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Abstract 

Pipelining a datapath by hand is tedious and error prone, as it requires a designer to 

reason about overlapped concurrent execution of sequentially dependent operations in 

different pipeline stages. Nevertheless, doing so is often necessary to meet performance 

targets and improve efficiency. Automation techniques have been proposed to reduce the 

manual effort in designing, implementing, and verifying pipelines. Nevertheless, they are 

limited in the extent and form of automation that they can do, and the type and size of 

designs that they can handle. 

This thesis presents the transactional datapath specification (T-spec) and the 

technology (T-piper) to automatically synthesize and formally verify in-order pipeline 

implementations from it. T-spec elevates design abstraction by allowing a designer to 

reason about a sequential system at the transactional level, where state transformations 

happen in a single step, thereby relieving designer’s burden to resolve subtle corner cases 

from concurrent execution due to pipelining. Unlike previous works, the proposed 

approach can automatically identity and place forwarding paths, support general value 

speculation (i.e., on any state, with custom predictors), and automatically perform 

scalable verification using compositional model checking. Further, it improves upon 

existing processor-specific works since it can handle any sequential designs. Finally, it is 

extendable to do multi-treaded pipeline synthesis, a novel capability not achievable by 

any previous work. The technology has been made available online at www.t-piper.net, 

and its effectiveness has been demonstrated by various design case studies. 
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Chapter 1 

Introduction 

Pipelining [31] is a widely-used microarchitecture performance enhancement 

technique. It divides the critical path of a sequential circuit into multiple stages separated 

by pipeline registers, thereby reducing the critical path delay and increases clock 

frequency. To improve pipeline throughput and efficiency, multiple operations are 

allowed to simultaneously execute at the different pipeline stages. However, if an 

operation is dependent on the result of an older operation that is still in the pipeline, a 

condition known as a data hazard, it has to stall the pipeline to wait for the older 

operation to complete execution and commit the result. Forwarding (or bypassing) and 

speculation are common pipeline optimization techniques that allow early resolution of 

data hazards, and therefore improve performance by reducing the amount of pipeline 

stalls. Multi-threading is another optimization technique that improves pipeline efficiency 

when executing multiple sequences of operations, or threads, by allowing pipeline 

resources to be shared among these threads.  

Manual pipeline development is tedious and error prone, as it requires a designer to 

reason with concurrent execution of sequentially dependent operations in the different 

pipeline stages, involving many possible scenarios and complicated corner cases. 
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Nevertheless, doing so is often necessary in practice to meet performance targets and 

improve efficiency.  

To address this issue, many existing studies have proposed techniques to automate 

pipeline development. Some studies [9][19][25][27][28][30][33][39][47][58][71] target 

the design and implementation phases, by proposing automatic synthesis of pipeline 

implementations directly from a high-level design specification. Others studies 

[1][2][10][26][37][42][43][57][68] focus on the verification phase, by proposing 

techniques to ensure that a pipeline implementation is functionally equivalent to its high-

level specification. However, these studies are limited in the extent and form of 

automation that they can do, and the type and size of designs that they can handle. 

More specifically, with regards to automatic pipeline synthesis, existing works suffer 

from the following shortcomings. First, some of them target only instruction-set 

processors, limiting the scope of the designs that can be pipelined. Second, they cannot 

automatically identify forwarding opportunities and place forwarding paths, an effort that 

can be prohibitively expensive for designs with large number of states and pipeline 

stages. Third, they only accommodate restricted form of speculation, or not at all, even 

though sophisticated form of speculation is commonly found in commercial pipelines. 

Finally, all the aforementioned works target only in-order pipelines without any multi-

threading support, although multi-threading has gained popularity in practice, as is 

evident by its adoption in commercial pipelines, such as in Intel Atom® [24] and Sun 

Niagara® [32] processor pipelines. 
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In terms of automatic pipeline verification, various studies [1][2][68] have mostly 

focused on automatic generation of test cases to be used for simulation-based validation. 

However, validation typically suffers from long simulation time, resulting in the inability 

to test the entire design space in practice. Others [10][26][37][42][43][57] target formal 

verification, which promises full design space coverage but generally suffers from 

scalability limit and/or the need for large manual effort. 

1.1. Transactional Datapath Specification, Synthesis, and Verification 

This thesis presents the transactional datapath specification framework (T-spec) and 

the transactional design automation system (T-piper) to automatically synthesize and 

formally verify in-order pipeline implementations from it.  

The basis of the automation work presented in this thesis is the novel T-spec, which 

makes pipeline synthesis problem solvable. T-spec captures an abstract datapath, whose 

execution semantics is interpreted as a sequence of “transactions” where each transaction 

reads the state values left by the preceding transaction and computes a new set of state 

values to be seen by the next transaction. T-spec exposes sufficient information about 

state accesses that can occur in a datapath, which is necessary for performing precise data 

hazards analysis, and eventually pipeline synthesis. Furthermore, not only T-spec makes 

pipeline synthesis possible, but its precise semantics also makes functional verification 

between the T-spec datapath and the synthesized pipeline implementation natural to do. 
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Figure 1. Overview of the thesis work. 

1.2. Thesis Contributions 

The overview of the thesis work is presented in Figure 1, which illustrates the T-piper 

pipeline synthesis and verification technologies enabled by T-spec. More specifically, the 

contributions of this thesis work are as follows. 

The transactional datapath specification (T-spec) [47][48]. T-spec elevates design 

abstraction by allowing a designer to reason about a system at the transaction level, 

where state transformations happen in a single step. This relieves designer’s burden from 

having to resolve subtle corner cases associated with the concurrent overlapped execution 

caused by pipelining. T-spec makes pipeline synthesis problem solvable, and is highly 

amenable to microarchitecture synthesis in general. 
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T-piper in-order pipeline synthesis [47][48]. Starting from a datapath specified in 

T-spec and the desired pipeline stage boundaries (P-cfg), automated analysis can be done 

to gather information about data hazards that can be used in pipeline synthesis and 

verification. The analysis generates a hazard resolution configuration (H-cfg), which 

describes all hazard resolution opportunities (i.e., forwarding, speculation) and the 

suggested resolution strategy according to some predefined schemes. Alternatively, a 

designer can manually modify H-cfg to target a particular resolution strategy of interest.  

After the data hazard analysis, automatic pipeline synthesis can then generate the 

desired pipelined implementation. Unlike previous works, the proposed approach can 

pipeline any arbitrary datapath, automatically identify and place forwarding paths, and 

support general value speculation.  

Case studies using T-spec and T-piper [48][51] demonstrate that: (1) a synthesized 

MIPS 5-stage pipeline is comparable in performance and area to a hand-made one, as 

well as one generated by an existing processor development framework; (2) rapid design 

space exploration of x86-subset processor pipelines varying in pipeline depths, 

forwarding schemes, and speculation schemes is achievable; and (3) the automation 

capability of T-spec and T-piper allows investigation of various application-specific 

customizations to significantly reduce the costs of supporting a sophisticated CISC ISA 

such as the x86. 

T-piper in-order pipeline verification [49]. Alongside synthesis, a verification file 

can be automatically generated. The file contains verification models of the T-spec and 

the synthesized pipeline, along with the appropriate abstractions and proof 
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decompositions. The file can be submitted to a compositional model checker to formally 

verify that the synthesized pipeline is functionally equivalent to its T-spec, under the 

transactional execution semantics.  

Unlike existing works on simulation-based validation, the proposed approach 

employs a formal technique, and therefore can cover the entire design space. Relative to 

other formal techniques, compositional model checking is more scalable, since it allows 

dividing the verification problem into smaller sub-problems that are individually 

manageable to handle.  

Case studies on the verification of various non-trivial load-store and memory-memory 

processor pipelines demonstrate the usefulness of the proposed T-piper in-order pipeline 

verification approach. 

T-spec and T-piper extensions for multithreaded in-order pipeline synthesis [50].  

These extensions allow T-spec to capture a datapath that executes multiple threads of 

transactional executions, and provides the necessary information for T-piper to 

automatically synthesize a multithreaded in-order pipelined implementation from a given 

T-spec.  

Furthermore, the extended T-piper maintains the original non-threaded pipeline 

synthesis features (e.g., forwarding, speculation) while supporting various multithreading 

features, consisting of those found in modern in-order multithreaded pipelines (e.g., 

global state sharing, replay on long-latency events) as well as novel ones (e.g., state 

sharing by thread groups). 
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A case study demonstrates the effectiveness of the approach in the design space 

exploration of x86-subset processor pipelines varying in their multithreading 

optimizations. All of the pipelines are synthesized from a single T-spec.  

Note that no existing studies can synthesize multithreaded pipelines automatically 

from a high-level datapath specification. Therefore, this work is the first to provide such a 

capability. 

1.3. Thesis Organization 

The rest of the thesis delves in detail into the work behind each of the contributions, 

and is organized as follows. Chapter 2 presents the proposed transactional design 

approach, including the details on T-spec. Chapter 3 elaborates on the T-piper in-order 

pipeline synthesis approach. Chapter 4 summarizes the results of design case studies 

using T-spec and T-piper. Chapter 5 provides details on the automatic pipeline 

verification using compositional model checking. Chapter 6 discusses the extensions to 

T-spec and T-piper to support multithreading. Chapter 7 provides details on the relevant 

prior works. Finally, Chapter 8 offers concluding remarks and discussion on possible 

future works. 

 



 

 8 

 

Chapter 2 

Transactional Datapath Specification 

Transaction is a well-known abstraction that can be used to reason about concurrent 

executions. It has been widely used in various areas, including databases [15] and (more 

recently) parallel programming [36]. In this work, we apply this abstraction to hardware 

design specification. This section provides details on our transactional datapath 

specification approach. 

2.1. Conventional Thinking in Pipelining 

Many pipelined design developments begin with creating an initial non-pipelined (so-

called “single-cycle”) reference implementation where each system state is instantiated 

explicitly and, in each clock cycle, a set of combinational logic operations computes the 

next-state based on the current state. For example, in a prototypical RISC processor 

development, the instruction-set architectural states are instantiated in the single-cycle 

implementation, where they are transformed according to the execution of one instruction 

per cycle [20]. Starting from this reference design point, the pipelining transformation 

begins with first establishing the desired pipeline stage boundaries, dividing the next-state 

logic datapath into multiple segments as pipeline stages. To support overlapped execution 

of multiple operations, hazard detection and stall logic is introduced to maintain the 

correctness of the operations in the overlapped executions. As necessary, forwarding 
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and/or speculation are added to minimize performance loss due to stalls. The basic 

methodology for pipelining is well established but nevertheless tedious and error-prone if 

applied manually and haphazardly. 

A single-cycle version is much simpler to specify and implement correctly than the 

final pipelined version. The single-cycle version also serves very effectively as a 

functional specification of the final pipelined design, as well as a reference model utilized 

in many verification techniques (e.g., [43]). In fact, during design exploration, a single 

functional specification may be transformed into multiple pipeline implementations.  

Thus, it is useful to distinguish, respectively, the “what” from the “how” of pipeline 

designs.  The simplicity of the single-cycle version is that the designer is only concerned 

with next-state computation that happens in a single step, avoiding the need to reason 

with the interactions between multiple concurrent overlapping operations. T-spec adopts 

and expands on this basic thinking on datapath specification. 

 

Figure 2. Transactional abstraction and an example datapath. 
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2.2. Generalizing to a Transactional Abstraction 

For this work, we propose T-spec to abstractly describe a datapath. Figure 2 

illustrates the transactional abstraction. Similar to a single-cycle design, T-spec is a 

textual “netlist” that comprises state elements and next-state compute operations 

implemented by a network of logic blocks. However, unlike a single-cycle 

implementation, a T-spec’s execution semantics is interpreted as a sequence of 

“transactions” where each transaction reads the state values left by the preceding 

transaction and computes a new set of state values to be seen by the next transaction. 

Both single-cycle and T-spec datapaths do perform state transformations in a single step. 

However a T-spec datapath execution is sequenced by transactions, instead of clock 

cycles. 

In result, T-spec decouples the datapath specification from a particular 

implementation. For example, a transaction may be mapped to an implementation that 

takes multiple clock cycles. This thesis work shows that it is possible to synthesize an in-

order pipelined implementation that executes multiple overlapped transactions, yet 

maintains the transactional semantics of the datapath described in T-spec. In general, any 

implementation may be derived from a T-spec, as long as it preserves the transactional 

semantics. 

In practice, T-spec retains the same type of information as that captured by a RTL 

description of a datapath, which consists of state elements and next-state logic blocks. 

However, T-spec adds to a typical RTL description several interface and type 

requirements, which are useful in capturing the state access behaviors of the transactions 
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that can be executed by the datapath. Such information is necessary to reason with data 

hazards that could happen in a pipelined implementation to be derived from the T-spec in 

a precise manner. Details on the data hazard analysis will be provided in Chapter 3. 

Below we elaborate on the information captured by a T-spec. 

2.2.1. State Elements 

Without loss of generality, the T-spec netlist only includes register-type state 

elements of arbitrary word-size, and array-type state elements of arbitrary size. Figure 

2(b) gives the schematic netlist of an example design. This design comprises of a single 

state element R and a network of logic blocks (op1, op2, op3, op4, op5, and m1), with 

the register-type state element R represented by its separate read interface and write 

interface. In a valid T-spec, a particular register or array location can be written at most 

once by a transaction. The effect of a write is only observable starting with the next 

transaction.  

An unusual feature of T-spec is that a state-read interface includes an explicit “read-

enable” control signal. This read-enable is not a tristate control; rather it is purely a 

bookkeeping signal to help T-piper refine RAW hazard analysis by letting the designer 

indicate exactly when a transaction must see the valid value of a state element in order to 

proceed. Similarly, an explicit “write-enable” is included in a state-write interface. 

2.2.2. Combinational Next-State Logic Blocks 

An acyclic network of combinational logic blocks computes the next-state update for 

the write-interfaces of the state elements based on the current state values received from 

the read-interfaces of the state elements. Only the input and output ports of the 
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combinational logic blocks are declared in a T-spec. Except for multiplexers, T-piper 

treats all combinational logic blocks as black-boxes during analysis. Multiplexer is a 

built-in logic primitive understood by T-piper and used for hazard analysis.   

2.2.3. Asynchronous Next-State Logic Blocks and State Elements 

Besides combinational blocks, a T-spec netlist can also include next-state logic blocks 

with asynchronous interfaces.  Beside data inputs and outputs, these blocks must also 

support an established set of handshaking signals: ready, start, and done.  

The ready output signal indicates when an asynchronous block is ready to accept a 

new set of data inputs. A new calculation is performed by asserting the start input signal 

until the data output is valid, as indicated by the done output signal. Each asynchronous 

block can be executed at most once by each transaction. Asserting start implicitly resets 

any internal state so no history can be carried from one transaction to the next.  

In the final synthesized clock-synchronous pipeline, an asynchronous block in T-spec 

is replaced by a corresponding library block that produces its output after a fixed or 

variable multi-cycle delay (e.g., an iterative divider).  

Finally, T-spec also supports state elements with asynchronous interfaces whose read 

and write interfaces are not always available immediately. This is used to represent 

hardware structures such as a memory element that contains a cache, where access 

latency varies depending on whether there is a cache hit or not. 

Chapter 3 provides details on how asynchronous interfaces are handled by our 

pipeline synthesis approach.  
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2.2.4. Inputs and Outputs 

An external input to a T-spec datapath is associated with the read-interface of a 

special Input-type element. The usage of the Input read-interface is similar to that of a 

register-type element, except the value read from an Input element’s read-interface is not 

associated to any prior state update operation. The value returned from reading an Input 

read-interface reflects directly the external environment that the input is combinationally 

connected to. An Input read-interface is not subjected to RAW hazard analysis during 

synthesis.  

Similarly, an external output is associated with the write-interface of a special 

Output-type element that is connected to the external environment. The usage of the 

Output write-interface is similar a register-type element.  Functioning like a register, the 

external output will hold the last written value until the next write. The Output write-

interface is also not subjected to RAW hazard analysis. 

2.3. A T-spec Example 

Figure 3 depicts a T-spec excerpt for the datapath example in Figure 2(b). The T-spec 

begins with a GENERIC module declaration for op1, a black-box combinational block.  It 

has a 1-bit output named R_re.  (This input-less block represents a hardwired constant.)  

The second module declaration is for a built-in REG-type state module named R. A 

REG-type state module has explicit read and write interfaces (i.e., named rd and wr in this 

case). The read (or write) interface comprises of a read-enable (or write-enable) port and 

an output read-data (or input write-data) port. The declared data-width of R is 32-bit.  
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Lastly, a connection declaration connects the R_re output port of op1 to the en input 

port of R’s rd interface. The declarations for the remaining modules and connections are 

omitted for brevity.  

Appendix A provides the complete T-spec language syntax, and Appendix C provides 

an example T-spec for a MIPS processor datapath. 

 

Figure 3. A T-spec example. 

 

// Black-box combinational module op1 

MODULE op1 GENERIC {  

      PORT { R_re OUT 1 }  

} 

 

// State element R, of type REG  

MODULE R REG { 

      IFC rd REG_RD { 

            PORT { re RD_EN } 

            PORT { d  RD_DATA 32 } } 

      IFC wr REG_WR { 

            PORT { we WR_EN } 

            PORT { d WR_DATA 32 } }  

} 

 

// … op2, op3, op4, op5, m1 modules 

 

// Connect output of op1 to the enable of R’s read interface 

CONN { op1.R_re  R.rd.re } 

 

// … other connections 

 



 

 15 

 

Chapter 3 

In-order Pipeline Synthesis 

This chapter presents the T-piper technology to automatically synthesize in-order 

pipeline from a given T-spec. The first part of the chapter discusses automatic data 

hazard analysis and resolution. Then, the second part of the chapter elaborates on the 

RTL generation procedure. 

3.1. Data Hazard Analysis and Resolution 

We present here the analytical approach for reasoning with data hazards and 

strategies to resolve them based on the information captured in a T-spec. 

3.1.1. Pipeline Stage Boundaries 

The desired pipeline stage boundaries are expressed in T-spec by declaring the 

number of stages and assigning each module (or interface in the case of a state element) 

to a pipeline stage. For example, Figure 4 depicts a possible set of pipeline stage 

boundaries (shown in solid lines) for the T-spec datapath in Figure 2(b), are 

accomplished by assigning op1, op2 and R.rd to stage 1; op3 to stage 2; op4 and 

multiplexer m1 to stage 3; and R.wr to stage 4. 
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Figure 4. Data hazard analysis and resolution. 

When assigning modules to stages, the destination module of a connection cannot be 

assigned to a stage earlier than the source module. The write interface of a state element 

also cannot be assigned to a stage earlier than the state element’s read interface. If an 

array state element supports multiple write interfaces, they must be assigned to the same 

stage. These constraints on state read and write interface assignments exclude the 

possibility of write-after-write and write-after-read hazards. 
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3.1.2. Hazard Detection and Interlock 

Given a datapath in T-spec and pipeline-stage assignments, T-piper analyzes the input 

design for RAW hazards when transactions are executed in a pipelined fashion. The T-

spec datapath from Figure 2(b) is divided into four stages in Figure 4. As such, multiple 

versions of a signal (corresponding to different transactions in different stages) co-exist if 

the source and destination of a connection are not located at the same pipeline stage. For 

example in Figure 4(a), the we signal traverses all four stages since its source (op2) is 

located in the first stage, while its destination (R.wr) is located at the fourth stage. When 

op2 is computing we1 for transaction T1 in stage 1, we2 is an older version of the same 

signal belonging to the older transaction T2 in stage 2. Similarly, we3 and we4 belong to 

transactions T3 and T4, respectively. 

For hazard analysis, T-piper identifies for each state element a “read-point” (RdPt) 

associated with the state element’s read interface.  In Figure 4(a), the read-point for the 

state element R is labeled with a “triangle”-symbol. A read-point is qualified by its state 

element’s explicit read-enable; that is, a read-point is required to carry a valid state value 

only when its accompanying read-enable is asserted.  Similarly, a “write-point” (WrPt) is 

associated with the write-data interface of the state element, and is qualified by the write-

enable. In Figure 4(a), the write-point for the state element R is labeled with a “star”-

symbol. A write-point carries the new state update value only if its write-enable is 

asserted. 

In general, with respect to any state element E in a datapath, a hazard condition exists 

whenever there are two “in-flight” transactions in the pipeline, and the younger 

transaction is reading from E while the older transaction is planning to write to E. In 
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other words, hazard occurs when there is a younger transaction Tx and an older 

transaction Tx+i that occupy stage x where E’s read-point resides and a later stage x+i 

between the read-point and the write-point of E, respectively. Furthermore, Tx asserts the 

read enable of E, and Tx+i asserts its write enable (i.e., rex & wex+i is true). 

When hazard occurs, Tx will receive an incorrect state value if it reads from E directly 

because the update value by Tx+i has not yet been written to E. Thus, Tx must stall (i.e., 

delaying the reading of E) if (rex & wex+i) is true for any stage between the read-point and 

the write-point of E. The expression for Stallbasic in Figure 4(a) is constructed accordingly 

to indicate when the reading of the state element R in our example must be stalled.  

When stalling the transaction Tx, the older transactions downstream in the pipeline 

must be allowed to proceed so Tx+i will eventually progress past the write-point of E, 

removing the hazard condition. It is possible for wex+i to not exist if we is computed by a 

module assigned to a later stage. For the purpose of hazard analysis, wex+i must be 

assumed true whenever the stage x+i is occupied by a transaction. For example, in Figure 

4(a), if we were computed instead by op4 in stage 3, then we1 and we2 do not exist, and 

we must conservatively assume that the transactions in stages 1 and 2 will assert their we. 

If the state element E is an array, T-piper carries out hazard analysis at the granularity 

of individual locations. Given rd-idx and we-idx are the indices to the read and write 

interfaces of E, a hazard condition arises only if (rex & wex+i) and (rd-idxx==wr-idxx+i) are 

true. In other words, the read and write of the array element E by Tx and Tx+i only conflict 

if they are to the same location in E. 
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The aforesaid hazard analysis is repeated independently for each state element in the 

datapath. The stalling logic generated by the hazard analysis procedure is to be used in 

conjunction with an implementation-specific method that tracks the existence of valid 

transactions in pipeline stages. For this work, when synthesizing an implementation from 

a T-spec, a valid bit is added to each stage for this purpose. The bit is set and cleared 

accordingly as transactions enter and leave the pipeline. 

3.1.3. Forwarding 

Based on the simple analysis in the previous section, T-piper can already emit a 

correct pipelined implementation. The pipeline’s effectiveness depends on how often the 

stall conditions are triggered at runtime.  

In some cases, a stall can be avoided if the required not-yet-committed state update 

values from an older transaction still in flight can be forwarded (bypassing the state 

element) to the younger dependent transaction. 

In some cases, a stall can be avoided if the required not-yet-committed state update 

values from an older transaction still in flight can be forwarded (bypassing the state 

element) to the younger dependent transaction. To determine forwarding opportunities, 

T-piper further identifies a set of “forwarding-points” (FwdPt) for each state element. 

Starting from each write-point, T-piper traces the write-data signal backwards across 

pipeline boundaries to find all points (output of a module or a pipeline-stage register) 

where the write-data signal and its accompanying write-enable signal are both available. 

When the associated write-enable is asserted, the value at a forwarding-point can be 

provided to the read-point for use by a dependent younger transaction in lieu of stalling.   
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Figure 5. Forwarding-points extraction algorithm. 

1   // Inputs:  

2   //    WrPt – write point of the state subjected to forwarding 

3   //    Node – current node being analyzed 

4   //    Parent – the parent of Node 

5   //    MuxSelChain – conjunction of multiplexer select conditions 

6   // Output: a database containing a set of forwarding points 

7 

8   extractFwdPt (WrPt, Node, Parent, MuxSelChain) { 

9      // Create a forwarding point, if appropriate 

10    for each stage s from Node.stage to Parent.stage { 

11       if(  resolvable_we(WrPt, s) &&  

12            resolvable_muxsel(MuxSelChain, s) ) 

13          addFwdPtDB(WrPt, Node, s, MuxSelChain);  

14    } 

15    // Recursive call, if necessary 

16    if(Node is a MUX) { 

17        for each mi input port of Node 

18           extractFwdPt( WrPt, getSrc(mi), Node,  

19                                  updateMuxSelChain(MuxSelChain, mi) ); 

20    } 

21 } 
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To ensure a valid forwarding, one must also ascertain that no other transactions 

between the read-point and the forwarding-point also want to write to the state element. 

(According to the transactional semantics, when multiple older transactions have 

outstanding writes to a state, the current reader of that state depends on the youngest of 

those transactions.) Forwarding-points can be traced backwards through a multiplexer to 

create conditional forwarding further qualified by the mux-select logic. 

Figure 5 provides the pseudo-code for the forwarding-points extraction algorithm. We 

treat the network of operations in T-spec as a Directed Acyclic Graph (DAG) with a state 

write-point at the root of the graph. (The direction of the edges in the DAG is opposite of 

the dataflow.) The algorithm performs a depth first traversal from the root of the DAG, 

visiting each node where forwarding may happen. 

The algorithm consists of two parts. The first part (i.e., the first for-loop) analyzes the 

pipeline stages between the node under analysis and its parent, and creates forwarding-

points accordingly. The analysis involves checking whether the predicate of a potential 

forwarding-point is resolvable or not. In line 11, resolvable_we(WrPt, s) checks if the 

write enable signal for WrPt is available in all stages between s and the state’s read-point. 

Dynamically, a forwarding is only valid if the write enable in stages earlier than s are all 

de-asserted (i.e., no writes by any transaction younger than the one in stage s). In line 12, 

resolvable_muxsel(MuxSelChain, s) checks if all of the mux-select conditions in 

MuxSelChain have been computed by stage s. If all the required predicates for 

forwarding are resolved, then the forwarding-point is inserted to a database (by 

addFwdPtDB() in line 13). The second part of the algorithm deals with the case when the 

node is a multiplexer. Because a multiplexer only passes data value, we can recursively 
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analyze each of the input paths for additional forwarding-points. However, each 

forwarding-point on the input path has to be further qualified by the mux-select signal. In 

line 18, a recursive call is made for each of the multiplexer input paths. For each input 

path, updateMuxSelChain() in line 19 adds the required select signal for the current 

multiplexer to the conjunction of the select conditions for the previously visited 

multiplexers between the current node and the root. 

 

Figure 6. Forwarding-points extraction example. 

Figure 6 illustrates the application of the algorithm to the datapath example in Figure 

4(a). Figure 6(a) depicts the first call to extractFwdPt(). Since this is the first call, Node is 

the input source to the root of the DAG (R.wr), which is m1. Parent is R.wr itself. Since 

no multiplexer is encountered yet, MuxSelChain is initially TRUE. The shaded area 
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indicates the part of the DAG under analysis (i.e., between R.wr and m1). The first part of 

the algorithm analyzes the stages between m1 and its parent, R.wr. Since all the write 

enable signals (we1, we2, we3, and we4) between R.rd and R.wr are available, 

resolvable_we() returns TRUE for stages 3 and 4. Two forwarding-points (i.e., the 

“circle”-symbols labeled with 1 and 2) are added to the forwarding-points database. Next, 

since Node is a multiplexer, the second part of the algorithm invokes the recursive calls 

to each of the two inputs of m1.  

Figure 6(b) shows the second (recursive) call to extractFwdPt() on input 0 of m1. The 

shaded area indicates the part of the DAG being analyzed. Node is now op3, which is the 

source of input 0 of m1 (obtained by getSrc() in the first call). Parent of op3 is m1. Since 

the algorithm traversed through input 0 of multiplexer m1 to get to this call, the condition 

(s==0) is added to MuxSelChain. The first part of the algorithm analyzes stages 2 and 3 

(i.e., where Node op3 and Parent m1 belongs to, respectively). resolvable_we() and 

resolvable_muxsel() return TRUE for stages 2 and 3, since the required predicates are 

available (i.e., {s2, we2, w1} and {s3, we3, we2, we1}, respectively). Two forwarding-points 

(3 and 4) are inserted to the forwarding-points database. Similarly, Figure 6(c) depicts the 

third call to extractFwdPt(), or the second recursive call at m1 for input 1. For the 

datapath in Figure 6 example, the depth-first traversal ends at the children of m1. 

However, further calls could have happened if there was a chain of multiplexers in the 

datapath (e.g., if an input to m1 was a multiplexer).  

The five forwarding-points of R in Figure 4(b) are labeled by numbered “circle”-

symbols. The numbers correspond to the traversal order by the algorithm in Figure 5. For 

each forwarding-point, Figure 4(b) gives the exact condition when the value at a 
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forwarding-point can be used by the transaction at the read-point stage in lieu of stalling. 

For example, forwarding-point 2 is valid iff T1 depends on T4 with respect to R but not on 

T3 or T2. Likewise, forwarding-point 1 is valid iff T1 depends on T3 with respect to R but 

not on T2.  Points 5 and 4 are conditional forwarding-points corresponding to the two 

possible settings of m1’s the mux-select (si). The condition for using forwarding-point 5 

(or 4) is the same as 1 with the additional requirement that the multiplexer m1 in question 

is set to select the 1-path (or the 0-path). Forwarding-point 3 is an earlier version of 

forwarding-point 4, allowing forwarding from T2 to T1 when s2 is not asserted. 

After the analysis, T-piper reports to the user all forwarding-points. Based on the 

user’s selection of which to include, T-piper generates a pipelined implementation with 

the selected forwarding paths. When a forwarding path is added, its exact trigger 

condition is subtracted from the stall condition. When the trigger condition is satisfied, 

the would-be RAW hazard is resolved by forwarding from the corresponding forwarding-

point. The example in Figure 4(b) adds forwarding from forwarding-points 2 and 4, 

resulting in a new stall condition Stallfwd that subtracts f2 and f4 from Stallbasic.  

It is important to note an injudicious selection of forwarding-points does not always 

help performance and could even hurt performance by creating unwanted long critical 

paths. For example, adding forwarding-point 1 in Figure 4(b) would create a critical path 

spanning two-stages worth of combinational logic (op4 and m1 in stage 3, and op2 in 

stage 1). Also, a forwarding path does not improve performance unless it is triggered 

frequently during execution. 
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3.1.4. Speculative execution 

Forwarding can only be done if an older transaction already computes (but has not yet 

written) the value that a younger transaction depends on. Consider the example in Figure 

4(b). If a younger transaction in stage 1 depends on the value of R to be produced by an 

older transaction currently in stage 2 via op4 eventually (i.e., mux select is 1), then the 

younger transaction has to wait for 1 cycle for the older transaction to reach stage 3 and 

utilizes op4 to compute the value, which can then be forwarded using either forwarding-

point 1 or forwarding-point 5. 

In cases where forwarding cannot sufficiently reduce the RAW hazard stalls, T-spec 

supports a general-purpose framework for a designer to introduce a value predictor to 

resolve RAW hazards speculatively. Starting with a T-spec datapath with complete 

functionality, a designer can introduce auxiliary state elements and logic blocks for value 

prediction. In parallel to the original full determination of the next-state value of a given 

state element E, the auxiliary states and logic blocks are to compute, presumably faster 

and with less logic effort, a “guess” for the next-state value of E. With each guess, the 

auxiliary logic also generates a Boolean valid signal to indicate whether the guess should 

be used for speculation. This valid signal should only be asserted when the confidence in 

a guess is high; otherwise stalling is preferred over speculation to avoid the misprediction 

recovery penalty. 

The auxiliary states and logic blocks for making value predictions are specified using 

the same T-spec syntax and constructs as the original primary state and logic. They are 

allowed to depend on the value and output of the primary states and logic blocks, but not 

vice versa. In other words, the T-spec of the primary datapath should stay exactly the 
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same whether or not value prediction is added. In Figure 4(c), the auxiliary logic module 

pred is making a guess for the next-state value of register R in stage 1 whereas the true 

next-state value of R is not fully resolved until stage 3 (at the m1 output). In this 

example, a guess is generated combinationally based on the primary state elements only. 

In general, one could introduce and maintain new auxiliary state elements and logic 

blocks to describe arbitrarily elaborate history-based value predictors for any of the state 

updates. 

For each predictor in T-spec that guesses the next-state value of a state element E, T-

piper automatically generates a pipelined implementation that incorporates the predicted 

value (when the associated valid bit is asserted) in speculative executions. A prediction-

point (PredPt in Figure 4(c)) is the output of a value predictor (g), and is qualified by its 

valid signal (v) generated also by the predictor.  The value of a valid prediction-point can 

be forwarded to the read-point at a “prediction-forwarding-point” (PredFwdPt) in the 

same way as a forwarding-point. Prediction forwarding can be done in the stages starting 

from the prediction-point to the corresponding write-point (or until forwarding-points are 

available). In Figure 4(c), the possible prediction-forwarding-points are labeled by the 

numbered “box”-symbols. The figure also shows an implementation that makes use of 

prediction-forwarding-point 1, resulting in a new stall condition Stallpred.  

If value prediction is used in a design, T-piper generates automatically the mechanism 

to track and eventually verify a transaction’s predicted next-state value for E against the 

dutifully calculated true next-state value for E. By default, the check will happen at the 

write-point of E (as shown in stage 4 of the example in Figure 4(c)), incurring minimum 

resolution logic, but maximum penalty for incorrect prediction. The user can also instruct 
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T-piper to check prediction in advance of the write-point by comparing against user-

selected forwarding-points to reduce the misprediction penalty. If the prediction 

resolution is done behind a multiplexer, then T-piper makes sure that the resolution 

includes the set of forwarding-points that cover all possible paths to the multiplexer (e.g., 

forwarding-points 4 and 5). 

During a prediction check, if the predicted value and the actual value agree, nothing 

more needs to be done. However, if they disagree, all younger transactions in flight 

following the mispredicting transaction must be squashed from the pipeline. The 

mispredicting transaction is allowed to complete fully since the transaction itself never 

made use of the prediction. The execution continues by restarting the next transaction 

using the now available correct state values.  Due to the need to squash and restart, no 

write-points for any state elements may be assigned to a stage where unchecked value 

predictions remain. This assignment constraint ensures that flushing the transient contents 

of just the pipeline registers is sufficient to recover to the restart state, without needing to 

undo any state changes to the system state elements. 

The support for value prediction and speculative execution is particularly important to 

instruction processor pipelines. In the RISC pipeline we discuss in Section V, one can 

introduce a straightforward, combinational prediction of PC+4 as the next-state value of 

the program counter (PC) register; a deeper CISC pipeline requires more elaborate 

history-based prediction. Without PC prediction, it would be impossible to fetch a new 

instruction each cycle in either the RISC or the CISC pipeline. 
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3.1.5. Hazard Resolution Configuration (H-cfg) 

H-cfg contains the specification of which value forwarding, prediction forwarding, 

and prediction resolution points should be implemented from all of the extracted design 

points. Currently, we provide MAX (enable all), ASAP (enable only earliest points), and 

ALAP (enable only latest points, which is used for prediction resolution) as default 

heuristics to automatically generate such a configuration. Alternatively, the designer can 

also provide a manually written H-cfg. 

 

Figure 7. Pipeline model. 

3.2. RTL Generation 

We support synthesis of in-order pipelines that follows the model depicted in Figure 

7. In this model, a pipeline consists of pipeline stages and register sets, connected via a 

communication channel based on Valid, Stop, and Cancel signals. The use of Valid and 

Stop signals is inspired by the protocols described in [9]. The Cancel signal is added to 

support speculative execution in our pipelines. 

Note that the choice of pipeline model targeted by our synthesis process is orthogonal 

to the data hazard analysis. We chose the model based on Valid and Stop bits in our 

implementation for its simplicity. 
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3.2.1. Pipeline Flow Control Protocol 

The communication channel among the pipeline stages and register sets works as 

follow. A Valid signal indicates data validity, and a Stop signal indicates whether a 

recipient (could be a pipeline stage or register set) has accepted the data. Thus if a sender 

asserts its Valid signal, and a recipient deasserts its Stop signal, a Transfer would occur. 

If the sender deasserts its Valid signal, then there is no data to be sent regardless of what 

the Stop signal condition is, in which case the communication channel would be Idle. If 

there is a valid data value to be sent, but the recipient is not yet ready to accept it (i.e. 

Stop is deasserted), then the communication channel status would be Retry, and the 

sender will persistently assert its Valid signal until a Transfer occur.  

 

Figure 8. Pipeline communication modes. 

Furthermore, we use the Cancel signal to qualify a data transfer. Whenever Cancel is 

asserted, the sender will nullify its operation, and therefore invalidates the data that it is 

trying to send. An asserted Cancel signal causes a Squash in the data transfer, regardless 

of the condition of the Valid and Stop signals.  If Cancel is de-asserted, then the protocol 

operates as usual. Figure 8 shows the aforementioned communication modes. 
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Figure 9. Pipeline internals. 

3.2.2. Pipeline Management Logic 

The contents of a pipeline stage and a register set are shown in Figure 9. The pipeline 

stage logic (PstageLogic) contains the datapath modules and state access interfaces 

instantiated in T-spec, and are obtained from the component database during T-piper 

synthesis. The shaded components in the figure are pipeline management logic generated 

automatically by T-piper. The pipeline stage controller (PstageCtrl) is responsible for (1) 

monitoring and generating the hand-shaking signals for communicating with the 

neighboring pipeline register sets, and (2) interacting with other components 

(PstageLogic, etc) in the stage. There is one PstageCtrl per stage. The synthesis of this 

unit is straightforward. Stop output is synthesized by analyzing stall conditions due to 

hazards (from HazardMgr) and multi-cycle (MC) interfaces (discussed later in this 

section). Stop is asserted when the stage stalls. Valid is synthesized by analyzing the 

interfaces in the stage, and is asserted when the stage has completed execution. Cancel is 

synthesized by analyzing PredResPts, and it is asserted when later stages encounter any 

mispeculation (i.e., triggered by a PredResUnit). 
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The data hazard manager (HazardMgr) detects the existence of data hazards, and 

activates the appropriate hazard resolution logic. Since we detect hazards at the system 

state read-interfaces, one HazardMgr is generated for each read interface in the stage. It is 

synthesized by analyzing the RdPt, WrPt, and the enabled FwdPt and PredFwdPt.  

The forward unit (FwdUnit) manages forwarding of both actual and predicted values. 

It acts as a proxy to a read interface, returning either the actual state value or a forwarded 

value. One forward unit is generated for each “forwardable” read interface (i.e., a read-

interface with one or more enabled FwdPt or PredFwdPt). Synthesis of a FwdUnit is done 

by analyzing RdPts and FwdPts/PredFwdPt. 

The prediction resolution unit (PredResUnit) contains the logic that compares a 

predicted value with the actual value, and triggers misspeculation when a mismatch 

occurs. One PredResUnit is generated for each enabled PredResPt in the stage. Synthesis 

of this unit is done by analyzing PredResPts. 

 

Figure 10. Multi-cycle interface and operation modes. 
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3.2.3. Multi-Cycle Modules 

Asynchronous next-state logic blocks (Chapter 2.2.3) are mapped to multi-cycle 

(MC) modules with the interface shown in Figure 10(a). The interface contains start, 

done, ready, ack, and cancel signals. The various communication modes using these 

signals are shown in the table in Figure 10(b). When the module first starts up, the ready 

output signal is asserted, which indicates the MC module is idle and ready for execution. 

Asserting the start signal can then activate the interface. Once the interface is activated, 

the MC operation would be performed. The assertion of the done signal would then 

indicate the completion of the operation. Next, the pipeline control (PstageCtrl) can 

assert the ack signal when the result of the operation has been consumed. From there, the 

ready signal of the MC module becomes asserted again. 

This type of MC interface can also be applied to state read- and write-interfaces to 

allow the interface to respond with varying delay. This feature is useful, for example, to 

interface with the cache subsystem of a processor that responds in different number of 

cycles depending on whether there is a cache hit. Note that our T-piper prototype 

currently does not support chaining of MC modules in the same pipeline stage, though it 

should be possible to include such a support in the future.  

 



 

 33 

 

Chapter 4 

Case Studies 

This chapter describes the prototype implementation of T-piper in-order pipeline 

synthesis tool, and the design case studies using the prototype on the development of 

MIPS and x86 processor pipelines. 

4.1. T-piper Prototype 

We have developed a prototype for the T-piper in-order pipeline synthesis tool, which 

supports all the synthesis features described in the previous chapter (i.e., data forwarding, 

speculation, and multi-cycle units).  

Furthermore, we have also made a version of T-piper freely available online for 

research and academic uses at www.t-piper.net. Figure 11 shows the online user interface 

of T-piper, which accepts a T-spec file, a P-cfg file, and a forwarding scheme. By 

clicking on the “synthesize” button, T-piper will synthesize the target pipeline 

implementation in Verilog. Note that the online version of T-piper does not support 

speculation yet. At the website, we have also included a tutorial and design examples for 

new users to quickly get started with T-piper. 
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Figure 11. Online version of T-piper at www.t-piper.net. 

4.2. MIPS Case Studies 

4.2.1. Comparison Against a Hand-made MIPS Processor Pipeline 

In this study, we trained an undergraduate student to develop a 5-stage MIPS pipeline 

using T-spec and T-piper. The student has prior experience in developing a textbook 5-

stage MIPS pipeline [20] by hand. Including training, the T-spec was completed in under 

a week. The synthesized pipeline utilized the same datapath components as the hand-

made pipeline the student had developed previously. Both pipelines support the same set 

of user-level MIPS instructions (e.g., ALU, memory, and branches). Thus, the difference 

between the two pipelines is only in the pipeline control logic, one of which is 

synthesized by T-piper and the other manually developed by the student. We found that 

the synthesized pipeline is within 2% in performance and area of the student’s hand-made 

design. Furthermore, the student was also able to synthesize 3, 4, and 6-stage pipelines 

from the same T-spec by slightly modifying the pipeline stage configuration file (P-cfg). 
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4.2.2. Comparison Against Existing MIPS Processor Pipelines 

We also compared the processor pipeline used in the previous section against the 

open-sourced design of the SPREE MIPS-I processor that is also a 5-stage pipeline with a 

full operand-forwarding network [15]. We found that our MIPS implementation could 

reach an 8% higher clock frequency than the SPREE implementation. Our MIPS 

implementation is however 4% larger in area then the SPREE implementation at 

SPREE's peak frequency. This comparison is inexact but should be sufficient to establish 

that our MIPS processor pipeline is a reasonable quality. Moreover, in [15], the quality of 

the SPREE MIPS-I implementation was successfully vetted against the commercial 

Altera NIOS RISC processor pipeline. 

4.2.3. Developing a Complete MIPS I Processor 

In the next study, a graduate student who is already familiar with T-spec and T-piper 

designed a complete user-level MIPS I processor from scratch. Within 5 days, he was 

able to synthesize MIPS pipelines that supported all of the user-level MIPS I instructions 

except for the platform-dependent co-processor instructions. In addition to basic RISC 

instructions, the MIPS I instructions include many variations of memory instructions 

(e.g., partial and unaligned load and stores), control instructions (e.g., branch and link), 

and integer multiply/divide (implemented using multi-cycle iterative divider/multiplier 

functional units) along with HI/LO register move instructions. 

The breakdown of the development time is as follows: 

1) One day was spent for reading the MIPS ISA manual and designing the non-pipelined 

datapath (e.g., the types of components, and how they are connected).  
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2) One day was spent to describe the datapath in T-spec, and to develop the target 

pipeline configurations (i.e., P-cfg files). This one day also includes the time spent 

ironing out bugs to make sure that the T-spec and the P-cfg files are well-formed. 

3) Three days were spent for the rest of the development activities, which consists of 

implementing the datapath components in Verilog, creating the testbench, writing 

MIPS assembly test programs for validating correct functionalities of supported 

instructions, and debugging.  

Notice by using T-piper to relieve the designer from the manual pipelining effort, the 

development time becomes dominated by supporting tasks not directly related to pipeline 

implementation (e.g., reading manuals, making test cases, etc). 

 

Figure 12. x86 T-spec and pipelines under study. 
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4.3. x86 Case Study 1: Rapid Design Space Exploration 

In this case study, we created the T-spec for an x86-based processor, and used T-piper 

to rapidly explore 60 different synthesized pipelines. We evaluated the impact of the 

various pipeline features and characterized their performance-area tradeoffs. To the best 

of our knowledge, our automatic pipeline synthesis approach is the first to be 

demonstrated with an ISA as complicated as the x86. 

4.3.1. x86 Datapath 

Figure 12 show the T-spec of the x86 processor and the pipelines under study, 

respectively. For brevity, we omitted several less important details of the datapath from 

the figures. For example, only one out of multiple GPR read interfaces is shown. The T-

spec design supports all protected-mode general-purpose instructions that do not modify 

privilege states, except for ASCI/decimal adjustments (e.g., AAA, DAA), bit operations 

(e.g., bit scan, bit test), divide, swap (e.g., BSWAP, CMPXCHG), string, and I/O (e.g., 

IN, OUT) instructions. We also did not include interrupt and exception handling. The 

supported subset of x86 ISA is sufficient to execute the SPREE benchmarks [71] used in 

our study. The datapath includes a multi-cycle integer multiplier unit and variable-cycle 

memory interfaces capable of interfacing with memory systems with caches. For the 

evaluations in this study, however, we assume a memory system with a perfect cache (no 

misses) so we can focus on the effect of various pipeline features on performance. 

4.3.2. Design Parameters Explored 

We explored several manually chosen pipeline parameters in this study. While 

reasonably complete, these parameters do not span the complete design space. It is 
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possible in future work to develop orthogonally an automatic design space exploration 

system to replace the manual effort in selecting the pipeline parameters. Below we 

describe the major dimensions of the pipeline configuration parameters we considered. 

Pipeline depth. For a baseline, we started with the shortest possible pipeline (i.e., 4-

stage, where each multi-cycle interface is assigned to its own pipeline stage) without any 

forwarding or prediction. We then manually analyzed the critical path and added new 

pipeline stages to break the critical path and to improve frequency. We continued adding 

more pipeline stages, up to the point when adding an additional pipeline stage resulted in 

only a negligible improvement in frequency. We ended up with a collection of pipelines 

between 4 and 7 stages.  

Note that there are many possible pipeline boundaries for a given number of pipeline 

stages. For example, for a 5-stage pipeline, one could put all the decode units in stage 2, 

or spread it across stage 2 and 3. If the decode unit that decides whether an instruction is 

a branch or not is placed in stage 2, forwarding of the next program counter value (i.e., to 

stage 1, where the program counter is read) can be done as early as stage 2. However, if 

the unit is placed on stage 3, then forwarding can be done only from stage 3 at the 

earliest. On the other hand, putting all the decode units in the same stage could adversely 

impact the critical path. We consider such intricacies when selecting the pipeline 

boundaries. In overall, we picked the pipeline boundaries that resulted in the best 

frequency improvement 

Data forwarding scheme. T-piper allows the user to select any subset of forward 

paths from the forwarding opportunities reported. Thus, there are many possible 
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combinations of data forwarding configurations. To limit the scope of this study, we 

chose the set of forward paths based on two simple schemes. The first scheme forwards 

data only from the earliest possible forward points (ASAP), while the second performs 

forwarding whenever possible (MAX).   

Speculation scheme. Although our system can generally handle value prediction on 

any system state, in this study we only attempt to predict the program counter (PC), 

which is the most common predictor for processor pipelines. In the baseline case, we 

added a next-PC (NPC) predictor that assumes branches are not taken and guesses the 

execution always proceeds to the instruction immediately following the current one. (In 

other words, the NPC predictor is effectively predicting the instruction length of the 

current instruction being fetched.) In the second case, we incorporated a bimodal 

predictor that uses 2-bit saturation counters and a branch target buffer (BTB) to guess the 

direction and target address of branch instructions. To determine an appropriate size for 

these predictors, we conducted trace-based simulations, and picked the size at the 

saturation point of the prediction accuracy curve. We ended up with 256 entries for the 

NPC predictor’s memoization table, and 16 entries for the bimodal predictor’s BTB.  

We also needed to choose the schemes to forward predicted values. Since the PC is 

read and written by every transaction, a transaction NPC guess is needed by only the 

transaction immediately after it and no one else. Therefore, the MAX forwarding scheme 

does not add any additional benefit over the ASAP scheme. Thus, we evaluated only the 

ASAP scheme for forwarding scheme for NPC prediction.  
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We evaluated two different prediction resolution schemes. The first scheme resolves 

prediction at the latest possible point (ALAP), which minimizes the amount of resolution 

logic to compare the predicted value against the actual value. The second scheme 

resolves prediction at the earliest points (ASAP), which reduces misprediction penalty at 

the cost of increased resolution logic since there can be multiple places where the 

predicted value is compared against the actual value). 

Table 1.  Benchmark applications under study. 

Name Description 
bitcnt counts the number of bits in an array of integers 

bubble_sort performs the bubble sorting algorithm  
crc cyclic redundancy check 
des performs the 16 rounds in data encryption standard  
fft fixed point fast fourier transform 
fir finite impulse response filter 

iquant Inverse quantization algorithm for MPEG and JPEG encoding 
quant quantization algorithm used in JPEG compression 
vlc variable Length coding for JPEC and MPEG compression 

 

4.3.3. Evaluation Framework 

This study used 9 benchmark applications from the SPREE collections [71], which 

consists of benchmarks from Mibench [17], XiRisc [5], and RATES [59] that have been 

stripped of system and I/O instructions. Table 1 offers a description of each benchmark. 

The evaluation framework is shown in Figure 13. First, we use Simics full-system 

simulator [38] to simulate an x86 system and generate reference traces containing final 

architectural states for each instruction executed by the benchmarks. The trace also 

contains initial architectural and memory states used to initialize the pipeline RTL model. 

Next, we use Verilator [61] to convert the RTL Verilog description of the pipeline to 
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C++. Then, we integrate this RTL C++ model with a C++ trace processing application 

that executes the RTL model and performs validation by comparing the traces from the 

model with the reference traces. For performance analysis we also collect the number of 

clock cycles and instructions executed by each benchmark. To obtain implementation 

costs, we synthesized the pipelines with Synopsys Design Compiler [63] targeting a 

commercial 180 nm standard cell library and memory compiler. 

 

Figure 13. Evaluation framework. 
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Table 2.  Cycle counts for each of the x86 processor pipelines evaluated. 

Pipeline configuration Pipeline stages 
Row P-type P-res D-fwd 4 5 6 7 

1 None 0.0 -23.7 -47.5 -71.2 
2 ASAP 50.0 38.9 30.0 19.3 
3 

None None 
MAX 62.4 52.0 38.8 29.9 

4 ALAP 29.2 15.5 5.1 -8.6 
5 ASAP None 29.2 15.5 5.1 -8.6 
6 ALAP 50.0 38.9 32.2 21.6 
7 ASAP ASAP 50.0 38.9 32.2 21.6 
8 ALAP 62.4 52.0 43.6 33.6 
9 

NPC 

ASAP MAX 62.4 52.0 43.6 33.6 
10 ALAP 32.4 20.1 10.0 -2.6 
11 ASAP None 32.6 20.5 10.5 -2.3 
12 ALAP 50.0 38.9 31.9 21.3 
13 ASAP ASAP 50.0 38.9 32.0 21.4 
14 ALAP 62.4 52.0 43.1 33.3 
15 

Bimodal 

ASAP MAX 62.4 52.0 43.8 33.9 
 

Table 3.  Frequency for each of the x86 processor pipelines evaluated. 

Pipeline configuration Pipeline stages 
Row P-type P-res D-fwd 4 5 6 7 

1 None 0.0 28.8 47.7 59.5 
2 ASAP -9.0 -13.5 16.2 26.1 
3 

None None 
MAX -15.3 -16.2 17.1 19.8 

4 ALAP -3.6 31.5 47.7 55.0 
5 ASAP None -4.5 14.4 44.1 25.2 
6 ALAP -9.9 -11.7 24.3 23.4 
7 ASAP ASAP -13.5 -14.4 17.1 20.7 
8 ALAP -17.1 -18.0 17.1 34.2 
9 

NPC 

ASAP MAX -17.1 -17.1 14.4 16.2 
10 ALAP -2.7 31.5 55.9 53.2 
11 ASAP None -4.5 17.1 51.4 47.7 
12 ALAP -11.7 -10.8 19.8 21.6 
13 ASAP ASAP -11.7 -12.6 24.3 20.7 
14 ALAP -17.1 -19.8 14.4 16.2 
15 

Bimodal 

ASAP MAX -17.1 -16.2 16.2 20.7 
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Table 4.  MIPS performance for each of the x86 processor pipelines evaluated. 

Pipeline configuration Pipeline stages 
Row P-type P-res D-fwd 4 5 6 7 

1 None 0.0 5.4 2.3 -4.2 
2 ASAP 75.2 39.0 64.6 56.6 
3 

None None 
MAX 115.9 69.8 87.2 69.3 

4 ALAP 36.4 56.5 58.8 46.1 
5 ASAP None 35.1 36.1 54.9 18.0 
6 ALAP 73.4 41.9 80.7 57.3 
7 ASAP ASAP 66.5 37.6 70.2 53.9 
8 ALAP 111.3 66.1 104.4 101.3 
9 

NPC 

ASAP MAX 111.3 67.9 99.6 74.3 
10 ALAP 44.2 65.8 77.4 53.1 
11 ASAP None 42.1 48.5 73.4 48.4 
12 ALAP 70.0 43.4 73.0 53.6 
13 ASAP ASAP 70.0 40.5 80.2 53.2 
14 ALAP 111.3 62.5 98.0 72.3 
15 

Bimodal 

ASAP MAX 111.3 69.8 104.1 81.8 
 

Table 5.  Area for each of the x86 processor pipelines evaluated. 

Pipeline configuration Pipeline stages 
Row P-type P-res D-fwd 4 5 6 7 

1 None 0.0 -9.3 -10.7 -14.8 
2 ASAP -18.6 -20.3 -20.4 -24.0 
3 

None None 
MAX -23.9 -26.0 -30.1 -32.1 

4 ALAP -22.3 -32.6 -34.7 -32.7 
5 ASAP None -23.3 -30.0 -36.8 -36.0 
6 ALAP -40.2 -44.7 -35.9 -47.8 
7 ASAP ASAP -39.0 -43.4 -44.5 -48.5 
8 ALAP -45.5 -48.3 -53.5 -48.3 
9 

NPC 

ASAP MAX -46.7 -50.2 -52.6 -56.0 
10 ALAP -34.6 -44.6 -44.8 -50.1 
11 ASAP None -35.0 -43.3 -40.1 -51.7 
12 ALAP -51.4 -56.0 -56.5 -59.9 
13 ASAP ASAP -50.8 -56.4 -54.5 -60.8 
14 ALAP -57.3 -60.7 -63.0 -67.2 
15 

Bimodal 

ASAP MAX -61.0 -65.6 -58.8 -68.1 
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4.3.4. Results 

The result of the design space exploration is summarized in Table 2, 3, 4, and 5. The 

data points in these tables show the relative percentage improvement of each pipeline 

variant over the baseline pipeline (i.e., a 4-stage design without any data forwarding or 

speculation). Note that the cycle count, frequency, performance, and area of the baseline 

4-stage pipeline are 29,086 cycles, 111 MHz, 24.1 MIPS, and 3.09 mm2, respectively. 

For all the tables, the first major column shows all the pipeline configurations we 

studied (excluding the different pipeline depths), while the second major column show 

the results categorized into minor columns for the different pipeline depths. Table 2 and 3 

show the execution clock cycle count from RTL simulation and implementation 

frequency from synthesis, respectively. Table 4 shows the performance in terms of 

Million Instructions Per Second (MIPS), averaged over all the benchmarks we used in 

our evaluation. For each benchmark, the MIPS rating is calculated by considering the 

number of instructions executed, the clock cycle count needed to execute the benchmark 

(Table 2), and the implementation frequency (Table 3). Table 5 shows the 

implementation area obtained from Design Compiler synthesis. The key insights from the 

results in Table 2, 3, 4, and 5 are explained in the following subsections.  

Impact of Pipeline Depth. The first row of Tables 2, 3, 4, and 5 show the evaluation 

results for the pipelines without any forwarding or speculation. As expected, having more 

pipeline stages breaks down the critical paths for improved frequency. However, cycle 

count increases for the longer pipelines due to the increased number of stall cycles that 

are needed to resolve data hazards. In terms of the overall MIPS performance, the 5-stage 

pipeline leads to the most improvement relative to the 4-stage pipeline; the 7-stage 
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pipeline actually performs worse than the 4-stage. Lastly, deeper pipelining leads to 

larger area, due to the extra resources to implement the additional stages. 

Impact of Data Forwarding. The second and third rows of Table 2, 3, 4, and 5 show 

the evaluation results for the pipelines that have data forwarding, but do not have 

speculation. As expected, cycle count improves for the more aggressive forwarding 

schemes since data hazards are resolved earlier, thereby reducing the amount of stalls. 

However, the addition of forwarding logic can adversely impact critical path delay, as 

can be seen in the reduction in the implementation frequency. Nevertheless, data 

forwarding is still beneficial for overall performance, as indicated by the large 

improvement in MIPS. Also, the area increase due to the forwarding logic is small (up to 

32% over baseline) relative to the MIPS performance improvement (up to 116%). 

Impact of NPC Predictor. Rows 4 to 9 of Table 2, 3, 4, and 5 show the evaluation 

results for the pipelines with the NPC predictor. Relative to the pipelines without any 

forwarding or speculation (i.e., row 1 vs. row 4), the NPC predictor improves cycle count 

by allowing a correct new instruction to be fetched on most cycles. Furthermore, the 

addition of the NPC predictor does not have significant impact implementation 

frequency, resulting in up to 59% overall improvement in MIPS relative to the baseline 

pipeline. Accordingly, the addition of predictor logic incurs extra area, up to 35% in 

comparison with the baseline.   

If we compare the addition of NPC predictor against the addition of data forwarding 

(i.e., row 4 vs. rows 2 and 3), having a NPC predictor does not improve cycle count as 

much as having data forwarding. This is because the NPC predictor allows for fast hazard 
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resolution only for program counter (i.e., EIP in x86), while data forwarding provides fast 

hazard resolution for all the architectural states. Furthermore, the NPC predictor requires 

some warm-up time before it can start making good predictions. During this period, data 

hazards on EIP are resolved by stalling the instruction fetch. In terms of frequency, data 

forwarding increases critical path more than NPC predictors. Overall, however, MIPS 

performance gain from only having data forwarding is higher than the gain from only 

having an NPC predictor in a pipeline. In terms of area, at the chosen table size, the NPC 

predictor consumes more implementation area than data forwarding. Thus, in this case 

study, having data forwarding is overall more efficient than having an NPC predictor. 

The NPC predictor can also be combined with data forwarding (i.e., rows 6 to 9 in 

Table 2), which further improves cycle count in deeper pipelines (6- and 7-stage). 

However, for shorter pipelines (4- and 5-stage), data forwarding can already resolve 

hazards very early (i.e., EIP forwarded from stage 2 to stage 1), therefore the NPC 

predictor does not provide any additional benefit. In comparison with pipelines with only 

data forwarding (i.e., rows 2 and 3 in Table 3), having the additional NPC predictor (i.e., 

rows 6 to 9 in Table 3) does not worsen the implementation frequency significantly. 

Thus, the improvements in cycle count from having an NPC predictor in the longer 

pipelines do translate to overall MIPS performance gains. 

Finally, the prediction resolution schemes do not affect cycle count in the case of 

NPC predictor (i.e., rows 4, 6, and 8 vs. rows 5, 7, and 9 in Table 2). This is because 

there is no use of self-modifying code in our benchmarks. The NPC predictor simply 

remembers the length of previously seen instructions to predict the next instruction to 

fetch. Without self-modifying code, the NPC predictions would be correct except in the 
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case of a taken branch. In terms of frequency (Table 3), the ALAP resolution scheme 

permits much higher frequency than the ASAP scheme. This is because in ASAP scheme, 

there are multiple prediction checks in the pipeline, which lead to increased critical path. 

With comparable effect on cycle count, the overall MIPS (Table 4) is also better with the 

ALAP schemes than the ASAP scheme. In terms of area (Table 5), one might expect that 

ALAP will consume less area, but in practice the total implementation area is dominated 

by interconnection resources rather than the prediction check logic. In this case, we did 

not see any consistent trends indicating whether ALAP is better than ASAP scheme in 

terms of area, or vice versa. 

Impact of Bimodal Predictor. Adding a Bimodal predictor lets speculation on 

branch instructions to reduce the lost fetch cycles after a taken branch. Rows 10 to 15 of 

Table 2, 3, 4, and 5 show the evaluation results for pipelines with the Bimodal predictor.  

For pipelines without forwarding (rows 1, 4, and 5), we can clearly see the benefits of 

having a Bimodal predictor in improving the cycle counts (Table 2). However, for the 

pipelines with data forwarding, this is not the case. As with the NPC predictors, the 

Bimodal predictor does not provide much benefit for the shorter 4- and 5-stage pipelines, 

since branch target calculation for these pipelines can already be directly forwarded from 

stage 2 to stage 1 (incurring no stalls).  For the longer 6- and 7-stage pipelines, the benefit 

depends on the interplay between the amount of the misprediction penalty and the benefit 

of having a correct prediction. For the pipelines with ALAP prediction resolution (rows 

12 and 14), the overall misprediction penalty is larger than the stalls avoided from having 

correct predictions. Thus, Bimodal predictor is not beneficial for these shorter pipelines. 

For 6- and 7-stage pipelines with the more aggressive ASAP prediction resolution 
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scheme and the MAX data forwarding scheme, the Bimodal prediction can improve cycle 

count, albeit only slightly.  

 

Figure 14. x86 cost-performance tradeoff. 

Having a Bimodal predictor on top of an NPC predictor does not worsen the overall 

implementation frequency (i.e., rows 4 to 9 vs. rows 10 to 15 in Table 3). In terms of 

overall performance, the Bimodal predictor improves MIPS rating relative to pipelines 

without data forwarding (i.e., rows 10 and 11 vs. rows 4 and 5 in Table 4), but it does not 

help much for the pipelines with data forwarding already in place. Finally, the area (Table 

5) increases accordingly as we add the Bimodal predictor. 

Cost-performance Tradeoff. Figure 14(a) depicts the overall tradeoff between cost 

(area) and performance (Average MIPS over all of the benchmarks we studied). As 
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shown in the figure, the synthesized pipelines vary in their implementation cost and 

performance, providing a wide range of implementation alternatives to choose from 

depending on the desired target. In overall, we found that the Pareto optimal fronts 

consist of shorter pipelines (4- and 5-stage) without any speculation. Note that such 

insights on the design tradeoff for the pipelines and benchmarks we studied would have 

been difficult to learn without exploring many RTL designs by simulation and synthesis. 

There is also an opportunity for application-specific pipeline customization since the 

Pareto fronts would change when optimizing for individual applications instead of an 

average. For example, Figure 14(b) shows the tradeoff graph for the Quant application 

only. As the figure shows, the Pareto fronts for Quant includes longer pipelines with 

speculation. The automatic pipeline synthesis capability of T-spec and T-piper makes it 

possible to customize and pick the best pipeline for a specific target application. 

Automation benefit of T-spec and T-piper. Using T-spec and T-piper, we can fully 

automate the pipeline design flow starting from a non-pipelined datapath directly to an 

implementation. The approximate breakdown of time spent to obtain one data point in 

our study is as follows:  

• Synthesizing a pipeline from a T-spec requires only seconds of T-piper execution. 

• RTL simulation run can be done within one hour by simulating concurrently across 

multiple machines.  

• Design Compiler synthesis of the Verilog of the pipeline takes a few hours.  
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Even then considering the lengthy synthesis time, without T-spec and T-piper, the 

design exploration cycle would be prohibitively bogged down by the manual RTL 

development time. 

4.4. x86 Case Study 2: Application-Specific Processors 

The classic 1991 paper by Bhandarkar and Clark measured a performance advantage 

of RISC over CISC in the context of in-order pipelined implementations of MIPS and 

VAX processors [3]. Beyond performance, CISC ISA processors also suffer from an 

increased cost in implementation area and power in order to capture the greater variety of 

instruction behaviors. These differences between RISC versus CISC have been largely 

neutralized in the realm of high-performance processors today where superscalar out-of-

order execution is the norm. However, RISC ISAs still dominate the embedded processor 

domain where simple microarchitectures are common, with great attention paid to the 

design efficiency in terms of area and power.  This case study investigates the 

opportunity to close the gap between CISC and RISC ISAs in in-order pipelined 

embedded processors when assuming a CISC processor can be customized to support 

only a particular target application’s execution. 

To maintain ISA compatibility, CISC processors are excessively burdened by a large 

number of instructions with a large variety of behaviors. In a very complicated CISC ISA 

like x86, many instructions, especially the complicated ones, are not used by the 

compilers. Some instructions are used only for OS bootstrapping. Some instructions are 

maintained solely for legacy compatibility. In a custom embedded processor tailored 

made for a particular application, the overheads associated with those unused instructions 
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can be avoided.  Provided a sufficient subset of instructions is included, these customized 

processors with an incomplete native ISA support could nevertheless provide full ISA 

compliance by emulating the missing instructions in software (e.g., by trapping to PAL 

code [29]) when necessary, albeit at a large performance penalty. 

Yiannacouras, et al. previously showed the opportunity to improve a RISC 

processor’s performance-per-area metric by 25% by (1) pruning the processor’s datapath 

to support only the instructions required by a particular application (i.e., ISA subsetting) 

and (2) tuning the processor’s microarchitecture (pipeline depth, forwarding paths, etc.) 

to the application’s specific execution behavior [71].  This case study evaluates the 

opportunity to improve performance, area, and power by making similar application-

specific customizations in x86 processor implementations. The results (Section 4.4.4) 

show that application-specific customizations can significantly reduce the overhead in 

performance, area and power of an x86 processor relative to a RISC processor. 

4.4.1. Application-Specific Customization Approach 

This study considers the application-specific customization flow illustrated in Figure 

15(a). Given the binary executable of a target application, an ISA specification, and an 

optimization objective, the goal of processor customization flow is to arrive at a 

processor implementation that can execute the unmodified binary of the target application 

and best maximizes the optimization objective.  

At the ISA level, the subset of the ISA that is exercised by the target application is 

identified.  The support for the unused instructions is later omitted from the 

implementation in hope to reduce implementation cost and clock cycle time. Such “ISA 
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subsetting” was previously shown to be effective in reducing the performance-per-area 

metric by 25% on average in the context of RISC processor design [71]. We expect that 

the benefit of ISA subsetting to be larger for a CISC ISA like the x86, since it 

encompasses much more unused instruction behaviors. 

 

Figure 15. The application-specific processor customization approach. 

At the microarchitecture level, the microarchitecture design space for the pruned ISA 

is explored to identify an instance that maximizes the optimization objective. This study 

considers the microarchitecture space of in-order pipelined processors with a well-
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supported suite of options for data forwarding and speculative execution, which is 

suitable for “lean” processor implementations for applications with high-performance 

requirement, yet with strict constraints in power and area.  As such, this choice of design 

space is relevant for many embedded application contexts. 

Note that while these application-specific customization techniques by themselves are 

not new, this case study provides new insights by demonstrating their applications to 

reduce the overhead of supporting the popular x86 CISC ISA in in-order pipelined 

embedded processor designs. This study is made possible by T-spec and T-piper that 

enable the rapid design exploration of in-order pipelined processors, capable of 

supporting sophisticated ISA such as the x86. 

4.4.2. Evaluation Framework 

The application-specific customization flow outlined in Figure 15(a) could be realized 

in many ways.  However, extensive use of design automation is needed to practically 

explore any nontrivial problem instances. Figure 15(b) shows the actual realization of the 

flow in a form of a design automation toolchain that leverages T-spec and T-piper. 

Problem Inputs. The toolchain takes as its first input a checkpointed initial memory 

image, which includes the application binary. This initial memory image is prepared 

using the Simics simulator [38] so the execution of the application can be bootstrapped 

directly from the start of the application. The second input is the ISA specification, 

written in T-spec. The final input is an optimization objective to be maximized. In this 

study, we considered objectives that include wall-clock-time performance, 
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implementation area, power dissipation, as well as the normalized metrics of 

performance-per-area and performance-per-Watt. 

ISA-Level Customization Step. The toolchain simulates the execution of a target 

application against the Verilog RTL implementation that corresponds directly to the T-

spec specification (without any pipelining transformations or optimizations). The 

simulation is instrumented to collect profiling data about the usage frequencies of at 

different parts of the datapath (e.g., usage frequencies of different parts of the decoder 

module, functional units, etc).  The profiling results are used to back-annotate the T-spec 

specification to identify unused portions of the datapath to be omitted from the pipelined 

implementations generated in the next step.  

Microarchitectural Customization Step. This step explores the microarchitectural 

design space to select an implementation of the pruned T-spec datapath that best 

maximizes the chosen optimization objective.   From a T-spec specification, rapid design 

space exploration (similar to what we did on the case study presented earlier in Section 

4.3) is done by submitting different pipeline configurations to T-piper that controls the 

number and the positions of the pipelines stages and specifies where to apply forwarding 

and value-prediction optimizations to mitigate the penalty of data dependency stalls.   

4.4.3. Processor Baselines, Target Applications, and Customization Options 

Processor baselines. For the MIPS baseline processor, we used the 5-stage pipelined 

processor from the case studies previously discussed in Section 4.2, which has been 

shown to be comparable to a hand-made implementation, as well as one generated by 

SPREE.  
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For the x86 CISC baseline implementation, we used the T-spec datapath in the case 

study described earlier in Section 4.3. From the T-spec, T-piper was used to generate a 7-

stage pipeline with a maximal data-forwarding network and a bimodal branch predictor 

based on 2-bit saturation counters. Unfortunately, there is not an open-source pipelined 

x86 implementation that would allow us to vet the quality of our x86 baseline 

implementation. We can glean some indications by comparing our x86 CISC baseline 

against our MIPS baseline. Bhandarkar and Clark [3] studied the relative overhead of an 

in-order pipelined CISC processor (Digital VAX 8700) against a RISC processor with a 

similar microarchitecture (MIPS M/2000). They reported a net cycle-based performance 

advantage of RISC over CISC (i.e., the RISC factor) of 2.7 on average, with a minimum 

of 1.8 and a maximum of 3.7. As a sanity check, we calculated the RISC factor between 

our x86 CISC baseline and the MIPS RISC baseline to be 2.1 on average, with a 

minimum of 1.4 and a maximum of 2.7 over the SPREE benchmark applications we 

tested. This comparison is again inexact but should give some support that our x86 

processor pipeline is not grossly unreasonable for an in-order pipelined CISC processor. 

Target Applications. We consider the same set of target applications from the 

SPREE collection [71] as in the previous case study (Section 4.3).  Refer to Table 1 for a 

brief description of each application.  

Customization options. For each application under study, we used the flow 

presented in Section 4.4.2 first to prune the unused instructions from the x86 ISA and 

then to generate a variety of implementations corresponding to different 

microarchitecture optimizations. During ISA subsetting, the following datapath support 

could become removed when they are made non-essential by pruned instructions. 
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• various parts of the decoder (i.e., decoder table, instruction length calculator, control 

logic generation, immediate value decoding) corresponding to pruned instructions 

• various parts of the ALU (i.e., operand packing/unpacking logic, functional units, 

multiplier, divider) used by specific pruned instructions 

• various parts of the flags calculation logic. 

• various parts of the memory address calculation logic. 

• multiplexers associated with aforesaid modules (e.g., pruning out a multiplier unit 

leads in removal of the multiplexer input that the multiplier is connected to). 

From either the original full x86 T-spec or the pruned version, T-piper is used to 

generate various pipelined implementations using pre-prepared pipeline configuration 

scripts (i.e., a total of 240 pipelined implementations are studied in this paper). The 

configurations visited cover a design spanned by the orthogonal design choices used in 

the previous case study (Section 4.3), i.e., varying pipeline depths from 4 to 7 stages; 

forwarding schemes from no forwarding (None), forwarding as soon as the value is 

computed (Asap), and forwarding whenever possible (Max); and speculation schemes 

from no speculation (None), with a next-PC (NPC) predictor, and with a both NPC and 

bimodal predictors (Bimodal).  

4.4.4. Results 

ISA Subsetting. Let us first consider the effects of ISA subsetting only.  The results 

from our evaluation are summarized in Figure 16 and Figure 17. For each target 

application, we created a corresponding subsetted x86 T-spec and used T-piper to create a 
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range of implementations according to the microarchitecture space described in Section 

4.4. In this series of figures, the X-axis lists the different microarchitectures evaluated by 

our automatic development toolchain. The labels are in the format of {pipeline depth, 

 

Figure 16. Implementation costs of the x86 processors under study. 
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forwarding scheme, speculation scheme}. For example, 7-Max-Bimodal refers to the 7-

stage pipelined instance with maximum forwarding and a Bimodal predictor. The Y-axis 

shows the area, frequency, power, or performance averaged over the nine target 

applications and normalized to our baseline RISC processor. The x86-base bars show the 

values for the processor without any ISA subsetting, while the x86-app-specific bars 

show the processors with ISA subsetting given each target application. The x86-app-

specific bars show the average value across each of the target application. The range 

markers represent the minimum and maximum values.  

As shown in Figure 16(a), ISA subsetting effectively reduce implementation area 

relative to the x86-base, averaging in 33% of area reduction. For several 

microarchitectures, the reduction brings the area down to a level comparable to the area 

of our RISC processor baseline (e.g., pipelines without any forwarding nor speculation).  

In terms of frequency, the improvement is not as much as area, averaging in 12% 

frequency improvement (Figure 16(b)). This is because the target applications still utilize 

several CISC instructions. Therefore, even with ISA subsetting, it is not possible to 

purely eliminate the support for CISC-style instructions. As such, the critical path of the 

CISC datapath does not get significantly affected by ISA subsetting.  

As depicted in Figure 16(c), power dissipation of an ISA subsetted processor is not 

always lower than the non-subsetting x86-base processor (e.g., 6-stage, ASAP 

forwarding, no speculation). This is because the increase in frequency may lead to larger 

increase in power dissipation relative to the power savings afforded by the reduced area. 

In overall, ISA subsetting leads to an average of 6% reduction in power dissipation. Also, 
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for some microarchitectures (i.e., 4-stage pipelines), this reduction leads to power 

dissipation lower than that of the RISC baseline. 

 
Figure 17. Performances of the x86 processors under study. 
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The performances for the processors under study are shown in Figure 17. We look at 

three performance metrics. The millions of instructions per second (MIPS) depends only 

on the implementation frequency and the cycle-per-instruction (CPI) performance of the 

microarchitecture, without any consideration to power or area overheads. The MIPS/Watt 

and MIPS/mm2 consider the power and area overheads, respectively. 

Since the ISA subsetting preserves datapath correctness and targets purely unused 

parts of the datapath, CPI of a subsetted processor remains the same to the non-subsetted 

x86-base processor (i.e., subsetting has no impact on microarchitecture effectiveness). 

Therefore, the improvement in MIPS performance is resulted from the frequency increase 

only. As such, the ISA subsetting reduces the CISC-to-RISC performance gap in MIPS 

(Figure 17(a)) by 12% on average (i.e., from an average of 3.1x the performance of the 

RISC processor baseline, down to 2.8x).  

When power is considered (Figure 17(b)), the modest additional average power 

savings of 6% leads the larger reduction in the CISC-to-RISC gap in performance-per-

Watt, averaging in 17% reduction (from 4.7x down to 3.9x). When area is considered 

(Figure 17(c)), the significant 33% savings from subsetting yields a 40% average 

reduction in the CISC-to-RISC performance-per-area gap, from an average of 5.9x down 

to 3.5x. Note that, as expected, this 40% improvement in performance-per-area metric is 

larger than the 25% improvement of the same metric that was reported in [71] when 

applying ISA subsetting on a RISC processor. 

Microarchitecture customizations. Looking at the results in Figure 16 and Figure 

17 more holistically, comparing the results across the X-axis, we can very clearly see the 
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dramatic effect of microarchitecture customization for both the x86-base and x86-app-

specific sets of processors. The microarchitecture customizations explored by our 

toolchain are beneficial in providing a wide range of implementation options to choose 

from. The design space, starting from the simplest microarchitecture (4-None-None) and 

ending at the most aggressive one (7-Max-Bimodal), covers a large range of 

implementation costs and performances.  

 For example, for the x86-base processors (i.e., without ISA subsetting), the area, 

frequency, and power can vary by 1.4x, 1.9x and 2.1x, respectively. Performance in terms 

of MIPS, MIPS/Watt, and MIPS/mm2 vary by 2.2x, 4.4x, and 2x, respectively. These 

large variations exist in the x86-app-specific processors (i.e., with ISA subsetting) as 

well. Variations in area, frequency, and power for these processors are 1.5x, 1.7x, and 

2.4x, respectively. For performance, they are 2.3x, 4.1x, and 2.1x in terms of MIPS, 

MIPS/Watt, and MIPS/mm2. The large variations provide customization opportunity by 

selecting the best microarchitecture instance to satisfy the desired optimization objective. 

Bottom line: application-specific x86 vs. RISC. Tables 6, 7, and 8 show the 

characteristics of the best application-specific x86 processor generated by our toolchain 

for each of the application under study, when optimized for performance (MIPS), 

performance/power (MIPS/Watt), and performance/area (MIPS/mm2), respectively. The 

tables provide the microarchitecture selected as the best processor, along with the power, 

area, and performance of the processor. Each of these metrics are shown both in terms of 

their absolute values normalized to RISC baseline, and as percentage of improvements 

relative to the non-subsetted x86 baseline processor with the most aggressive 7-Max-

Bimodal microarchitecture. The absolute values indicate the CISC-to-RISC gap, while 
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the percentages show the benefits of applying the application-specific customizations 

relative to a non-customized x86 processor. Lastly, the table provides the performance 

range to provide insights of alternative design points (that gives median and minimum 

performance) aside from the best performing design. Notice that most of the best designs 

are at a significantly higher performance level than the median and minimum designs.  

The application-specific customizations improves performance relative to the most 

aggressive x86 processor by 42%, 185%, and 151% on average for the MIPS, 

Table 6. x86 application-specific processors with the best performance. 

Target 
application 

Micro- 
architecture Power Area Performance 

Performance 
range 

(median, min) 
Bitcnt 4-Max-None 0.86 (+53%) 1.26 (+41%) 0.51 (+58%) 0.34, 0.17 

Bubble_sort 4-Max-None 0.88 (+52%) 1.06 (+50%) 0.56 (+56%) 0.39, 0.18 
Crc 4-Max-None 0.79 (+57%) 1.10 (+49%) 0.41 (+44%) 0.31, 0.16 
Des 4-Max-None 0.89 (+52%) 1.15 (+46%) 0.46 (+57%) 0.30, 0.15 
Fft 6-Max-Npc 1.72 (+7%) 1.50 (+30%) 0.52 (+22%) 0.45, 0.24 
Fir 4-Max-None 0.96 (+48%) 1.23 (+43%) 0.51 (+35%) 0.42, 0.26 

Iquant 7-Asap-Npc 2.01 (–9%) 1.47 (+31%) 0.44 (+23%) 0.39, 0.26 
Quant 7-Asap-Npc 2.07 (–12%) 1.54 (+28%) 0.41 (+23%) 0.36, 0.23 
Vlc 4-Max-None 0.90 (+51%) 1.31 (+39%) 0.61 (+59%) 0.41, 0.19 

 

Table 7. x86 application-specific processors with the best performance/power. 

Target 
application 

Micro- 
architecture Power Area Performance 

Performance 
range 

(median, min) 
Bitcnt 4-Max-None 0.86 (+53%) 1.26 (+41%) 0.59 (+238%) 0.23, 0.11 

Bubble_sort 4-Max-None 0.88 (+52%) 1.06 (+50%) 0.64 (+228%) 0.25, 0.12 
Crc 4-Max-None 0.79 (+57%) 1.10 (+49%) 0.52 (+239%) 0.20, 0.11 
Des 4-Max-None 0.89 (+52%) 1.15 (+46%) 0.52 (+224%) 0.20, 0.10 
Fft 4-Max-None 0.87 (+53%) 1.32 (+38%) 0.51 (+123%) 0.27, 0.14 
Fir 6-Asap-None 0.84 (+55%) 1.10 (+49%) 0.58 (+182%) 0.26, 0.15 

Iquant 4-Max-None 0.97 (+47%) 1.30 (+39%) 0.41 (+110%) 0.24, 0.15 
Quant 4-Max-None 0.94 (+49%) 1.25 (+42%) 0.43 (+135%) 0.22, 0.13 
Vlc 6-Asap-None 0.90 (+51%) 1.31 (+39%) 0.68 (+225%) 0.26, 0.12 
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MIPS/Watt, and MIPS/mm2 metrics, respectively. Even with such significant 

improvement, there is still exists CISC-to-RISC performance gaps of 2x, 1.9x, and 2.5x 

for the three aforesaid performance metrics, respectively. 

In terms of power, an average saving of 33%, 52%, and 45% with respect to the most 

aggressive x86 processor was achieved when considering the MIPS, MIPS/Watt, and 

MIPS/mm2 metrics. More importantly, for some applications (e.g., bitcnt, bubble_sort, 

crc, des) such saving brings down the power dissipation to a level even lower than that of 

the baseline RISC processor. This is because these applications favor the shorter 4-stage 

pipeline, which typically consume less power than the deeper pipelined designs. 

Finally, the area saving relative to the most aggressive x86 processor averages to 

~40% for all the performance metrics we looked at. The end result is an average of 25% 

CISC-to-RISC area gap. For some target applications (e.g., bubble_sort, crc, fir), this area 

gap is as low as 10% or less.  

Table 8. x86 application-specific processors with the best performance/area. 

Target 
application 

Micro- 
architecture Power Area Performance 

Performance 
range 

(median, min) 
Bitcnt 4-Max-None 0.86 (+53%) 1.26 (+41%) 0.40 (+167%) 0.27, 0.16 

Bubble_sort 4-Max-None 0.88 (+52%) 1.06 (+50%) 0.53 (+214%) 0.34, 0.18 
crc 4-Max-None 0.79 (+57%) 1.10 (+49%) 0.37 (+182%) 0.25, 0.16 
des 4-Max-None 0.89 (+52%) 1.15 (+46%) 0.40 (+191%) 0.25, 0.14 
fft 6-Asap-None 1.49 (+19%) 1.32 (+38%) 0.38 (+90%) 0.31, 0.19 
fir 6-Asap-None 0.84 (+55%) 1.10 (+49%) 0.44 (+149%) 0.33, 0.23 

iquant 6-Asap-None 1.49 (+19%) 1.28 (+40%) 0.34 (+102%) 0.29, 0.22 
quant 6-Asap-None 0.94 (+49%) 1.25 (+42%) 0.32 (+105%) 0.25, 0.18 
vlc 4-Max-None 0.90 (+51%) 1.31 (+39%) 0.47 (+160%) 0.30, 0.16 
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Chapter 5 

In-order Pipeline Verification 

High-level (above RTL) design frameworks, like T-spec and T-piper, that employ 

design abstractions with precise semantics make it possible for designers to formally 

verify the properties and correctness of their initial design specifications. Unfortunately, 

even starting from a presumably correct specification and assuming hands-free automatic 

synthesis, there are ample opportunities for bugs to be introduced in the many rounds of 

synthesis and translation that stand between a high-level specification and its final 

realization. We can group the bugs into: (1) a fundamental error in the synthesis 

algorithms, or (2) a programming bug in the implementation of the synthesis algorithms. 

This is not a new problem. An analogous problem has long existed for the now industry-

standard RTL-downward synthesis flows. In less critical designs, one may simply put 

faith in the correctness of the synthesis tools; for critical designs, one must perform 

extensive functional design validation at the lowest practical intermediate representations 

and even on the final parts. 

Taking advantage of the precise design semantics of high-level design frameworks, 

one should extend formal verification technologies to ensure not only the correctness of 

the initial specification but also its equivalence with the output of subsequent synthesis 

and translation. With recent advances in combining model checking [8] and theorem 
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proving techniques to curtail state-explosion, compositional model checking [42] has 

been applied to successfully verify functional equivalence between non-trivial pipelines 

and their specifications [26][37]. Unfortunately, the manual effort involved in 

compositional model checking (e.g., applying abstractions and compositional reasoning) 

was reported to be extremely high [37]. 

In this chapter, formal verification is integrated with our T-piper high-level pipeline 

synthesis framework. The integration allows formally proving that the pipeline RTL 

output of T-piper, with its concurrent execution of transactions and the intricacies of 

hazard resolutions, does result in the same execution as if the transactions were executed 

one-at-a-time as prescribed by the T-spec transactional semantics.  

Specifically, T-piper is extended to use Cadence SMV compositional model checker 

[43] to automatically verify the functional equivalence between the input T-spec and the 

output pipeline implementation. Furthermore, to make the system practical, T-piper 

automatically applies abstraction and compositional reasoning techniques, therefore 

avoiding the need for manual compositional model checking effort. We demonstrate 

automatic verification of 9 processor pipelines for the MIPS ISA and 9 pipelines for a 

hypothetical ISA with CISC-like memory-to-memory instructions. We also discuss how 

integrated formal verification helped us uncover T-piper implementation bugs. 

The rest of the chapter is organized as follows. Section 5.1 provides a background in 

model checking. Section 5.2 presents the integration of automatic verification using 

compositional model checking into T-piper. Finally, Section 5.3 reports our case studies 

on automatic verification of example processor pipelines. 
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5.1. Model Checking Overview 

This section uses a simple example from [43] to explain the process of compositional 

model checking and to highlight the high level of sophistication and manual effort 

involved. The left-portion of Figure 18(a) (designated “Specification”) shows a simple 

non-pipelined 32-bit processor datapath that only supports ALU instructions. Each ALU 

instruction reads two operands from the register file (RF); performs an ALU operation; 

and writes the result back to the RF. The right-portion of Figure 18(a) (designated 

“Implementation”) depicts a 3-stage pipelined datapath with maximal data forwarding 

support.  

5.1.1. Model Checking 

To verify that the Specification and the Implementation are functionally equivalent, 

we first create cycle-accurate and (at least initially) bit-true RTL models for both the 

Specification datapath and the Implementation datapath. 

Next, we devise a pipeline correctness property to be checked.  To prove functional 

equivalence of the Specification and the Implementation, we can set a property stating 

that following all possible instruction execution sequences, the Specification and the 

Implementation make the same RF state updates. Since the RF state update value is 

produced by the ALU, which depends on the RF state as input, the correctness property 

(let us call this P1) can instead require the ALU outputs in Specification and the 

Implementation to be the same. 

Because the timing of Specification and the Implementation are different, we need to 

create a refinement map that relates the ALU output in the Implementation to the ALU 
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output in the Specification. In this case, we introduce an auxiliary pipeline register in the 

Specification model to provide a delayed ALU output value that corresponds in timing 

with the ALU output in the implementation model.   

 

Figure 18. A simple verification example from [43].  

We next declare certain control signals to be “free” variables, indicating to the model 

checker to consider all possible combinations of values of those variables.  In the current 

example, the read and write indices of the RF would be declared as free variables so that 
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the model checker considers all combinations of reading and writing the different RF 

entries. 

5.1.2. Abstraction and Decomposition 

Given a correctly formulated set of (1) Specification and Implementation models, (2) 

the refinement map, and (3) a correctness property, a capable model checker should 

either prove that the property is true or produce a counter example. In practice however, 

even the simple pipeline in the current example could cause today’s model checkers to 

run out of memory due to the large number of states that need to be explored (a.k.a., state 

explosion). 

The complex functionality of the ALU (supporting a large number of 2-to-1 

functions, such as multiply-and-shift) is one cause of state explosion. A standard 

workaround in model checking is to assume that the ALU blocks in the Specification and 

the Implementation are identical.  Thus, they can be captured as uninterpreted functions 

[43] in the verification model, and the model checker does not have to consider their 

internal details. We can further abstract other details such as the exact word-size of the 

datapath. For example, data type reduction [43] can be applied to the ALU operands and 

output to verify the correctness property generally for unbounded word-size (which is 

actually much cheaper to verify than an explicit word-size). 

A property that depends on many signals (i.e., has a large cone of influence) can also 

lead to state explosion. The correctness property P1 posed in Section 5.1.1 has a cone of 

influence that covers the entirety of the Specification and the Implementation. 

Compositional reasoning [43] allows a property to be decomposed, so multiple smaller 
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(more manageable) properties can be checked instead. For example, we can introduce 

another property P2 that states that the ALUs in the Specification and Implementation 

receive the same operands. Instead of proving P1 as a standalone property, we prove 

separately P1 assuming P2, and then P2 assuming P1. When proving P1 assuming P2, the 

cone of influence is greatly reduced from before since it is no longer necessary to 

consider the RF fetch logic in the Implementation. (Figure 18(b) illustrates the part of the 

pipeline that can be left out when proving P1 assuming P2; Figure 18(c) shows the same 

for when proving P2 assuming P1.) 

Another well-known decomposition is case analysis [43], which splits a proof into 

multiple proofs according to different assignments to a set of variables. For example, we 

can split P1 into multiple (smaller) cases that consider separately different combinations 

of ALU output and input operands. Furthermore, symmetry can be used on the 32-bit 

ALU’s input operands to reduce the number of cases that need to be checked explicitly. 

As the example shows, the manual effort needed in compositional model checking is 

significant. Expert knowledge both in pipeline design and model checking is needed to 

determine the appropriate abstractions and decomposition strategies to apply. A similar 

sentiment was reported in a recent case study that verified RISC processor pipelines 

using compositional model checking [37]. 

5.2. Automatic Verification 

This section describes the extensions to T-piper to enable automatic compositional 

model checking to prove that the in-order pipelined implementation synthesized by T-

piper executes and performs the same order of transactions and state updates as its T-spec 
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datapath specification. In other words, the verification demonstrates that the synthesized 

pipelined datapath is functionally equivalent to the non-pipelined T-spec datapath under 

its transactional execution semantics.  

More specifically, given the inputs of T-spec, P-cfg and H-cfg files, T-piper generates 

a verification file in the SMV language that can be directly submitted to Cadence SMV 

[43]. Ideally, we would like to model check the RTL Verilog design directly. The current 

choice of the SMV language is simply because Cadence SMV was the only capable 

compositional model checker that we have access to. As is, the Verilog and SMV 

descriptions are generated from a common RTL internal representation at the final step of 

the synthesis process. Below, after first clarifying the verification objectives, we explain 

T-piper’s model generation process and the proof procedure. 

5.2.1. Verification Objective 

Since the implementation pipeline in our context is automatically generated, any bug 

in the implementation would have to be caused by a bug in T-piper. There are two classes 

of bugs that can occur in T-piper: (1) a fundamental bug in the pipeline synthesis 

algorithms, or (2) a programming bug in the coding of the synthesis algorithms (e.g., a 

bug in the synthesis code, a bug in the code that checks for the validity of the input T-

spec or configuration files, etc). Both types of bugs can be exposed by the verification 

approach described in this section. 

Starting from the T-spec netlist, T-piper introduces pipeline stage registers and 

pipeline control logic such that the overlapped transaction executions on the synthesized 

pipelines produce the same result as the one-at-a-time, sequential next-state update of the 
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T-spec model under T-spec’s transactional execution semantics. The synthesized 

pipelined implementation uses the same next-state compute blocks (e.g., op1, op2, op3, 

op4, op5, and m1 in the datapath example depicted in Figure 2(b)) as the original T-spec. 

Since these blocks are a part of the specification, we assume they are correct and have 

been verified independently.  

 

Figure 19. Pipeline internals. 

The focus of our verification effort is the correctness of the pipeline register insertion 

and the pipeline control logic generated by T-piper. Chapter 3 has provided detailed 

discussion on the pipeline structures synthesized by T-piper. A brief summary is 

presented here for convenience. Figure 19 depicts the pipeline structure generated by T-

piper, with the pipeline control logic in the shaded blocks. In the figure, PstageLogic 

(pipeline stage logic) refers to the original user-provided next-state compute blocks 

specified in T-spec. The pipeline control logic blocks introduced by T-piper are: 

• PstageCtrl (Pipeline Stage Controller) interacts with the PstageLogic in a given stage 

and manages communication with the adjacent pipeline state registers. 
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• HazardMgr (Data Hazard Manager) detects data hazards and activates the appropriate 

resolution logic. Since hazard is detected at a state read interface, one HazardMgr is 

generated for each state read interface in a stage.  

• FwdUnit (Forward Unit) manages forwarding of both actual and predicted values. It 

includes a forwarding multiplexer (e.g., fwd in Figure 4(b)) and acts as a proxy to a 

state read interface, providing either a forwarded value or an actual state-read value. 

One FwdUnit is generated for each state-read interface where forwarding from a 

downstream stage is supported. 

• PredResUnit (Prediction Resolution Unit) compares a predicted value with the actual 

value eventually produced by the datapath. The unit triggers squash on a 

misprediction. One PredResUnit is generated for each PredResPt in the stage. 

5.2.2. Verification Models 

This section describes how T-piper emits the models for use with the Cadence SMV 

model checker [43]. Prior to abstraction, the specification and the implementation models 

are cycle-accurate and bit-true representations of the non-pipelined input T-spec and the 

synthesized pipelined implementation, respectively. The specification model is 

automatically augmented with the necessary auxiliary states and logic for the refinement 

mapping. 

Uninterpreted Functions (UFs). To curtail state explosion, T-piper generates the 

simplest possible models while exposing sufficient details to facilitate verification of the 

pipeline control logic. In the verification models, the internal details of the next-state 
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compute blocks (PstageLogic in Figure 19) are abstracted as uninterpreted functions. 

Recall that these blocks are provided by the user and are assumed to be correct as given. 

On the other hand, the implementation model must expose faithfully the pipeline 

control logic (the shaded units in Figure 19) introduced by T-piper. To do so, the 

abstraction retains the following details needed by the pipeline control logic: 

• State elements and their read/write interfaces, which expose all possible hazards 

scenarios in the implementation model.  

• State write-data sources (e.g., outputs of op4 and op5 in Figure 2(b)) and write 

multiplexers (e.g., m1 in Figure 2(b)), which expose forwarding possibilities in the 

implementation. 

• Dataflow dependencies, which are required to maintain the correct original 

transactional semantics. 

Figure 20 sketches the algorithm for automatic abstraction in T-piper. The algorithm 

produces a set of UFs and a list of state write sources that it represents. The first part 

(comprising the first 3 for-loops) considers all the write-data sources of an architectural 

state and allocates a minimal number of UFs to abstract the PstageBlocks of the stage(s) 

where the write-data originates. The final for-loop assigns a UF for the PstageBlock of 

any stage that has not been abstracted in the first part, ensuring that all PstageBlocks are 

abstracted.  

To minimize the number of UFs, a single UF is used to represent multiple write-data 

sources where appropriate. For example, state A in a design may have write-data sources 
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src1 and src2 that are placed at pipeline stages s1 and s2, while state B may have write-

data sources src3 and src4 at stages s2 and s3. In this case, only three UF’s are needed to 

represent (1) src1 in s1; (2) src2 and src3 combined in s2; and (3) src4 in s3.  Although 

only one UF is used to represent two write-data sources (src2 and src3) in s2, from the 

pipeline control logic’s perspective, state B still sees two write-data sources (at s2 and 

s3); similarly, state A sees two write-data sources (at s1 and s2). 

 

Figure 20. Algorithm to abstract the PstageBlocks by a minimum number of UFs. 

Inputs: T-spec, P-cfg 

Output: a set of <uf, pstage, <write sources>> 

 

// Find shared write sources, and track them in a database 

for each ws1 write source of state S1 in T-spec { 

      for each ws2 write source of state S2 in T-spec other than S1  

         if(ws1 == ws2) // same source data, but write to different states 

            add_to_shared_wr_src_db(ws1); 

} 

 

// Create UF to represent each shared write source  

for each ws write source in shared_wr_src_db { 

   create_new_uf(ws, get_pstage(ws, P-cfg), uf_db); 

} 

 

// Assign private write sources to existing uf, if any. Or, create new uf. 

for each ws write sources not in shared wr_src_db { 

   if(uf_exist_in_pstage(get_pstage(ws, P-cfg), uf_db)) 

      assign ws to existing uf; 

   else 

      create_new_uf(ws, get_pstage(ws, P-cfg), uf_db); 

} 

 

// Assign uf to the rest of PstageLogic  

for pstage ps in P-cfg between earliest_uf(uf_db) and latest_uf(uf_db) { 

   if( !uf_exist_in_pstage(ps, uf_db) ) 

      create_new_ufc(none, get_pstage(ws, P-cfg), uf_db); 

} 
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Free Variables. T-piper automatically declares certain control signals as ‘free’ 

variables, such as with the RF read and write indices in the example in Section 5.1. More 

specifically, the following signals are declared as free variables by T-piper:  

• The read and write enables of each state element (and index of an array state 

element). Freeing these signals allows model checking to cover for all possible data 

hazard scenarios. 

• The select signal of a write multiplexer. This allows the model checker to explore 

state writes from all the possible write-data sources, thus uncovering all the possible 

data forwarding scenarios. 

• There is no extra analysis required to identify these signals since they are already 

needed by T-piper for pipeline synthesis sake. 

Auxiliary States and Coordination Logic. T-piper inserts auxiliary states to buffer 

values produced by the specification model. These buffered values are used to set the 

refinement maps and correctness properties. Details on the correctness properties 

synthesized by T-piper are discussed a later section.  

In addition to the auxiliary states, T-piper also generates logic that coordinates the 

execution progress of the specification and the implementation models. Such 

coordination logic was not needed in the example presented in Section 5.1, since the 

maximally forwarded pipelined implementation in the example never stalls. In general, a 

pipeline implementation may still need to stall when the available forwarding paths do 

not resolve all hazard conditions. 
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When the coordination logic detects a pipeline stall in the implementation model, the 

coordination logic needs to artificially throttle the progress of the specification model to 

keep the two models’ progress in synchronization. Since T-piper is synthesizing the 

pipeline control logic, it knows which signals correspond to pipeline stalls and need to be 

monitored by the coordination logic. 

Modeling Speculation. When a transaction requires an architectural state value that 

is due to be updated by another downstream transaction and the value is not yet available 

through forwarding, automatic speculative mechanisms in a T-piper pipeline allow the 

transaction to utilize a predicted value generated by a user-provided value predictor in 

place of the actual state value. T-piper automatically generates the logic to eventually 

check the predicted value against the actual value and, in the case of a misprediction, to 

restart the pipeline after squashing any affected transactions. 

In the case of a correct prediction, we only need to verify that the predicted value is 

forwarded correctly. This is essentially the same as verifying the data forwarding logic, 

except with a different type of data source (i.e., value produced by the predictor logic 

instead of a logic block from a downstream stage). In the case of a misprediction, we 

need to verify both that the prediction resolution unit (PredResUnit) appropriately 

informs the pipeline control units (PstageCtrl) of the event and that the pipeline is 

correctly squashed and restarted.  

T-piper implements the approach in [26] to model speculative execution for 

verification. First, we utilize a free Boolean flag (e.g., isMispred) to indicate whether a 

misprediction happened at a given execution step. If isMispred is asserted, then the 
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specification model stalls to wait for the implementation model to detect the 

misprediction and squash the affected transactions in the pipeline. On the other hand, if 

isMispred is not asserted, the specification model advances normally. 

Second, the transactions following a misprediction in the implementation model are 

marked as ‘shadow’. They will eventually be squashed when the misprediction is 

detected. Therefore, they do not have any correspondence to those transactions executed 

by the specification model. These shadow transactions are tracked with a shadow bit, 

which is an auxiliary state that is set when the isMispred flag is asserted and cleared when 

the implementation has handled the misprediction. The refinement maps are set to ignore 

these shadow transactions accordingly.  

Finally, to verify the correctness of the forwarding logic for the predicted value, T-

piper uses the value generated by the specification model as an input to the 

implementation model. This value is carried along the pipeline using auxiliary states, and 

is used to model the forwarding of a correct prediction. 

User-Defined Constraints on State Accesses. By default, T-spec requires each state 

access to be predicated by an explicit enable signal (i.e., a read/write occurs only when its 

enable signal is asserted). However, in some cases, a state is constrained by design to 

always be read (or written) by every transaction. For example, the program counter (PC) 

in an instruction processor is always read and written by each instruction. To further aid 

in simplifying the verification models, we extended T-spec to allow the user to annotate 

such constraints. T-piper incorporates these constraints in the verification model. In the 

instruction processor example, the constraint that sets PC to always be read/written 
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allows pruning the scenarios where PC is not read/written, which reduces the number of 

state transitions to be explored during model checking. 

5.2.3. Proving Correctness 

Correctness Properties. T-piper automatically places refinement maps and specifies 

properties to prove the correctness of: 

• State write value (P-wr), which states that any architectural state updates made in the 

implementation model should be consistent to those in the specification model. The 

property P1 (i.e., correctness of RF writes) in Section 5.1 is this type. 

• State read value (P-rd), which states that any architectural state reads made in the 

implementation model should be consistent to those in the specification model. The 

property P2 (correctness of RF reads) in Section 5.1 is this type. Note that in an 

implementation model with data forwarding, state read value is obtained at the output 

of the FwdUnit. 

• Uninterpreted function (UF) output (P-uf-out), which states that the output produced 

by each UF in the implementation model should be consistent with the one in the 

specification model. The property P1 in Section 2 is also of this type (since ALU 

output is the RF write data). 

The P-wr properties by themselves would be necessary and sufficient to prove 

functional equivalence between the specification and the implementation models. The P-

rd and P-uf-out properties are included to facilitate decomposition. 
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Decomposition. T-piper automatically performs decomposition utilizing the 

following heuristics: 

• A P-wr property is proven by assuming that all the write-data sources are correct. 

Write-data sources are the earliest forwarding points (e.g., op4 and op5 in Figure 

2(b)), which are already identified by T-piper during pipeline synthesis. A write-data 

source is either an output of a UF (assumed correct in P-uf-out) or a state read 

interface (assumed correct in P-rd). The write-data source correctness assumption 

removes from the P-wr‘s cone of influence the pipeline implementation logic that 

computes the write-data. 

• A P-rd property is proven by assuming that all the possible forwarding sources to that 

read interface are correct. As mentioned earlier, T-piper already identified all 

forwarding sources. Therefore no additional analysis is needed to determine these 

sources. Each forwarding source should either be a UF output (assumed correct in P-

uf-out) or a state read interface (assumed correct in P-rd). T-piper will not create 

cyclic dependency in P-rd. The forwarding source correctness assumption removes 

from the P-rd’s cone of influence the pipeline implementation logic that computes the 

forwarded values.  

• A P-uf-out property is proven by assuming that all its inputs are correct. Each of the 

UF inputs should either be a state read data (assumed correct in P-rd) or a UF output 

(assumed correct in P-uf-out). T-piper will not create cyclic dependency in P-uf-out. 

The assumption removes from the P-uf-out’s cone of influence the pipeline 

implementation logic that produces the inputs to the UF.  
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Case Splitting. T-piper automatically performs case splitting on the aforementioned 

properties, as follows: 

• A P-wr property is split into cases that consider all possible values of each of the 

write-data sources to the state write-data being proven. 

• A P-rd property is split into cases that consider all possible values of the state read-

data. If the state is an array, the split also considers all possible values of the array 

read index.  

• A P-uf-out property is split into cases that consider all possible values of its output 

and its inputs. 

T-piper defines the variables involved in the case splitting as symmetric so that the 

model checker can perform data type reduction accordingly. 

5.2.4. Verification Examples 

Figure 21(a) depicts the verification model for the specification datapath derived from 

the T-spec in Figure 2(b). Three UFs are needed in these models, s1, s2, and s3, 

corresponding to first three stages of the target 4-stage pipelines from Figure 4(a), Figure 

4(b), and Figure 4(c). No UF is needed to represent the last pipeline stage since it has 

only the write interface to state R (i.e., no computational block). Notice that the next-state 

compute blocks op2 and op3 in Figure 2(b) are abstracted away as a single UF s1. The 

figure also shows the correctness properties automatically placed by T-piper, which are 

used to decompose the verification problem into smaller sub-problems. 
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Figure 21. Verifying pipelines with stalling, forwarding, and speculative execution. 

Figure 21(b), Figure 21(c), and Figure 21(d) show the implementation models 

generated by T-piper to verify the pipelines in Figure 4(a), Figure 4(b), and Figure 4(c), 

respectively. In Figure 21(b), the pipeline has no optimization. Thus, data hazards are 

resolved by stalling. Despite the simplicity, the pipeline still needs to implement a variety 

of control blocks (i.e., PstageCtrl, HazardMgr, PregsCtrl) for correctness. These control 

blocks are shown in white boxes in the figure.  Also, although not shown in the figure, 
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the read and write enables of state R are declared as free variables to make sure that all 

possible transaction sequences in the pipeline are explored. 

For the pipeline in Figure 21(c), T-piper includes the forwarding paths and the 

necessary logic (FwdUnit) in the verification model. Additionally, the select signal for the 

multiplexer m1 is defined as a free variable, so that the model checker would explore all 

possible forwarding scenarios in the design. Although not shown, the model Figure 21(b) 

and Figure 21(c) has coordination logic to stall the specification model when the 

implementation model stalls. 

 

Figure 22. Verilog and SMV excerpts from verification example in Figure 21(b). 

In Figure 21(d), a predictor logic block pred is added to enable speculative execution, 

with the predicted value forwarded from stage 2 to stage 1, and the prediction resolved in 

stage 4. T-piper exposes the prediction forwarding path as well as the prediction 
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resolution unit (PredResUnit). It also augments the model with (1) the isMispred free 

variable to emulate speculative execution; (2) the coordination logic to stall the 

specification model when the implementation is emulating a misprediction; and (3) the 

flag bits to track ‘shadow’ transactions in the pipeline (as described in Section 5.2.2). 

As mentioned previously, the Verilog and SMV descriptions of the implementation 

are generated from a common RTL internal representation at the final step of the 

synthesis process. Thus, both the Verilog and SMV descriptions contain the exact same 

pipelining logic, except that they are written in different syntax. Figure 22 shows Verilog 

and SMV excerpts of the generated HazardMgr for the pipeline verification example in 

Figure 21(b). The figure highlights the various parts of the excerpts, using the arrows to 

indicate the equivalent parts between the Verilog and SMV descriptions. 

In addition to the implementation model, the SMV file also contains the specification 

model, auxiliary states, coordination logic, and correctness properties to model check, as 

described in earlier sections. Figure 23 shows an SMV excerpt for three generated 

correctness properties for the example in Figure 21(b). The first property, 

property_R_rd_d, is of P-rd type (see Section 5.2.3), to check the correctness of state R 

read data. The comment in the excerpt shows the temporal logic description [43] of the 

property. The G is for “globally” operator, and the  sign indicates “imply” relationship. 

For property_R_rd_d property, “G (S1 done computing → R read data equal ref)” says 

that at all time, a completion of stage S1 (where R read interface is) implies that the read 

data of R in the implementation model is equal to its reference value produced by the 

specification model. The other two properties are of types P-uf-out and P-wr, and they 

specify the correctness of pipeline stage S2 output and R write data, respectively. 
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Figure 23. SMV excerpts for the correctness properties from Figure 21(b) example. 

5.3. Evaluation 

The proposed automation approach described in the previous section has been 

integrated with our T-piper pipeline synthesis tool. Given the inputs of T-spec, P-cfg and 

H-cfg files, T-piper generates both a design file in RTL Verilog and a verification file in 

the SMV language, which can be directly submitted to Cadence SMV [43]. This section 

discusses the findings from several case studies in applying this approach. In particular, 

we collected the following key verification metrics from the case studies (similar to those 

in [37]): 

/* ---- State R read data correctness */ 

/* G (S1 done computing  R read data equal ref) */  

layer property_R_rd_d: { 

      if(S1_preg_update) 

         impl_R_rd_d := ref_R_rd_d; 

} 

 

/* ---- Stage S2 output correctness */ 

/* G (S2 done computing  S2 output equal ref) */  

layer property_S2_out: { 

     if(S2_preg_update) 

          impl_S2_out := aux_S1_ref_S2_out; 

} 

 

/* ---- State R write data correctness */ 

/* G (S4 done computing  R write data equal ref) */  

layer property_R_wr_d: { 

      if(S4_preg_update) 

         impl_R_wr_d := aux_S3_R_wr_d; 

} 
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• The number of correctness properties. This metric is suggestive of the manual effort 

and knowledge obviated by our automation approach.  

• The number of state variables for the property with the largest cone of influence. This 

number indicates the likelihood of encountering state explosion. 

• The number of BDD nodes allocated during the model checking. This runtime 

measure of SMV data size is most indicative of the likelihood of encountering state 

explosion. 

• The execution time spent by the model checker to complete the verification. 

We should remind the readers that without the abstractions and decomposition 

strategies automated in Section 4, SMV would have encountered state explosion on even 

simple examples like the ones in Figure 29. 

5.3.1. Comparison with Manual Verification 

In this case study, we compared the verification of the simple 3-stage pipeline 

example from Section 2, when done manually (as prescribed in the Cadence SMV tutorial 

[43] where the example is taken from) versus with our automatic approach. For the 

automatic approach, we created a T-spec for the specification datapath and used T-piper 

to synthesize and verify the target pipeline (i.e., 3-stage with maximal forwarding).  

T-piper automatically arrives at the same correctness properties as stipulated by the 

manual counterpart (i.e., correctness of RF operands and ALU output), except for an 

additional P-wr type property (Section 5.2.3) only in the T-piper verification. It is 

included because T-piper conservatively assumes that there may be multiple write-data 
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sources to a state element, and places a P-wr property at each state write port during 

decomposition. The inclusion of P-wr properties leads to finer decomposition and does 

not affect the soundness of the functional equivalence proof. 

The maximum number of state variables in the T-piper generated verification model 

is 40, whereas the manual effort required a maximum of 25. Correspondingly, the model 

checking time and the number of BDD nodes allocated are worse in the automatic 

approach than in the manual one (i.e., 0.44sec vs. 0.05sec; 98K vs. 12K). The differences 

are due to slightly less optimized (implementation-wise) pipeline control logic in the 

synthesized pipeline. During pipeline synthesis, T-piper could not infer (as in the manual 

design effort) the RF is read and written on every cycle and therefore could not make the 

associated simplification in the pipeline control logic. We have extended T-spec to allow 

users to provide these additional assumptions, but T-piper does not yet support automatic 

pruning of the pipeline control logic based on these user-provided assumptions. 

Despite these quantitative disadvantages, we will next show that the automatic 

approach is in fact quite capable at handling non-trivial designs. It is also important to 

keep in mind that our automatic approach completely eliminates the manual effort in 

creating the verification models and in applying abstractions and decompositions. Even 

designers without any formal verification knowledge or experience can invoke the 

automatic approach.   
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Figure 24. The T-spec of the load-store processor datapath under study. 

  

Figure 25. The T-spec of the memory-memory processor datapath under study. 
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5.3.2. Verification of Load-Store and Memory-Memory Processor Pipelines 

We carried out two processor design case studies based on the two T-specs shown in 

Figure 24 and Figure 25. Figure 24 corresponds to the non-pipelined implementation of 

the MIPS RISC ISA; Figure 25 corresponds to the non-pipelined implementation of a 

hypothetical ISA with CISC-like memory-memory instructions.  The datapath style in 

Figure 25 is inspired by the Intel Atom® processor pipeline, which does not break x86 

memory-memory instructions into multiple RISC-like micro-operands. True to CISC-

style architectures, the pipeline also handles variable length instructions. From these two 

T-specs, we used T-piper to synthesize a total of 18 pipelines, varying in pipeline stages 

(4, 5, and 6 stages) and hazard resolution schemes (with stalling only (N), with maximal 

data forwarding (F), and with both forwarding and speculative execution (S)).  

 

Figure 26. Number of correctness properties for each pipeline being verified.  
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Figure 27. Number of states in the largest property for each pipeline being verified.  

 

Figure 28. Model checking time (seconds) for each pipeline being verified.  

 

Figure 29. The BDD nodes allocated (in millions) for each pipeline being verified.  
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Results. All of the designs were checkable using Cadence SMV running on a 2 GHz 

PC with 4 GB of DRAM. Figure 26, Figure 27, Figure 28, and Figure 29 summarize the 

verification results. To the first order, deeper pipelines are more expensive to verify, as 

indicated by the higher cost metric in the number of states (Figure 27), model checking 

time (Figure 28), and number of BDD nodes (Figure 29). This is because each additional 

pipeline stage adds more pipeline registers and control logic. Furthermore, the finer 

partitioned PstageLogic blocks are abstracted by more UFs. 

The more complicated hazard resolution schemes (i.e., forwarding and speculative 

execution) increase the number of state variables only slightly (Figure 27) but increase 

the model checking time significantly (Figure 28). This is because forwarding and 

speculative execution logic only requires a few additional state variables but introduce 

many more possible state transitions (e.g., all the data forwarding scenarios, pipeline 

squash conditions due to misprediction, etc). Such an increase in the exploration space 

also leads to higher number of BDD nodes used (Figure 29). The choice of hazard 

resolution does not affect the number of correctness properties (Figure 26), since it only 

impacts the hazard control logic, and does not introduce any additional next-state 

compute blocks or architectural states, which are the main concerns of the correctness 

properties placed by T-piper. 

Finally, somewhat surprisingly, the MIPS and the CISC-like memory-memory 

processor pipelines incur a similar level of verification effort. One might expect that a 

memory-memory pipeline would require a higher effort due to the additional logic to 

manage data memory hazards since instructions can read from and write to the memory 

in a single pipeline pass. This is not the case because we assume a simple memory array 
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that reads combinationally and writes synchronously just like a register file array. Once 

abstracted, the larger capacity of the memory does not increase verification effort beyond 

what would be required to handle a register file array. Similarly, the extra complexity 

from the additional memory address compute block and the more sophisticated next PC 

compute block are also abstracted away as uninterpreted functions and hence do not have 

a large impact on the verification cost. Verification cost is much more affected by the 

complexity of the pipeline control logic injected by T-piper. 

Catching Real Bugs. In the course of the case studies, we did in fact uncover a 

number of real “programming” bugs in T-piper and fortunately no “algorithmic” bugs so 

far (see Section 5.2.1). Two examples of the bugs are described below: 

1) T-piper requires that all predictions be resolved before any architectural state is 

written. We had a bug in our hazard configuration file (H-cfg) where a prediction 

resolution point is placed later than a state write point. Further, we had not 

included a check for such a condition in T-piper. Thus, T-piper ended up taking 

the buggy H-cfg and synthesizing a pipeline. When we ran the verification, a 

counter example was generated for the scenario where an architectural state is 

written even though there is an unresolved incorrect misprediction. 

2) Another bug results in a failed verification due to T-piper generating a (slightly) 

incorrect SMV model, whereas the Verilog RTL emitted was correct (upon later 

manual examination). In this case, model checking successfully produced a 

counter example to help us pinpoint the typo in the SMV model and track down a 

programming bug in T-piper. However, one can certainly also imagine an 
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opposite scenario where the typo is in the Verilog RTL and not in the SMV 

model. This speaks strongly for formal verification technologies that can be 

applied directly to the implementation design file. (But then again, we will still be 

at the mercy of the correctness of the model checker and the entire downstream 

synthesis flow.) 
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Chapter 6 

Multithreaded Pipeline Synthesis 

Multithreading is a microarchitecture optimization technique that allows multiple 

threads of execution to share a pipeline, thereby improving efficiency. Although 

multithreading can be applied to any pipelined datapath, the most common adoption of 

this technique has been for instruction processor pipelines. Various commercial processor 

pipelines are multithreaded, such as Intel® Atom and Sun® Niagara. 

Developing a non-threaded pipeline by hand is already a difficult effort by itself, let 

alone with the complication of multithreading. There are many additional aspects to 

consider (e.g., thread scheduling policy, state sharing attributes among threads, 

throughput enhancing schemes on long-latency events) which exacerbate the pipeline 

development effort. While there are existing works on automatic synthesis of in-order 

pipelines [9][19][25][27][28][30][33][39][47][58][71], to the best of our knowledge there 

has not been any for synthesis of in-order multithreaded pipelines. Prior works 

[7][13][34][35][44] have also presented multithreaded processor pipelines for FPGA 

prototyping, but they are manually developed. 

In this section, we present extensions to the transactional datapath specification (T-

spec) and its in-order pipeline synthesis technology (T-piper) previously discussed in 
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Chapter 2 and Chapter 3 to support multithreading. Our approach not only works well 

with instruction processor pipelines but also is flexible enough to accept any sequential 

datapath. It maintains the synthesis features of T-piper for non-threaded pipelines (e.g., 

forwarding, speculation) while supporting various multithreading features, consisting of 

those found in modern in-order multithreaded pipelines (e.g., state sharing, replay on 

long-latency events) as well as novel ones (e.g., state sharing by thread groups). 

To demonstrate the usefulness of the approach, we report a case study at the end of 

this section, which uses multithreading-capable T-spec and T-piper, on rapid design 

space exploration of 32 multithreaded processor pipelines supporting a subset of x86 

ISA. The pipelines are all synthesized from a single T-spec, and they vary in pipeline 

depths, forwarding capabilities, thread scheduling policies, and mechanisms for handling 

long-latency events. 

The chapter is organized as follows. Section 6.1 presents a motivating example to be 

used for discussion in the later sections. Section 6.2 discusses extensions for T-spec and 

T-piper to support multithreading. Section 6.3, presents a design exploration study of x86 

processor pipelines utilizing the extended T-spec and T-piper. 

6.1. Motivating Example: Key Scan 

To illustrate pipelining and multithreading usage scenarios to be discussed in this 

chapter, here we present a simple example of a key scanner that counts the number of 

occurrences of a given 32-bit key value in an array of words in memory. Figure 30(a) 

shows an example, where the key K is 7, and 8 words are in the memory M. Count CNT 

should be 3 at the end of the scan.  
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Figure 30. Key scan example. 

Figure 30(b) depicts a sequential datapath for such a key scanner, which consists of 

state elements (registers and a memory, shown in shaded boxes) and combinational logic 

blocks (white boxes) that compute next-state values for each state within a clock cycle. 



 

 96 

Note that the states are drawn with separate read and write interfaces, illustrating the 

read-compute-write cycle that happens in the datapath within each clock cycle. 

The datapath operates as follows. The memory M contains an array of words to be 

scanned, with NE initially holding the number of words in M (e.g., 8 for Figure 30(a) 

example). The register K holds the keyword. Every clock cycle, the word in M pointed to 

by the address A is read and compared with keyword K. If there is a match, then count 

CNT is incremented by inc. Also, A is updated by naddr to point to the next word in M, 

and NE decremented by dec. When NE reaches 0, the scan is completed. The state 

updates are managed by ctrl, which monitors NE to check for scan completion (NE is 0), 

and the K and M.rd comparison result to check for when a K is found in M.  

We can pipeline the datapath in Figure 30(b) using the T-piper in-order pipeline 

synthesis in Chapter 3 to reduce critical paths and improve frequency, by dividing the 

next-state logic blocks into multiple stages separated by pipeline registers. For example, 

Figure 30(c) shows three possible pipeline implementations of the datapath in Figure 

30(b).  

6.2. Multithreaded Pipeline Design 

Multithreading is a microarchitecture optimization technique that allows multiple 

threads of execution to share a single pipeline. Each thread of execution is associated 

with a set of states and a sequence of transformations on those states. Adding 

multithreading to a non-threaded pipeline typically requires the following logic. First, 

architectural state elements need to be replicated to hold multiple contexts. Second, logic 
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for scheduling and managing the threads need to be added. The rest of the non-threaded 

pipeline resources can be shared in a time-multiplexed manner by all the threads.  

There are two main benefits of multithreading. First, it saves area, at the expense of 

performance, relative to having multiple full pipelines to execute multiple threads.  

Second, when a thread experiences a long stall (e.g., due to data dependence, or long-

latency event like a memory access), it may be possible to let other threads to proceed, 

thereby improving pipeline utilization. 

 

Figure 31. Multithreaded key scan. 

6.2.1. Multithreading the Key Scan Example 

Let us suppose that we would like to improve the example datapath in Figure 30(b) 

by pipelining and multithreading that supports 4 threads, as illustrate in Figure 31. There 

are multiple possible multithreading scenarios that can be employed, three of which are 

shown in Figure 32. First, each thread can be used to perform an individual scan, of 

which case the multithreaded key scanner will accept and return 4 different keywords and 

counts, respectively (Figure 32(a)). Second, only 1 scan is performed, but accelerated by 

having the 4 threads scanning different parts of the memory (Figure 32(b)). Lastly, the 

first and second scenarios can be combined, where there are two scans, each one 
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performed by two threads (Figure 32(c)). To facilitate these scenarios, the way threads 

access states have to be adjusted appropriately. In the first scenario, K and CNT support 4 

contexts, each privately accessed by a thread. In the second scenario, they support only a 

single context that is accessible by all threads. In the last scenario, they support 2 

contexts, each of which is shared by two threads. 

 

Figure 32. Examples of multithreading configurations applicable to key scan. 
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Another aspect of multithreading to consider is thread scheduling, which decides on 

which thread gets to use the pipeline at a given time. For our key scan, we may want to 

add an architectural state (e.g., STATUS) and the logic to set it to indicate if a thread is 

active (i.e., is scanning) or inactive (not scanning). A thread scheduler then monitors 

STATUS and skips inactive threads. Furthermore, suppose that the implementation of the 

memory M utilizes caches to improve overall latency (i.e., specified using a MC 

handshake interface mentioned in Chapter 3), such that an access to it may happen right 

away (cache hit) or after multiple clock cycles (cache miss). In this case, we may want to 

allow a thread suffering from a cache miss to be replayed at a later time while allowing 

other threads to continue to execute, so that the cache miss does not block all the threads 

from progressing. 

Our synthesis supports all the multithreading features discussed in this key scanner 

example, and more. The next section summarizes the various multithreading features we 

support. Following that we present the details of the extensions we propose to T-spec and 

T-piper to support these multithreading features. 

6.2.2. Multithreading Features 

Thread Scheduling. A thread scheduler selects the thread that should be allowed to 

use the pipeline at a given time. The two most common scheduling policy for in-order 

multithreaded pipelines are interleaved multithreading (IMT) and block multithreading 

(BMT) [67]. 

In IMT, a thread switch happens in a fine-grained manner, whenever the first pipeline 

stage becomes available. The next thread to enter the pipeline is typically selected based 
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on a round-robin policy. The main benefit of IMT is the potential simplification that can 

be made to the hazard management logic, since it may be possible to guarantee that each 

stage in the pipeline is occupied by a different thread, making it impossible for certain 

data hazards to happen.  

In BMT, a thread executes successively until a particular event occurs in the pipeline, 

which triggers a context switch to a new thread. The main benefit of BMT is the ability to 

deliver a good single-thread performance because BMT lets a thread to execute 

continuously, obtaining full access to the pipeline for a certain time period, before 

switching to another. However, continuous execution requires full hazard management 

logic, making it impossible to perform any simplification as in the case of IMT. An 

example for thread switch triggering event in BMT in the case of instruction processor is 

when a thread enters a critical section, which would need to be executed as fast as 

possible [34]. 

The simpler IMT policy is supported by default by our synthesis system. 

Furthermore, we also support custom-made thread scheduler by using a well-defined 

thread scheduler interface, which can be used to implement BMT policy, critical section 

acceleration, and other custom-designed scheduling policies.  

Dealing with Long-Latency Events. When a thread encounters a long-latency event 

(e.g., a cache miss), it is often useful to allow other threads to proceed. This way, the stall 

experienced by one thread can be hidden by the execution of other threads. 

Our synthesis system supports the recently proposed approach to deal with long-

latency events based on replay [34][35]. The idea is to allow a pipeline stage to request a 
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replay when it suffers from a long-latency event. Upon replay, the thread in that stage is 

canceled and re-executed at a later time. Meanwhile, other threads can use the pipeline 

and proceed with their execution.  

A known shortcoming of replay [35] is that it may lead to a live-lock when the 

service for a long-latency event for a thread that requested a replay keeps being cancelled 

by the service of another long-latency event for another thread that also requested a 

replay (e.g., conflicting cache misses where two cache line requests evict one another). 

To prevent this, we support a mechanism to turn off replay capability dynamically to 

guarantee forward progress. 

State Sharing Attributes. There are a few possible attributes that an architectural 

state can have with respect to the way threads access the state. First, a private state has 

multiple contexts, each accessible only by a thread (e.g., K and CNT in Figure 32(a)). 

Second, a global state is shared by all the threads, and it has only one context accessible 

by any thread (e.g., K and CNT in Figure 32(b)). Third, a group state has multiple 

contexts, each accessible only by a set of threads (e.g., K and CNT in Figure 32(c)).  

Our system supports all these attributes, allowing for generic sharing, where sharing 

can be applied to any arbitrary state and group of threads. Note for instruction processors, 

the most common attributes are private (e.g., PC, RF) and global (e.g., memory). Thus, a 

group state is a new kind of attribute enabled by our synthesis technology. 
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Figure 33. Extending T-spec for multithreading. 

6.3. T-spec for Multithreading 

6.3.1. Extending the Transaction Abstraction 

We extend the transaction abstraction captured by T-spec (as previously explained in 

Section 3) to support multithreading. Figure 33(a) provides an illustration, where there 

exist multiple sequences of transactions, each belongs to a thread of execution  

The original transaction abstraction semantics is still preserved, where the datapath 

executes one transaction at a time, and each transaction reads the state values left by the 

preceding transaction and computes a new set of state values to be seen by the next 

transaction. Except now each transaction is also associated with a thread (e.g., Thread1 to 

Thready in Figure 33(a)), and a state may have multiple contexts.  

A thread is associated with a transaction sequence (e.g., Tx, Tx-1, and so on in Figure 

33(a)), which corresponds to the original sequence of execution of the thread in a non-
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threaded system (i.e., correspond to the program order in the case of instruction 

processor, where a transaction is equivalent to an instruction). 

A thread is also associated with state sharing attributes (see section 6.2.2), indicating, 

for each state, which context it can access. For example, a state update made by a 

transaction from a thread can be read by a subsequent transaction from a different thread, 

if both threads access the same context of the state.  

Finally, having multiple threads also raises a question on the orders of the thread 

execution that should be considered valid. Here, we consider any possible thread 

execution order to be valid (Figure 33(a) shows a round-robin order, but any order is 

valid).  

6.3.2. T-spec Language Extensions 

We incorporated the following extensions to T-spec to capture multithreaded 

datapaths based on the aforementioned abstraction. 

• First, we add a way to declare threads. Figure 33(b) shows declarations of 4 threads 

(th0, th1, th2, th3) in our key scan example. Each declared thread will be assigned a 

unique thread ID (TID) by T-piper during synthesis. 

• Second, since a state now can contain multiple contexts, the state-read and state-write 

interfaces are extended with an additional input, context ID (CID), to indicate the 

context to access. T-piper will automatically synthesize logic that drives this input. 

Figure 33(c) shows the declaration for 2-context CNT in the key scan example. Note 
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that any multi-context state element implementation can be used, as long as it has 

appropriate read and write interfaces. 

• Third, we add a way to specify state sharing attributes. Figure 33(c) shows an 

example of making CNT a group state, where context 0 is accessible only by th0 and 

th2, and context 1 by th1 and th3. T-spec can specify accessibility to any state context 

by arbitrary set of threads, so it can also specify private (a set of one thread) and 

global (a set of all the threads) states. 

• Fourth, we add a module type to specify a custom thread scheduler implementation. 

T-piper synthesis will place the thread scheduler module at the first stage of the 

pipeline, so it can select the next thread to enter the pipeline, as illustrated in Figure 

34. The figure also shows the interface to the thread scheduler module, which 

includes mandatory inputs and outputs (i.e., en, TID, no_replay, replay_req, and 

replay_tid) as well as any arbitrary inputs from interfaces specified in T-spec that are 

assigned to the first pipeline stage in P-cfg.  

• Finally, the handshake interface of a multi-cycle block is extended with a replay_req 

output, and a no_replay input, to make it replay-capable. When the block needs 

multiple clocks to complete, it can ask for a replay by asserting its replay_req output 

unless its no_replay input is not asserted. 
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Figure 34. Multithreading support logic. 

The thread scheduler interface works as follows. When the first stage becomes 

available, en is asserted indicating that scheduling decision is needed. At this point, TID 

outputs the decision on the thread that should enter first stage. A replay can be requested 

whenever a thread in the pipeline encounters a long-latency event performed by a multi-

cycle block (i.e., MCs in Figure 34) through the block’s handshake interface. T-piper 

synthesis connects all replay-capable multi-cycle blocks to the replay network, which will 

assert replay_req input of the thread scheduler when a replay occurs in the pipeline and 

supply the TID of the thread requesting a replay to the replay_tid input. These inputs can 

be used in thread scheduling decision (e.g., the thread requesting a replay do not get re-

scheduled right away). To ensure forward progress in the case of a live-lock, the thread 
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scheduler can assert its no_replay output whenever necessary (e.g., assert periodically to 

guarantee overall forward progress). Lastly, the scheduler interface can also be connected 

to any arbitrary inputs from the first pipeline stage. An example usage is to have the 

scheduler in our key scan example to monitor STATUS, and de-schedule any thread that 

is inactive. 

The thread scheduler module is allowed to contain persistent states to help perform 

scheduling functions. For example, to implement a BMT scheduling, the thread scheduler 

may maintain an internal counter, that is incremented each time its en input is asserted. 

When the counter saturates, a thread switch is triggered.  

The aforementioned thread scheduler specification strategy allows for flexibility, 

since any thread scheduler implementation can be used, as long it implements the 

appropriate interface. 

6.4. Pipeline Synthesis Details 

6.4.1. Multithreaded Data Hazard Management 

In a non-threaded pipeline implementation, T-piper synthesizes hazard management 

logic for each state in T-spec to ensure Read-After-Write (RAW) hazards are detected 

and resolved accordingly (as explained in Chapter 3). To support hazard management in 

multithreaded pipeline, we extend such hazard management logic with a context ID 

(CID) check logic, which ensures that if there is a RAW hazard on a state, the hazard 

targets the same context of that state. 
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Figure 35. Interleaved multithreading hazard management logic simplification. 

T-spec has already provided the information on how a thread accesses each state 

element (e.g. Figure 33(c)). T-piper uses this information to synthesize the logic that 

translates a thread ID (TID) to a CID for each state element and propagates the CID along 

the pipeline (Figure 34). The CID is used to access the appropriate context during a state 

access, and is incorporated to the hazard management logic, as mentioned above.  

Beyond this baseline multithreaded hazard management logic, two types of 

simplifications can be made. First, for a global state, the CID check is always true. So, 

the logic can be optimized away. 
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Second, if the default round-robin IMT scheduler is used, it may be possible to make 

simplifications since certain hazards could never happen. Figure 35 provides an example 

IMT hazard logic simplifications to the CNT architectural state for the key scan 

implementation scenarios shown in Figure 32, assuming a 4-stage pipeline target where 

CNT is read and written back in the first and last stage, respectively. The lines on the left 

side of the pipeline show all possible hazards in the non-threaded pipeline, with the 

dashed lines showing the hazards that can never happen given IMT scheduling and the 

CNT sharing attribute. 

To do this, T-piper enumerates all possible thread orders in the pipeline, given IMT 

scheduling. Next, for each thread order, it translates the TID of the thread occupying the 

stage to its CID, for each state element. Figure 35 shows the enumerated TIDs and the 

associated CIDs for CNT in the key scan example. Note that the enumerations 

deliberately do not consider stalls in the pipeline, so they represent the most aggressive 

schedule that could happen. From the enumerations, T-piper determines the minimum 

distance for which hazards can happen. For example, with private CNT, hazards cannot 

happen within 4 stages away from the state-read interface of CNT (i.e., in first stage). 

Since there are only 4 stages in the pipeline, the hazard management logic can be 

eliminated entirely. For global CNT, the minimum distance is 1. So, no simplifications 

can be made, since hazard can happen between the stage where the state-read is and any 

of the later stages. Lastly, for group CNT, the distance is 2. Simplification can be made 

here, since hazard can never happen between stage 1 and 2. 
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6.4.2. Thread Scheduler and Replay Support 

The synthesis process integrates the thread scheduler (either the default IMT or a 

custom-defined one) to the pipeline by connecting its inputs and outputs to the 

appropriate pipeline control signals, as illustrated in Figure 34.  

The en input of the scheduler is connected to the control signal of the first stage that 

indicates when a new transaction should enter the pipeline. The TID output is connected 

to the logic that translates TID to CID (i.e., TIDtoCID). The synthesis also creates the 

logic for propagating the CID through the rest of the pipeline, as well as connecting the 

CID to appropriate state access interfaces.  

For replay, the replay_en and replay_tid inputs are connected to the network of replay 

signals from all the replay-capable MC blocks in the pipeline. This replay network is also 

automatically synthesized. It is a simple logic that detects a reply request, and selects one 

from the latest stage in case of simultaneous multiple replay requests. It outputs the TID 

of the thread requesting replay (replay_tid) and asserts the replay_en to indicate to the 

thread scheduler that a replay is requested. Lastly, the no_replay output of the scheduler 

is propagated through the pipeline and is connected to each replay-capable MC block, 

indicating to the block when a replay is prohibited. 

6.5. A Case Study with x86 Pipelines 

The key scan example discussed previously is very simple and was intended for 

illustration purposes only. In this section, we present a non-trivial case study on the 

design space exploration of various multithreaded x86 processor pipelines.  
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The pipelines are all synthesized from a single x86-subset T-spec using T-piper 

within minutes. The x86 T-spec is based on the case study presented in Chapter 4, and is 

extended to support 4 threads, a shared memory, and private architectural states. The 

memory uses a cache with a hit serviced right away and a miss serviced in 10 

implementation clock cycles. The T-spec also includes a custom non-x86 1-bit private 

state (STATUS) and a custom instruction to set the state to indicate whether a thread is 

active (running a benchmark) or inactive (finished running, in idle loop). Each pipeline is 

evaluated by running a mix of 4 benchmarks (DES, Quant, VLC, Bitcount) from [71]. 

The benchmarks are of different lengths, each running as its own thread. At the end of 

each benchmark, the custom instruction is used to set the custom state to inactive. Then, 

the benchmark enters an idle loop. Thus, overall execution is completed when all threads 

have set their STATUS to inactive. 

We evaluated a total of 32 pipelines with T-piper, varying the following parameters:  

• pipeline depths varied from 4 to 7 stages 

• with (F) and without (NF) inclusion of maximal forwarding 

• with (P) and without (NP) inclusion of a thread scheduler that prioritizes for active 

threads by monitoring STATUS, on top of a round-robin IMT policy 

• with (R) and without (NR) the capability to replay on a cache miss 



 

 111 

 

Figure 36. Cycle count and frequency of each multithreaded pipeline under study. 

 

Figure 37. Cost-performance tradeoff for the multitheaded pipelines under study. 

Figure 36 shows the cycle count from RTL simulation of each pipeline. Forwarding 

improves cycle count since stalls due to RAW hazards are reduced, allowing the pipeline 

to host multiple instructions from the same thread. Thread scheduler that skips inactive 

threads also helps cycle counts since completed shorter-running benchmarks that are in 
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idle loop are no longer scheduled to use the pipeline, thus accelerating forward progress 

of the longer-running still-active threads. Finally, replay improves cycle count since a 

cache miss does not block the entire pipeline.  

We also synthesized the pipelines using Synopsys DC targeting a commercial 180nm 

standard-cell library. Figure 36 shows the implementation frequency for each pipeline. 

The improvement trend is generally the opposite of that of the cycle count because 

features that improve cycle count introduce additional implementation overheads that can 

result in reduced frequency. Notice also that deeper pipelines do help improve frequency. 

Figure 37 shows the cost-performance tradeoff for the pipelines we studied. For each 

pipeline, the area is obtained from Synopsys, and the run-time is based on the RTL 

simulation cycle counts, adjusted by the implementation frequency. Notice that no single 

design parameter dominates the pipelines in the Pareto optimal design points (e.g., 2 

points with all R, P and F optimizations; 2 with only F; 1 with only R; 1 with only P; and 

1 without optimization). It would have been impossible to do such characterize such 

design points without exploring a large number of different designs at the RT level.  

Previously in Chapter 4, we have shown that a non-threaded in-order pipeline 

generated by T-piper is comparable to a manually designed one via a case study with a 

MIPS pipeline. As a sanity check, we compared the simplest non-threaded pipeline (4-

stage, without optimization) with its 4-threaded counterparts. The findings are as follows:  

• Multithreading without any optimization (i.e., NR-NP-NF) incurs 26% area increase 

and 4% frequency decrease relative to the non-multithreaded version of the pipeline, 
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while shortening run-time only by 18%. This indicates that the only a modest 

additional amount of logic is needed to support multithreading. 

• When all optimizations are considered (i.e., R-P-F), the area and frequency overheads 

are only 51% and 21%, respectively, while run-time improves by 2x. This illustrates 

the effectiveness of the multithreading optimizations synthesizable by T-piper, where 

the performance improvement achieved is significantly higher than the required 

implementation overheads needed to support them. 
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Chapter 7 

Related Work 

This chapter elaborates on the prior works that are relevant to this thesis. Specifically, 

the chapter discusses about the existing works on datapath specification techniques, 

automatic in-order pipeline synthesis and verification, and multithreaded in-order 

pipeline development. 

7.1. Datapath Specification Techniques 

Register Transfer Level (RTL) Descriptions. The most common datapath design 

practice is to create register transfer level (RTL) descriptions of the desired datapath 

using a standard Hardware Description Language (HDL) such as Verilog [66] and VHDL 

[65]. From such HDLs, commercial tools can be used to synthesize the datapath to 

specific implementation targets. Examples of such synthesis tools are Synopsis Design 

Compiler [63] for ASIC implementations and Xilinx ISE [69] for FPGA 

implementations. It is not possible to automatically pipeline an RTL design in general 

due to the low-level semantics of an RTL description. In contrast, T-spec captures the 

desired functionality of the datapath at a higher level transactional abstraction that makes 

automatic pipelining possible.  
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C and C++ Specifications. Several recent commercial and research efforts utilize 

software programming languages for high-level specification of hardware datapaths (e.g., 

[6][16][22][46][55][64][70]). In these works, functional and algorithmic specifications 

are expressed using a software programming language, such as C or C++.  Optimizing 

compilers map the computations specified by the programs to equivalent RTL 

implementations. T-spec can complement these program-to-datapath frameworks by 

serving as an internal intermediate target for capturing first a non-pipelined 

implementation compiled from the program-level specifications. T-piper can next be used 

as a back-end to produce the final high-performance pipelined implementation or to 

explore the design space of pipeline configurations. 

Operation-centric frameworks. An operation-centric description framework [21] 

describes concurrent hardware behaviors in terms of state transition rules that are guarded 

atomic actions. Each rule prescribes a set of state transformations that should be applied 

to the datapath atomically when the rule’s guarding predicate is true. Synthesizing an 

implementation from a set of operation-centric rules involves creating a “merged” 

datapath that supports the execution of one or multiple non-conflicting rules in each clock 

cycle. This resulting merged datapath implementation of an operation-centric 

specification has a natural correspondence to a T-spec transactional execution system. 

Therefore, T-piper can be used as an optimizing backend to derive pipelined 

implementations that continue to obey the original operation-centric semantics. 

Processor-specific Specifications. Prior works [12][14][18][25][30][53][56][58][71] 

have focused on processor-specific design specifications akin to ISAs. The specifications 

usually involve describing an ISA’s architectural states and instructions. Such ISA 
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specifications map very well to operation-centric specifications discussed earlier; each 

instruction roughly corresponds to an atomic rule. Thus, an ISA specification, following a 

simple translation to an operation-centric language, could be subjected to the same 

synthesis flow we discussed in the last paragraph to produce an in-order pipelined 

processor implementation. 

Other frameworks. Finally, there are specification frameworks that are focused on 

formal verification. For example, HAWK [40] can be used to specify pipelined 

processors. From a HAWK specification, equivalence can be shown between the 

pipelined processor in the specification against a non-pipelined version, which is derived 

using a sequence of formal microarchitectural transformations [41]. PVS [10] can also be 

used to specify pipelined processors for theorem proving purposes. 

7.2. Automatic In-order Pipeline Synthesis 

There are a few major differences between existing automated pipeline synthesis 

studies and this thesis work, which are explained below. 

Pipelining for any arbitrary datapath. Many prior work in automatic pipelining 

focus specially on developing pipelined instruction set processors [25][28][58][71]. 

Although we use instruction-set processing as the case studies in this thesis, our work is 

applicable to pipelined datapath design in general. The systems presented in [19][27][39] 

do support automatic pipelining in general by applying transformations to RTL netlists. 

Because their algorithms must preserve the low-level semantics of the original RTL 

netlist, they are more limited in their opportunities for optimizations.   
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Manual forwarding path identification and placement. In particular, they do not 

automatically identify forwarding opportunities and place forwarding paths like T-piper. 

There are other automatic pipelining systems, that like T-piper, start from a high-level 

specification but nevertheless offer no support for forwarding [25] or still largely rely on 

the designer to manually identify and place the forwarding paths [28][58][71]. An 

exception is [39], which may be able to automatically identify forwarding opportunities, 

but no detailed explanation is provided in their paper. 

Manual implementation of forwarding paths may still be quite manageable for the 

simple pipelines usually used as test cases for the abovementioned work. For example, 

the basic 5-stage textbook pipeline [20] used in [25][28][33][71] use only up to 4 

forwarding paths (i.e., from MEM and WB stages to EXE stage, for both rt and rs 

operands). Interesting and practical designs are likely to contain many more forwarding 

opportunities to consider. For example, in our x86 case study, our system identified and 

placed up to 44 forwarding paths, which would have been very challenging to insert 

manually and make it prohibitive to explore more than a few design alternatives. 

Generic speculation support. The use of value prediction has also been limited in 

prior automatic pipelining systems, some supporting only a very restricted form of 

prediction [19][25][28][33][39][47][58][71] or not at all [9]. Their support for prediction 

also still requires error-prone manual efforts in adding the logic for handling the 

predicted values and resolving the predictions. The PEAS-III processor-specific system 

[25] supports prediction automatically, but only for the special case of predict-not-taken 

branches (i.e. a default prediction of PC+4 always). Examples like [28][58] allow more 

general predictors but offer little in automation; they require the predictors to be designed 
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as low-level hand-written modules and requires manual introduction of the prediction and 

resolution logic in the pipeline. Lastly, examples like [19][33][39][47] allow speculation 

on any system state and offer some level of correctness guarantee through automation but 

do not permit the use of arbitrary user-defined custom predictors. 

Our generic framework supports speculation on any system state and allows custom 

predictor logic to be expressed in the same high-level abstraction. Furthermore, we 

provide a stronger assurance that the incorporation of prediction will not affect 

correctness (will only affect performance) since (1) our approach never commits a 

predicted value (i.e., system states at any point in time always based on actual computed 

values), and (2) the prediction check and value management logic are automatically 

synthesized. 

Demonstrated to work on a complex ISA. Another important distinction of our 

effort is the complexity of our test cases. Most prior works are demonstrated using only 

relatively simple pipelines, either pipelines for simple ISAs made specifically for their 

paper [27][39] or the textbook 5-stage RISC pipelines [28][33][71]. Among the examples 

we surveyed, only PEAS-III has been used to generate a (non-x86) CISC pipeline [30]. 

To the best of our knowledge, our work is the first to demonstrate automatic pipelining 

for an extensive CISC processor pipeline based on the x86 ISA. Although we only 

implemented a subset of the x86 ISA, the subset is quite extensive and able to run non-

trivial benchmarks. 
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7.3. Automatic In-order Pipeline Verification 

In terms of pipeline verification, prior works can be broadly classified in terms of 

simulation-based validation and formal verification approaches, which are discussed 

below. 

Simulation-Based Validation. A common verification approach used in industry is 

simulation-based validation, where an RTL description of the design is simulated with 

test inputs, and its output is checked for correctness. However, simulation-based 

validation can only ensure correctness of the behaviors exercised by the test inputs. In 

practice, simulation-based validation cannot achieve full coverage by brute force due to 

the prohibitively long simulation time required. Existing studies [1][2][68] have proposed 

generating these tests automatically to ensure adequate coverage. 

Formal Verification. An alternative and promising approach to validation is formal 

verification. In this case, a formal procedure is employed to prove that certain properties 

of the design are correct for all possible execution paths. Thus, whenever possible, formal 

verification is preferable than validation since it can provide correctness guarantee for all 

possible behaviors.  

There are two main approaches to formal verification, model checking and theorem 

proving. Theorem proving involves deriving mathematical description of the system and 

coming up with proofs to show that certain properties hold. Existing work has shown that 

it can be applied to pipeline verification [10][57]. The limitation here is the large manual 

effort that is needed in deriving the mathematical description, and defining and guiding 

the proofs.  
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On the other hand, model checking [8] can accept description of transition systems. It 

explores the state space of the given system to check that certain properties hold for all 

possible execution scenarios. Unfortunately, the amount of possible scenarios grows 

exponentially with the amount of storage elements in the design. Such state explosion 

problem limits the size of design that can be handled by model checking. 

Compositional model checking [42] attempts to obtain the benefits of both worlds, by 

combining model checking and theorem proving. In this case, the state explosion is dealt 

with by spending manual effort to specify correctness properties to decompose the 

verification problem into sufficiently small sub-problems for model checking to handle. 

Cadence SMV [43] is a tool that provides compositional model checking technology. An 

existing study [26] has shown that even an out-of-order processor can be verified using 

SMV, when appropriate decompositions are applied.  

Although compositional model checking is promising, the manual effort needed to do 

the verification set up procedure (e.g., developing verification models and the 

decomposition strategies for the design at hand) has been reported to be extremely 

challenging [37]. In this thesis work, we have developed an automatic approach to avoid 

the need for such challenging manual effort. Our approach automatically applies 

compositional model checking to verify that the pipeline logic generated by T-piper is 

functionally correct with respect to its T-spec datapath, under the transactional execution 

semantics. 
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7.4. Synthesis of In-order Pipelines with Multithreading 

Although multithreading (MT) has been gaining in popularity and has been adopted 

in commercial pipelines, no existing automation system has yet provided the capability to 

automatically synthesize a multi-threaded pipeline from a high-level specification.  

The only relevant work we could find is CUSTARD [11], which proposes a generic 

MT processor template that can be synthesized into an implementation by configuring 

certain parameters such as number of threads, threading type, etc. However, as with any 

other design templates, CUSTARD is quite restricted. For example, it has to abide to a 4-

stage pipeline structure and a MIPS ISA baseline.  

Other recent works [7][13][34][35][44] also presented design case studies of 

multithreaded processor pipelines for FPGA prototyping. However these pipelines are 

manually developed. 

We believe our work is the first to fully automate the synthesis of multithreaded in-

order pipelines from a non-pipelined datapath specification. Furthermore, it is very 

flexible. Not only it allows synthesis of instruction processors with multithreading 

features found in previously mentioned FPGA prototyping studies, but it also allows 

capturing larger design space of any sequential system datapath beyond instruction 

processor as well as enabling new multithreading features (e.g., states shared by a group 

of threads). 
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Chapter 8 

Conclusion 

This thesis develops a novel transactional specification framework (T-spec) to capture 

a non-pipelined datapath using the transactional abstraction. From a T-spec, any 

implementation can be synthesized, as long as the transactional abstraction semantics are 

preserved. This allows designers to focus on the datapath development at the 

transactional-level, relieving them from the burden of having to do the tedious and error-

prone task of applying microarchitecture optimizations, such as pipelining, to the 

datapath by hand. 

Based on T-spec, this thesis further investigates and proposes an automatic pipeline 

synthesis technology (T-piper) for in-order pipelines that support forwarding, 

speculation, and multi-cycle units. Its effectiveness has been evaluated by two design 

case studies, which demonstrates that: (1) a synthesized MIPS 5-stage pipeline is 

comparable in performance and area to a hand-made one, and (2) rapid design space 

exploration of various x86 processor pipelines is achievable. Furthermore, a version of T-

piper along with example T-specs has been made available online at www.t-piper.net for 

academic and research usages. 

Next, the thesis enhances T-piper with an automatic approach to verify that a pipeline 

synthesized by T-piper is functionally equivalent to its T-spec specification under the 
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transactional execution semantics. The approach utilizes compositional model checking, 

and automates the challenging task of developing verification models, applying 

appropriate abstractions, and determining the proof decomposition strategies. It is capable 

of capturing any bugs caused by T-spec and T-piper, including the fundamental bugs in 

the synthesis algorithms themselves as well as bugs due to programming mistakes. Its 

effectiveness has been demonstrated by a case study on automatic verification of various 

non-trivial pipelines synthesized by T-piper from a load-store processor datapath and a 

memory-memory processor datapath T-specs.  

Then, the thesis presents extensions to T-spec to capture multiple threads of 

transactional execution, and T-piper to synthesize a multithreaded in-order pipelined 

implementation from such a T-spec. Not only that the extensions preserve the original 

non-threaded in-order pipeline features (e.g., forwarding, speculation), they also support 

various multithreading-specific features, consisting of those found in modern in-order 

multithreaded pipelines (e.g., interleaved thread scheduling, global state sharing, replay 

on long-latency events) as well as novel ones (e.g., custom thread scheduling, state 

sharing by thread groups). The effectiveness of these extensions has been demonstrated 

with a case study that evaluates multithreaded x86 processor pipelines with various 

multithreading optimizations. 

Finally, please note that even though the case studies used in this thesis are for 

instruction processors, T-spec and T-piper can handle sequential datapath in general, 

since any datapath with state elements and next-state logic blocks can be captured using 

T-spec.  



 

 124 

8.1. Future Work 

The T-spec transactional datapath specification framework and the associated T-piper 

synthesis and verification technology developed in this thesis open up many possible 

future research possibilities, which are discussed below. 

Automatic synthesis for other microarchitecture types. The T-piper pipeline 

synthesis technology presented in this thesis focuses only on the in-order pipelines, both 

non-threaded and with multithreading. It should be possible to extend the work to 

synthesize other types of microarchitectures. An example would be to synthesize 

superscalar out-of-order pipelines [60]. Another example would be to synthesize 

redundant pipelines, such as in [45], for reliable execution.  

Automatic functional verification using other techniques. The automatic 

verification approach presented in Chapter 5, while very scalable in the context of formal 

verification, is still limited by the state explosion. Since T-spec and T-piper have the 

precise knowledge of the specification and the to-be-synthesized target implementation, it 

should be possible to automate functional verification using other techniques, such as 

automatic test case generation [1][2][68] and automatic insertions of correctness 

assertions (to be used with commercial assertion-based formal verification tools [4][54]). 

Performance verification. The automatic verification approach presented in Chapter 

5 addresses only the functional correctness of the T-piper synthesized pipeline. However, 

a correctly functioning pipeline may still not be “performing” as intended, for example, 

by stalling unnecessarily even though forwarding is available. Fortunately, unlike 

functional correctness, a well-hidden performance bug that can only be exercised by a 
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rare corner case in fact does not impact performance much (in accordance to Amdahl’s 

law), such that performance validation can be well served by a conventional simulation-

based testing. T-piper already synthesizes RTL Verilog that can be used for simulation. 

Furthermore, since T-piper does generate SMV models. Designers can specify 

temporal properties to define performance correctness to be check formally. (For 

example, if data forwarding condition is true, the pipeline should not stall.) We are also 

investigating extending T-piper’s front-end to automatically derive performance 

correctness properties based on the given T-spec, pipeline configuration (P-cfg) and 

hazard configuration (H-cfg), and include them in the verification models generated by 

the T-piper back-end. This allows the verification of the performance of the final 

pipelined implementation synthesized by the T-piper back-end against the performance 

expected by the T-piper front-end. (This does not help, however, if the bug is in the front-

end itself.) 

Automatic design space exploration. T-piper offers new “tunable” parameters for 

designers to choose from, such as the pipeline boundary placements, forwarding and 

speculation schemes, and multithreading optimizations. These parameters capture a very 

large design space that is impossible to evaluate manually. Thus, there is a need for 

automatic design space exploration system for these parameters. In terms of pipeline 

boundary placement and forwarding path selection, there are existing studies (e.g., 

[39][62]) that have investigated automatic approach for it. However, no existing work 

exists in the automatic design space exploration of the speculation- and multithreading-

related parameters. Furthermore, the exploration system should consider the global 
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optimization of these various parameters, instead of just optimizing them in isolation, 

which makes the problem even more challenging. 

T-spec and T-piper as the back-end to an even higher-level design system. Even 

though the transactional abstraction captured by T-spec is already higher than the RTL, 

there is still opportunity to utilize T-spec and T-piper as the back-end to an even higher-

level design system. Such a system would output a datapath described in T-spec, instead 

of the final RTL description. Thus, the microarchitectural optimizations can be left for T-

piper to do. This approach would allow for decoupling of the datapath synthesis, and the 

synthesis of the microarchitecture. 

There are already several existing high-level design systems that are prime candidates 

for integration with T-spec and T-piper, such as those systems that start from an 

Instruction Set Architecture specification [12][14][18][25][30][53][56][58][71], a C/C++ 

description [6][16][22][46][55][64][70], or an operation-centric description [21]. These 

systems have been previously mentioned in the discussion on relevant works in Chapter 

7. Alternatively, a new type of a high-level design system may be devised in-order to 

utilize the full capabilities of T-spec and T-piper at its back-end. 

Usage of T-spec and T-piper in other design case studies. First, in-terms of 

processor design, the processor case studies presented in this thesis still consider only 

subsets of their target ISAs. Even though these ISA subsets are not small, there are still 

certain ISA behaviors, such as exceptions and interrupts, which are not yet considered. 

These behaviors can be complicated. Thus, for future work, it would be interesting to 
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perform a case study that considers the entire suite of possible ISA behaviors (even 

exceptions and interrupts).  

Second, the case studies presented in this thesis target only processor datapaths. 

However, as mentioned previously, T-spec and T-piper can accept any sequential 

datapath, and are not limited to just processors. Therefore, it would be interesting to see 

more case studies using T-spec and T-piper that target non-processor datapaths.  
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Appendix A 

T-spec Language Syntax 

A.1. T-spec 

T-spec   ::= Components TopIOs [Predictors] Connections 

 

A.2. Components 

Components   ::= Component 

   |    Component Components 

Component   := ModuleGeneric 

   |    ModuleState 

   |    ModuleMux 

 

A.2.1. Generic Modules 

// --- Generic modules can be combinational, or multi-cycle 

ModuleGeneric :=  ModuleGenericCombinational  

|     ModuleGenericMultiCycle 
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// --- Combinational block 

ModuleGenericCombinational  

 := MODULE ModuleName GENERIC { PortGenerics } 

PortGenerics   := PortGeneric 

|   PortGeneric PortGenerics 

PortGeneric  := PortIn 

   |   PortOut 

PortIn    := PORT PortInName IN PortWidth 

PortOut                       := PORT PortOutName OUT PortWidth 

// --- Multi-cycle block 

ModuleGenericMultiCycle 

:= MODULE ModuleName GENERIC_MC { PortGenericMCs } 

PortGenericMCs  :=  

PORT PortName CLK  

PORT PortName RST  

PORT PortInName START  

PORT PortName READY  
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PORT PortName DONE  

PORT PortName ACK  

PORT PortName SQUASH  

PortGenerics                    

 

A.2.2. State Modules 

// --- States can be REG or ARRAY 

ModuleState  := StateReg  

|   StateArray 

 

// --- REG state can be single- or multi-cycle  

StateReg  := StateRegSC 

   |   StateRegMC 

 

// --- Single-cycle REG state  

StateRegSC   :=  

MODULE StateName REG {  
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 PORT PortName CLK 

 PORT PortName RST 

StateRegSC_RdIfc StateRegSC_WrIfc  

} 

// --- Single-cycle REG state – Read Interface 

StateRegSC_RdIfc := 

 IFC IfcName REG_RD { 

  PORT PortName REG_DATA PortWidth 

  PORT PortName REG_RD_EN  

 } 

// --- Single-cycle REG state – Write Interface 

StateRegSC_WrIfc := 

 IFC IfcName REG_WR { 

  PORT PortName REG_DATA PortWidth 

  PORT PortName REG_RD_EN  

 } 
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// --- Multi-cycle REG state  

StateRegMC   :=  

MODULE StateName REG_MC {  

 PORT PortName CLK 

 PORT PortName RST 

StateRegMC_RdIfc StateRegMC_WrIfc  

} 

// --- Multi-cycle REG state – Read Interface 

StateRegMC_RdIfc := 

 IFC IfcName REG_RD_MC { 

PORT PortName READY  

PORT PortName DONE  

PORT PortName ACK  

PORT PortName SQUASH  

  PORT PortOutName REG_RD_DATA PortWidth 

  PORT PortInName REG_RD_EN  

 } 
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// --- Multi-cycle REG state – Write Interface 

StateRegMC_WrIfc := 

 IFC IfcName REG_WR_MC { 

PORT PortName READY  

PORT PortName DONE  

PORT PortName ACK  

PORT PortName SQUASH  

  PORT PortInName REG_WR_DATA PortWidth 

  PORT PortInName REG_WR_EN  

 } 

 

// --- ARRAY state can be single- or multi-cycle 

StateArray  := StateArraySC 

   |   StateRegMC 

 

// --- Single-cycle ARRAY state  

StateArraySC   :=  
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MODULE StateName ARRAY { 

 PORT PortName CLK 

 PORT PortName RST 

StateArraySC_RdIfc StateArraySC_WrIfc  

} 

// --- Single-cycle ARRAY state – Read Interface 

StateArraySC_RdIfc := 

 IFC IfcName ARRAY_RD { 

  PORT PortOutName ARRAY_RD_DATA PortWidth 

  PORT PortInName REG_RD_EN  

  PORT PortInName ARRAY_RD_IDX PortWidth 

 } 

// --- Single-cycle ARRAY state – Write Interface 

StateArraySC_WrIfc := 

 IFC IfcName ARRAY_WR { 

  PORT PortInName ARRAY_WR_DATA PortWidth 

  PORT PortInName ARRAY_WR_EN  
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  PORT PortInName ARRAY_WR_IDX PortWidth 

 } 

 

// --- Multi-cycle ARRAY state  

StateArrayMC   :=  

MODULE StateName ARRAY_MC {  

 PORT PortName CLK 

 PORT PortName RST 

StateArrayMC_RdIfc StateArrayMC_WrIfc  

} 

// --- Multi-cycle ARRAY state – Read Interface 

StateArrayMC_RdIfc := 

 IFC IfcName ARRAY_RD_MC { 

PORT PortName READY  

PORT PortName DONE  

PORT PortName ACK  

PORT PortName SQUASH  
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  PORT PortOutName ARRAY_RD_DATA PortWidth 

  PORT PortInName ARRAY_RD_IDX PortWidth  

  PORT PortInName ARRAY_RD_EN  

 } 

// --- Multi-cycle REG state – Write Interface 

StateArrayMC_WrIfc := 

 IFC IfcName ARRAY_WR_MC { 

PORT PortName READY  

PORT PortName DONE  

PORT PortName ACK  

PORT PortName SQUASH  

  PORT PortInName ARRAY_WR_DATA PortWidth 

  PORT PortInName ARRAY_WR_IDX PortWidth  

  PORT PortInName ARRAy_WR_EN  

 } 
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A.2.3. Multiplexers 

ModuleMux  :=  

MODULE ModuleName MUX {  

PORT PortOutName MUX_OUT PortWidth 

PORT PortInName MUX_SEL 

PortMuxIns 

} 

PortMuxIns := PortMuxIn 

   |   PortMuxIn PortMuxIns 

PortMuxIn := PORT PortInName MUX_IN PortWidth MuxInOrder 

 

A.3. Top I/Os 

TopIOs   := TopIO 

   |    TopIO TopIOs 

TopIO    := TopIn 

   |    TopOut 

TopIn   :=  TOP TopInName IN TopInWidth 

TopOut   :=  TOP TopOutName OUT TopOutWidth 
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A.4. Predictors 

Predictors   := Predictor 

   |    Predictor Predictors 

Predictor   :=  

MODULE PredictorName PRED StateName {  

 PORT PortName PRED_VALID 

 PORT PortName PRED_VALUE PortWidth 

} 

 

A.5. Connections 

Connections   := Connection 

   |    Connection Connections 

Connection   := CONN { ConnectionSrc  ConnectionDst } 

ConnectionSrc ::= ModuleName.PortOutName  

|    StateName.IfcName.PortOutName 

|    TopInName  
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ConnectionDst ::= ModuleName.PortInName  

|    StateName.IfcName.PortInName 

|    TopOutName 

 

A.6. Miscellaneous 

ModuleName  ::= [a-z][a-z0-9]* 

StateName  ::= [a-z][a-z0-9]* 

TopInName  ::= [a-z][a-z0-9]* 

TopOutName  ::= [a-z][a-z0-9]* 

PredictorName ::= [a-z][a-z0-9]* 

IfcName  ::= [a-z][a-z0-9]* 

PortName  ::= [a-z][a-z0-9]* 

PortWidth  ::= [1-9][0-9]* 

TopInWidth  ::= [1-9][0-9]* 

TopOutWidth  ::= [1-9][0-9]* 

MuxInOrder  ::= [1-9][0-9]* 
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Appendix B 

P-cfg Language Syntax 

B.1. P-cfg 

P-cfg   ::= StageDeclarations StageBindings 

 

B.2. Stage Declarations 

StageDeclarations  ::= StageDeclaration 

   |    StageDeclaration StageDeclarations 

StageDeclaration  := PSTAGE StageName 

 

B.3. Stage Bindings 

StageBindings  ::= StageBinding 

   |    StageBinding StageBindings 

StageBinding   := PBIND StageName ModuleName 

   |   PBIND StageName StateName.IfcName 
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   |   PBIND StageName PredictorName 

   |   PBIND TopInName 

   |   PBIND TopOutName 

Note: ModuleName, StateName, IfcName, PredictorName, TopInName, and 

TopOutName refer to the components and top I/Os specified in the T-spec (see Appendix 

A). 

 

B.4. Miscellaneous 

StageName  ::= [a-z][a-z0-9]* 
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Appendix C 

MIPS Processor Example 

C.1. T-spec 

C.1.1. States 

MODULE pc REG { 

PORT clock CLK 

PORT reset RST 

IFC rd REG_RD { 

 PORT en REG_RD_EN  

 PORT d REG_RD_DATA 32  

 } 

IFC wr REG_WR { 

 PORT en REG_WR_EN  

 PORT d REG_WR_DATA 32  

 } 
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} 

MODULE gpr ARRAY { 

PORT clock CLK 

PORT reset RST 

IFC rd0 ARRAY_RD { 

 PORT en ARRAY_RD_EN  

 PORT d ARRAY_RD_DATA 32  

 PORT idx ARRAY_RD_IDX 5  

} 

IFC rd1 ARRAY_RD { 

 PORT en ARRAY_RD_EN  

 PORT d ARRAY_RD_DATA 32  

 PORT idx ARRAY_RD_IDX 5  

} 

IFC wr ARRAY_WR { 

 PORT en ARRAY_WR_EN  

 PORT d ARRAY_WR_DATA 32  
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 PORT idx ARRAY_WR_IDX 5  

 } 

} 

MODULE imem ARRAY_MC { 

PORT clock CLK 

PORT reset RST 

IFC rd ARRAY_RD_MC { 

PORT ready READY  

PORT done DONE  

PORT ack ACK  

PORT squash SQUASH  

  PORT d ARRAY_RD_DATA PortWidth 

  PORT addr ARRAY_RD_IDX PortWidth  

  PORT en ARRAY_RD_EN  

 } 

} 

MODULE dmem ARRAY_MC { 
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PORT clock CLK 

PORT reset RST 

IFC rd ARRAY_RD_MC { 

PORT ready READY  

PORT done DONE  

PORT ack ACK  

PORT squash SQUASH  

  PORT d ARRAY_RD_DATA 32 

  PORT addr ARRAY_RD_IDX 32  

  PORT en ARRAY_RD_EN  

 } 

IFC wr ARRAY_WR_MC { 

PORT ready READY  

PORT done DONE  

PORT ack ACK  

PORT squash SQUASH  

  PORT d ARRAY_WR_DATA 32 
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  PORT addr ARRAY_WR_IDX 32  

  PORT en ARRAY_WR_EN  

 } 

} 

 

C.1.2. Next-state Compute Blocks 

MODULE constants GENERIC { 

PORT zero OUT 1  

PORT one OUT 1 

} 

MODULE decoder GENERIC { 

PORT inst IN 32  

 

PORT gpr_rd0_idx OUT 5 

PORT gpr_rd1_idx OUT 5 

PORT gpr_wr_idx OUT 5 

PORT gpr_rd0_en OUT 1 

PORT gpr_rd1_en OUT 1 
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PORT gpr_wr_en OUT 1 

PORT gpr_wr_mux_sel OUT 1 

 

PORT pc_wr_en OUT 1 

PORT pc_wr_mux_sel OUT 2 

 

PORT dmem_rd_en OUT 1 

PORT dmem_wr_en OUT 1 

 

PORT imm16 OUT 16 

PORT imm26 OUT 26 

 

PORT br_eval_op OUT 6 

PORT alu_op OUT 6 

PORT alu_src1_mux_sel OUT 1 

PORT imm_calc_op OUT 1 

} 
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MODULE alu GENERIC { 

PORT op IN 6  

PORT din0 IN 32  

PORT din1 IN 32  

PORT dout OUT 32 

} 

MODULE imm_calc GENERIC { 

PORT imm_calc_op IN 1  

PORT imm16 IN 16  

PORT imm OUT 32 

} 

MODULE npc GENERIC { 

PORT pc_in IN 32  

PORT npc_out OUT 32 

} 

MODULE j_eval GENERIC { 

PORT npc IN 32  
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PORT imm26 IN 26  

PORT j_target OUT 32 

} 

MODULE b_eval GENERIC { 

PORT npc IN 32  

PORT imm IN 32  

PORT din0 IN 32  

PORT din1 IN 32  

PORT br_eval_op IN 6  

PORT b_target OUT 32 

} 

 

MODULE pc_wr_mux MUX { 

PORT sel MUX_SEL 2 

PORT in0 MUX_IN 32 0 

PORT in1 MUX_IN 32 1 

PORT in2 MUX_IN 32 2 
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PORT dout MUX_OUT 32 

} 

MODULE alu_src1_mux MUX { 

PORT sel MUX_SEL 1 

PORT in0 MUX_IN 32 0 

PORT in1 MUX_IN 32 1 

PORT dout MUX_OUT 32 

} 

MODULE gpr_wr_mux MUX { 

PORT sel MUX_SEL 1 

PORT in0 MUX_IN 32 0 

PORT in1 MUX_IN 32 1 

PORT dout MUX_OUT 32 

} 

 

C.1.3. Connections 

// -- to pc 

CONN { constants.one  pc.rd.en } 
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CONN { decoder.pc_wr_en  pc.wr.en } 

CONN { pc_wr_mux.dout  pc.wr.d } 

 

// -- to gpr 

CONN { decoder.gpr_rd0_en  gpr.rd0.en } 

CONN { decoder.gpr_rd0_idx  gpr.rd0.idx } 

CONN { decoder.gpr_rd1_en  gpr.rd1.en } 

CONN { decoder.gpr_rd1_idx  gpr.rd1.idx } 

CONN { decoder.gpr_wr_en  gpr.wr.en } 

CONN { decoder.gpr_wr_idx  gpr.wr.idx } 

CONN { gpr_wr_mux.dout  gpr.wr.d } 

 

// -- to imem 

CONN { constants.one  imem.rd.en } 

CONN { pc.rd.d  imem.rd.addr } 

 

// -- to dmem 
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CONN { decoder.dmem_rd_en  dmem.rd.en } 

CONN { alu.dout  dmem.rd.addr } 

CONN { decoder.dmem_wr_en  dmem.wr.en } 

CONN { alu.dout  dmem.wr.addr } 

CONN { gpr.rd1.d  dmem.wr.d } 

 

// -- to decoder 

CONN { imem.rd.d  decoder.inst } 

 

// -- to alu 

CONN { decoder.alu_op  alu.op } 

CONN { gpr.rd0.d  alu.din0 } 

CONN { alu_src1_mux.dout  alu.din1 } 

 

// -- to imm_calc 

CONN { decoder.imm_calc_op  imm_calc.op } 

CONN { decoder.imm16  imm_calc.imm16 } 
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// -- to npc 

CONN { pc.rd.d  npc.pc_in } 

 

// -- to j_eval 

CONN { npc.npc_out  j_eval.npc } 

CONN { decoder.imm26  j_eval.imm26 } 

 

// -- to b_eval 

CONN { npc.npc_out  b_eval.npc } 

CONN { imm_calc.imm  b_eval.imm } 

CONN { gpr.rd0.d  b_eval.din0 } 

CONN { alu_src1_mux.dout  b_eval.din1 } 

CONN { decoder.br_eval_op  b_eval.op } 

 

// -- to pc_wr_mux 

CONN { decoder.pc_wr_mux_sel  pc_wr_mux.sel } 

CONN { npc.npc_out  pc_wr_mux.in0 } 
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CONN { j_eval.j_target  pc_wr_mux.in1 } 

CONN { b_eval.b_target  pc_wr_mux.in2 } 

 

// -- to alu_src1_mux 

CONN { decoder.alu_src1_mux_sel  alu_src1_mux.sel } 

CONN { gpr.rd1.d  alu_src1_mux.in0 } 

CONN { imm_calc.imm  alu_src1_mux.in1 } 

 

// -- to gpr_wr_mux 

CONN { decoder.gpr_wr_mux_sel  gpr_wr_mux.sel } 

CONN { dmem.rd.d  gpr_wr_mux.in0 } 

CONN { alu.dout  gpr_wr_mux.in1 } 

 

C.2. P-cfg for a 5-stage pipeline 

C.2.1. Stage Declarations 

PSTAGE fetch 

PSTAGE decode 
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PSTAGE exe 

PSTAGE mem 

PSTAGE wb 

 

C.2.1. Stage Bindings 

PBIND fetch constants 

PBIND fetch pc.rd 

PBIND fetch imem.rd 

PBIND fetch npc 

 

PBIND decode decoder 

PBIND decode imm_calc 

PBIND decode gpr.rd0 

PBIND decode gpr.rd1 

PBIND decode j_eval 

PBIND decode b_eval 

PBIND decode alu_src1_mux 
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PBIND exe alu 

 

PBIND mem dmem.rd 

PBIND mem dmem.wr 

 

PBIND wb gpr_wr_mux 

PBIND wb gpr.wr 

PBIND wb pc_wr_mux 

PBIND wb pc.wr 

 


