing functional warming with checkpoints without sacrificing ac-
curacy (we called this checkpointing framework TurboSMARTS). Checkpoints can be
processed in random rather than program order, allowing simulation results and their
statistical confidence to be reported while simulations are in progress. In addition, check-
points can be processed independently, enabling parallel simulators that greatly reduce

simulation latency.

SMARTS and TurboSMARTS offer accurate performance estimates (with a high quantifi-
able confidence) by taking a large number (e.g, 10,000) of short performance
measurements over the full length of a benchmark. This simple random sampling does not
exploit the often repetitive behaviors of benchmarks, collecting many similar, and possibly
redundant, measurements. By identifying repetitive behaviors, we can apply stratified
random sampling to achieve the same confidence as simple random sampling with far fewer
measurements. We performed an oracle limit study of optimal stratified sampling of
SPEC CPU2000 benchmarks to demonstrate that measurement can be reduced by 43 times

over simple random sampling while matching result accuracy and confidence.

We evaluated three practical approaches for selecting strata, offline and online program
phase detection, and IPC profiling. Program phase detection is attractive because it can be
microarchitecture independent, while IPC profiling directly minimizes stratum variance,
therefore minimizing sample size. Our results indicate that: (1) program phase detection

falls far short of optimal opportunity, (2) IPC profiling requires expensive microarchitec-

133

ture-specific analysis, and (3) these methods require large sampling unit sizes to make

strata selection feasible, offsetting their reductions of sample size.

The outcomes of this study have a fundamental bearing on simulator design. Designers
should not attempt to accelerate detailed simulators at the cost of coding complexity or
abstraction errors; instead designers should focus on increasing the simulator’s flexibility
and realism. For example, the SMARTS measurement framework has been successfully
integrated into the Liberty Simulation Environment (LSE) by researchers at Princeton
University [Penry, Vachharajani, and August 2005]. LSE is a computer architecture simula-
tion infrastructure, which models microarchitecture at a structural rather than behavioral
level of abstraction. As such, LSE models match hardware closely, but simulation is an order
of magnitude slower than sim-outorder. Integration of SMARTS into LSE made typical
simulation times tractable. The multiprocessor simulator, Flexus [Hardavellas et al. 2004],
also employs the SMARTS measurement framework. Flexus implements a detailed microar-
chitecture model with sampling support to enable fast turnaround times on large server

benchmarks.

The large speedup and parallelism enabled through statistical sampling and checkpoint-
ing have important implications for the design of future computer system simulators. First,
the large speedups from sampling let simulator authors focus on designing flexible, modular
simulators rather than optimizing for speed at all costs. Second, although hardware proto-
types have many other advantages, it is not clear that they can reduce experiment
turnaround time relative to sampled simulations. Finally, the 100 to 1,000 way parallelism
available across measurements mitigates the need to multithread detailed simulation

models.

134

While our opportunity study of stratified sampling shows promise for reducing sample
size, our analysis of practical stratification techniques indicates little advantage over simple
random sampling. Program phase detection stratification achieves only a small fraction of
the available opportunity, since the discovered homogenous instruction footprints do not
translate to homogenous performance. IPC profiling requires expensive and potentially
non-portable stratification that is not justified by improvements in sample size. Neither
approach improves in total measurement over simple random sampling because stratifica-
tion cannot be performed at small sampling unit sizes. A promising approach that attempts
to select low-variance strata is EXPERT [Liu and Huang 2004] that splits the instruction
stream at large code loop and subroutine boundaries. Unfortunately, no comparison has yet
been made with either SMARTS or SimPoint to determine EXPERT’s relative performance in

reducing sample size.

Thus, we conclude that future work remains for stratified sampling to provide perform-
ance improvements with statistical confidence intervals. In addition, our empirical efforts to
minimize warming periods for microarchitectural state have room for improvement. More
rigorous frameworks may be established to better define shorter warming periods and

tighter error bounds.

135

Bibliography

AGARWAL, A., HENNESSY, J., AND HOROWITZ, M. 1988. Cache performance of operating system and multiprogramming
workloads. ACM Trans. Comput. Syst. 6, 4, 393-431.

ALAMELDEEN, A. R,, Woob, D. A. 2003. Variability in architectural simulations of multithreaded workloads. In

Proceedings of the 9t International Symposium on High-Performance Computer Architecture, Feb. 2003.

BAKER, S., AND KANADE, T. 2002. Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach.
Intell. 24,9, 1167-1183.

BARR, K. C., PAN, H., ZHANG, M., AND AsaNovic, K. 2005. Accelerating multiprocessor simulation with a memory
timestamp record. In Proceedings of the International Symposium on Performance Analysis of Systems and
Software, Mar. 2005.

BRrOOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th Annual International Symposium on Computer Architecture,
June 2000.

BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar tool set, version 2.0. Tech. Rep. 1342, Computer Sciences

Department, University of Wisconsin—-Madison, June 1997.

BURTSCHER, M. AND GANUSOV, I. 2004. Automatic synthesis of high-speed processor simulators. In Proceedings of the
37th Annual IEEE/ACM International Symposium on Microarchitecture, Dec. 2004.

CaIN, H.W., LEPAK, K. M., SCHWARTZ, B. A., AND LIPASTI, M. H. 2002. Precise and accurate processor simulation. In

Workshop on Computer Architecture Evaluation using Commercial Workloads, HPCA, Feb. 2002.

CALLISTER, J. 2006. The future of hardware performance monitors - What can we count on? In Workshop on

Functionality of Hardware Performance Monitors at MICR0O-39, Dec. 2006.

CHEN, S. 2004. Direct SMARTS: Accelerating microarchitectural simulation through direct execution. MS Thesis,

Electrical and Computer Engineering, Carnegie Mellon University, June 2004.

CoNTE, T. M., HIRSCH, M. A., AND MENEZES, K. N. 1996. Reducing state loss for effective trace sampling of superscalar

processors. In Proceedings of the 14th International Conference on Computer Design, Oct. 1996.

DEAN, J., HICKS, J. E., WALDSPURGER, C. A., WEIHL, W. E., AND CHRYS0S, G. 1997. ProfileMe: hardware support for
instruction-level profiling on out-of-order processors. In Proceedings of the 24th Annual International

Symposium on Computer Architecture, June 1997.

DONGARRA, |, LONDON, K., MOORE, S., Mucc, P., TERPSTRA, D., You, H. ET AL. 2003. Experiences and lessons learned with
a portable interface to hardware performance counters. In Proceedings of the Int. Parallel Distributed

Process. Symp., Apr. 2003.

EAsTON, M. C. AND FAGIN, R. 1978. Cold-start vs. warm-start miss ratios. Commun. ACM 21, 10, 866-872.

136

EECKHOUT, L., NUSSBAUM, S., SMITH, J. E., AND BOSSCHERE, K. D. 2003. Statistical simulation: Adding efficiency to the

computer designer’s toolbox. [EEE Micro 23, 5, 26-38.

EEckHOUT, L., Luo, Y., DE BOSSCHERE, K., AND JoHN, L. K. 2005. BLRL: Accurate and efficient warmup for sampled

processor simulation. The Comput. Journal 48, 4, 451-459.

EKMAN, M. AND STENSTROM, P. 2005. Enhancing multiprocessor architecture simulation speed using matched-pair
comparison. In Proceedings of the IEEE international Symposium on Performance Analysis of Systems and
Software, Mar. 2005.

FARSIU, S., ROBINSON, D., ELAD, M., AND MILANFAR, P. 2003. Robust shift and add approach to super-resolution. In

Proceedings of the SPIE Conf. Applicati. Digital Image Process., Jan. 2003.

FARSIU, S., ROBINSON, D., ELAD, M., AND MILANFAR, P. 2004. Fast and robust multiframe super resolution. IEEE Trans.
Image Process. 13,10, 1327-1344.

FALCON, A., FARABOSCHI, P., AND ORTEGA, D. 2007. Combining simulation and virtualization through dynamic
sampling. In Proceedings of the International Symposium on Performance Analysis of Systems and Software,
Apr. 2006.

FIELDS, B. A., BoDIK, R, HILL, M. D., AND NEWBURN, C.]. 2004. Interaction cost and shotgun profiling. ACM Trans.
Architecture Code Optimization 1, 3, 272-304.

GIRBAL, S., MOUCHARD, G., COHEN, A., AND TEMAM, O. 2003. DiST: A simple, reliable and scalable method to
significantly reduce processor architecture simulation time. In Proceedings of the International Conference

on Measurement and Modeling of Computer Systems, June 2003.

HAMERLY, G., PERELMAN, E., LAU,]., AND CALDER, B. 2005. SimPoint 3.0: Faster and more flexible program analysis.

Journal on Instruction-Level Parallelism, Sept. 2005.

HARDAVELLAS, N., SoM0GY], S., WENIscH, T. F., WUNDERLICH, R. E., CHEN, S., KiM, ., FALSAFI, B, HOE, |. C., AND NOWATZYK, A.
G. 2004. SimFlex: a fast, accurate, flexible full-system simulation framework for performance evaluation of
server architecture. SSGMETRICS Perform. Eval. Rev. 31, 4, 31-34.

HASKINS, J. W. AND SKADRON, K. 2001. Minimal Subset Evaluation: Rapid warm-up for simulated hardware state. In

Proceedings of the 19th International Conference on Computer Design, Sept. 2001.

HASKINS, J. W. AND SKADRON, K. 2003. Memory Reference Reuse Latency: Accelerated warmup for sampled
microarchitecture simulation. In Proceedings of the International Symposium on the Performance Analysis of

Systems and Software, Mar. 2003.

HANKINS, R., DIEP, T., ANNAVARAM, M., HIRANO, B. ERI, H., NUECKEL, H., SHEN,]. P. 2003. Scaling and characterizing
database workloads: Bridging the gap between research and practice. In Proceedings of the 36th Annual

IEEE/ACM international Symposium on Microarchitecture, Dec. 2003.

HELLERSTEIN,]. M., HAAS, P.]., AND WANG, H.]. 1997. Online aggregation. In Proceedings of the 1997 ACM SIGMOD

International Conference on Management of Data, May 1997.
HENNING, J. L. 2000. SPEC CPU2000: Measuring CPU performance in the new millennium. Computer 33, 7, 28-35.

HiLL, M. D., AND SMITH, A.]. 1989. Evaluating associativity in cpu caches. IEEE Transactions on Computers 38,12,
1612-1630.

137

Hsu, W. C., CHEN, H., AND YEW, P. C. 2002. On the predictability of program behavior using different input data sets.
In Workshop on Interaction between Compilers and Computer Architectures, HPCA, Feb. 2002.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION 2002. ASN.1 encoding rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER). ISO/IEC 8825-
1:2002 | ITU-T Rec. X.690.

IYENGAR, V. S., TREVILLYAN, L. H., AND BOSE, P. 1996. Representative traces for processor models with infinite cache.

In Proceedings of the 2nd IEEE Symposium on High-Performance Computer Architecture. Feb. 1996.

JaIN, R. K. 2001. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design,

Measurement, Simulation, and Modeling. Wiley-Interscience, New York, NY.

KESSLER, R. E., HILL, M. D., AND Woo0D, D. A. 1994. A comparison of trace-sampling techniques for multi-megabyte
caches. IEEE Trans. Comput. 43, 6, 664—675.

KORN, W., TELLER, P.], AND CASTILLO, G. 2001. Just how accurate are performance counters? In Proceedings of IEEE

Int. Conf. Performance Computing Commun., Apr. 2001.

LAFAGE, T. AND SEZNEC, A. 2000. Choosing representative slices of program execution for microarchitecture
simulations: A preliminary application to the data stream. In IEEE Workshop on Workload Characterization,
ICCD, Sept. 2000.

LAHA, S., PATEL, J. H., AND IYER, R. K. 1988. Accurate low-cost methods for performance evaluation of cache memory
systems. IEEE Trans. Comput. 37,11, 1325-1336.

LAU,]., SAMPSON, |., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2005. The strong correlation between code signatures
and performance. In Proceedings of the International Symposium on Performance Analysis of Systems and
Software, Mar. 2005.

LAUTERBACH, G. 1994. Accelerating architectural simulation by parallel execution of trace samples. In Proceedings

of the 27th Hawaii International Conference on System Sciences, Jan. 1994, Vol. 1: Architecture, 205-210.

LEVY, P. S. AND LEMESHOW, S. 1999. Sampling of Populations: Methods and Applications. Wiley-Interscience, New
York, NY.

Liu, W., AND HUANG, M. C. 2004. EXPERT: Expedited simulation exploiting program behavior repetition. In
Proceedings of the International Conference on Supercomputing, Jun. 2004, 126-135.

MAGNUSSON, P. S., CHRISTENSSON, M., ESKILSON,]., FORSGREN, D., HALLBERG, G., HOGBERG,]., LARSSON, F., MOESTEDT, A.,

WERNER, B. 2002. Simics: A full system simulation platform, Computer 35, 2, 50-58.

MAXWELL, M. E., TELLER, P.]., SALAYANDIA, L., AND MOORE, S. 2002. Accuracy of performance monitoring hardware. In
Proceedings of the LACSI Symp., Oct. 2002.

PARK, S. C., PARK, M. K., AND KANG, M. G. 2003. Super-resolution image reconstruction: a technical overview. [EEE
Signal Processing Mag. 20, 3, 21-36.

PELLEG, D. AND MOORE, A. 1999. Accelerating exact k-means algorithms with geometric reasoning. In Proceedings of
the Fifth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, Aug. 1999.

138

PENRY, D. A., VACHHARAJANI, M., AND AuGUST, D. I. 2005. Rapid development of flexible validated processor models. In

Proceedings of the Workshop on Modeling, Benchmarking, and Simulation, ISCA, Nov. 2005.

PERELMAN, E., HAMERLY, G., AND CALDER, B. 2003. Picking statistically valid and early simulation points. In

Proceedings of the International Conference on Parallel Architectures and Compilation Techniques, Sep. 2003.

PHAM, T. Q., VAN VLIET, L.]., SCHUTTE, K. 2005. Influence of Signal-to-Noise Ratio and Point Spread Function on

Limits of Super-Resolution. Image Processing Algorithms and Systems 4, 5672, 169-180.

PUSCHEL, M., MOURA4,]. M. F., JOHNSON,]., PADUA, D., VEL0SO, M., SINGER, B. ET AL. 2005. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE 93, 2, 232-275.

REINHARDT, S. K., HILL, M. D., LARUS,]. R., LEBECK, A. R., LEWIS,] C., AND WooD, D. A. 1993. The Wisconsin Wind Tunnel:
Virtual prototyping of parallel computers. In Proceedings of the ACM SIGMETRICS Conference on Measurement

and Modeling of Computer Systems, May 1993.

SHERWOOD, T., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2002. Automatically characterizing large scale program
behavior. In Proceedings of the 10t International Conference on Architectural Support for Programming

Languages and Operating Systems, Oct. 2002.
SMITH, A.]. 1982. Cache memories. ACM Comput. Surv. 14, 3, 473-530.
SPRUNT, B. 2002. The basics of performance-monitoring hardware. I[EEE Micro 22, 4, 64-71.

VAN BIESBROUCK, M., EECKHOUT, L., AND CALDER, B. 2005. Efficient sampling startup for sampled processor
simulation. In Proceedings of the International Conference on High Performance Embedded Architectures and
Compilers, Nov. 2005.

WENIscH, T. F., WUNDERLICH, R. E., FASAFI, B., AND HOE, J. C. 2006. Simulation sampling with Live-points. In

Proceedings of the International Symposium on Performance Analysis of Systems and Software, Mar. 2006.

WENIscH, T. F., WUNDERLICH, R. E., FERDMAN, M., AILAMAKI, A., FASAFI, B., AND HOE, J. C. 2006. SimFlex: Statistical
Sampling of Computer System Simulation, IEEE Micro Special Issue on Computer Architecture Simulation and
Modeling 26, 4, Jul. 2006.

Woopb, D. A, HiLL, M. D., AND KESSLER, R. E. 1991. A model for estimating trace-sample miss ratios. In Proceedings of

the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, May 1991.

WUuNDERLICH, R. E., WENIScH, T. F., FALSAFI, B., AND HOE, J. C. 2003. SMARTS: Accelerating microarchitecture simulation
via rigorous statistical sampling. In Proceedings of the International Symposium on Computer Architecture,
June 2003.

WUNDERLICH, R. E., WENIScH, T. F., FALSAFI, B., AND HOE,]. C. 2004. An evaluation of stratified sampling of
microarchitecture simulations. In Third Annual Workshop on Duplicating, Deconstructing, and Debunking,
ISCA, June 2004.

WUuNDERLICH, R. E., WENIScH, T. F., FALSAFI, B., AND HOE,]. C. 2006. Statistical sampling of microarchitecture
simulation. ACM Trans. Modeling and Computer Simulation 16, 3, 197-224.

Y1,].]., KODAKARA, S. V., SENDAG, R, LiLjA, D. J., AND HAWKINS, D. M. 2005. Characterizing and comparing prevailing
simulation techniques. In Proceedings of the 11th International Symposium on High-Performance Computer
Architecture, Feb. 2005.

139

