
CARNEGIE MELLON UNIVERSITY

CARNEGIE INSTITUTE OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Fingerprinting: Hash-Based Error Detection in

Microprocessors

Jared C. Smolens

January 2008

Copyright c© 2008 by Jared C. Smolens

All Rights Reserved

i

Abstract

Today’s commodity processors are tuned primarily for performance and power. As CMOS

scaling continues into the deep sub-micron regime, soft errors and device wearout will increas-

ingly jeopardize the reliability of unprotected processor pipelines. To preserve reliable operation,

processor cores will require mechanisms to detect errors affecting the control and datapaths. Con-

ventional techniques such as parity, error correcting codes, and self-checking circuits have high

implementation overheads and therefore these techniques cannot be easily applied to complex and

timing-critical high-performance pipelines.

This thesis proposes and evaluates architectural and microarchitectural fingerprints. A finger-

print is a compact (e.g., 16-bit) signature of recent architectural or microarchitectural state updates.

By periodically comparing a fingerprint and a reference over an interval of execution, the system can

detect errors in a timely and bandwidth-efficient manner. Architectural fingerprints capture in-order

architectural state with lightweight monitoring hardware at the retirement stages of a pipeline, while

microarchitectural fingerprints leverage existing design-for-test hardware to accumulate a signature

of internal state.

This thesis explores two applications of fingerprints. In the Reunion execution model, this

thesis shows that architectural fingerprints can detect both soft errors and input incoherence with

complexity-effective redundant execution in a chip multiprocessor. Cycle-accurate simulation shows

that the performance overhead is only 5-6% over more complicated designs that strictly replicate

inputs. In another application, FIRST, fingerprints detect emerging wearout faults by periodically

testing the processor under marginal operating conditions. Wearout fault simulation in a commercial

processor show that architectural fingerprints have high coverage of widespread wearout, while mi-

croarchitectural fingerprints provide superior coverage of both individual and widespread wearout.

ii

Acknowledgements

First, I thank Professor James C. Hoe, my academic advisor, for guiding and supporting me

in my graduate studies and providing a comfortable and productive environment in which to do

research. His comments, criticism, and insight over the years have greatly refined my skills in

writing, speaking, and independent research.

I also thank Professor Babak Falsafi for his guidance and advice. He has constantly provided

me with motivation and a valuable second opinion throughout my time in the graduate program. I

also thank my committee members Professor Shawn Blanton and Dr. Shubu Mukherjee for their

time, patience, and helpful comments. Their feedback has substantially improved this thesis.

I thank my mentor at Intel Corporation, TM Mak, for supplying me with abundant information

on current processor designs and using his extensive contacts to gain access to commercial designs

for my research. Without his help and Intel’s cooperation, there would be many more open, or even

unrecognized, questions in this work. I also thank Sun Microsystems for their generous and timely

release of the OpenSPARC RTL and architecture tools. With these resources I was able to quickly

prototype and model many of the key ideas in this thesis. Finally, I thank the organizations that

funded my research, including the National Science Foundation, Intel Corporation, and the Center

for Circuit and System Solutions (C2S2).

My fellow graduate students in the TRUSS group and CALCM also deserve abundant thanks

for all of the ways in which they have helped me over the years, including, but not limited to,

writing and debugging simulators, coauthoring papers, proofreading papers and this thesis, fixing

my talks, and tolerating my awful puns. In order of arrival to the graduate program, I specifically

want to acknowledge Tom Wenisch, Roland Wunderlich, Jangwoo Kim, Stephen Somogyi, Nikos

Hardavellas, Brian Gold, Eric Chung, and Eriko Nurvitadhi. I also thank Professor Charles Neuman

iii

for his advice and running commentary on the state of the world.

I am grateful for the long-standing encouragement, advice, and conversation from my friends

and co-workers at Unisys Corporation, particularly Emilio Salgueiro and John Black. My experi-

ences with the large computer systems at Unisys gave me a unique perspective on the industry and

cemented my interest and curiosity for computer architecture.

I am thankful for the endless patience, love, and support I have received from my family, Gene,

Susan, and Max, and from Yang Wang, who still stays close even when far away.

Finally, I must recognize those who plead: just make it perfect, how hard can it be?

iv

Contents

Chapter 1: Introduction 1

1.1 Problem and Scope . 2

1.2 Fingerprints . 4

1.3 Thesis contributions . 4

Chapter 2: Architectural Fingerprints 7

2.1 Fault model . 7

2.2 Architectural Fingerprints . 9

2.3 Metrics . 10

2.3.1 Discussion . 14

2.4 Conclusion . 15

Chapter 3: Architectural Fingerprint Implementation 16

3.1 Architectural Fingerprints in a Superscalar Out-of-Order Core 16

3.1.1 P6 Overview . 17

3.1.2 Architectural Fingerprint Constraints . 19

3.1.3 Pentium 4 Architectural Fingerprints . 23

3.1.4 Evaluation . 24

3.2 System-level Implementation of Architectural Fingerprints 25

3.2.1 OpenSPARC T1 Overview . 26

3.2.2 System-level Design . 28

3.2.3 Hardware Design . 31

3.3 Architectural Fingerprint Synthesis . 32

v

3.4 Soft Error Injection Evaluation . 33

3.4.1 Methodology . 33

3.4.2 Results . 35

3.5 Conclusion . 37

Chapter 4: Hash Design 38

4.1 Introduction . 38

4.2 Background . 40

4.3 Hash Architecture . 42

4.3.1 Design requirements. 42

4.3.2 Parallel Input CRC units. 42

4.3.3 A Scalable Hash Architecture. 44

4.4 Hash Structures . 46

4.4.1 Spatial Compactors . 46

4.4.2 Temporal Compactors . 49

4.5 Evaluation . 52

4.5.1 Methodology . 52

4.5.2 Empirical Aliasing Properties . 53

4.5.3 Synthesis Results for latency and area . 58

4.6 Conclusion . 61

Chapter 5: Reunion 63

5.1 Introduction . 63

5.2 Background . 65

5.2.1 Fault Model . 65

5.2.2 Redundant Execution . 66

5.2.3 Input Incoherence . 68

5.2.4 Output Comparison . 70

5.2.5 Fingerprints over On-Chip Interconnects. 70

5.3 Reunion Execution Model . 72

5.3.1 System Definition . 72

vi

5.3.2 Execution Model . 73

5.3.3 Recovery . 74

5.4 Reunion Microarchitecture . 76

5.4.1 Baseline CMP . 76

5.4.2 Shared Cache Controller . 77

5.4.3 Processor Pipeline . 80

5.4.4 Serializing Check Overhead . 82

5.4.5 Fingerprint comparison interval and latency: analytic model 83

5.4.6 Lock Primitive Implementation . 85

5.4.7 Checkpointing and Re-execution . 89

5.5 Evaluation . 92

5.5.1 Baseline Performance . 93

5.5.2 Checking Overhead . 94

5.5.3 Reunion Performance . 95

5.5.4 Input Incoherence . 97

5.5.5 Synchronizing request type . 99

5.5.6 Serialization Overhead . 100

5.5.7 Fingerprinting interval and fingerprints on the interconnect 101

5.6 Conclusion . 103

Chapter 6: Microarchitectural Fingerprints 104

6.1 Fault Model . 105

6.2 Microarchitectural Fingerprints . 105

6.3 Metrics . 106

6.3.1 Discussion . 107

6.4 Hardware Design . 107

6.5 Soft Error Injection Evaluation . 110

6.5.1 Methodology . 110

6.5.2 Results . 110

6.6 Conclusion . 112

vii

Chapter 7: FIRST 113

7.1 Introduction . 113

7.2 Background . 115

7.3 Detection with FIRST . 116

7.3.1 Inducing Marginal Operation . 117

7.4 Wearout Fault Modeling . 118

7.4.1 Wearout Fault Injection Study . 118

7.4.2 Wearout Fault Simulation . 119

7.5 Evaluation . 121

7.5.1 Feasibility of FIRST . 123

7.5.2 Wearout Detection with FIRST . 125

7.5.3 The Persistent Nature of Wearout Faults 134

7.5.4 Isolated Wearout Faults . 138

7.6 Conclusion . 139

Chapter 8: Related Work 140

8.1 Concurrent Error Detection . 141

8.2 Wearout Detection . 145

Chapter 9: Conclusion 150

9.1 Future Work . 151

viii

List of Tables

Table 1: IA-32 operating environment coverage. 17

Table 2: Stack pointer consumption. 22

Table 3: Software interface to internal architectural fingerprint registers. 28

Table 4: Test programs used in soft error injection. 35

Table 5: Aliasing for spatial compactors with uniform random bit errors. 53

Table 6: Aliasing properties for temporal compactors over two words. 56

Table 7: Aliasing properties for temporal compactors over many words. 56

Table 8: Overall Aliasing properties. 57

Table 9: Race outcomes during the store-conditional phase of an LL/SC pair. 88

Table 10: Simulated baseline CMP parameters. 92

Table 11: Simulated workload parameters. 93

Table 12: Input incoherence events by phantom request strength, TLB miss frequency. . 98

Table 13: OpenSPARC structural statistics. 123

Table 14: Fault activation results for the thread scheduler over a range of clock periods. 124

Table 15: OpenSPARC processor parameters. 125

Table 16: Test programs used to evaluate FIRST. 126

ix

List of Figures

Figure 1: General error detection between a system under test and a reference. 3

Figure 2: The error detection problem and architectural fingerprints. 5

Figure 3: CDF of error detection as a function of instruction distance. 11

Figure 4: Superscalar retirement and architectural fingerprints. 18

Figure 5: Architectural results separated by location and timing. 20

Figure 6: The OpenSPARC T1 pipeline. 26

Figure 7: The architectural fingerprint unit in OpenSPARC T1. 31

Figure 8: Soft error injection detection results. 35

Figure 9: Outcomes where architectural fingerprints detected an error. 37

Figure 10: Bit error classes. 41

Figure 11: Area-delay for N-bit parallel CRC-16 units. 43

Figure 12: The scalable hash architecture. 44

Figure 13: A sixty-four to sixteen parity tree-based spatial compactor. 47

Figure 14: An eight-to-five X-compact spatial compactor and generator matrix. 48

Figure 15: Temporal compactors. 50

Figure 16: PDF of bit errors in spatial compactors. 54

Figure 17: Bits propagated in error by spatial compactors. 55

Figure 18: Area-latency curves for reference adders. 58

Figure 19: Area-latency curves for compactors. 59

Figure 20: Area-latency curves for pipelined compactors. 61

Figure 21: Input incoherence on redundant cores. 67

Figure 22: The Reunion architecture. 72

x

Figure 23: Pipelines additions for fingerprint check on retirement. 76

Figure 24: Three forms of synchronizing request. 78

Figure 25: The re-execution protocol. 81

Figure 26: Analytic pipeline performance model for architectural fingerprint comparison. 85

Figure 27: Lock implementation. 86

Figure 28: Checkpoint and recovery design space. 90

Figure 29: Baseline Reunion performance. 94

Figure 30: Performance sensitivity of strict and relaxed input replication. 95

Figure 31: Execution time breakdown for the baseline CMP and Reunion. 97

Figure 32: Performance of different phantom request strengths. 99

Figure 33: Performance with bilateral and null synchronizing requests. 100

Figure 34: Performance with hardware and software TLBs. 101

Figure 35: Performance with dedicated channels and on-chip memory interconnects. . 102

Figure 36: The scanout cell. 107

Figure 37: Scanout cells applied in a digital circuit. 108

Figure 38: Microarchitectural fingerprint design. 109

Figure 39: Soft error injection detection results. 111

Figure 40: The tool flow for modeling wearout faults. 120

Figure 41: Baseline coverage of wearout faults. 128

Figure 42: Wearout fault coverage by individual test program. 129

Figure 43: Isolated coverage of silent data corruption. 132

Figure 44: Coverage using software-based architectural error detection. 135

Figure 45: The number of true activated paths as a function of stress level for each unit. 136

Figure 46: Distribution of successive fault activations by unit. 137

Figure 47: Detection coverage for single wearout error site. 138

xi

Chapter 1

Introduction

Reliable computer systems form the backbone of critical information technology infrastruc-

ture in today’s society. Once billed as the reliable substrate for microprocessors, CMOS circuits

are now widely expected to suffer from increasing levels of soft errors and wearout phenomena.

With process technologies entering the deep sub-micron regime, process engineers predict that per-

chip radiation-induced single event upsets in latches and unprotected SRAM will increase expo-

nentially [48, 96]. New sources of intermittent faults will emerge, including process variation,

narrowing voltage and thermal noise margins, and aggressive guardbands [22]. Processors will

also experience “lifetime reliability” effects, where the smaller device dimensions mean that in-

dividual transistors and wires become increasingly susceptible to wearout phenomena including

gate oxide breakdown, negative-bias temperature instability, hot-carrier injection, and electromigra-

tion [65, 110].

This thesis investigates mechanisms for detecting errors that occur at runtime in a processor

core, focusing on two growing threats in modern processors: radiation-induced soft errors and de-

vice wearout.

Soft Errors. A soft error results from a transient bit upset in a digital circuit. These upsets can oc-

cur from sources such as neutrons and alpha particles striking the silicon [121]. Because these upsets

originate from external physical sources, they occur at a constant rate over a processor’s lifetime;

however they cause no permanent damage to the underlying circuit and are therefore considered

“soft.” When the architectural state (e.g., architectural registers and store values and addresses) dif-

1

fers from the specified behavior, an architectural error is said to result. An undetected architectural

error, called silent data corruption, is a serious concern because these errors can result in incorrect

program execution or unexpected application crashes. Architectural errors that are detected, but

uncorrected, decrease the reliability and availability of the system; however, the user can be alerted

to the possibility of data corruption. With timely error detection mechanisms, a computer system

can recover and maintain correct execution with rollback to a checkpoint or voting across redundant

units.

Device Wearout. Device wearout presents another challenge to reliability. These faults develop

initially as “soft breakdown” events that cause transistor switching speeds to gradually slow, while

the underlying logical functions are preserved [60, 89]. Therefore, these faults initially do not pro-

duce architectural errors during normal execution conditions, but can still be observed by removing

the voltage and frequency guardbands. Wearout faults steadily worsen with continued operation. If

emerging wearout faults can be revealed in a test before being exposed in normal operating con-

ditions, the system can be repaired or replaced before general-purpose execution is affected, thus

preserving the system’s reliability and correct operation. Eventually, the wearout faults develop into

“hard breakdown,” where a device fails catastrophically. Detecting these permanent failures is out

of the scope of this thesis.

Without mechanisms to detect soft errors and device wearout, maintaining processor reliability

will be an increasing hardship for system designers. Today’s processor pipelines are largely unpro-

tected and existing solutions for protection impose unacceptable performance and area overheads

or are only applicable to specific functional units.

1.1 Problem and Scope

This thesis addresses the problem of timely error detection inside the processor pipeline. Fig-

ure 1 illustrates the problem. The system under test—a processor with faults in its datapath—is

compared with a reference execution. The error detection mechanism is responsible for continu-

ously comparing the two executions and detecting differences caused by the underlying faults at

runtime. Over an interval of execution, the error detection mechanism must determine whether an

2

CacheCache

CPU

CacheCache

CPU/Sim model

Same?

System Under Test Reference

Figure 1. General error detection between a system under test and a reference.

error affects execution during the interval or the execution is free of errors. The reference execu-

tion can take many forms that mirror the system under test’s behavior, including another processor

or execution context in an symmetric or asymmetric configuration, a register-transfer level (RTL)

model, or even a functional instruction set simulator.

This thesis presents two instantiations of the problem. (1) A concurrent error detection and

recovery microarchitecture, called Reunion, where dual-modular redundant (DMR) processor cores

symmetrically compact and compare their results against each other to detect soft errors. (2) An

in-field wearout detection procedure, called FIRST, where the processor execution is compacted

and compared against itself or fault-free RTL models with reduced guardbands to detect developing

wearout faults.

Error detection in this thesis is limited to the datapath and control logic in unretired state con-

tained in the processor core. Regular array structures such as caches and architectural register files

have well-known and effective information redundancy mechanisms, including parity and error cor-

recting codes (ECC) [100], which are complementary to this work. The complex design and timing-

critical nature of high-performance processors precludes the use of such techniques throughout the

pipeline.

This thesis identifies three metrics for evaluating error detection mechanisms:

1. Detection latency indicates the length of time from a fault’s initial occurrence to its detection

as an error. This measure is important for ensuring that entire checkpoints and intervals of

execution results are free of errors.

3

2. Comparison bandwidth is the amount of state that must be compared to check that an execu-

tion interval is free of errors. Because buses and pins are a limited resource, the mechanism’s

bandwidth requirements for periodic and timely are critical to an implementation’s feasibility.

3. Error coverage is the probability of detecting a given error in a timely fashion to successfully

isolate or correct the error. Error coverage must be high enough to meet the desired system

reliability goals, but is rarely perfect in practice [71].

The scope of this thesis is further constrained to error detection mechanisms that tolerate non-

determinism and function at-speed and at runtime (in the customer’s environment). Guarantee-

ing deterministic behavior during runtime is impractical in many commercial designs. Detection

mechanisms must allow some non-deterministic behavior while minimizing false positives and neg-

atives. Furthermore, detection mechanisms must function properly at-speed (i.e., match the core

frequency). This requirement is necessary because for soft error detection, processors are only use-

ful products if they run at full speed, while for wearout the fault’s initial onset is obscured at lower

frequencies. Finally, these detection mechanisms are only useful if they can function at runtime in

a customer’s environment.

1.2 Fingerprints

This thesis proposes and evaluates a hash-based detection mechanism, called Fingerprinting. A

fingerprint is a compact signature (e.g., 16 bits) of a processor’s updates to architectural or microar-

chitectural state which is periodically compared with a corresponding signature from a reference

to detect errors. Fingerprinting is conceptually illustrated in Figure 2. Fingerprinting addresses

the three metrics above, while permitting limited non-determinism and at-speed detection. They

address detection latency by moving the point of detection close to the actual fault. Fingerprints

bound the detection bandwidth by compacting updated state into a signature that concisely repre-

sents the sequence of state updates produced by the processor over an interval of execution. Finally,

by carefully constructing the signature to avoid aliasing, the fingerprint can be engineered to have

enough coverage to meet the design’s reliability budget [71].

4

R1 � R2 + R3
R2 � M[10]
M[20] � R1

Instruction
stream

Stream
of updates

...001010101011010100101010...

R1 R2 M[20]

= 0xC3C9

Fingerprint

Figure 2: Fingerprints compress architectural and microarchitectural state updates into a
compact hash.

1.3 Thesis contributions

This thesis proposes and evaluates two realizations of fingerprinting:

• Architectural fingerprints. Architectural fingerprints calculate a deterministic hash of ar-

chitectural state updates in processors. They permit timely detection of errors that propagate

to architectural state. This thesis presents a design and implementation of architectural fin-

gerprints in commercial processor RTL. The results show that an architectural fingerprint unit

in a proof-of-concept redundant execution RTL prototype adds less than 4% in area to an

already very simple pipeline. Statistical fault injection experiments concretely demonstrate

that architectural fingerprints are effective for detecting both soft errors state and widespread

device wearout.

• Microarchitectural fingerprints. Microarchitectural fingerprints calculate a deterministic

hash of microarchitectural state updates internal to a processor. These fingerprints allow spa-

tial and temporal localization of faults within a processor, including those not propagated to

architectural state, using existing design-for-test hardware with slight modifications to avoid

common sources of non-determinism. This thesis proposes a design for microarchitectural

fingerprints in a commercial processor.

This thesis makes the following contributions from studying the feasibility, implementation, and

applications of fingerprints:

• Scalable Hash Architecture. This thesis proposes and evaluates a scalable hash architecture

for accumulating architectural fingerprints. The proposed hash architecture, an X-compact-

like [69] spatial and MISR-based [93] temporal compactor—based on traditional manufac-

turing test compaction architectures—is modified to compact retiring architectural state. The

5

design preserves evidence of errors in the output hash as effectively as an ideal cyclic redun-

dancy check (CRC), but can scale to accept the output from wide-issue superscalar processors

at a fraction of an equivalent CRC implementation’s area and latency.

• Reunion. Reunion is a formal execution model for redundant execution across loosely-

coupled redundant cores in a chip multiprocessor (CMP), using architectural fingerprints.

This thesis shows that a key problem in redundant execution, called input incoherence, can be

detected and handled with the same mechanisms needed for soft error detection and recov-

ery. The evaluation demonstrates that complexity-effective redundant execution for shared-

memory programs in a CMP can be achieved with only a 5-6% performance overhead over

more complicated solutions that use strict input replication.

• Fingerprinting in Reliability and Self Test (FIRST). FIRST is a procedure for in-field

wearout detection using microarchitectural fingerprints. FIRST identifies emerging wearout

faults before they affect general execution. The study demonstrates that microarchitectural

fingerprints are effective for observing both individual and widespread wearout faults. Fur-

thermore, the study shows that architectural fingerprints are equivalent to microarchitectural

fingerprints for detecting widespread wearout faults.

The remainder of this thesis is organized as follows. Chapter 2 introduces background and the

concept of architectural fingerprints. Chapter 3 explores the implementation of architectural finger-

prints in two modern commercial microarchitectures. Chapter 4 explores a range of hash designs

for architectural fingerprints. Chapter 5 presents and evaluates the Reunion execution model, an ap-

plication of architectural fingerprints. Microarchitectural fingerprints are introduced in Chapter 6.

Chapter 7 presents and evaluates FIRST for both architectural and microarchitectural fingerprints.

Related work is discussed in Chapter 8. This thesis concludes and identifies future research direc-

tions in Chapter 9.

6

Chapter 2

Architectural Fingerprints

Architectural fingerprints summarize into a compact signature the in-order architectural state

updates—the general-purpose register writes and stores to memory—generated by a processor core.

Architectural fingerprints expose errors in architectural state that otherwise have a long error detec-

tion latency. By periodically comparing small signatures that summarize the monitored state, entire

intervals of execution are compared instantly and the comparison bandwidth can be reduced by or-

ders of magnitude over directly comparing each architectural state update. Finally, by leveraging

strong but efficient hash functions, fingerprints can avoid aliasing and therefore maintain high error

coverage.

This chapter is organized as follows. The important terminology and fault model for this thesis

are introduced in Section 2.1. The architectural fingerprint concept is defined in Section 2.2. The

metrics for evaluating architectural fingerprints follow in Section 2.3. The following two chapters

provide a study of implementing architectural fingerprints in commercial microarchitectures and a

detailed study of the architectural hash design, respectively.

2.1 Fault model

This section introduces the terminology and fault model for the remainder of this thesis. The

terminology in this thesis is adopted from the “minimum consensus” view in the dependable com-

puting community [12].

7

An architectural error is a deviation from the defined correct architectural execution of a pro-

cessor. In the context of architectural fingerprints, this term is abbreviated to error. This thesis is

scoped to detecting errors that arise within the microprocessor core data and control paths. Unlike

cache memories and external buses, which are excluded, these units are complex and irregular yet

still performance-critical. Thus, the core data and control paths cannot easily be protected with tra-

ditional information redundancy mechanisms such as parity and ECC [100]. Errors propagating to

SRAM arrays (which are increasingly protected by parity and ECC) can be detected as a side effect,

but are not the focus of this work.

A fault is the hypothesized source of an error. The detection mechanisms considered in this

thesis directly detect errors, not the underlying fault. Errors can propagate between components of

the processor and produce. However, the error can also remain internal to the processor core or

disappear altogether. In this case, the error is masked.

Masking. Masking occurs on many levels of abstraction. These are summarized below. Errors

can be masked electrically, for example, an energetic partial strike can generate a transient glitch

in logic. This glitch is attenuated by passing through several levels of combinational logic gates.

Logical masking occurs when controlling inputs on a cone of combinational logic prevent a glitch

from propagating. Glitches that reach a latch can still encounter latch-window masking unless they

arrive in the time window when an input value is recorded by the latch [97]. Latched errors can

still be architecturally masked if the latched error is overwritten before propagating to architectural

registers or store values [73]. Finally, software can also overwrite or ignore errors propagated to

architectural values through program-level masking. The effects of electrical, latch-window, and

program-level masking are out of the scope of this thesis. Therefore, the architectural fingerprints

presented in this thesis specifically contend with both logical and architectural masking.

The errors addressed by architectural fingerprints fall into two classes:

Soft Errors. Soft errors arise from transient faults that cause or more bit flips in a digital circuit.

The underlying fault is a temporary upset and, unless captured in a sequential element such as a

latch or SRAM, the effects completely disappear in a fraction of a clock cycle [17]. These faults

8

include well-documented sources such as energetic particle strikes [121], and decreasing electrical

and thermal noise margins [22].

Device Wearout. Errors from device wearout are intermittent or “elusive” faults which can be

observed as one or more bit flips in a digital circuit. Wearout faults initially cause missed timing

(e.g., setup times) in a correctly designed and manufactured circuit because the constituent logic

gates and wires gradually operate more slowly. These faults include mechanisms such as the soft

breakdown associated with gate oxide breakdown [60], negative-bias temperature instability [87],

hot-carrier injection [28] and electromigration [43]. The onset of wearout is gradual over time

and the fault activation is exacerbated by environmental and operating conditions such as increased

temperature and frequency and reduced voltage [65].

This thesis is concerned with detecting wearout during soft breakdown. Detecting hard break-

down where the device ceases functioning entirely [60] is out of the scope of this thesis, although

the presented techniques may also be effective for such faults.

2.2 Architectural Fingerprints

Architectural fingerprints are a compact, reproducible, deterministic hash of architectural state

updates from a microprocessor. Architectural state consists of general-purpose registers, values

stored in memory, and excludes non-architectural information such as cache misses, speculated

execution, and timing. The architectural fingerprint is conceptually illustrated in Figure 2 of Chap-

ter 1. Architectural fingerprints between two units—units that are supposed to execute the same

program—are periodically compared to detect differences due to architectural errors in the redun-

dant executions. The frequency of comparing architectural fingerprints, measured in instructions, is

defined as the architectural fingerprint comparison interval. Architectural fingerprints summarize

the entire set of architectural results over the comparison interval.

By selecting only architectural state, comparison of the two units is simplified. Rather than

requiring redundant processors to execute a program cycle-for-cycle in precisely the same way,

the executions need only generate the same results. For a processor core, this means architectural

values are sampled for the fingerprint in program order from processor retirement buses, only on

9

cycles when a value is being retired and not on cycles when the buses are idle. For other models,

such as functional simulators, this comprises a complete program-order trace of execution. Because

the hash is constructed from discrete instruction results, the architectural fingerprint is linked to

precise architectural state on instruction boundaries. This property bounds the latency of detecting

architectural errors to the fingerprint comparison interval. Furthermore, this eases integration with

recovery mechanisms such as checkpoints [4, 66] and precise exception rollback [103], which are

generally designed to operate on an architectural instruction granularity.

The redundant units compare fingerprints at regular instruction intervals and at points beyond

which recovery mechanisms cannot cross (e.g., non-idempotent operations such as external I/O).

Three possible outcomes can result from the comparison. First, the comparison can result in a

fingerprint mismatch when the fingerprint values differ, signaling that at least one unit is in error.

With two units, the fingerprint comparison can only identify differences, but the fingerprint alone

cannot determine which unit is incorrect. Voting can disambiguate this situation with three or more

redundant units. Second, the comparison can correctly signal a fingerprint match when no error is

present. Finally, the comparison falsely signals a match when, in fact, an error is present but the

hashes alias or a common-mode failure causes the same incorrect execution in all units. The final

case signifies an undetected error and loss of error coverage.

2.3 Metrics

The overall goal of architectural fingerprinting is to detect an error in a processor’s architectural

state to prevent silent data corruption (SDC) or detected, uncorrectable errors (DUE) [73]. To

achieve this, the error detection mechanism must balance three inter-related measures: detection

latency, comparison bandwidth, and error coverage. Each of these requirements is discussed in

detail below.

Detection Latency. The detection latency is the distance between an error occurring and its cor-

responding effects being observed by the detection mechanism. For architectural fingerprints, the

detection latency is measured in instructions. The detection latency is governed by the granularity

at which the redundant units are compared. Ideally, errors are detected precisely when and where

10

Detection distance (instructions)

CD
F

of
 d

et
ec

tio
n

0.2

0.4

0.6

0.8

10 0 10 2 10 4 10 6

1

L1 front-side interface
Chip-external

0

Figure 3: Cumulative distribution function (CDF) of errors detected as a function of instruc-
tion distance for a commercial OLTP workload.

they originate, however placing detection logic at every device in the processor is unrealistic. As the

detection latency grows, isolating and recovering an error’s effect becomes more difficult because

the error can propagate to external components. Furthermore, rollback recovery becomes impos-

sible if the processor has performed non-idempotent operations, such as network I/O, which once

initiated, cannot be recalled. Hence, a hard bound on the detection latency is critical to maintaining

reliability.

Traditional mainframes compare the outputs of lockstepped processors at the chip-external bus

pins [16, 95]. These systems can detect errors in the values of writebacks of modified cache blocks

or erroneous memory addresses that cause cache misses. While these systems are effective at de-

tecting and isolating errors within a chip, they cannot guarantee the absence of latent errors in the

processor core and caches (which have not yet propagated outside of the chip). Because of this

long detection latency, recovery becomes complicated in these systems, requiring custom operating

systems and applications to support rollback recovery using software checkpoints.

Several research proposals have also considered detection at the L1 cache write port [72, 88].

This observation location improves the detection latency over chip-external detection because errors

must only be propagated to a store for detection. Architectural fingerprints can bring the detection

latency down to individual instructions. At these short detection latencies,

The detection latency problem is now analyzed quantitatively. Figure 3 shows the fraction of

11

errors in architectural state propagated to the chip-external and the L1 cache interface within a fixed

number of instructions in an on-line transaction processing (OLTP) workload. OLTP is an important

commercial workload and is representative of other workloads such as integer SPEC CPU bench-

marks. The horizontal axis shows the distance, in instructions, until an error in an instruction result

is observable at the L1 cache and chip-external interfaces in a system with a 1MB L2 cache, opti-

mistically assuming program-level masking never occurs (program-level masking furthers increases

the error detection latency for errors that are still eventually detected). The vertical axis shows the

fraction of instructions with errors detected at that distance for each detection mechanism. The

key observation is that a significant fraction of errors (10%) remains undetected, even after exe-

cuting hundreds or thousands of instructions. These long—and potentially unbounded—latencies

can make recovery impossible. Such situations include times when non-idempotent I/O operations

(operations that cannot be repeated) have been retired in the meantime. Similarly, for recovery

mechanisms within a processor core, such as precise exception rollback [85], error detection mech-

anisms at the L1 cache and further from the core are insufficient for recovery because errors can

be irrevocably committed to architectural register state before they propagate to a store value. This

result argues for comparing state updates directly, as with architectural fingerprints, to minimize

and bound the detection latency.

In Figure 3, architectural fingerprints reach complete coverage of architectural state within the

comparison interval (assuming no aliasing). By directly comparing architectural state before retire-

ment, architectural fingerprints bound the detection latency to the fingerprint comparison interval,

a parameter chosen by the system designer. Bounded detection latency is possible because archi-

tectural fingerprints directly observe retiring values. Furthermore, the time required to generate an

architectural fingerprint hash is minimal. Chapter 4 shows how efficient hashing circuits can update

the signature in one processor clock, even in wide-issue superscalar processors.

Comparison Bandwidth. The comparison bandwidth counts the number of bits per cycle re-

quired to compare the execution of two units. This metric is critical to the system’s overall fea-

sibility and implementation cost and is governed both by the comparison granularity and by the

comparison interval.

12

Consider systems that directly compare execution state updates. At coarse granularities, such

as the chip-external boundary, the required bandwidth is far lower than comparing every latch in

the design (hundreds of bits versus millions of bits per clock). However, the cost of comparing at

coarser granularities is the increased detection latency. Closer to the processor core, the bandwidth

required for direct comparison increases dramatically—matching the retirement bandwidth in the

architectural register file and L1 cache write port bandwidth (several hundred bits per cycle). This

bandwidth can only be sustained over dedicated on-chip datapaths.

An architectural fingerprint observes as much state as direct comparison at the architectural reg-

ister file and L1 cache write ports combined, but summarizes the whole sequence instructions into

a hash of only a few bytes—which need not be compared every cycle. The fingerprint comparison

interval has an inverse relationship with the comparison bandwidth. The Reunion study in Chap-

ter 5 shows that an interval of just sixteen instructions is sufficient to allow comparison fingerprints

over the on-chip memory interconnect of a modern chip multiprocessor. A prior study shows that

intervals of thousands of instructions are acceptable for error detection across nodes in a distributed

shared memory machine [105].

Error Coverage. Error coverage measures the fraction of all errors that can be detected before

reaching an unrecoverable state. When coverage is imperfect, the processor can suffer from SDC or

DUE because they were not detected in time.

Coverage decreases in several ways. First, the aliasing in the detection mechanism itself may

cause erroneous state to appear error-free. Second, important state bits may be omitted or ignored

in the detection mechanism (e.g., because the state register is difficult to access). Third, the system

can mask errors before they reach the detection mechanism. Finally, in spite of the other factors, if

the error is detected—but too late to isolate and correct it—coverage is lost. In actual designs, error

coverage does need not be perfect, but it must meet a designated error budget [71].

Architectural fingerprints containing errors can alias with architectural fingerprints from error-

free execution, causing a loss of error coverage. The hashes used to generate the fingerprint nec-

essarily lose information as a byproduct of compacting a large number of bits—with some bits in

error—to fewer bits. Chapter 4 studies efficient hashes that approach ideal aliasing probabilities

over a range of error patterns.

13

Second, for microarchitectural design or physical layout reasons, not all architectural state can

be included in the hash. For example, while general-purpose registers are typically written to a

central register file, state such as the program counter, stack pointer, and condition code registers

may be written to special, individual registers or at times avoided entirely as an architectural opti-

mization. Fortunately, much of this state indirectly appears as part of other architectural state, and

is therefore preserved in the fingerprint.

2.3.1 Discussion

Next, this thesis discusses the interaction of the three metrics through the fingerprint comparison

interval and two additional system-level requirements for error detection mechanisms.

Fingerprint comparison interval. The fingerprint comparison interval is the distance, measured

in instructions between successive architectural fingerprint comparisons. The fingerprint summa-

rizes all monitored state updates within the interval. Depending on the context, the interval can

be a constant or application-dependent. For example, non-idempotent operations such as I/O can

force an architectural fingerprint comparison before the end of a periodic interval. The detection

latency is bounded by the comparison interval because the fingerprint summarizes all monitored

architectural state updates within the interval. To the first order, comparison bandwidth is inversely

proportional to the fingerprint comparison interval because only one fingerprint must be compared

for each interval. Finally, error coverage depends on timely detection. If results are not held within

the core prior to checking, an excessively-long interval can allow an undetected error to propagate

outside of the processor and to an unrecoverable location. By contrast, if the results are held, a

long comparison interval can incur a performance loss. These tradeoffs are discussed further in the

context of the Reunion execution model in Chapter 5.

There are also two important system-level requirements important to error detection in this

work, but independent from the metrics listed above.

Determinism. For architectural fingerprints, a processor is considered architecturally determin-

istic if it always performs the same operations and produces the same architectural outputs for a

given sequence of inputs and initial conditions. This is a stronger requirement than functionally

14

correct execution—for a given set of inputs, multiple possible architectural outcomes are correct

depending on timing and the outcome of “undefined” outputs [44]. However, architectural deter-

minism does not mean that the microarchitecture must perform precisely the same operations on a

cycle-by-cycle basis, as in lockstep. Instead, only the architectural outputs must be deterministic,

while the underlying microarchitecture may operate differently, or even be implemented differently,

across redundant executions.

Architectural determinism is a concern because a hash-based error detection mechanism cannot

discriminate between two architecturally different, yet both correct, outputs and an output contain-

ing an error. In both cases, the detection mechanism signals a potential error. In a system with

only detection, this behavior decreases the effective reliability of the system by triggering on an

error that does not exist. In a system with recovery, this behavior incurs unnecessary recovery op-

erations, which affects performance and potentially leads to problems with forward progress. The

latter trade-off is exploited in Chapter 5 with the Reunion execution model.

At-speed operation. Second, the error detection mechanism must work at-speed. Systems with

runtime soft error detection cannot run more slowly than systems without detection because they

must still meet aggressive performance goals in order to be competitive in the marketplace. Early

wearout detection must also work at-speed because errors initially appear from timing faults that

are only activated when running at the highest operating frequencies. Therefore, both applications

require the error detection mechanism to run at-speed.

2.4 Conclusion

This chapter introduced the fault model and important terminology for this thesis. The concept

of the architectural fingerprint was defined and the metrics for evaluating error detection mech-

anisms were presented. The following two chapters provide concrete discussion on architectural

fingerprint implementation, discussing the mechanics of collecting, assembling, and comparing fin-

gerprints in Chapter 3 and the design for a scalable architectural fingerprint hash unit in Chapter 4.

15

Chapter 3

Architectural Fingerprint

Implementation

Architectural fingerprints have a rich interaction with the instruction set architecture and mi-

croarchitecture designs. The hardware capturing an architectural fingerprint must match the retire-

ment bandwidth of aggressive modern superscalar, out-of-order processor designs, yet contend with

the burdens of complicated instruction sets and highly optimized microarchitectures.

This chapter explores the hardware design and implementation of architectural fingerprints in

two commercial microprocessor designs. This chapter assumes an understanding of the architectural

fingerprints described in Chapter 2. This chapter is organized as follows. Section 3.1 presents

a trace-based proof-of-concept implementation of architectural fingerprints in a superscalar out-of-

order processor. Section 3.2 presents an RTL architectural fingerprint implementation and redundant

execution in a multicore, multithreaded scalar pipeline microarchitecture. This chapter concludes

with brief synthesis results for the architectural fingerprint unit and a statistical error injection study

to demonstrate the effectiveness of architectural fingerprints for detecting errors in architectural

state.

3.1 Architectural Fingerprints in a Superscalar Out-of-Order Core

This section describes an investigation of architectural fingerprints in a commercial superscalar,

speculative, out-of-order processor core design. The investigation includes a proof-of-concept de-

16

Table 1: State in the basic IA-32 environment that is covered directly or indirectly by an
architectural fingerprint.

Class State Captured

Integer 8 general purpose registers Directly covered, except ESP

EFLAGS Partly covered, mask undefined fields

Program counter (EIP) Indirectly covered

Floating-point 8 general purpose registers Directly covered

8 MMX registers Directly covered

8 XMM registers Directly covered

CR/SR/TR/MXCSR status registers Directly covered

x87 opcode, FIP, Data PTR registers Not covered

Segment 6 segment registers Directly covered

Memory Store addresses and value Directly covered

sign and discusses the architectural and microarchitectural issues that only become apparent when

applying the fingerprint concept to an actual microarchitecture (Intel P6).1

3.1.1 P6 Overview

This section begins with an overview of the P6 microarchitecture that is relevant for capturing

architectural fingerprints. The IA-32 architectural state contained in the P6 which must be cap-

tured in an architectural fingerprint is listed in the IA-32 Intel Architecture Software developer’s

Manual [44] and summarized in Table 1. The table also indicates whether the state can be captured

directly or indirectly by an architectural fingerprint. Due to its complexity and decreasing relevance,

the x87 floating-point unit is disregarded in this study. However, floating-point values in the modern

MMX and XMM architectural registers are covered.

The P6 processor core is a three-wide retirement superscalar, out-of-order IA-32-compatible

core, originally shipped as the Pentium Pro [94]. The most recent Core 2 microarchitectures are

for the purposes of this study similar in design, except that Core 2 can retire four instructions per

cycle. The core speculatively fetches and decodes CISC instructions, in order, into a sequence of

RISC-like micro-ops, executes the micro-ops in a superscalar out-of-order core, and retires up to

three micro-ops in program order to an architectural register file in each cycle. Micro-ops write

1This section describes work done while the author had access to RTL models and internal validation tests at Intel

Corporation for the later-released dual-core designs of the mobile Intel P6-based microarchitecture (Yonah) and the Intel

Netburst microarchitecture (Cedarmill) designs. The discussion in this section is based on the P6 microarchitecture, as

described by Shen and Lipasti [94].

17

Bus1 Valid1

QueueQueue

Flip-FlopFlip-Flop

Fingerprint
collection

Fingerprint
output

Bus2 Valid2

Vld1 & ArchDst
Vld2 & ArchDst

HashHash

HashHash
ResultAResultA
Bus1 Bus2

Ti
m
e

ResultBResultB

ResultCResultC
ResultDResultD

ResultEResultE ResultFResultF

(a) (b)

Figure 4: (a) The instruction retirement bus can retire ordered combinations of instructions.
(b)The corresponding architectural fingerprint unit.

results to an entire 32-bit register or a portion of the register for legacy instructions. In each cycle, a

single store can be written to the store buffer and another store can be committed non-speculatively

to the cache. The state in Table 1 is a subset of the total state stored in the architectural register file

because there are also temporary registers—registers that are not architecturally-visible—used by

micro-ops to execute complex instructions.

Integer, control flow, and load instructions retire values in program order to the integer architec-

tural register over a three-wide retirement bus. Fortuitously, the microarchitecture also guarantees

program ordering across the three possible micro-ops retiring in a given cycle because the ROB

operates as a FIFO [94]. Alternatively said, any combination of retirement buses can retire archi-

tectural results, however the buses are always ordered such that the oldest results always occur on

the lowest bus numbers. This greatly simplifies collecting program-order results, as compared to a

bus that allows any ordering within the cycle. The retirement combinations over time are illustrated

in Figure 4(a), simplified for presentation purposes, to an equivalent two-wide pipeline. On a given

cycle, both, one, or none of the buses retire architectural results. New program counter values (EIP

in Intel parlance) and condition code values (EFLAGS) are also generated for each retiring micro-

ops. This means most values necessary for architectural fingerprints are already available. Valid

and destination architectural register number signals exist which identify both when and to which

registers a value is being written.

The store buffer has dedicated read and write ports. Values are written back out-of-order, but

retired from the store buffer to the L1 data cache in program order. Physical addresses are also

18

written to the store buffer.

The architectural fingerprint for superscalar values is captured using an architectural fingerprint

unit depicted in Figure 4. The figure is simplified for presentation purposes to a two-wide retirement.

The hash unit consists of combinational logic, described in detail in Chapter 4. The multiplexer

logic ensures that values are collected and hashed in program order. The illustrated logic depth is

comparable to the retirement stage selection logic for the final program counter and flags registers,

which indicates that the fingerprint unit can have cycle time requirements similar to existing logic.

3.1.2 Architectural Fingerprint Constraints

From the above description, implementation of architectural fingerprints appears straightfor-

ward. However, the actual implementation runs into several complications—none insurmountable—

outlined below. These complications required the implementation of multiple independent finger-

prints, based on instruction class, and the addition of simple masking logic.

Physical design. The initial concept of an architectural fingerprint called for a single hash of all

architectural state. However, the physical design of the core makes this task difficult. The core’s

floorplan determines how easily various parts of architectural state can be collected and combined

in an architectural fingerprint. If all state is nearby, collecting the state together poses few problems.

However, processors are physically constrained and retiring data is distributed throughout the pro-

cessor. For example, in the illustration in Figure 5(a), integer value retirement occurs in the execute

unit, while store values are retired in the memory unit. These units can be distant from each other

and communication between them requires long, slow global wires.

Instead, independent fingerprints for each output class are much better-suited to addressing the

physical design constraints. Related outputs classes are typically stored close together, for example

integer values, floating-point values, store values and addresses, and ancillary state, such as IA-32

segment registers are each self-contained.

The additional bandwidth cost of a few (three to four, depending on the architecture) fingerprints

is small compared to the bandwidth savings from amortizing comparison across a fingerprint inter-

val. Furthermore, the additional bandwidth may already come for free. For example, if an on-chip

memory interconnect is used for transferring fingerprints, the message payload size may already be

19

Separation required by physical design
Values retired in different units

FEFE IDID OoOOoO

EXEEXEMEMMEMBUSBUS

Integer
RegFile

Store
buffer

Re
tir
ed

Cache
Miss

O
ld
er Store [B], ebx

Store [A], eax
Add eax, 1

[B]: 7
[A]: 5

Separation required by timing
Store buffer not in lockstep with other retirement

ROB StoreBuf

(a) (b)

Figure 5: Architectural fingerprints need to be generated by output class because of (a)

physical design constraints and (b) ordering and timing constraints.

optimized for larger 64-bit transfers [113], which allows a handful of fingerprints to be included at

no additional cost over a single fingerprint value.

Asynchronous and delayed outputs. The retirement stages of a microprocessor need only pro-

vide the illusion of program-order retirement. The actual implementation can write values to durable

architectural state out of program order. This occurs on both the architecture level and microarchi-

tecture levels. In IA-32 and most modern architectures, an example of the former situation is that the

memory consistency model allows implementations to delay stores from committing to the global

memory ordering (through the use of a store buffer), even after subsequent instructions have retired

from the reorder buffer (ROB) to the architectural register file. Figure 5(b) illustrates the reorder

buffer retiring subsequent instructions, while the store buffer delays committing older stores to

cache because of a write miss. An example of the latter situation is that, related values, such as store

addresses and values may be read in order, but in different pipeline stages, meaning that the values

needed for architectural fingerprints are available, but not necessarily at the precise cycle time—or

in the order—desired.

This problem is also largely solved by the same solution as for physical design: separate archi-

tectural fingerprints for each instruction class. This solution works because values within the same

class are still retired in program order with respect to each other (e.g., integer register values and

stores both retire in program order with respect to other integer register values and stores, respec-

tively). The delayed store address problem is solved trivially by adding a staging latch to hold the

value until the address becomes available.

20

Undefined outputs. Some architectural outputs are nebulously defined to be “undefined” in the

architecture specification [44] (this designation is not unique to IA-32, however). For these out-

puts, the retiring value cannot be guaranteed to be the same from one execution to another of the

same program. This affects architectural fingerprints because an undefined value can cause two

fingerprints to mismatch, even when no errors are present. In IA-32, a number of EFLAGS fields

are undefined for several integer arithmetic and logical instructions. If a microarchitecture provides

a consistent output for these fields then the fingerprint will always match. However, if there are

situations where an undefined field depends on internal non-architectural state (i.e., timing-specific

microarchitectural state or values on the bus, such as some architecture-specific registers), these

values cannot be dependably captured in a fingerprint.

In P6, the values for these “undefined” fields are well defined in the RTL implementation. There-

fore, if architectural fingerprints are compared solely between two identical microarchitectures with

predictable outputs, the problem is eliminated. However, if the architectural fingerprint is com-

pared against another reference that generates a different value, the undefined value problem must

be addressed. This issue is encountered with the architectural co-simulator for P6 (a C program

that validates the architectural results of the RTL model). If the entire EFLAGS register is used for

an architectural fingerprint, the fingerprints generated between these two models will differ, despite

both executions being legal.

A solution to this problem is to mask known undefined fields from the architectural fingerprint.

This requires control logic to detect the condition and mask the aberrant bits to produce a predictable

value. This solution fails if the undefined value is used in subsequent instructions through program

dataflow. However, any program that does this should not be expected to work. 2

Microarchitectural Optimizations. Optimizations for power and performance can eliminate fre-

quent operations performed in a microarchitecture, which while architecturally defined, do not need

to be strictly maintained in the microarchitecture. For example, the IA-32 architecture has a limited

number of architectural registers and therefore makes extensive use of the stack pointer (known as

ESP) to push and pop local values between the architectural registers and the stack.

2The Intel developer’s reference states “Developers must not rely on the absence of characteristics of any features or

instructions marked ‘reserved’ or ‘undefined’.” [44].

21

Table 2: Situations where ESP is consumed or updated and the corresponding detection
scenarios.

Original error Condition Outcome

ESP as source for load address Wrong value is loaded from the wrong address Detected

Correct value loaded from the wrong address Undetected

ESP as source for store address Store address incorrect Detected

ESP as source for data process- Propagated to arch. reg or store value Detected

ing instruction or store value Masked in arch. reg or store value Undetected

Incorrect value written to ESP Arch. fingerprint created for explicit write Detected

In recent implementations, the ESP is only updated in limited circumstances—not always when

architecturally defined and sometimes only due to microarchitecture-specific timing conditions.

Therefore, when blindly observing at retiring register values, updates to the ESP can appear non-

deterministic. Recent P6 implementations contain a dedicated stack pointer engine to the pipeline to

improve power efficiency and reduce micro-ops per macro-instruction within the pipeline (Gochman

describes this mechanism [38]). In the original P6 architecture, every macro-instruction which up-

dates the stack pointer incurs one micro-op to do so, even if the result is never used. This opti-

mization removes most of these micro-ops by calculating the new stack pointer at decode using a

small adder in a dedicated stack engine. The architectural register file is only updated with a micro-

op only when an instruction architecturally needs to read the ESP, when the register is explicitly

changed by the programmer (e.g., by a move to ESP), or when the pipeline needs to restart (e.g., on

mis-speculation and traps). These situations can only be fully determined dynamically.

The solution to this microarchitectural optimization is similar to the masking solution for unde-

fined values. The microarchitecture allows inference of whether the ESP is updated by an injected

micro-op or by an instruction explicitly specified by the programmer. Therefore, the fingerprint can

dependably include the latter case, but ignore the former. This can cause a loss of error coverage in

cases enumerated in Table 2. However, the cases where errors in the ESP cannot be detected indi-

rectly are also cases where the ESP value is already masked, and therefore the error can be derated.

The last case can be identified with existing microarchitectural signals and safely captured in the

fingerprint.

22

Variable output widths. The values written to architectural registers and memory are sometimes

a different size than the processor’s native width (for example, 64-bit processors are becoming more

prevalent, yet they continue to run programs that operate on 32-bit integers and byte-sized string

elements). Most architectures provide an interface for these narrow stores to memory; IA-32 also

allows writes of narrower widths to architectural registers.

These varied widths generally do not present a problem with respect to architectural fingerprints.

As with undefined outputs, masking logic can be used to zero-extend the missing output bits to

match the native machine width.

Micro-op Ordering. Finally, because the P6 implements CISC instructions—which may have

multiple outputs—as a sequence of micro-ops, the retirement order of the constituent micro-ops

in an instruction matters for architectural fingerprints. If the ordering of micro-ops for the same

complex instruction differs from implementation to implementation or even within a single imple-

mentation, the architectural fingerprints will mismatch. The microcode is read from ROM tables.

Therefore, in general, the microcode outputs values in a predictable order (in spite of the myriad

instruction variants and operating modes). This issue proves not to be a problem in practice.

3.1.3 Pentium 4 Architectural Fingerprints

Architectural fingerprints for the rapidly-disappearing Netburst (also known as Pentium 4) mi-

croarchitecture were also briefly investigated.

The most significant difference between the P6 and Netburst microarchitectures, with respect to

architectural fingerprints, is in the retirement procedure. Instead of writing retired register values

to an architectural register file in program order, Netburst speculatively writes architectural register

values to a physical register file that is accessed through an architectural to physical register map

table [20]. At retirement, only the updated register mapping is written, in program order, to an

architectural register map table. However, the values always remain in the physical register file.

Furthermore, because the machine speculates aggressively, the values written to the physical regis-

ter file are frequently re-written during “replays” of a speculative instruction. Furthermore, if the

instruction is on the wrong-path, the final register mapping may never be retired.

23

This speculative writeback means that architectural fingerprints cannot be implemented in the

existing Netburst microarchitecture without significant changes. Nowhere in the microarchitecture

can architectural values be observed in program order. In principle, architectural fingerprints can be

constructed in Netburst and other physical register file-based machines in the same way as for P6;

however, the costs are prohibitive. To construct an architectural fingerprint, the values must be read

out of the physical register file at retirement. To avoid impacting performance through register file

port contention, this solution needs additional register file read ports that match the retirement width

of the processor. This is an expensive addition in area, timing, and power to an already highly ported

structure [34] and therefore makes implementing architectural fingerprints expensive in Netburst.

3.1.4 Evaluation

This section presents the evaluation of the trace-based proof-of-concept architectural fingerprint

implementation on a P6 RTL model.

Methodology

The P6 architectural fingerprint experimental setup consists of a single-core full-chip Yonah

RTL model, including L2 cache and external memory, Perl-based trace collection tools, a modified

version of the C-based functional x86 architectural co-simulator called archsim, and off-line trace

analysis tools.

The RTL model loads and executes compiled memory images of assembly-based functional

validation test programs, following a brief processor initialization and reset sequence. On every cy-

cle during simulation, the trace collection tool monitors hand-selected internal RTL signals, latches

retiring values, and dumps the raw output, cycle-by-cycle, to a trace file. This models the hard-

ware required to capture architectural values from the actual processor. Separately, the modified

architectural simulator also produces an architectural state trace for the same program.

The RTL and architectural simulator traces are processed to calculate architectural fingerprints

for each architectural result, separated by physical location into different classes for integer values,

floating-point values, store values and address, and x86-specific segment registers. The functional

simulator has no concept of timing, while the RTL model produces detailed timing information, so

24

the relative order of each fingerprint class differs as discussed earlier. The trace analysis tool com-

pares sequences of each class separately. The analysis tool reports matches over the full execution

of the test program and reports mismatches immediately. No errors were injected in this evaluation.

Results

The simulation methodology outlined above was applied to over sixty focused x86 ISA vali-

dation programs, twelve cache validation programs, the dhrystone benchmark, a paging test with

virtual memory enabled, and a suite of hand-written assembly programs.

In all cases, the architectural fingerprint implementation in both the RTL monitor and archsim

matched. This simulation model required numerous revisions, as new instructions and behaviors

were encountered. Furthermore, architectural fingerprint also proved to be a highly-sensitive bug

detector for its own implementation—whenever a single piece of state was missing or sampled at

the wrong time, the architectural fingerprint was clearly different from the architectural simulator

and clearly identified a specific dynamic instruction that needed investigation.

This trace-based proof-of-concept demonstrates that the data necessary for assembling architec-

tural fingerprints is available in real superscalar out-of-order microarchitectures. Furthermore, the

data can be collected feasibly with modest hardware additions for masking.

3.2 System-level Implementation of Architectural Fingerprints

This section studies the implementation of architectural fingerprints in the multicore, multi-

threaded, scalar OpenSPARC T1 processor RTL model. This study fulfills several goals. First, this

study serves as a substantive demonstration of architectural fingerprints working in a commercial

processor design. Second, this study quantifies the coverage of architectural fingerprints for soft er-

rors and demonstrates that they are effective detection mechanisms for silent data corruption. Third,

this study demonstrates redundant execution with architectural fingerprint comparison in both mul-

tithreaded and multicore designs. Finally, this study explores a system-level implementation where

architectural fingerprint values are exposed to higher-level processes.

25

Mem WritebackExecDecodeSelectFetch

I-
Cache
I-

Cache
Instr
Buffer
x4

Instr
Buffer
x4

Thr
Sel
Thr
Sel DecodeDecode

Thread
Select
Thread
Select

ALUALU D-
Cache
D-

Cache

RegFile
x4

RegFile
x4

Store
Buffer
x4

Store
Buffer
x4

Thr SelThr Sel

PC+4
PC+Br
x4

PC+4
PC+Br
x4 Stall

Signals
Stall
Signals HashHash Queue

x4
Queue
x4FP Queue Full x4

FP Match x4 Compare
Compare

To
L2

Figure 6: The OpenSPARC T1 6-stage pipeline with architectural fingerprint collection and

comparison hardware. Pipeline figure adapted from [113].

3.2.1 OpenSPARC T1 Overview

This section gives an overview of the OpenSPARC T1 microarchitecture, as it relates to finger-

printing. The microarchitecture is simple enough to permit prototyping of architectural fingerprints

and redundant execution directly in the RTL model.

The OpenSPARC T1 consists of eight scalar in-order processor cores. Each core selects dynam-

ically from up to four hardware thread contexts on every cycle. The simplified pipeline is illustrated

in Figure 6. The portions that relate to architectural fingerprints are now described. In the writeback

stage, the pipeline determines if the instruction can retire (or, alternatively, triggered an exception).

If the instruction is declared safe, the pipeline writes register values in-order into an architectural

file through two write ports. One port is dedicated to values from the ALU and another for so-called

“long-latency” operations such as loads and floating-point operations which can take a variable

amount of time to complete (the single floating-point unit is shared across all eight cores on the

chip). On any cycle, a given thread can have at most one value retiring to the register file, although

two different threads can simultaneously write values. Store values and addresses are written into

a dedicated eight-entry store buffer for each thread. These values are subsequently written back to

the shared L2 cache.

Architectural Fingerprint Prototypes. In this study, three instantiations of architectural finger-

prints are prototyped in the OpenSPARC T1 RTL. First, for error injection, an “open-loop” multi-

26

threaded implementation of architectural fingerprints is implemented, where an architectural finger-

print is created for each thread, but the fingerprint values are simply logged to a file. As with the

Yonah model, architectural fingerprints are accumulated separately for integer, floating-point, and

store values. This implementation is useful for error injection studies where the fingerprints can be

compared off-line to a golden model (either a error-free OpenSPARC execution or an architectural

simulator). The architectural fingerprint RTL prototype is verified against a functional architectural

simulator software model for more than 900 single core OpenSPARC verification programs.

The second model is a “closed-loop” model where architectural fingerprints are compared be-

tween user-level redundant threads within the same core. This model targets protecting user-level

execution from silent data corruption. Architectural fingerprints are queued for comparison, in-

curring stalls if one thread proceeds too far ahead of its redundant partner thread. Furthermore,

the store buffer is modified to gate unchecked stores and prevent them from entering the memory

system. User-level stores are only released after a successful comparison with the partner threads’

stores. This design provides “fail-stop” protection for detected architectural errors. The architectural

fingerprint register state can also be accessed and controlled through privileged code running on the

processor. This RTL model demonstrates system-level aspects of architectural fingerprints, as well

as demonstrating their use to compare redundant multithreaded execution within a single core, as is

employed in many recent microarchitecture proposals [36, 40, 57, 67, 72, 81, 85, 88, 90, 106, 115].

Because fingerprinting is already demonstrated using the open-loop model, further error injection

results are not presented for this model.

The third RTL model is a straightforward extension of redundant execution model to execution

across two processor cores. Here, fingerprints are transferred across a dedicated cross-core channel

to compare the two executions (alternatives to the dedicated channel are discussed in Chapter 5).

This RTL design demonstrates architectural fingerprints for comparing redundant execution in a

multicore context, as is necessary in recent microarchitecture proposals for redundant execution in

CMPs [40, 56, 72, 104, 114] and the Reunion execution model presented in Chapter 5. Because

fingerprinting is already demonstrated using open-loop model, further error injection results are not

presented for this model.

27

Table 3. The software interface to internal architectural fingerprint registers.

Instruction Description

stxa %l0, [%g1] ASI ARCHFP Store an initial architectural fingerprint value

from %l0 and enable fingerprinting for the thread

specified in %g1

ldxa [%g1] ASI ARCHFP, %l0 Read the architectural fingerprint value for the

thread specified in %g1 into %l0 and halt archi-

tectural fingerprinting

3.2.2 System-level Design

This section explores several system-level design issues for architectural fingerprints. First,

a software-visible interface to architectural fingerprint allows operating systems to enable, disable,

and manage the fingerprints and redundant execution. Second, this section discusses the tradeoffs in

using virtual versus physical addresses in an architectural fingerprint. Finally, this section introduces

tradeoffs and potential applications of fingerprinting all execution state or just user-level state.

Software-visible Interface. A software-visible interface to architectural fingerprint control and

data registers allows privileged software to initialize, reset, enable or disable fingerprints. This

functionality is necessary for operating system-level error diagnosis, recovery, and reporting. For

example, after a soft error affecting redundant execution, the redundant contexts will diverge and

their fingerprints will mismatch. Error handling firmware or software (e.g., machine check code or

operating system routines) needs to first record and report the error event, then reset the architec-

tural fingerprints to a consistent value in both contexts before recovering and continuing redundant

execution.

Additions to the OpenSPARC T1 provide the hooks necessary to stop, analyze, and restart

architectural fingerprints within privileged code. This interface is implemented in the RTL model

by defining a new address space identifier (ASI) for architectural fingerprint control.3 The ASI

accesses are summarized as SPARC assembly instructions in Table 3. The instructions can address

one of the four hardware contexts on the same core by specifying the ASI’s virtual address, based

at zero and with an offset of eight bytes.

3ASIs are a common way to provide memory-mapped access to internal register state in SPARC architectures. The

interface is through load and store instructions to an alternate address space.

28

The store instruction clears any architectural fingerprints queued for the thread and initializes the

fingerprint registers to a desired value (16-bit integer, floating-point, and memory fingerprints are

simultaneously specified in the store value operand), and enables architectural fingerprinting for the

next user instruction retired by that thread. The store also clears remaining, unchecked fingerprints

for the thread because one redundant thread can run ahead of the other and therefore queue multiple

erroneous unchecked fingerprints before a mismatch is detected. The load instruction halts archi-

tectural fingerprint hashing for the specified thread and returns the most recent fingerprint values to

the destination register.

This interface has been used in the multithreaded proof-of-concept redundant execution RTL

model to compare the executions and identify mismatches in test programs containing two user-

level redundant threads.

Virtual and Physical Addresses Store addresses are captured by architectural fingerprints to

check for stores being written to incorrect locations. The architect can choose between captur-

ing virtual or physical addresses. Both addresses are readily available in modern processors, so the

design choice reduces to tradeoffs in error coverage and application flexibility.

Physical addresses provide higher coverage of the microarchitecture by checking values along

the TLB mapping and physical address datapaths ignored by checking virtual addresses only. With-

out checking the physical addresses, store values can be written to cache silently at the wrong

location and latent errors can remain undetected (checking physical addresses is not a complete

end-to-end solution for detecting all errors in stores, however much of the datapath beyond transla-

tion is already parity or ECC-protected). Furthermore, the operating system frequently uses physical

addressing for functions such as page table management and I/O operations. Checking only virtual

addresses leaves these critical operations vulnerable.

On the other hand, only checking virtual addresses enables additional applications for architec-

tural fingerprints. In user-level redundant threading [99], two identical processes are started by the

operating system with different physical address spaces, but identical virtual address spaces. This

simple mechanism permits the two processes to independently store to memory without interfering

with each other. By fingerprinting virtual addresses on user code, these redundant processes can

29

be compared using architectural fingerprints: the physical addresses may differ, but the fingerprints

still match.

Another application is to check critical sections of user execution, either within a single ma-

chine or across machines. Architectural fingerprints can be enabled for a small portion of code

and executed twice (sequentially, or in parallel). The granularity can be on the order of a database

transaction or other well-defined high-level software operations.

Variants of architectural fingerprints containing both virtual and physical addresses are imple-

mented in the OpenSPARC T1 RTL model. For error injection studies, this work focuses on a

fingerprint that covers physical addresses because comparison with a golden model can be done

offline (and therefore, no work is needed to make physical addresses match across execution). How-

ever, due to the time and effort required to implement a complete system with redundant execution,

this thesis demonstrates the redundant threaded execution prototypes using architectural fingerprints

only on virtual addresses and user-level state.

User-level Fingerprints. For the redundant execution proof-of-concept, redundant execution and

comparison with architectural fingerprints is implemented in the OpenSPARC T1 RTL model for

user-level code only. This means each instruction result retired in user-mode is accumulated in an ar-

chitectural fingerprint, while privileged-mode code is neither redundant nor fingerprinted. For traps,

such as TLB misses, the faulting user instruction neither is fingerprinted during its first execution,

nor is the trap handling code (which is privileged), however on the user instruction’s re-execution the

result is accumulated into the fingerprint. Furthermore, the store buffer is modified to gate pending

user stores until each has been checked with the redundant thread. Privileged-mode stores, which

are not executed in a redundant mode, remain ungated.

The user-level fingerprints give an assurance that the user-level instructions that have been ex-

ecuted are correct. However, this method has the drawback that latent errors in units that are not

heavily exercised during user-level execution—such as the trap logic unit—are not captured in the

fingerprint. Therefore, while the user-level program executes correctly, errors can accumulate in

other regions of the core and will be encountered only when executing privileged code, which is not

protected by the fingerprint. In these situations, the operating system can encounter both detected,

uncorrectable errors and silent data corruption.

30

HashHash

LastFP x4LastFP x4

data_in

thr_id

enable

CirQueue x4CirQueue x4MaskMask

fu
ll x

4

Interval
Ctr x4
Interval
Ctr x4

ready/
data

Stall
logic
Stall
logic

CompareCompare

Store
Buf
Store
Buf

m
at

ch

from
other
thr

Error!Error!

mismatch

ASI
logic
ASI
logic

Figure 7. The architectural fingerprint unit in OpenSPARC T1.

While a complete solution for redundant execution in multithreaded user and privileged code

is presented as Reunion in Chapter 5, this solution requires checkpoints or instruction rollback.

Neither feature is presently available in the OpenSPARC T1 processor. Therefore, for the RTL

proof-of-concept, user-level redundant threads are implemented by spawning two identical threads

in kernel boot-up code, using identical virtual, but separate physical, address spaces. This, in com-

bination with user-level fingerprints provides a working demonstration of architectural fingerprints

in a real processor context.

3.2.3 Hardware Design

This section describes the multi-threaded architectural fingerprint unit that has been imple-

mented in the OpenSPARC T1 Verilog model.

The architectural fingerprint unit consists of three independent collection and hash units, one

each for integer, floating-point, and store values and addresses. A simplified architectural fingerprint

unit is shown in Figure 7. The inputs are the retiring datapath value, an enable signal and thread ID

for the value. In the actual implementation, the enable signal consists of a multiple pipeline signals

that collectively indicate when the datapath value is being written (e.g., valid values can still be

driven on the bus during failed speculation or during a trapping instruction). Stores values are also

masked to the appropriate width.

31

On each cycle, the hash unit computes a new fingerprint hash value based on the last hash value

for the retiring thread (stored in a register) and the retiring value. An incrementer counts the fin-

gerprint interval and inserts the fingerprint in a queue (implemented as a circular buffer) once the

fingerprint interval has been reached. The queue contains sixteen 16-bit entries in this implemen-

tation, which allows enough buffering for a fingerprint interval of one instruction, while allowing

a single thread to fill all pipeline stages, and enough lookahead to stall the thread in fetch before

the buffer fills without discarding useful instructions. If the queue fills beyond a high watermark,

the queue asserts a stall signal in the thread switch logic to prevent the thread from overflowing the

fingerprint queue. In this design, architectural fingerprints only incur a performance impact when

the relative progress of two redundant threads is more than ten fingerprint intervals apart.

The architectural fingerprints are compared when two paired threads (statically determined in

this proof-of-concept) have valid fingerprint value at the heads of their respective queues. The

fingerprints are transferred to a comparator and if they match, the queues free the fingerprint entry.

Furthermore, for store fingerprints, the store buffer is notified that it may release the stores from the

fingerprint. To support this operation, the store buffer required twelve additional bits of state to track

gating and the user/privilege level of each store value. Upon a mismatch, a global signal triggers the

threads to stall and the simulation halts (a real processor can instead initiate a trap handling routine).

The same architectural fingerprint unit is used for both redundant multithreading within a single

processor and for checking redundant threads across processor cores. The proof-of-concept with

redundant threads has been validated with soft error injection experiments. Depending on the error,

the processor either is forced into a fail-stop state or has already deadlocked. In the former case,

the fail-stop mechanism both prevents unchecked user stores from entering the memory system and

stops further execution. The latter requires a reset sequence for recovery.

3.3 Architectural Fingerprint Synthesis

This section briefly evaluates the synthesized area utilization of the complete user-level archi-

tectural fingerprint unit in relation to the remainder of the OpenSPARC T1 core. The processor

core and architectural fingerprint units are synthesized using Synopsys Design Compiler 2005.09

mapping to the Artisan/TSMC 0.18um low-power standard cell library [9]. Due to a lack of a

32

memory compiler, only combinational and sequential logic, but not memory arrays, are evaluated.

The architectural fingerprint unit is multithreaded and contains three independent hash circuits for

integer, floating-point, and memory fingerprints, respectively. The hash circuits are based on the

X-compact [69] spatial and MISR temporal compaction design described in Chapter 4.

The baseline OpenSPARC T1 processor core occupies a total of 3,209,187µ2 (excluding mem-

ory arrays). The additional overhead of the architectural fingerprint unit is 118,493µ2, or an addi-

tional 3.7% area overhead. This area overhead is well below the 10% rule-of-thumb area over-

head for architectural reliability mechanisms in commodity processors [29]. Furthermore, the

OpenSPARC T1 has an extremely area-efficient “lean” scalar pipeline design, which magnifies the

cost of the architectural fingerprint unit. In aggressive superscalar out-of-order microarchitectures,

such as the Intel Core 2, the area overhead is commensurately smaller. In exchange for this over-

head, later chapters of this thesis show that architectural fingerprints provide both soft error and

early wearout detection.

3.4 Soft Error Injection Evaluation

This section evaluates the coverage of radiation-induced soft errors for architectural fingerprints

proof-of-concept in the OpenSPARC T1 RTL model.

3.4.1 Methodology

Architectural fingerprints are evaluated using statistical soft error injection in the single-core

OpenSPARC T1 RTL model with the open-loop architectural fingerprints described earlier in this

chapter. Synopsys VCS version Y-2006.06 simulates the Verilog model with custom Verilog PLI

modules added for soft error injection. This experiment examines the detection capabilities of archi-

tectural fingerprints in isolation, without regard to recovery. The error detection in this experiment

is sufficient for fail-stop systems, while issues related to recovery are explored further in Reunion.

For each workload, the RTL model is first executed in a error-free environment to establish the

error-free fingerprint values. The model is then run repeatedly with statistical soft error injection

in pipeline latches. Latches are specifically targeted because they are numerous enough to affect

reliability and, unlike SRAM, cannot easily be protected by ECC or parity.

33

In each run, the processor boots and starts the test program. Once the program starts, the error

injector injects a single bit flip into a latch in the selected unit at the specified cycle. The upset bit

is selected uniformly across all latch bits in the unit. The injection cycle time is varied uniformly

across twenty possible points in execution. The model continues to run until completion of the

program (detected by reaching a specified completion program counter on all threads) or a timeout

detected by 10,000 cycles of inactivity on any thread. The latter situation indicates that the error

caused the core to deadlock.

This experiment models the expected impact of radiation-induced upsets on latches (because

of the relatively large area of a latch, compared to an SRAM cell, multi-bit upsets are currently

considered unlikely). A single upset does not imply, however, that only one bit will be affected in

architectural state: the upset can either be masked or propagate to one or more latches. This experi-

mental methodology does not detect latent errors—errors that are neither masked nor propagated to

architectural state—in the processor core at the end of program execution. With respect to execu-

tion of the test program, latent errors are considered masked, however other test programs or further

execution may eventually expose them.

The module injects errors into several top-level and representative units in the OpenSPARC T1

design. The units are briefly described below:

• byp is the operand bypass network and part of the execution unit, which includes ECC gen-

eration for architectural register file writes.

• exu is the execution unit, including control paths and ALU datapaths.

• fcl is the instruction fetch control logic, which handles instruction caches misses, PC and

branch computation.

• fdp is the fetch datapath controlled by the fcl; it is responsible for holding all PC and

computing next PC values and branch outcomes for all pipeline stages.

• lsu is the load-store unit, which comprises datapaths and control logic for load operations

and the store buffer. swl is a representative set of finite state machines which control thread

selection.

34

Table 4. The test programs used in soft error injection.

Name Dynamic Test Description

instructions

dram mt 4th loads 3,610 DRAM load/store misses

attrib many

exu irf local 39,538 Local windowed registers and bypass network

mt alu ldx 1,264 Combination of ALU, load, and endian programs

mtblkldst loop 2,564 Back-to-back block loads/stores

mt Ifill L2 1,582 I-cache fills/misses

mt raw 2,018 Combination of read-after-write programs

tr tixcc0 4,232 Integer condition code traps

0

0.2

0.4

0.6

0.8

1

byp exu fcl fdp lsu swl tlu Full
SPARC

Fr
ac

tio
n o

f in
jec

ted
fau

lts
 de

tec
ted Architectural FP Perfect Arch. Detection

Figure 8. Soft error injection detection results.

• tlu is the trap handling unit and is critical for handling translation lookaside buffer (TLB)

misses and other common traps.

• The entire SPARC processor core includes the above units plus a stream processing unit,

built-in self test (BIST), crossbar staging latches, and the architectural fingerprint unit.

Each unit is exercised with seven multithreaded validation test programs from the OpenSPARC

T1 package. These programs, summarized in Table 4, are selected to exercise a wide range of units

and processor behaviors. Each unit has at least 1,100 individual soft errors injected.

3.4.2 Results

Figure 8 shows the baseline coverage of architectural fingerprints using the methodology out-

lined above. Each bar indicates the fraction of soft errors injected that are eventually detected as

35

architectural errors. Architectural fingerprints reveal a high degree of masking. In the full core

error injection simulations, 90% of injected bit flips are masked architecturally. This is in rough

agreement with prior studies that report high degrees of architecture-level and program-level mask-

ing [32, 49, 117], ranging from 60% to 90% in unprotected processors and 99.97% of the time in

the heavily protected POWER6.

The figure also shows a perfect architectural error detection mechanism, performed by directly

comparing the error injected architectural state outputs with a error-free execution. The difference

between the perfect detection mechanism and architectural fingerprints establishes the degree of

aliasing in the architectural fingerprint. In the presented experiment, 10,629 errors were injected

and a single instance of aliasing is observed. With the 16-bit fingerprint in this system, which

aliases with a probability of 2−(p−1) in the presence of an architectural error, this level of aliasing is

expected. Because the architectural fingerprints and perfect architectural detection differ within the

bounds predicted by aliasing, this result shows that architectural fingerprints provide an effective

summary of the full architectural state. By contrast, a single instance of aliasing cannot establish

rigorous statistical evidence of the overall aliasing probability. The aliasing probabilities are instead

explored in Chapter 4, where the retirement stages are modeled with a range of architectural error

patterns over millions of experiments.

Figure 9 explores, in more detail, the instances where errors are detected by architectural finger-

prints. This result disambiguates which failure modes the architectural fingerprints detect. There are

three possible outcomes. First, a fingerprint mismatch indicates an architectural error—in an oth-

erwise unprotected pipeline, this results in SDC. Second, an underrun indicates that the soft error

caused the processor to execute fewer instructions than expected without first causing a mismatch,

ending in a deadlock. This situation is trivially detected with a timeout mechanism, and therefore,

does not produce SDC. The architectural fingerprint unit can detect this situation by observing an

architectural fingerprint generated by one execution, but missing from a redundant execution. Fi-

nally, an overrun indicates that the processor executes more instructions than expected, generally

because the processor entered an unexpected loop. Architectural fingerprints detect this situation

as SDC at the end of a fingerprint comparison interval. No architectural errors in Figure 9 remain

undetected.

For all units except the thread select logic (swl), fingerprint mismatches dominate the errors

36

0.0

0.2

0.4

0.6

0.8

1.0

byp exu fcl fdp lsu swl tlu Full
SPARC

Fr
ac

tio
n

of
 a

rc
h.

 e
rr

or
s

 Mismatch Underrun Overrun

Figure 9: Outcomes in instances where architectural fingerprints detected an architectural

error.

in architectural state. In the extreme case of the bypass unit (byp), all errors first caused silent

data corruption. The bypass unit contains pure operand datapaths; therefore silent data corruption is

expected. By contrast, the thread select logic is instead dominated by underruns. Underruns happen

here because an error in the thread switch logic typically causes the sparsely encoded finite state

machines to enter invalid states. In an invalid state, the thread will never be considered “ready” and

therefore the thread stops executing entirely.

Overall, this result shows that the majority of architectural soft errors manifest first as SDC. Ar-

chitectural fingerprints can detect all three failure modes; however, unlike simple detection mecha-

nisms such as timeouts, architectural fingerprints provide timely detection of SDC.

3.5 Conclusion

This chapter explored the hardware design and implementation of architectural fingerprints in

Intel Yonah and Sun OpenSPARC T1. Both designs demonstrate that dependency hurdles lurk in

the instruction set and microarchitecture designs; however the proof-of-concept designs show that

none of these hurdles were insurmountable. Finally, the chapter demonstrates, through RTL soft

error injection, that architectural fingerprints effectively detect architectural errors.

37

Chapter 4

Hash Design

4.1 Introduction

This chapter explores the design tradeoffs of different architectural fingerprint hash architecture.

The prior chapter assumes an X-Compact [69] tree and multiple input shift register (MISR) for

the architectural fingerprint hash design. This chapter provides the analysis to support that design

choice.

The problem addressed in this chapter is how to compact efficiently architectural state outputs

into a hash. Both architectural fingerprints and traditional manufacturing test techniques, such as

scan chains, require high degrees compaction to compare efficiently a complex design unit with a

reference. Because traditional scan chain compaction has been well-studied in the context of offline

manufacturing test, this thesis takes inspiration from manufacturing test techniques for architectural

state compaction.

However, the architectural state compaction problem differs from manufacturing test in two

important ways. First, the compaction must be applied to a discrete instruction results (e.g., an

ordered sequence of 64-bit values), instead of a continuous stream of values from an array of scan

chains. In scan chains, when latches in a design change, the number and order of scan latches

may also change. By contrast, architectural fingerprints must be able to construct the same hash

value for a program’s execution, regardless of the underlying microarchitecture and implementation.

Therefore, the hash architecture must be specifically designed to preserve this organization.

38

Second, the compaction latency is critical for architectural fingerprints. In scan chains, tester

time should be minimized to reduce costs, but scan chains frequently have latencies of thousands of

cycles; however, because comparison is performed offline, there is little hardware or performance

cost to increasing this latency. By contrast, architectural fingerprints are used in an online error

detection context where the detection latency is tied to critical architectural features such as fail-

stop operation or checkpoint-based rollback recovery. These features demand latencies of only a

few cycles for timely error detection. Therefore, the online nature requires a hash design that meets

this latency.

The hash architecture requires careful design to ensure that (1) the aliasing rate—which directly

affects error coverage—is acceptable for the expected error classes, (2) the area and latency over-

heads are reasonable, and (3) the architecture can scale to support the retirement bandwidth from

narrow single-issue to wide superscalar pipelines.

An effective architectural fingerprint hash preserves evidence of errors in retiring architectural

state. Because a single bit upset can cause one or more bit errors in the final retiring state [54, 91]

and errors can propagate by program dataflow to other instructions before detection [105], the hash

must be effective for a range of error patterns over both space and time.

However, the design must fit with reasonable area bounds with respect to the processor core

it monitors. Ten percent is rough yardstick for the acceptable total area overhead dedicated to

reliability mechanisms in commodity microprocessor designs [29]. The architectural fingerprint

hardware is only one component of the possible reliability mechanisms (e.g., other mechanisms

include parity and ECC on caches, control for redundant execution, etc.) and therefore can only

consume a fraction of the reliability budget. Furthermore, logic for reliability must perform within

the clock frequency goals specified by the design. Therefore, a fingerprint architecture must also

have a latency less than or equal to existing pipeline logic.

Finally, to avoid becoming a performance bottleneck, the architecture must match the sustained

retirement bandwidth of modern pipelines. The hash is accumulated across instruction results, but

the operation is not commutative (to detect reordering of results). A hash architecture must be

flexible enough to work with a range of microarchitectures that are used in the critical enterprise

server space “fat” (e.g., the four-wide superscalar Power5 and Intel Core) and “lean” (e.g., the scalar

Sun OpenSPARC T1) .

39

The ideal hash design from an aliasing perspective is the cyclic redundancy check (CRC). While

parallel-input CRC implementations are known, they either require a deep pipeline to meet the

cycle time or grow considerably larger and slower as the input width increases [116]. This chapter

shows that simpler hash mechanisms can provide equivalent aliasing protection to a CRC, without

incurring the area, latency, and complexity costs of a full CRC implementation.

This thesis proposes an architecture that satisfies these goals and explores several options for

the hash hardware design. The following contributions are made:

• A scalable architectural fingerprint hash architecture.

• Empirical analysis of the aliasing properties of candidate compactor designs using error in-

jection and circuit overhead analysis using synthesis to an ASIC standard cell library.

• The observation that while MISRs have poor aliasing properties for few-bit errors, well-

chosen spatial compaction trees can effectively amplify few-bit errors into many-bit errors.

Thus, the MISR’s good many-bit error performance is maintained across different error pat-

terns.

• A practical instantiation of the hash architecture utilizing an X-Compact-like compaction

tree and combinational MISR circuit with superior qualities for aliasing, area, and latency

compared to the other designs considered.

4.2 Background

The input to an architectural fingerprint hash circuit is an ordered sequence of retiring instruc-

tion results. The instruction results are assumed to consist of 64-bit words, as is typical of high-

performance microprocessors today. The sequence has a finite length, which corresponds to the

fingerprint comparison interval and words within the sequence can contain errors in the form of bit

flips. This sequence is hashed into a fingerprint value (assumed to be sixteen bits in this study)

which non-uniquely reflects the contents of the original sequence. The goal is for the hash output

of a sequence of instructions with errors to differ from the hash of the same sequence of instruction

results without errors.

40

1000 1000 1000 0010 0100 0001 0100 0001

1000 1000 1000 0010 0100 0001 0100 0001Class 1: Single-bit

Class 2: Within-word burst

Class 3: Cross-word burst 1000 1000 1000 0010 0100 0001 0100 0001

Instruction 1 Instruction 2 Instruction 3 Instruction 4

Figure 10: The error classes studied in this thesis, illustrated here with fingerprint intervals
of four eight-bit instruction word outputs.

This study first defines an error model to aid in understanding the strengths and weaknesses of

the hash circuits. The model is summarized in Figure 10. This error model is approached systemat-

ically by separately considering three classes of errors, while avoiding the details of the underlying

faults and microarchitecture.

Class 1 errors are single-bit flips that occur within a single instruction word in the sequence. In

a processor, this class corresponds to the situation where a single logic bit is flipped in the pipeline,

which remains unmasked, and the resulting single-bit difference retires to architectural state without

propagating to other instructions. This error class is useful for modeling upsets in pipeline latches,

which occupy substantial area, and therefore are likely to experience only solitary bit flips [49].

Class 2 errors are multiple bit flips within a single instruction word in the sequence. This

class corresponds to corruption of a single instruction’s result from a multi-bit upset event, the

corruption of control path logic, or corruption of input operands that remain unmasked in the result.

In this class, errors in the output of one instruction do not propagate architecturally to subsequent

instruction results. This chapter also distinguishes between few-bit errors (2-3 bits in error) and

many-bit errors (>3 bits in error). Industry expects few-bit errors to become more common with

direct datapath corruption from a single-event upsets due to continued scaling, while many-bit errors

are more commonly caused by errors in the control path (e.g., redirecting the wrong register value

to retirement).

Finally, class 3 errors are bit flips across multiple instruction words. This class corresponds to

class 1 or 2 errors that have propagated through dataflow to subsequent instructions in the fingerprint

comparison interval. No hashes discussed in this chapter can guarantee detection of all class 3

41

errors. Nevertheless, some hashes can still provide good probabilistic detection properties over the

spectrum of class 3 errors.

4.3 Hash Architecture

This section discusses the design requirements and architecture of the fingerprint hash unit,

beginning by examining the properties required and explaining why a simple CRC circuit cannot

satisfy all of the design requirements. The section then presents a scalable hash architecture.

4.3.1 Design requirements.

As discussed in Section 4.2, the hash unit must compact a sequence of instruction outputs into

a single, small hash value. An ideal compactor has properties similar to a p-bit cyclic redundancy

check (CRC) [84], which can detect:

• Any single-bit error

• Any single, double, triple, or odd-bit error in a range up to 2p−1 bits

• Any single burst error up to p bits

• Larger-scale errors, with probability of 1 − 2−p

A sixteen-bit hash output is chosen as the basis for comparison in the remainder of this thesis, based

on the results in [105] for the aliasing probability, however the analysis and results here can be

generalized to hashes of other sizes.

4.3.2 Parallel Input CRC units.

Unfortunately, building larger CRC units is not without significant costs. With wider pipelines

(e.g., the 4-way retirement in recent microarchitectures [7, 8, 46]) directly building a large parallel

CRC circuit [5] capable of compressing at least one 64-bit word in one cycle is prohibitive in both

area and cycle time. A 64-bit input CRC-16 unit costs more in area than “matching” pipeline com-

ponents such as an optimized 64-bit adder and exhibits significantly longer latency characteristics.

Furthermore, while CRC circuits can be pipelined to meet cycle time requirements, the pipelined

42

1

16

64

256

100

1000

10000

100000

1000000

0.1 1 10 100
Log Clock period (ns)

Lo
g A

rea
 (µ

2)

1 2 4 8 16 32 64 128 256

Figure 11: The area-delay curves for parallel N-bit input parallel CRC-16 units. Logarithmic

scales are used on both axes to capture the full range.

implementation incurs multiple stages of XOR trees that scale proportionally with the maximum

fingerprint interval (in communications terms, this corresponds to the message size) and the area

overhead remains. Pipelined implementations are not studied specifically in this work; however,

Walma [116] compares the area and latency of pipelined and non-pipelined parallel CRC designs.

The units are synthesized using Synopsys Design Compiler release 2005.09, mapping to an

Artisan/TSMC 0.18um low-power standard cell library [9]. The Synopsys DesignWorks library is

configured to choose the best adder implementation for the checksum units (therefore, internally

the selected adder implementation can change). Mapping efforts for both area and timing were set

to “high” and the input clock rate was varied from an empirically determined Fmax to five times

slower, to produce the area-latency Pareto style curves.

Figure 11 shows the cost, over a range of different parallel input sizes for a sixteen-bit CRC

computation using the CCITT-16 polynomial: x16 + x12 + x5 + 1 [47].1 The single-bit input

corresponds to a simple linear-feedback shift register (LFSR), where the cost is dominated by the

sixteen latches and the combinational logic comprises only three XOR gates. As the input size

reaches sixteen parallel inputs, the XOR network begins to dominate the area and latency costs.

Area and cycle time continue to grow linearly with larger input sizes. At 64-bit parallel inputs, the

1Other sixteen-bit primitive polynomials that exhibit similar aliasing, area, and latency properties exist. The same

general properties hold for other primitive polynomials.

43

1000 1000 1000 0010 0100 0001 0100 0001

Spatial
compaction

Temporal
compaction

10

11

00 01 01

01
10

00

From
previous

cycle

Critical path

Figure 12: The scalable hash architecture consists of two stages: space compaction and
time compaction. Space compaction independently shrinks instruction results, while time

compaction shrinks across instructions. The above architecture is shown for a four-wide

superscalar pipeline.

cost rivals the best synthesized 64-bit adders, but is several times slower (the reference adders are

shown in a later section). At 256-bit parallel inputs, the area and latency is similar to a 64-bit output

multiplier implemented in the same process. In general, minimum latency and area grow linearly,

but optimized implementations show significantly higher marginal area costs for each additional bit.

The take-away message of Figure 11 is that a direct CRC implementation is expensive in terms

of area and is also infeasible because of latency requirements. For scalar pipelines, such as the

Sun Niagara T1, a 64-bit input parallel CRC-16 rivals the area of its 64-bit carry-lookahead adder.

Therefore, a 64-bit parallel CRC-16 unit has a high cost for scalar cores. For a four-wide superscalar

pipeline, the 256-bit input parallel CRC-16 unit must be clocked several times slower than the rest

of the core. Therefore, latency requirements mean that a parallel-input CRC is impractical for wide-

issue pipelines.

4.3.3 A Scalable Hash Architecture.

This section proposes a hash architecture that can simultaneously meet aliasing, area, and la-

tency requirements. The architecture consists of two stages illustrated in Figure 12: space com-

paction and time compaction. The space compaction stage is a parity tree-like combinational path

that takes results from individual instructions and compacts them to a narrower value. The time

compaction stage is a combinational path that first compacts the space-compacted results of each

44

instruction, in sequence, and then stores the result in a latch. A multiplexor (not shown) selects

between outputs if only a subset of the retirement buses in a superscalar processor are used in a

given cycle.

The basic concept of combined space and time compaction is well known in the field of man-

ufacturing test to reduce comparison bandwidth and response storage requirements [93]. However,

these designs are typically applied to compact unstructured arrays of scan chains into a hash. This

thesis applies space-time compactor concept to selected architectural state. Unlike manufacturing

test, where the meaning of the input state is largely irrelevant to the compactor, this compactor archi-

tecture produces a hash of architectural state updates that is carefully constructed to be independent

of the underlying microarchitecture.

This section now briefly discusses the aliasing, area, and latency properties of the compactor

architecture (aliasing properties can only be truly discussed after introducing properties of the com-

pactors in Section 4.4).

Aliasing. The aliasing properties in this architecture are a function of constituent space and time

compaction components. In particular, the overall compactor aliases if there is aliasing in either the

space or the time compactors. In general, the overall aliasing probability is not as simple as the cal-

culating the joint probability of the constituent compactors in isolation. The simple joint probability

does not hold because the distribution of bit errors changes from the input of the space compactor

to the input of the time compactor. Therefore, the aliasing probabilities between the space and

time compactors are dependent. This dependence leads to interesting (and convenient) properties

that are not be available if independence were preserved. This result is discussed quantitatively in

Section 4.4.

Area. Compared to a single, wide parallel input CRC unit the time compaction has significant area

savings, because it must only compact one fourth as many bits. In general, the space compactors

are also smaller than the portion of the parallel input CRC unit that they replace. The costs are

quantified for specific instances in Section 4.5. The area scales with the following equation, where

PipelineWidth represents the width of the superscalar pipeline:

45

Area = PipelineWidth · (Areaspace compactor + Areatime compactor) + Arealatches

Latency. The latency is improved over a single, wide parallel input CRC unit because the design

is amenable to trivial pipelining. The space compactors can be decoupled from the time compaction,

and because they occur independently, can be internally pipelined. Parity trees generally are not so

deep as to require this and the pipeline latch overhead can eliminate any potential savings. Fur-

thermore, in a superscalar compactor, space compaction occurs in parallel for each instruction. By

contrast, the time compaction depends upon the previous cycle’s values to compute the current cy-

cle’s values. Therefore, the time compaction component’s latency increases with the superscalar

pipeline width. The latency of an unpipelined compactor architecture, illustrated by the dotted

critical path in Figure 12 follows this equation:

Latency = Latencyspace compactor + PipelineWidth · Latencytime compactor + Latencylatches

This high-level analysis shows that for wider-issue pipelines, the latency of the time compaction

increasingly dominates. Therefore, to support these pipelines, low-latency temporal compactors

must be investigated.

4.4 Hash Structures

This section introduces the logical structure of the spatial and temporal compactors and their

analytic aliasing properties.

4.4.1 Spatial Compactors

This section considers two spatial compactors: an interleaved parity tree and X-Compact-based

tree [69]. The spatial compactors reduce sixty-four bits of input data to sixteen bits of output through

a tree of carefully arranged XOR gates and preserve all class 1 and most class 2 errors. Because

spatial compactors operate on individual instruction results, class 3 errors are not relevant to spatial

compaction.

46

1616 003232484864-bit
input

1717 11333349493131 151547476363 3030 141446466262

XORXORXORXOR

XORXOR

P15P1516-bit parity
output

XORXORXORXOR

XORXOR

P14P14

XORXORXORXOR

XORXOR

P15P15

XORXORXORXOR

XORXOR

P14P14

Figure 13. Diagram of a sixty-four to sixteen parity tree-based spatial compactor.

Parity tree. The interleaved parity tree is shown in Figure 13. A parity tree simply computes

the XOR of groups of input bits directly into an output bit. In a parity tree, each input bit is

represented in exactly one output bit. This instantiation of a parity tree XORs every sixteenth

input bit. The interleaved arrangement provides the same statistical aliasing protection as a parity

tree that XORs four contiguous input bits together, however the interleaved parity tree specifically

provides protection against a common error pattern where an even number of contiguous bits are

simultaneously flipped. Such error patterns can be expected with single-event upsets that have a

spatial correlation, such as multi-bit upsets from radiation strikes [8, 61].

The interleaved parity tree preserves all single-bit and odd-bit errors. The tree also preserves

all contiguous bit errors, except those affecting exactly thirty-two bits. However, it cannot detect

all bits flipped and has notably poor performance with smaller even-bit errors, particularly two-bit

errors.

Implementation is inexpensive, as the circuit can be built as a balanced, shallow tree of R · log N

XOR gates, where R is the ratio of the outputs to inputs (always less than one). For sixty-four to

sixteen bits, this requires three two-input XOR gates per output, arranged two levels deep.

X-Compact tree. The X-compact parity tree [69] is based on error correcting codes and improves

preservation of even-bit errors. The tree is described mathematically by an MxN generator matrix

which maps a multiplication in GF(2) of M input bits by the matrix to N output bits. Logically, each

one in the matrix represents an XOR operation of an input (each row) to produce an output (each

column). An example eight-bit input, five-bit output X-compact tree is shown in Figure 14, along

with its generator matrix. As proposed, the X-compact parity tree is also known as an odd-weight

47

0011223344556677

XORXORXORXOR XORXORXORXOR XORXORXORXOR XORXOR XORXORXORXOR

XORXOR XORXOR XORXOR XORXOR

10101
11010
10110
11001
01101
00111
11100
01011

P4P4 P3P3 P2P2 P1P1 P0P0

8-bit input

5-bit X-Compact output

XORXOR

XORXOR

Figure 14: Diagram of an eight-to-five bit X-compact spatial compactor and its correspond-

ing generator matrix.

column code [79].2 The output is wider than the minimal parity tree configuration, but sixteen bits

is still sufficient to preserve the important aliasing properties of the structure. Unlike the parity tree,

each input is represented in at least two outputs; furthermore, no output contains the same pair of

inputs as another output. These properties guarantee that no pair of bits can cancel each other in

the output, and hence provides detection of two-bit errors. The necessary condition comes from

error-correcting code theory [69, 79]:

Every row of the generator matrix must be non-zero, distinct, and have odd weight.

The X-compact matrix preserves all single-bit, double-bit, and odd-bit errors, as well as contigu-

ous bit errors of any size. Later in this section, the definition is extended to provide ≈ 2−(p−1) aliasing

for even-bit errors in a p-bit output compactor.

Implementation is more expensive than a parity tree because of additional levels of XORs. Fur-

thermore, for a given number of inputs and outputs, the possible generator matrix is not unique, in

general (for example, the eight-to-five matrix in this figure differs from the eight-to-five matrix in

Mitra’s X-compact design but has equivalent detection capabilities [69]). Furthermore, as observ-

able in Figure 14, not all paths in the tree are balanced: output bit P1 has four input bits, while other

outputs have five input bits). Therefore, the X-Compact tree is not balanced.

In the next section, this thesis investigates an X-Compact tree with sixty-four inputs and sixteen

output bits. In this tree, the outputs each combine between eighteen and twenty-one input terms for

each output and the weight of each generator matrix row is five. This tree uses five levels of two-

2In information theory, the term weight refers to the number of ones in a binary number.

48

input XOR gates. As a point of comparison, the single error detect, double error detect (SEC/DED)

ECC logic used in the OpenSPARC T1’s computes an eight-bit syndrome for a sixty-four bit word,

with a range of eight to thirty-five inputs per output bit. That tree requires an additional level of

XOR gates.

The selected X-Compact tree is also not minimal, given a 64-bit SEC/DED ECC code needs

only eight syndrome bits and a similar X-compact tree needs nine bits (an X-compact matrix also

guarantees detection of one and two-bit errors in the presence of one unknown value, although this

property is not needed for in this thesis). Instead, the compactor needs sixteen bits of output to feed

the temporal compactor and maintain the desired level of aliasing.

Simply making the generator matrix rows wider, while keeping the weight constant does not

guarantee an improved level of aliasing (a trivial example where this is true is by adding a column of

zeros). To build this compactor, the necessary conditions are extended with the following condition:

Every column of the generator matrix must be non-zero and distinct.

This condition is implicitly satisfied for minimal-sized outputs using the prior conditions. How-

ever, by requiring the columns to be non-zero, this ensures that the output detects some errors

(otherwise, the output yields no new information). By requiring the columns to be distinct, each

additional column adds further detection capabilities. A duplicate column means two outputs are

always be the same, giving no new detection for the additional output, while the distinction re-

quirement provides proportionally stronger detection of otherwise-aliased even-bit errors, reaching

≈ 2−(p−1) for even-bit errors in a compactor with p outputs.

4.4.2 Temporal Compactors

This section considers four temporal compactors: XOR-and-rotate, checksum, multiple-input

shift register (MISR), and cyclic redundancy check (CRC). The compactors preserve all class 1,

virtually all class 2, and varying degrees of class 3 errors. Figure 15 illustrates the combinational

logic form of each compactor and uses the following notation: In for the n input bits from a spatial

compactor, Pn for the n input bits from a previous stage (either registers storing a hash from a

previous cycle or a combinational stage from another temporal compactor), and On for the n output

bits.

49

XORXOR XORXOR XORXOR XORXOR

I14I14I15I15 I0I0I1I1

O14O14O15O15 O0O0O1O1

16-bit input

16-bit output

XOR Polynomial: x16 + 1

P14P14 P13P13 P0P0 P15P15
16-bit input & 16-bit previous XOR in

XORXOR XORXOR XORXOR XORXOR

16-bit output

MISR Polynomial: x16 + x12 + x5 + x + 1

O14O14O15O15 O0O0O1O1

I14I14I15I15 I0I0I1I1P14P14 P13P13 P0P0 P15P15
16-bit input & 16-bit previous MISR in

(a) (b)

16-bit output
O15:0

16-bit
input in
I15:0 P15:0

+

16-bit previous
checksum in

16-bit output

XORXOR XORXOR

CRC Polynomial: x16 + x12 + x5 + x + 1

XORXOR XORXOR

16-bit input

O15O15 O0O0O1O1

XORXOR XORXOR

I0I0

I1I1

I15I15

P15P15 P1P1 P0P0
16-bit previous CRC in

(c) (d)

Figure 15. Diagram of temporal compactors.

XOR-and-rotate. The XOR-and-rotate unit is illustrated in Figure 15(a). Mathematically, this

unit can be thought of as a shift register with a generator polynomial of x16 + 1.

Because it is based on a simple XOR function for each bit, with a wraparound for the shift out,

the class 2 error pattern of all ones is always aliased in this compactor. All other class 1 and 2 errors

are preserved. Although the class 3 aliasing rate does eventually converge to 2−(p−1) , this is only

true when most instructions in the interval contain errors. Performance is particularly poor if only a

few instructions are in error.

The cost of implementation is simply a single XOR gate for each input, plus wiring to implement

the rotation. This compactor is the least expensive of the ones considered and requires only a single

level of XOR gates.

MISR. The multiple-input shift register (MISR) has a similar structure to the XOR-and-rotate

compactor, as illustrated in Figure 15(b). Unlike the previous compactor, this compactor uses the

50

well-known CCITT 16-bit primitive polynomial to compute the next hash. Other primitive polyno-

mials give comparable performance for a given MISR width.

Unlike XOR-and-rotate, the MISR preserves all class 2 errors. This situation is rectified be-

cause in the all one’s error case, while the wraparound bit cancels the least-significant input bit,

the remaining terms in the generator polynomial are also inverted. Hence, the error is preserved in

the MISR. For class 3 errors, the MISR shows weaknesses similar to XOR-and-rotate, particularly

with small numbers of bit errors, however it quickly converges to 2−(p−1) . This weakness occurs

because an error in one cycle can exactly cancel with a (rotated) error pattern in a subsequent cycle’s

input, before the previous error has been “distributed” throughout the hash by the wraparound in the

most-significant bit.

The implementation cost is similar to the XOR-and-rotate, but with an additional cost of an

XOR-gate for each term in the generator polynomial. As such, it can be implemented in two levels

of two-input XOR gates.

Checksum. The checksum unit consists of a combinational adder which sums the spatial input

and the previous checksum to create a new checksum, as illustrated in Figure 15(c). The adder’s

carry out bit can be stored as input to a later checksum or discarded.

The implementation that ignores the carry out bit can detect all class 2 errors, which can be al-

gebraically verified by adding any single error pattern to the input and showing that the subsequent

output always differs by an amount equal to the error pattern’s value. By contrast, the implementa-

tion with a carry out aliases when the error-free input is zero and the error pattern is all ones. Class

3 errors for both forms of the checksum show performance similar to the MISR for two instances of

burst errors over a fingerprint interval, but converge to 2−p average aliasing rate with further errors.

CRC. The cyclic redundancy check (CRC) unit is a combinational realization of the familiar linear

feedback shift register (LFSR), unrolled over for N steps, one for each input bit, as illustrated in

Figure 15(d). As with the MISR, this study uses the CCITT-16 polynomial as a basis for the CRC.

The CRC preserves all class 1 and 2 errors. Furthermore, because every error bit reaches the

high-order bit position and is spread throughout the hash before subsequent inputs are added, the

CRC has strong and consistent properties for class 3 errors, which are uniformly 2−(p−1) .

51

The CRC does not come without cost, however. To the first order, the CRC costs roughly N

times as much as an equivalent N -bit MISR with the same primitive polynomial. The comparable

logic depth is roughly thirty-two two-input XOR gates for the CRC-16 and is difficult to optimize,

which makes it the most expensive of the hashes both in terms of area and latency.

4.5 Evaluation

This section empirically evaluates the aliasing properties of the spatial and temporal compactors.

First, the compactors are considered separately, then the combination of spatial and temporal com-

pactors are evaluated together. This section concludes with a synthesis-based evaluation of the full

compactor area and latency properties for scalar and four-wide superscalar pipelines.

4.5.1 Methodology

The compactors in this thesis are evaluated using a C-language program that models the re-

tirement stage of a pipeline and the architectural fingerprint compactor. The retirement stage is

assumed to retire uniform random values to its architectural registers. Both golden (error-free) and

error-injected inputs are fed to the compactor model and their results are compared after a chosen

fingerprint interval.

Architectural errors are modeled as bit flips uniformly spread across the input bits. The number

of bit flips in the output is specified for each run. The program injects error of a specified size

(e.g., number of bit flips) uniformly across input words. For example, a two-bit error has

n

2

possible error patterns over an n-bit input. Because the crossproduct of the possible inputs and error

patterns is enormous, 108 trials are run for each combination of compactor and number of input bits

in error. While this is only a sampling of the possible error space, 108 trials yields results within

±5% with 95% confidence for all results. Note that most other sampling experiments in this thesis

can achieve similar levels of statistical confidence with orders of magnitude fewer trials, however

as the probability of aliasing approaches zero, the number of trials increases dramatically.

For synthesis results, each compactor is modeled in Verilog with a single sixteen-bit register

to store the result. For four-wide superscalar pipelines, a priority-encoded mux is also included to

52

Table 5: Aliasing properties for spatial compactors with uniform random bit errors over a
64-bit word. For reference, 2−p−1 ≈ 0.00003052 for p = 16.

1-bit 2-bit Odd-bit Even-bit > 4 All bits

Interleaved Parity Tree 0 0.0476 0 <≈ 2−(p−1) 1

X-Compact Tree 0 0 0 2−(p−1) 0

select between the four possible instruction outputs, depending on the state of the retirement valid

signals. The synthesis methodology is the same as described in Section 4.3.2.

4.5.2 Empirical Aliasing Properties

Aliasing in spatial compactors. First, this section evaluates the aliasing properties of the 64-to-

16 bit spatial compactors. Table 5 shows the probability of aliasing for the interleaved parity tree

and X-Compaction tree for error classes 1 (first column) and 2 (remaining columns) over a 64-bit

word. Because spatial compactors have no memory of previous instructions, class 3 errors are not

relevant.

As expected, both compactors preserve all class 1 errors. However, the interleaved parity tree

shows poor performance with two-bit errors, aliasing nearly 5%. Aliasing occurs on any pattern

where two bits in an interleaved group of four are in error. Larger even-bit errors range from

that value to ≈ 2−(p−1) (with four and sixty-two-bit errors being the worst). By contrast, the X-

Compact’s performance for all sizes of even-bit errors is consistently at ≈ 2−(p−1) . For those

readers who are now reaching for a calculator, 2−15 ≈ 0.00003052 and 2−16 ≈ 0.00001526. Note

that the even-bit errors cover half the possible input errors; accounting for the odd-bit errors—

which are always preserved—still yields the overall aliasing limit of 2−p for p output bits in both

compactors.

Errors in output. Next, this section investigates the number of output bits that differ with respect

to an error-free output (termed output bits in error). The purpose of this result will be clear only

after presenting the aliasing properties of the temporal compactors.

Figure 16 shows the probability density function for the average number of output bits in error

over the entire space of errors, consisting of equally-weighted instances of single-bit up to sixty-

53

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12 14 16
Number of output bits in error

Pr
ob

ab
ilit

y D
en

sit
y F

un
cti

on

ParityTree
X-Compact

Figure 16: PDF of the number of bit errors generated by the spatial compactors for a uniform
random incidence and placement of bit errors.

four bit errors for each compactor. The left extreme left point (zero bits in error), shows the overall

aliasing probability (0.017 and 2−p for parity tree and X-Compact, respectively). The X-Compact

curve centers around eight bits in error. By contrast, the parity tree is heavily biased towards smaller

numbers of bit errors in its output, because each input error leads to exactly one output. As a

digression, the X-Compact curve roughly follows, but does not perfectly fit a Gaussian distribution

with a mean of eight and sigma of 2.1. This is because 64-bit errors always produce a six-bit output

error in this tree, which induces a small bias towards six.

The take-away message from Figure 16 is that the X-Compact tree amplifies all error classes

into many-bit errors, while the parity tree hash exhibits higher aliasing and produces more few-bit

errors for the same input patterns. This property will be useful for temporal compactors that are

strong in preserving many-bit errors and relatively poor at preserving few-bit errors.

Another way to view this data is by the average number of bit errors propagated to the output

as a function of the bit errors in the input. Ideally, for uniform random inputs, the outputs should

also demonstrate uniform random outputs—on average half in error and half correct—which yields

eight bits for these compactors. The actual performance of the compactors is shown in Figure 17.

This figure shows that for single-bit errors (extreme left) the parity tree produces a single-bit error

in output while the X-Compact tree produces exactly five bits in error. These values, unsurprisingly,

54

0
1
2
3
4
5
6
7
8
9

0 8 16 24 32 40 48 56 64
Number of input bits in error

Av
g.

ou
tpu

t b
its

 in
 er

ro
r

ParityTree
X-Compact

Figure 17: The number of bits propagated in error output as a function of the number of bits

in error in the input for spatial compactors.

match the weight of the generator matrices for each compactor—that is, each input bit is connected

to exactly one and five outputs, respectively. More interestingly, the X-Compact tree quickly adds

and maintains more output bits in error with additional errors in the input. By contrast, the parity

tree retains fewer average output bits in error than the X-Compact tree in the ranges of (0, 16] and

[48, 64] input bits in error. Therefore, the parity tree is weaker than the X-Compact tree at preserving

many-bit errors in the output. Finally, the plateau at eight bits is expected, because the sixteen output

bits are essentially uniform random and thus each bit has a 1
2 probability of aliasing.

Aliasing in Temporal compactors. This section now evaluates the aliasing properties of the tem-

poral compactors. Class 1 and 2 errors were described analytically in the previous section and are

therefore their properties are not repeated here. Instead, this section concentrates on class 3 errors

over different fingerprint intervals. Because the compactors have different behaviors for class 3 er-

rors, depending on how many errors have propagated in time, the extreme cases are examined first to

establish bounds on the behaviors. In all cases, fingerprint intervals of ten instructions are studied,

because the aliasing results showed no change with larger intervals (e.g., 100-1,000 instructions).

Instruction words and bits are selected for error injection randomly, with a uniform distribution

across the fingerprint interval.

55

Table 6: Aliasing properties for temporal compactors with uniform random bit errors over
two 16-bit words. For reference, 2−p−1 ≈ 0.00003052 for p = 16.

1-bit 2-bit Odd-bit Even-bit > 4 All bits

XOR 0.0625 0.0084 0.0019 0.0038 1

Checksum 0.0332 0.0026 ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1)

MISR-CCITT 0.0482 0.0054 ≈ 2−(p−1) ≈ 2−(p−1) 0

CRC-CCITT 0 ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 0

Table 7: Aliasing properties for temporal compactors with uniform random bit errors over
ten 16-bit words. For reference, 2−(p−1) ≈ 0.00003052 and 2−p ≈ 0.00001526 for p = 16.

1-bit 2-bit Odd-bit Even-bit > 4 All bits

XOR 0.0006 ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 1

Checksum 0.0001 ≈ 2−p ≈ 2−p ≈ 2−p ≈ 2−(p−1)

MISR-CCITT 0.0003 ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 0

CRC-CCITT ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 0

First, consider the case where precisely two instructions in the interval have errors. Table 6

shows the aliasing probability for two instances of an N -bit error over the interval. For two instances

of single-bit errors, the XOR, checksum, and MISR all show poor aliasing performance. In these

designs, a single input bit error can produce a single bit error in the output. A subsequent single-

bit error in a following instruction can then cancel the original error, thus causing aliasing. The

checksum and MISR circuits perform better than the XOR because the initial error can also cause

multiple bit flips (through a carry, or by being spread after reaching the most significant bit position,

respectively), which explains their better performance relative to the XOR. The CRC preserves all

two-bit errors if the total number of input bits is less than 2(p−1) [84] (512 instructions).

For two-bit and larger errors, the likelihood of a subsequent error exactly canceling the initial

error is lower (because the probability of matching the first error pattern decreases combinatorially).

For all bits in error, the XOR compactor exactly cancels the error patterns, while the MISR and CRC

always detect these burst patterns.

The result from Table 6 shows a weakness among the XOR, checksum, and MISR for few-bit er-

rors. This observation motivates the need for spatial compactors that generate many-bit differences

in their output.

56

Table 8: Overall Aliasing properties. For reference, 2−(p−1) ≈ 0.00003052 and 2−p ≈ 0.00001526
for p = 16.

Compactor 1-bit 2-bit Odd-bit Even-bit > 4 All bits

Class 1/2 errors

Parity Tree - * 0 0.0476 0 0.0022 1

X-Compact - * 0 0 0 ≈ 2−(p−1) 0

Class 3 – Two instructions in error

Parity Tree - XOR 0.0625 0.0098 0.0002 0.0004 1

Parity Tree - Checksum 0.0332 0.0046 0.0001 0.0002 1

Parity Tree - MISR 0.0482 0.0072 0.0002 0.0003 1

Parity Tree - CRC 0 0.0024 ≈ 2−(p−1) 0.0001 1

X-Compact - XOR 0.0028 0.0001 ≈ 2−(p−1) ≈ 2−(p−1) 0.1777

X-Compact - Checksum 0.0006 ≈ 2−(p−1) ≈ 2−p ≈ 2−p 0.0156

X-Compact - MISR 0.0001 ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 0

X-Compact - CRC 0 ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 0

Class 3 – All instructions in error

Parity Tree - XOR 0.0006 0.0001 ≈ 2−(p−1) ≈ 2−(p−1) 1

Parity Tree - Checksum 0.0001 ≈ 2−p ≈ 2−p ≈ 2−p 1

Parity Tree - MISR 0.0003 ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 1

Parity Tree - CRC ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 1

X-Compact - XOR ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 0

X-Compact - Checksum ≈ 2−p ≈ 2−p ≈ 2−p ≈ 2−p 0.0038

X-Compact - MISR ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 0

X-Compact - CRC ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) ≈ 2−(p−1) 0

Next, this section studies the other extreme case where all instructions in the interval experience

an N -bit error. Table 7 shows the aliasing properties for the four compactors. As with two instruc-

tion errors, the same compactors show relatively weak aliasing performance for single-bit errors.

However, the likelihood of aliasing drops to the theoretical minimums with larger-scale error pat-

terns. This result is consistent with the results in the prior table and again indicates that many-bit

errors are better protected (with the exception of XOR). Results between the two extreme cases con-

verge quickly (within 3% for longer fingerprint intervals) of the values in Table 7 and are omitted

from this document because little additional information can be learned from them.

Combined Spatial-Temporal Compactor Aliasing. This section now evaluates the overall alias-

ing properties of compactors with the combined spatial and temporal compactors. Errors are in-

jected into the spatial compactor inputs and the temporal compactor’s final output. The final hash is

compared with the equivalent error-free hash.

57

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5
Clock period (ns)

Ar
ea

 (µ
2)

carry look-ahead
"fast" carry look-ahead
brent-kung
conditional-sum
carry-select
parallel-prefix
delay-parallel-prefix

Figure 18: The area-latency curves for a range of reference sixty-four bit adder implementa-

tions.

Table 8 summarizes the results. For class 1 and 2 errors, the aliasing properties are determined

entirely by the spatial compactor. This is true because, as discussed earlier, the temporal compactors

have strong preservation properties for class 1 and 2 errors. As shown in the table, the X-Compact-

based units show significantly better performance than the parity trees for even-bit errors.

For class 3 errors, the results are again divided by the number of instruction words in error within

the fingerprint interval. First, for two instruction words in error, the X-Compact-based compactors

are consistently better than the parity tree-based compactors—by orders of magnitude for single

and double-bit errors. In addition, the spatial compactor’s skew towards many-bit errors helps the

inexpensive MISR-based compactor achieve average aliasing performance nearly identical to the

CRC. Similar results are evident in the last section of the table, where all instruction words contain

errors. Here, the X-Compact-based compactors are also clearly better. Furthermore, all the temporal

compactors have strong aliasing performance, with the checksum having half the aliasing of the

others.

4.5.3 Synthesis Results for latency and area

This section now studies the area-latency tradeoffs for the different compactors. Figure 18 shows

a reference plot for several different sixty-four bit adders. The adder serves as a useful reference

58

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5
Clock period (ns)

Ar
ea

 (µ
2)

Parity 1-wide Cksum
Parity 1-wide CRC
Parity 1-wide MISR
Parity 1-wide XOR

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5
Clock period (ns)

Ar
ea

 (µ
2)

Xcompact 1-wide Cksum
Xcompact 1-wide CRC
Xcompact 1-wide MISR
Xcompact 1-wide XOR

(a) (b)

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5
Clock period (ns)

Ar
ea

 (µ
2)

Parity 4-wide Cksum
Parity 4-wide CRC
Parity 4-wide MISR
Parity 4-wide XOR

13,239 @ 5.8ns

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5
Clock period (ns)

Ar
ea

 (µ
2)

Xcompact 4-wide Cksum
Xcompact 4-wide CRC
Xcompact 4-wide MISR
Xcompact 4-wide XOR

75,085 @ 2.6ns

29,525 @ 6.2ns

(c) (d)

Figure 19: The area-latency curves for (a) a scalar pipeline with parity tree compaction, (b)

scalar pipeline with X-Compact compaction, (c) four-wide superscalar pipeline with parity
tree compaction, and (d) four-wide superscalar pipeline with X-Compact compaction.

because it matches the width of the pipeline that architectural fingerprints protect. Note that Design

Compiler is instructed to choose a particular adder, but then maps to the ASIC library and applies

further optimizations that can change the final adder design. For comparison purposes with the

remainder of this section, the best adder latency is roughly 0.7ns (carrying a corresponding area of

22,050 µ2), while the best area is 9,556 µ2. In the checksum designs, Design Compiler chooses a

sixteen-bit carry-lookahead adder implementation as the basis for synthesis.

Figure 19 shows a Pareto-style curve for area versus latency for each of the compactor combi-

nations in both scalar and four-wide superscalar configurations. Comparing the graphs horizontally,

the X-Compact incurs roughly a double area overhead compared to parity trees, although the best

latency values are still comparable. As expected, the XOR and MISR designs closely follow each

other in all area-latency tradeoffs because their implementation differs only by a handful of XOR

59

gates. Based upon the aliasing evidence, this indicates that the MISR is a clear win for virtual no

additional area or latency costs.

The checksum and CRC tend to have similar area-latency tradeoffs, although both implementa-

tions are consistently larger and slower than the XOR and MISR designs. As predicted analytically,

the area costs scale roughly in proportion to the pipeline width. That is, the superscalar pipeline

units are consistently four times the area and latency of the scalar pipeline units.

The X-Compact/MISR scalar pipeline implementation is half the size of the reference adder

and has equal latency. Hence, this hash design is affordable for scalar pipeline implementation.

The CRC and checksum-based units are roughly the same size as, but significantly slower than, the

reference adder.

For the superscalar pipeline, the area and latency differences among the compactor units are

more apparent. The X-Compact/MISR unit is roughly twice the cost of the reference adder (the

comparable pipeline is more than four times the area and complexity of a scalar pipeline, therefore

the relative overhead is lower). Latency scales with the latency of the time compactor, which for-

tunately, is small. Therefore, the best compactor latency is 45% longer than the best adder latency;

however, a pipeline between the spatial and temporal compactors can bridge this gap. By contrast,

the CRC-based compactors are nearly four times the size of the adder and over three times the

latency. This gap cannot be recovered by pipelining.

The take-away result from this evaluation is that the MISR-based temporal compactors provide

the best area-latency tradeoffs. Furthermore, the X-Compact/MISR combination has comparable

aliasing properties to a CRC, however with several times lower area and latency.

Pipelined Compactors. Next, pipelined compactors are investigated using synthesis. A single

pipeline stage is added between the spatial compactors and the temporal compactors. This stage

maintains the same overall throughput as the original compactor; however, the required cycle time

decreases. These latches increase area marginally, while the minimum clock period decreases. The

pipeline introduces no change in the aliasing properties of the compactor.

The area-latency tradeoff with a pipeline stage is presented in Figure 20. The parity tree results

show little change in latency from the added pipeline stage, because the parity tree is already shallow

and its latency roughly equals the latency overhead of the new registers. By contrast, the X-Compact

60

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5
Clock period (ns)

Ar
ea

 (µ
2)

Parity 1-wide Cksum
Parity 1-wide CRC
Parity 1-wide MISR
Parity 1-wide XOR

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5
Clock period (ns)

Ar
ea

 (µ
2)

Xcompact 1-wide Cksum
Xcompact 1-wide CRC
Xcompact 1-wide MISR
Xcompact 1-wide XOR

(a) (b)

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5
Clock period (ns)

Ar
ea

 (µ
2)

Parity 4-wide Cksum
Parity 4-wide CRC
Parity 4-wide MISR
Parity 4-wide XOR

17,849 @ 5.7ns

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5
Clock period (ns)

Ar
ea

 (µ
2)

Xcompact 4-wide Cksum
Xcompact 4-wide CRC
Xcompact 4-wide MISR
Xcompact 4-wide XOR

34,162 @ 5.7ns

64,675 @ 2.3ns

(c) (d)

Figure 20: The area-latency curves for pipelined compactors with (a) a scalar pipeline with

parity tree compaction, (b) scalar pipeline with X-Compact compaction, (c) four-wide su-
perscalar pipeline with parity tree compaction, and (d) four-wide superscalar pipeline with

X-Compact compaction.

tree is deep enough to provide some benefit. Surprisingly, the scalar version has both better latency

and marginally lower area for the checksum and CRC designs than without a pipeline. The area is

roughly half a reference adder and the latency matches the adder. The most encouraging gains are in

the superscalar case, where the XOR and MISR-based compactors match the latency of the adder,

still with twice the area cost.

4.6 Conclusion

This chapter investigates the implementation of hash circuits for architectural fingerprints along

error coverage, area, and latency axes. A scalable hash architecture is presented that allows latency

61

and area-efficient implementations. The ASIC synthesis and error injection simulation results from

this study show that a hash architecture using a combination of ECC-like X-Compact trees and

MISRs, commonly applied to scan chain compaction in the manufacturing test domain, can accept

the architectural state retirement bandwidth of modern wide-issue superscalar processors, while

maintaining the near-ideal error coverage of a CRC.

62

Chapter 5

Reunion

5.1 Introduction

Chip multiprocessors (CMPs) have emerged as a promising approach to give computer archi-

tects scalable performance and reasonable power consumption within a single chip [15, 64, 77].

However, increasing levels of integration, diminishing node capacitance, and reduced noise mar-

gins have led researchers to forecast an exponential increase in the soft-error rate for unprotected

logic and latch circuits [48, 97]. Recent work [40, 72, 114] advocates leveraging the inherent repli-

cation of processor cores in a CMP for soft-error tolerant redundant execution by pairing cores and

checking their execution results.

Because CMP designs maintain the familiar shared-memory programming model, multicore

redundant architectures must provide correct and efficient execution of multithreaded programs and

operating systems. Furthermore, redundant execution must not introduce significant complexity

over a non-redundant design. Ideally, a single design can provide a dual-use capability by supporting

both redundant and non-redundant execution.

Redundant designs must solve two key problems: maintaining identical instruction streams and

detecting divergent execution. Mainframes, which have provided fault tolerance for decades, solve

these problems by tightly lockstepping two executions [16, 101]. Lockstep ensures both proces-

sors observe identical load values, cache invalidations, and external interrupts. While conceptually

simple, lockstep becomes an increasing burden as device scaling continues[18, 66].

63

Researchers have proposed several alternatives to lockstep within the context of CMPs. Both

Mukherjee et al. [72] and Gomaa et al. [40] use a custom load-value queue (LVQ) to guarantee

that redundant executions always see an identical view of memory. A leading core directly issues

loads to the memory system, while a trailing core consumes a record of load values from the LVQ.

Although the LVQ produces an identical view of memory for both executions, integrating this strict

input replication into an out-of-order core requires significant changes to existing highly optimized

microarchitectures [72].

Strict input replication forbids using existing cache hierarchies for the redundant execution and

requires changes to critical components of the processor core and cache hierarchy. In contrast, re-

laxed input replication permits redundant executions to issue independently memory operations to

existing cache hierarchies. This thesis observes that, even for shared-memory parallel programs, re-

laxed input replication produces the correct result in virtually all cases. In the case when load values

differ between the redundant cores, called input incoherence, mechanisms for soft error detection

and recovery can correct the difference [88].

This thesis proposes the Reunion execution model, which exploits relaxed input replication for

soft-error tolerant redundant execution across cores. While Reunion allows redundant cores to issue

memory operations independently, Reunion designs are proven in this chapter to maintain correct

execution with existing coherence protocols and memory consistency models. Reunion provides

detection and recovery from input incoherence using a combination of architectural fingerprints and

the existing precise exception rollback—the same mechanisms needed for soft-error tolerance.

The following contributions are made:

• Input incoherence detection. This thesis observes that light-weight detection mechanisms

for soft errors can also detect input incoherence. This observation enables a single recovery

strategy for both soft errors and input incoherence.

• Reunion execution model. This thesis presents formal requirements for correct redundant

execution using relaxed input replication in a multiprocessor. These requirements do not

change the existing coherence protocol or memory consistency model.

• Serializing check overhead. This thesis observes that checking execution at instruction re-

tirement incurs stalls on serializing events, such as traps, memory barriers, and non-idempotent

64

instructions. Architectures that encounter frequent serializing events will suffer a substantial

performance loss with any checking microarchitecture.

This thesis evaluates Reunion in a cycle-accurate full-system CMP simulator. The Reunion

execution model is demonstrated to have an average 9% and 8% performance impact on commer-

cial and scientific workloads, respectively, with a 5-6% performance overhead from relaxed input

replication.

Chapter Outline. Section 5.2 presents background on soft error detection and redundant execu-

tion. Section 5.3 presents the Reunion execution model, while a CMP implementation is discussed

in Section 5.4 and its performance is evaluated in Section 5.5. This chapter concludes in Sec-

tion 5.6.

5.2 Background

This section covers background topics on soft error tolerant microarchitectures. The section

first introduces the fault model assumed for the Reunion Execution Model, then provides a brief

overview of existing work in this space. The section also introduces the fundamental requirements

for redundant execution and the concept of input incoherence.

5.2.1 Fault Model

The fault model targets soft errors that cause silent data corruption, such as transient bit flips

from cosmic rays or alpha particles. This work assumes that the processor’s datapath is vulnerable

to soft errors from fetch to retirement, but that the less-vulnerable control logic [97] is protected by

circuit-level techniques. Designers already protect cache arrays and critical communication buses

with information redundancy (e.g., ECC) [101]. However, the complex layout and timing-critical

nature of high-performance processor datapaths precludes these codes within the pipeline.

This thesis investigates microarchitectures that detect and recover from virtually all soft errors,

but in very infrequent cases, can leave them undetected or uncorrected. Architects design micro-

processors to meet soft error budgets [71] and this design can be engineered to meet the desired

budget.

65

Array protection. Unretired speculative pipeline state, such as a speculative physical register file

and the issue queue, can remain unprotected. However, protection on retired architectural state

arrays, such as the architectural register file and non-speculative store buffer, depends upon the

desired soft error protection budget and is independent of the Reunion Execution Model.

The level of protection on architectural arrays can range from completely unprotected to full

ECC protection. For example, if the desired soft error budget permits detected, uncorrectable errors

in these structures, but silent data corruption is unacceptable, parity protection is acceptable. While

this design point is cheaper and easier to implement than ECC, this design point means that “safe

state” (as defined in Section 5.3) can contain detectable, but uncorrectable errors. Alternatively,

if single-bit errors in the register file must be correctable events in the soft error budget, then the

register file must also include SECDED ECC protection.

Protection of the small, performance-critical architectural arrays is not without silicon area and

timing costs. Several recent industrial designs have accepted these implementation costs and chose

to include parity on the register file [64, 8], store buffer [113], or even ECC on the register file [113]

and L1 caches [6, 8].

5.2.2 Redundant Execution

The ”sphere of replication” defines three general design requirements for all systems with re-

dundant execution [88]. First, all computation within the sphere must be replicated. Second, all

inputs entering the sphere must be replicated for each execution. Finally, all outputs leaving the

sphere must be checked to prevent errors from propagating outside the sphere.

This thesis now discusses the two dominant forms of redundant execution in microprocessors in

industry and research communities: lockstep and multithreading.

Lockstep. Classical lockstep redundant execution where identical processing elements are tightly-

coupled on a cycle-by-cycle basis has long existed in mainframes such as HP NonStop [16] and IBM

zSeries [101]. However, lockstep in general-purpose execution encounters significant roadblocks in

future process technologies. First, individual cores are likely to operate in separate clock domains

for dynamic frequency control, while execution must still match precisely in time despite asyn-

chronous inputs and physical distances between the cores [18, 66]. Second, increasing within-die

66

P0

P1

P0
'

time

branch
taken

M[A]⇐1

not taken

R1⇐M[A] beq R1, target

R1⇐M[A] beq R1, target

R1⇐M[A]

target:

Code

M[A]=0 M[A]=1

divergent!

beq R1, target

Figure 21: Input incoherence: redundant cores P0 and P ′

0 observe different values for mem-
ory location M [A] because of an intervening store.

device- and circuit-level variability [22] leads to deviations from precise lockstep because, even in

the absence of errors, cores will no longer have identical timing properties or execution resources.

Third, lockstep requires precise determinism and identical initialization across all processor com-

ponents, including in units that do not affect architecturally correct execution (e.g., branch predic-

tors [73]). As a result, redundant execution models that avoid lockstep are highly desirable.

Lockstep meets the sphere of replication requirements by construction. Execution between

lockstepped units is redundant, all inputs must be replicated in order to maintain the lockstep, and

outputs are trivially compared.

Multithreading. Recent proposals investigate using independent redundant threads within a si-

multaneous multithreaded (SMT) core [88, 115] or across cores in a CMP [40, 72, 114]. Unlike

lockstep, the threads execute independently and the threads are therefore bound by architectural re-

quirements rather than microarchitectural timing constraints. Threads synchronize as outputs from

the core (e.g., store values or register updates) are compared, but remain coupled within a short

distance to limit the storage needed for input replication and output comparison.

Redundant multithreading permits a range of designs that meet the sphere of replication require-

ments. These designs are explored in the following text.

67

5.2.3 Input Incoherence

Multithreading introduces a problem for redundant execution because the threads independently

execute and issue redundant memory requests. When executing shared-memory parallel programs,

the threads can observe different values for the same dynamic load, which we term input incoherence

due to data races. Figure 21 illustrates this situation: these races arise between one execution’s read

of a cache block and the redundant partner’s corresponding read. Writes from competing cores will

cause input incoherence. This occurs in ordinary code such as spin-lock routines.

To avoid input incoherence, several prior proposals [114, 72, 88, 115] enforce strict input repli-

cation across the redundant threads, where a leading execution defines the load values observed by

both executions. Strict input replication can be achieved by either locking cache blocks or recording

load values.

The active load address buffer (ALAB) [88] tracks cache blocks loaded by the leading thread

and prevents their replacement until the trailing thread retires its corresponding load. The ALAB

adds multiported storage arrays to track accessed cache blocks, logic to defer invalidations and

replacements, and deadlock detection and retry mechanisms. The ALAB must be accessed on each

load and external coherence request. Furthermore, this structure requires significant changes to the

out-of-order core’s memory interface and pipeline control logic.

The LVQ is a FIFO structure, originally proposed as a simpler alternative to the ALAB, which

records load values in program order from a leading execution and replays them for the trailing

execution [88]. Architecting an LVQ within a CMP involves significant local and global changes to

the processor core and CMP design, including:

1. Modifications to the existing, heavily optimized processor/cache interface. The trailing

thread must bypass the cache and store buffer interface in favor of the LVQ, which adds

bypass paths on the load critical path and additional functional unit resources schedule within

the pipeline.

2. Modifications to out-of-order scheduler. The trailing thread only reads values in program

order, which is a major policy change in front-end and out-of-order scheduling logic. The

alternative, an out-of-order issue LVQ, eliminates the scheduling restriction, but has a similar

complexity and area overhead as a multiported store buffer [72].

68

3. High-bandwidth cross-core datapath. Across processor cores, the LVQ requires a high-

bandwidth path to transfer all load values and addresses. In order to avoid becoming a new

performance bottleneck, this path must at least match the aggregate L1 cache read bandwidth.

Furthermore, for the in-order version of the LVQ, the outcomes of all resolved branches

must also be recorded and transferred for efficient, non-speculative re-execution. The LVQ

datapath cannot use existing on-chip memory interconnects, because they are tuned to support

L1 miss and on-chip coherence traffic, which is significantly less than the aggregate L1 hit

traffic.

The LVQ also limits error coverage of memory operations: there is no way to verify that load

bypassing and forwarding completed correctly because the trailing execution relies upon leading

thread load values.

Relaxed Input Replication. Alternatively, in relaxed input replication, redundant threads inde-

pendently send load requests to caches and store buffers, as in a non-redundant design. This avoids

the added complexity of strict input replication and provides detection for soft errors in load for-

warding and bypass logic. However, this means that redundant executions are susceptible to input

incoherence.

There are two general methods for tolerating input incoherence in relaxed input replication:

robust forward recovery and rollback recovery. Prior work entrusts a robust checker—a checker

that is immune to faults—to resolve input incoherence. For example, DIVA checkers with dedicated

caches [10] and slipstreamed re-execution [120] both allow the leading threads’ load values to differ

from the trailing threads’. However, these proposals do not address the possibility of data races

in shared-memory multiprocessors and require complex additions (checker or slipstreamed cores)

to support redundant execution. Alternatively, the naive rollback solution—simply retrying upon

error detection—uses existing hardware support, but offers no forward progress guarantee. Because

incoherent cache state or races can persist in the memory system, the same incoherent situation can

occur again during re-execution. The Reunion execution model addresses this problem.

69

5.2.4 Output Comparison

The sphere of replication’s boundary determines where outputs are compared. Two main choices

have been studied in CMPs: (1) comparing outputs before the architectural register file (ARF), and

(2) comparing before the L1 cache [40, 72]. In both cases, stores and uncached load addresses

require comparison. For detection before the ARF, each instruction result must also be compared.

The chosen design affects performance and the needed comparison bandwidth.

Output comparison affects performance at retirement. Serializing instructions, such as traps,

memory barriers, and non-idempotent instructions, stall further execution until the serializing in-

struction has been compared. Both executions must complete and compare the serializing instruc-

tion before continuing.

Comparison bandwidth is another design factor in superscalar processors because multiple in-

structions may need comparison each cycle. Prior work proposes techniques to reduce bandwidth

requirements. Gomaa et al. compare only instructions that end dependence chains in a lossless

detection scheme [40]. They report bandwidth savings of roughly twenty percent over directly

comparing each instruction result.

This thesis studies output comparison using architectural fingerprints. This study is limited to

systems with comparison before the ARF because existing precise exception support [103] can then

be used to recover before outputs become visible to other processors. Architectural fingerprints

address the comparison bandwidth factor by compacting retiring values into a small hash value

(e.g., 16 bits) with a negligible loss in coverage.

5.2.5 Fingerprints over On-Chip Interconnects.

This chapter evaluates fingerprints in Reunion using both fixed-latency, pipelined dedicated

channels between pairs of cores and the on-chip memory interconnect to transfer fingerprints for

comparison. Dedicated channels provide a predictable fingerprint comparison latency and avoid

affecting the performance and operation of other system components, however they do have draw-

backs:

• Dedicated channels have an area cost in terms of global cross-core ports and buses, which are

unused in a non-redundant CMP.

70

• Dedicated channels limit the assignment of core pairs. Building dedicated channels between

all pairs of cores increases quadratically with additional cores and is, therefore, unscalable

and expensive in future CMPs. Instead, cores must be paired statically at design time.

As observed in LaFrieda et al. [56], the static core assignment has broad system-level implica-

tions. “Dynamic core coupling” in redundant execution on CMPs can alleviate many of these issues.

System-level limitations of the static assignment include:

• Inefficient pairing of cores based on cross-die variability where higher performance can be

obtained by matching Fmax within a pair.

• Reduced tolerance to manufacturing defects and device wearout—one defective core also

disables chosen cores its statically chosen partner, artificially reducing the effective lifetime

of the overall chip.

• Limitations on run-time thermal and power management—a fixed pair can exceed the desired

thermal or power envelope, particularly if they are in close proximity to each other.

Therefore, there is strong motivation for investigating alternative, more flexible and inexpensive

architectural fingerprint comparison channels, which allows core pairs to be assigned at runtime.

The existing on-chip memory/cache interconnect on recent chip multiprocessors is already op-

timized for short, high-bandwidth, low-latency messages between on-chip components (for exam-

ple, the Sun Niagara 2 CMP crossbar is expected to provide 270GB/s of core-cache bandwidth at

1.4GHz [76] and existing crossbars can sustain one message/destination port/core cycle [53]).

As part of a graduate computer architecture class project (under the direction of Smolens),

Chellappa and de Mesmay study the feasibility of transferring fingerprints between cores over the

existing CMP on-chip memory/cache interconnect [27]. In this design, fingerprints are transferred

over existing ports and wide datapaths, usually reserved for cache block requests. The messages

containing each fingerprint request compete for bandwidth with existing cache request and reply

traffic. The bandwidth required depends on the frequency of fingerprint comparison—a fixed in-

struction interval in Reunion. There are two system-level performance factors that are affected by

moving fingerprints to the on-chip interconnect. First, the existing cache miss traffic must compete

with additional requests, potentially increasing the effective on-chip cache latency and decreasing

71

L1 L1

L1 L1

VocalVocal

Vocal Vocal

phantom

request

coherent

request

synch.

requests

coherent

replies

Shared L2

L1L1

L1L1 L1L1

L1L1

MuteMute MuteMute

MuteMuteMuteMute

Figure 22. The Reunion architecture.

performance due to queuing at the cache controllers. Second, the fingerprints themselves must travel

on a variable-latency interconnect which can extend resource occupancy (e.g., reorder buffer) for

instructions waiting to be compared. This thesis shows that for reasonable fingerprint comparison

intervals, the effects of each these two factors can be made negligible. Therefore, memory intercon-

nects are suitable, while dedicated channels are over-engineered for fingerprint comparison.

5.3 Reunion Execution Model

This section presents a formal set of requirements for the Reunion execution model. The re-

quirements provide redundant execution and relaxed input replication and allow reasoning about

correctness independent of implementation. Figure 22 illustrates the concepts in this section.

5.3.1 System Definition

Definition 5.1. (Logical processor pair). A logical processor pair consists of two processor cores

that execute the same instruction stream. To provide a single output from the sphere of replication,

the logical processor pair presents itself as a single entity to the system.

72

The Reunion Execution Model differentiates the two cores as follows:

Definition 5.2. (Vocal and mute cores). Each logical processor pair consists of one vocal and

one mute core. The vocal core exposes updated values to the system and strictly abides by the

coherence and memory consistency requirements specified by the baseline system. The mute core

never exposes updates to the system.

Vocal and mute cores use their existing private cache hierarchies and on-chip coherence protocol

as in a non-redundant design. Definition 5.2 permits the mute core to write values into its private

cache hierarchy, provided these values are not communicated to other caches or main memory.

Reunion uses redundant execution to detect and recover from soft errors that occur in program

execution. We formally define safe execution as follows:

Definition 5.3. (Safe execution). Program execution is safe if and only if (1) all updates to

architecturally-defined state are free of soft error effects, (2) all memory accesses are coherent with

the global memory image, and (3) the execution abides by the baseline memory consistency model.

Execution that is not safe is deemed unsafe.

The state that results from safe execution is:

Definition 5.4. (Safe state). The architectural state defined by the vocal core at a specific point in

time is considered safe state if and only if it is free of soft errors; otherwise, the architectural state

is deemed unsafe state.

5.3.2 Execution Model

Definition 5.2 requires that only the vocal abide by coherence and consistency requirements.

Ideally, the mute core always loads coherent data values. However, precisely tracking coherent

state for both vocal and mute is prohibitively complex (e.g., the coherence protocol must track two

owners for exclusive/modified blocks).

Instead, Reunion maintains coherence for cache blocks in vocal caches, while allowing incoher-

ence in mute caches. The mechanism for reading cache blocks into the mute cache hierarchy is the

phantom request, a non-coherent memory request:

73

Definition 5.5. (Phantom request). A phantom request returns a value for the requested block

without changing coherence state in the memory system.

The phantom request does not guarantee that the mute core will be coherent with the vocal,

potentially leading to input incoherence within a logical processor pair:

Definition 5.6. (Input incoherence). Input incoherence results when the same dynamic load on

vocal and mute cores returns different values.

Reunion requires vocal and mute to compare execution results as follows:

Definition 5.7. (Output comparison). Vocal and mute cores must compare all prior execution

results before a value becomes visible to other logical processor pairs.

Lemma 5.1. In the absence of soft errors, input incoherence cannot result in unsafe execution.

Proof. If no soft error occurred during program execution, condition (1) of safe execution (Defini-

tion 5.3) is satisfied. If input incoherence occurred, the register updates and memory writes on the

vocal still satisfy conditions (2) and (3). Therefore, safe execution results.

Only undetected soft errors can result in unsafe state. Both input incoherence and soft errors

can lead to divergent execution that must be detected and corrected. However, Lemma 5.1 proves

that input incoherence alone cannot result in unsafe state.

5.3.3 Recovery

Definition 5.8. (Rollback recovery). When output comparison matches, the vocal’s architectural

state defines a new safe state that reflects updates from the compared instruction results; otherwise,

rollback recovery restores architectural state to prior safe state.

Because only the vocal core’s architectural state defines new safe state, Reunion requires a

mechanism to initialize the mute core’s architectural registers to match the vocal core.

Definition 5.9. (Mute register initialization). The vocal and mute cores provide a mechanism to

initialize the mute core’s architectural register file with values identical to the vocal’s.

74

In the presence of input incoherence, naive retry cannot guarantee forward progress because the

condition causing input incoherence can persist. Incoherent cache blocks in the mute’s hierarchy

can cause input incoherence until replaced by coherent values. Reunion addresses this problem with

the synchronizing request:

Definition 5.10. (Synchronizing request). The synchronizing request returns the same, coherent

value to both cores in the logical processor pair.

This definition differs from the original Reunion paper [104], which states that the synchronizing

request must return “a single coherent value to both cores”. This more relaxed definition allows for

simpler implementations of the synchronizing request. For example, an implementation can attempt

to return the same value to both cores using incoherent phantom requests and replies, as opposed to

a requiring the same value to always be returned to both cores.

Mute register initialization and the synchronizing request are combined to construct the re-

execution protocol and then prove that the protocol guarantees forward progress following rollback

recovery.

Definition 5.11. (Re-execution protocol). After rollback recovery, the mute architectural register

file is initialized to the values from the vocal. The logical processor pair then executes subsequent

instructions non-speculatively (single-step), up to and including the first load or atomic memory

operation. This operation is issued by both cores using the synchronizing request. After successful

output comparison following this instruction, the logical pair resumes normal execution.

Lemma 5.2. (Forward Progress). The Reunion re-execution protocol always results in forward

progress.

Proof. Rollback recovery is triggered either by a soft error, which does not persist, or by input

incoherence, which can persist. In the first case, re-execution eliminates the error and results in

successful output comparison. In the second case, the mute register initialization and synchronizing

request guarantee safe execution and safe state to the first load.

This proof depends upon the synchronizing request providing a guarantee of forward progress.

Simpler implementations of the synchronizing request are also considered in Section 5.4. These

75

FetchFetch

FetchFetch Decode/
rename

Decode/
rename ExecuteExecute Retire:

Mis-spec detect

Retire:
Mis-spec detect

Retire:
Arch writeback

Retire:
Arch writeback

Send

fingerprint

Receive

fingerprint

Decode/
rename

Decode/
rename ExecuteExecute

(a)

(b)

Retire:
Mis-spec detect

Retire:
Mis-spec detect

Check: Compare
fingerprint

Check: Compare
fingerprint

Retire:
Arch writeback

Retire:
Arch writeback

Figure 23. (a) Baseline pipeline and (b) a pipeline fingerprint checks before retirement.

simpler implementations have a high probability of succeeding, but cannot provide a complete guar-

antee.

An implementation must provide the required behaviors of the execution model, but the system

designer has latitude to optimize. In Section 5.4, a fast re-execution protocol implementation han-

dles common case re-execution, while a slower version implements the rarely needed register file

copy. The high-level tradeoffs for checkpoint and recovery implementation are also discussed.

5.4 Reunion Microarchitecture

This section first describes the baseline CMP and processor microarchitecture. The section

continues with the changes required to implement the Reunion execution model in a shared cache

controller and processor core.

5.4.1 Baseline CMP

Cache Hierarchy. This chapter assumes a baseline CMP with caches similar to Piranha [15].

A shared cache backs multiple write-back L1 caches private to each processor core. The shared

cache controller accepts memory requests from all cores, coordinates on-chip coherence for blocks

in private caches, and initiates off-chip transactions. The Reunion execution model can also be

implemented at a snoopy cache interface for microarchitectures with private caches, such as Mon-

tecito [64].

76

Processor Microarchitecture. This chapter assumes the simplified out-of-order processor pipeline

illustrated in Figure 23(a). Instructions are fetched and decoded in-order, then issued, executed, and

written back out-of-order. In-order retirement stages inspect instructions for branch misspeculation

and exceptions, and write instruction results to the architectural register file, as in the Pentium-

M [94] described in Section 3.1. Stores initially occupy a speculative region of the store buffer. At

retirement, the stores transition to a non-speculative region of the store buffer and drain to the L1

cache.

This chapter assumes single-threaded processor cores. Reunion can benefit from the efficient

use of otherwise idle resources in simultaneous multithreaded designs; however, cores must run

only vocal or mute threads to prevent vocal contexts from consuming incoherent cache blocks.

5.4.2 Shared Cache Controller

The shared cache controller is responsible for implementing the vocal and mute semantics, phan-

tom requests, and synchronizing requests. As in non-redundant designs, the shared cache controller

maintains coherence state (e.g., ownership and sharers lists) for all vocal cores.

Because coherence is not necessary in mute caches, sharers lists never include mute caches

and mute caches can never become exclusive or modified block owners. The coherence protocol

behaves as if mute cores were absent from the system. To prevent values generated by mutes from

being exposed to the system, the shared cache controller ignores all eviction and writeback requests

originating from mute cores.

Phantom requests. All non-synchronizing requests from the mute to the shared cache controller

are transformed into phantom requests. The phantom request produces a reply, although the value

need not be coherent, or even valid. Phantom replies grant write permission within the mute hierar-

chy.

The phantom request allows several strengths, depending on how diligently it searches for co-

herent data. The weakest phantom request strength, a null phantom request, returns arbitrary data

on any request (i.e., any L1 miss). While trivial to implement, null has severe performance im-

plications. A shared phantom request returns an existing cache block value for hits in the shared

cache, but returns an arbitrary value on misses. Finally, the global phantom request achieves the

77

Bilateral
(a)

Unilateral
(b)

Null
(c)

L1

Vocal

L1

Mute

③③③③
①①①①

Shared Cache
②②②②

L1

Vocal

L1

Mute

①①①①

Shared Cache

②②②②

L1

Vocal

L1

Mute

①①①①

Shared Cache

②②②②

③③③③
Flush

④④④④
⑤⑤⑤⑤

Figure 24. Three forms of synchronizing request.

best approximation of coherence. This request not only checks the shared cache, but also private

vocal caches and issues read requests to main memory for off-chip misses. In terms of complexity,

this is a small departure from existing read requests. Unless otherwise noted, this chapter assumes

global phantom requests.

Synchronizing Requests

This section now presents several possible instantiations of the synchronizing request and their

tradeoffs. The key task of a synchronizing request is to (1) return the same, coherent value to

both the vocal and mute cores and (2) flush the incoherent cache block from the mute cache. The

synchronizing requests described in this section dominate the recovery latency and are generally

comparable to a shared cache hit in terms of latency.

The Reunion paper originally specified the bilateral synchronizing request, however industry

feedback indicated that simpler mechanisms are greatly preferable and very rare failures can be

acceptable [83].

Bilateral Synchronizing request. The bilateral synchronizing request uses the shared cache con-

troller to enforce coherence between the vocal and mute cores, as illustrated in Figure 24(a). The

bilateral request first flushes the block from private caches (returning the vocal’s copy to the shared

cache, while discarding the mute’s). When both requests have been received at L2, the shared cache

controller initiates a coherent write transaction for the cache block on behalf of the pair. This obtains

sufficient permission to complete instructions with both load and store semantics. After obtaining

the coherent value, the shared cache controller atomically replies to both the vocal and mute cores.

78

This form of the synchronizing request requires unique functionality in the shared cache con-

troller to (1) wait for an unsolicited request message from another core and (2) atomically send two

replies to a pair of cores. The former requires careful design to avoid races with other concurrent

requests for the same cache block, which increases the complexity of the shared cache controller.

This feature also increases the validation effort of the shared cache controller. The latter feature is a

small change from existing shared cache controller functionality, because messages sent to multiple

destinations are already necessary for sending invalidation requests on shared blocks.

Unilateral Synchronizing Request. Unlike the bilateral request, the unilateral synchronizing re-

quest comprises a single request and an atomic reply pair, initiated solely by the vocal core (shown

in Figure 24(b)). The request causes the block to be flushed from the vocal’s caches, while the reply

flushes the value from the mutes’. The mute core must store the reply until it has reached the point

at which it can consume the value.

The intent of this request is to simplify the implementation of the synchronizing request at the

shared cache. Instead, the unilateral request moves complexity towards the processor core, although

the change is arguably limited in scope. The addition is that the mute core must accept and buffer an

unsolicited reply message. Because only one synchronizing request can be outstanding per logical

processor pair, this buffer need only be one entry. However, because mute’s execution progress can

race with this reply message (e.g., the mute re-execution can arrive at the first load before or after

the reply has been received), this value must be carefully delivered to the appropriate instruction.

Null Synchronizing Request. An alternative approach—which fits cleanly into the spirit of the

Reunion execution model—is the null synchronizing request. This request uses the existing coherent

load from the vocal core. The mute core, in contrast, issues a sequence of a flush request to remove

the incoherent block from its private caches, followed by its typical phantom request to return the

block to the mute’s cache.

The key advantage of this synchronizing request is its simplicity. It uses mechanisms already

needed to implement Reunion. However, the null synchronizing request cannot guarantee that it

will always return the same value to both cores. Therefore, this synchronizing request may have to

be invoked multiple times in the case of persistent data races on heavily contended blocks. This has

79

been shown possible with tightly coded micro-benchmarks and short shared cache latencies (e.g.,

deadlock only occurs if the L2 access latency is dialed down to one cycle), but in practice works

well on both commercial and scientific workloads.

The evaluation in this thesis shows that not only are data races rare, but also that repeated races

are rare, therefore a slow mechanism for recovery is acceptable. A retry mechanism can include

exponential back-off to avoid repeated races. Alternatively, a “hammer” technique can guarantee

forward progress. For example, the shared cache controller can temporarily block new requests

from other cores in order to avoid further races. Thus, the common case synchronizing request is

fast, while the uncommon case of repeated races can be resolved correctly.

5.4.3 Processor Pipeline

This section now describes the processor pipeline changes for the Reunion execution model,

output comparison, and recovery.

Safe state. The vocal processor core maintains safe state in the ARF, non-speculative store buffer,

and memory. Safe state can always be reached by the vocal by (1) retiring all instructions that have

completed output comparison without error to the architectural register file and the non-speculative

store buffer and (2) flushing all uncompared instructions from the pipeline (e.g., precise exception

rollback).

Output comparison. Instruction outputs must be compared before retiring to architectural state.

The key addition is an in-order retirement stage called check, as shown in Figure 23(b). Check

first generates a fingerprint a hash of instruction results from the entering instructions [105]. Check

then compares its fingerprint with the partner core’s fingerprint to detect differences. A matching

fingerprint comparison retires the instruction and writes the instruction results to safe state in the

architectural register file. A mismatch invokes recovery. Instructions cannot enter check specula-

tively; they must be guaranteed to retire if the instruction results match.

Logically, the fingerprint captures all register updates, branch targets, store addresses, and store

values. The number of instructions summarized by each fingerprint is a design parameter called the

80

Rollback +

Sync Read

Rollback +

Sync Read Correct?Correct?

RecoveredRecovered

Copy vocal ARF

to mute, retry

Copy vocal ARF

to mute, retry

No

Yes

Correct?Correct?

RecoveredRecovered

Yes

FailureFailure
NoError

Detected

Error
Detected

Figure 25. The re-execution protocol.

fingerprint interval; longer comparison intervals need proportionally less comparison bandwidth. At

the end of each fingerprint interval, each core sends its fingerprint to the partner core for comparison.

An analytic performance model of the microarchitectural effects of the fingerprint interval and

fingerprint comparison latency is presented later in this section. The model and empirical evidence

show that the performance difference between intervals of one and fifty instructions is insignificant

in our workloads, despite increased resource occupancy, because useful computation can continue

to the end of the interval.

The time required to generate, transfer, and compare the architectural fingerprint is combined

into a parameter called the comparison latency. Because the vocal and mute cores swap finger-

prints, the comparison latency is the one-way latency between cores. This latency overlaps with

useful computation, at the cost of additional resource occupancy. The observed comparison latency,

however, can be extended because the two cores are only loosely coupled in time. While the vo-

cal and mute execute the same program, their relative progress can drift slightly in time, due to

contention accessing shared resources (e.g., the L2 cache) and different private cache contents.

Re-execution. Upon detection of differences between the vocal and mute, the logical processor

pair starts the re-execution protocol illustrated in Figure 25. To optimize for the common case,

the protocol is divided into two phases. The first handles detected soft errors and detected input

incoherence errors. The second phase addresses the extremely rare case where results of undetected

input incoherence retire to architectural registers.

Both vocal and mute cores invoke rollback-recovery using precise exception support and, in

the common case, restore to identical safe states in their architectural register files. Both cores

then non-speculatively single-step execution up to the first memory read. Each core then issues

a synchronizing memory request eliminating input incoherence for the requested cache block and

compares a fingerprint for all instructions in the interval. Following comparison, the re-execution

81

protocol has made forward progress by at least one instruction. The cores then continue normal

speculative, out-of-order execution.

If the first phase fails output comparison, the second phase starts. The vocal copies its architec-

tural register file to the mute and the pair proceeds with re-execution, as in the first phase. Because

the vocal core always maintains safe state in the absence of soft errors, this will correctly recover

from all incoherence errors. If the cause was a soft error missed by fingerprint aliasing, the proto-

col cannot recover safe state and therefore must trigger a failure (e.g., detected, uncorrectable error

interrupt). The re-execution protocol can be implemented in microcode.

External interrupts. External interrupts must be scheduled and handled at the same point in pro-

gram execution on both cores. Fingerprint comparison provides a mechanism for synchronizing the

two cores on a single instruction. Reunion handles external interrupts by replicating the request

to both the vocal and mute cores. The vocal core chooses a fingerprint interval at which to ser-

vice the interrupt. Both processors service the interrupt after comparing and retiring the preceding

instructions.

Hardware cost. Fingerprint comparison requires queues to store outstanding fingerprints, a chan-

nel to send fingerprints to the partner core, hash circuitry, and a comparator. The fingerprint queues

can be sized to balance latency, area, and power. The check stage delays results being written into

the architectural register file. The results can be stored in a circular buffer during the check stage or

read again at retirement.

5.4.4 Serializing Check Overhead

Instructions with serializing semantics such as traps, memory barriers, atomic memory oper-

ations, and non-idempotent memory accesses impose a performance penalty in all redundant ex-

ecution microarchitectures that check results before retirement. Serializing instructions must stall

pipeline retirement for an entire comparison latency, because (1) all older instructions must be com-

pared and retired before the serializing instruction can execute and (2) no younger instructions can

execute until the serializing instruction retires.

82

Upon encountering a serializing instruction, the fingerprint interval immediately ends to allow

older instructions to retire. The fingerprint is updated to include state that must be checked before

executing the serializing instruction (e.g., uncacheable load addresses). Once the older instructions

retire, the serializing instruction completes its execution and check. This comparison exposes timing

differences between the cores (due to loosely-coupled execution) and the entire comparison latency.

Normal execution continues once the serializing instruction retires.

5.4.5 Fingerprint comparison interval and latency: analytic model

This section presents an analytical model that explains the performance impact of adding ar-

chitectural fingerprint comparison and the instruction check stage to a modern wide-issue pipeline.

The independent fingerprint design parameters in the model are the fingerprint comparison latency

(Lfp) in clock cycles and the fingerprint comparison interval (Ifp) in instructions. This analysis

assumes dedicated, pipelined fingerprint comparison channels with a fixed transmission and com-

parison latency. Furthermore, the model assumes the fetch stage is aggressive enough to saturate

the re-order buffer and that serializing instructions are absent.

The model depends on several pipeline parameters:

• ROBSize: the number of instructions in the re-order buffer

• Lpipe: the length of the pipeline for which instructions occupy ROB entries (including retire-

ment and check stages). This parameter is fixed at Lpipe = 5 stages in this study.1

• R: the average instruction retirement rate in a pipeline without fingerprint comparison (a

property of the workload and the pipeline width).

This thesis first derives two performance models to account for the fingerprint comparison la-

tency and interval separately. Next, this thesis presents a single model accounting for both parame-

ters.

A performance model for a pipeline with fingerprint comparison on every instruction (Ifp = 1)

is derived. Because fingerprint comparison can only slow down single-threaded execution, perfor-

mance is bounded by the minimum of performance derived from Little’s Law (relating population

1Five stages matches the CMP simulator’s minimum pipeline depth, excluding the in-order fetch/decode/rename

stages and is representative of the out-of-order sections recent industry pipelines.

83

in instructions and occupancy time to throughput) and the original program’s IPC without finger-

print comparison. In this model, performance is only limited when the ROB fills with instructions

waiting for retirement or the fingerprint comparison.

IPCmin interval = min

(

ROBSize

Lpipe + Lfp

, R

)

(5.1)

Next, a performance model for a pipeline that compares intervals of instructions, but has an

instantaneous latency for fingerprint comparison (Lfp = 0) is derived. If the fingerprint comparison

interval (Ifp) is greater than one instruction, older instructions entered the check stage but cannot be

compared until enough subsequent younger instructions also enter check and complete the interval.

For a program nominally executing R instructions per cycle, this additional wait adds
Ifp

R
cycles to

execution.

IPCmin latency = min

(

ROBSize

Lpipe +
Ifp

R

, R

)

(5.2)

Note that this model is accurate only for Ifp’s that are divisors of ROBSize. There is a sig-

nificantly more complicated relationship for fingerprint intervals that do not cleanly fit in the ROB.

Unfortunately, while this is trivial to simulate, a closed-form algebraic relationship that can lend

insight towards the pipeline’s performance is not known.

Finally, the added instruction occupancy contributions of both factors are combined in the com-

prehensive performance model shown below.

IPC = min

(

ROBSize

Lpipe + Lfp +
Ifp

R

, R

)

(5.3)

The results of this model are illustrated in Figure 26 for four-wide pipelines with ROB sizes of

64 and 256 entries, running a workload that can saturate the pipeline. This model is also limited to

Ifp that evenly divide the ROBSize. The results show that as the fingerprint comparison latency

increases, it dominates performance, while the fingerprint comparison interval’s effect is dampened

because it adds latency more slowly.

Furthermore, the right-hand figure shows that the 256-instruction ROB provides sufficient buffer-

ing to hide virtually all performance effects of fingerprint comparison for reasonable on-chip trans-

84

0

1

2

3

4

0 10 20 30 40 50 60

FP comparison latency (cycles)

IP
C

0

1

2

3

4

0 10 20 30 40 50 60

FP comparison latency (cycles)

IP
C

1 2 4 8 16 32 64
FP interval (instructions)

(a) (b)

Figure 26: Analytic performance model of the effects of fingerprint comparison for a 4-wide

pipeline with Lpipe = 5 cycles, R = 4 IPC and ROB sizes of (a) 64 and (b) 256 entries.

mission and comparison latencies (10’s of cycles) and a range of fingerprint intervals. By contrast,

the left-hand figure shows significant sensitivity to both fingerprint comparison latency and inter-

val. With long latencies or intervals, the entire ROB ends up buffering completed instructions that

are waiting to be checked. However, in practice, the effect of these results on the 64-entry ROB

are tempered because, despite the availability of four-wide pipelines, many real-world workloads

only achieve IPCs of 0.2-2 [3, 14, 31] and typically only occupy small fractions of the ROB. These

workloads already typically (1) can overlap the additional checking latencies caused by fingerprint

comparison and (2) leave adequate buffering for instruction checking. Therefore, the actual impact

of architectural fingerprints—even with smaller ROBs—is typically small. This result is empirically

shown in Section 5.5.

Finally, these results have been validated against a simulation model, showing performance re-

sults within 1% over practical ranges for these parameters (latencies from 0 - 1,024 cycles, intervals

from 1 to ROBSize).

5.4.6 Lock Primitive Implementation

This section describes the implementation of lock primitives in a Reunion design. The imple-

mentation of atomic memory operations such as Sun’s read-modify-write (RMW), compare-and-

swap, test-and-set, and fetch-and-increment is first described, followed by the special considera-

tions required for two-phase locking primitives, such as MIPS’s load-locked and store-conditional

85

Read

memory

Read

memory

RMW-like

primitives

Modify

value

Modify

value
Retire write

to memory

Retire write

to memory

Send

fingerprint

Receive

fingerprint

Lock cache block in vocal L1

Phantom requests allowed

(a)

(b)

Load-Locked

Store-Conditional

Load-locked,

other code

Load-locked,

other code
Store-

Conditional

Store-

Conditional

Send

fingerprint

Receive

fingerprint

Send

fingerprint

Copy ARF
if mismatch

Copy ARF
if mismatch

Receive

fingerprint

Vocal ARF is sole copy on mismatch

Figure 27. Lock implementation.

(LL/SC) instruction pair.

Atomic memory operations. Atomic memory operations consist of three basic tasks that occur

atomically, as observed by other processors through shared memory: (1) one or more loads from

memory, (2) an equality test or arithmetic operation on the loaded value, and (3) a store to memory

and memory barrier. In order to succeed, the tasks must occur without any intervening store by

other processors in the system. Unlike non-redundant multiprocessors, where the determination of

whether the locks primitives succeed (or fail by succumbing to a data race) can be made locally at a

single processor core, this process is distributed across the vocal and mute cores in Reunion. Hence,

the implementation must ensure that both the vocal and mute cores agree on the outcome of the

operation before it is exposed to other logical processor pairs by the vocal core. This requirement is

relaxed in the discussion of the LL/SC implementation.

The key problem for atomic operations introduced by the Reunion execution mode is that the

fingerprint comparison adds latency between tasks (2) and (3), as illustrated in Figure 27(a). The

instruction must complete a fingerprint comparison before it can complete task (3), because that

action architecturally exposes results to other processors. The Reunion execution model introduces

a new requirement in the lock’s execution: both tasks and the fingerprint comparison must be per-

formed without permitting intervening stores from other processors, as this extends the window of

86

vulnerability during fingerprint comparison.

The solution to the window of vulnerability during atomic operations proposed and evaluated

in this work is to lock the vocal L1 cache during the atomic operation. L1 cache locking involves

delaying the processing of external requests for the cache block during the fingerprint compari-

son. Cache locking—globally, on a set, or on a single block basis—is a well-known technique for

temporarily preventing other processors from accessing a locally cached block.2 Locking within a

single on-chip cache has been part of the Pentium Pro [62] and support continues in today’s mi-

croarchitectures [45].

Locking the cache in a redundant system is not without dangers, however. Because both the

vocal and mute cores must read the same value—and the vocal’s private L1 cache can supply that

value to the mute—it is possible to create a deadlock scenario if the vocal’s L1 cache is locked too

early. This situation arises if the mute L1 does not contain the block (and therefore, must issue

a phantom request) and the vocal L1 contains exclusive ownership of the block and has locked

out external requests. The cycle is as follows: the vocal core will not unlock until the fingerprint

comparison completes, while the partner mute core cannot send a fingerprint until its phantom

request to the locked cache has completed.

The deadlock can be avoided in at least two ways. First, an aggressive implementation of the L1

cache controller can continue processing phantom request messages while the cache is locked. Be-

cause phantom requests do not change coherence state and can return non-coherent values, they can

be safely processed at any time. This prevents the circular dependence between the mute’s phantom

request and fingerprint comparison. Alternatively, the deadlock can be avoided entirely by immedi-

ately replying to phantom requests targeting a locked cache with an arbitrary (poisoned) value. This

incurs a fingerprint mismatch, but does not require the cache to process phantom requests when

locked. In the remainder of this work, we evaluate Reunion using the first implementation.

Load-locked and store-conditional. Several prominent instruction sets choose to provide an

LL/SC instruction pair as the architected synchronization primitive [68, 30]. Unlike the Pentium

Pro, processors implementing this primitive shun locking the cache to avoid memory requests from

other processors, preferring instead to set a (unfortunately named in this context) “lock bit” upon

2If fingerprinting across the interconnect is used, we assume that fingerprint messages continue to be processed out-

of-band, while the cache is locked.

87

Table 9. Outcomes for different races during the store-conditional phase of an LL/SC pair.

Vocal Mute Outcome

Fails Fails Fingerprint matches, no race

Fails Succeeds Fingerprint mismatch; fails architecturally, copy vocal ARF

Succeeds Fails Fingerprint mismatch; succeeds architecturally, copy vocal ARF

Succeeds Succeeds Fingerprint matches, no race

executing a load-locked instruction. The lock bit is reset by any intervening external access to the

load-locked’s effective address before a corresponding store-conditional instruction (the store is ar-

chitecturally converted to a NOP if the bit has been reset before the store commits). Because these

architectures avoid locking the cache for synchronization primitives, the technique described for

atomic memory operations cannot be applied.

Instead, an alternative approach can apply the principles of the Reunion execution model to the

lock’s execution, but trades soft error vulnerability and performance to avoid the hardware cost of

cache locking. This approach takes advantage of an outcome of the vocal core: that in the absence

of soft errors, the vocal core always performs cache-coherent and memory model-consistent actions

(Lemma 5.1). This allows the vocal to determine solely the outcome of the LL/SC operation.

The approach is illustrated in Figure 27(b). Before executing the store-conditional, the results

of the load-locked instruction and following instructions are compared via fingerprint comparison.

This ensures that both vocal and mute cores loaded the same value and checks the execution of the

body of the lock code. Second, the store conditional is executed and committed on both cores and

the result of that operation—whether the store conditionally succeeded or failed—is compared via

fingerprint between the two cores. The store conditional must be committed, because its condition

is only known once the instruction commits.

The cores can agree or disagree on the outcome. The cases are enumerated in Table 9. If the

cores agree, redundant execution can continue. However, if the cores disagree, Lemma 5.1 is applied

to restore consistent architectural state to both cores by copying the vocal’s architectural register file

to the mute, as done in the second phase of the recovery protocol. In effect, this approach allows the

vocal core to perform the store-conditional and inform the mute of the outcome. Furthermore, this

approach provides the same forward progress guarantees as the baseline system when using LL/SC.

88

However, this approach opens a soft error vulnerability during the period in which the vocal

executes the store-conditional. If a soft error were to affect the vocal’s operation during this time,

the execution can result in detectable, uncorrectable errors or silent data corruption. Because this

period is only a small fraction of overall execution time, this is unlikely to have a significant impact

on the overall system’s soft error vulnerability.

This approach can also be adapted for use with atomic memory operations with the same trade-

offs on soft error vulnerability and performance. Because the impact of data races is shown to be rare

in the evaluation, this thesis does not separately evaluate the performance effect of this approach.

Another option for implementing LL/SC is to depend solely upon the vocal core to determine

the outcome of the SC, transmit this information to the mute core in a fingerprint, and have it mirror

the execution of the SC request (this information is implicitly transferred in the approach discussed

above). This process simplifies lock implementation and provides the same soft error vulnerability

as the previously discussed approach. Because the vocal core’s outcome will be used regardless

input incoherence or a soft error—both schemes are vulnerable to undetected soft errors during the

SC execution on the vocal—there is no reliability benefit to checking the mute’s execution of the

SC.

5.4.7 Checkpointing and Re-execution

This section explores the high-level performance tradeoffs for various checkpoint and recov-

ery models. Checkpoint mechanisms are explored along two axes: the scope of the checkpoint—

local per-processor and system-wide global checkpoints—and the checkpoint interval length—short

ROB-sized checkpoints of tens to hundreds of instructions and long checkpoints containing thou-

sands of instructions. Two workload classes are explored: phased workloads such as barrier-based

scientific programs and decision support queries and phase-less workload such as OLTP [42] and

web server commercial workloads. The tradeoffs are illustrated graphically in Figure 28. Experi-

ences with Reunion suggest that the desirable third quadrant—local checkpoints with short compar-

ison intervals—are both practical with today’s microarchitectures and provide a low execution time

overhead.

89

Local

checkpoint
Global

checkpoint

Long interval

Short interval

Rollback single core,

High recovery cost,

One-time race

Rollback all cores,

High recovery cost,

Races recur

Rollback all cores,

Low re-execution cost,

Races recur

Rollback single core,

Low recovery cost,

One-time race

Figure 28: The tradeoffs in the checkpoint and recovery design space. Local checkpoints
with short checkpoint intervals provide the lowest overall recovery overhead.

Checkpoint scope. Local checkpoints are attractive if recovery is frequent, there are a large num-

ber of processors, or if the recovery process is likely to repeat.

With global checkpoints, the state of all processor cores in the system is simultaneously recorded,

while with local checkpoints, the architectural state of individual processor cores is separately

stored. Global checkpoints linearly increase the cost of recovery. As the system size increases,

global checkpoint recovery requires discarding and then re-executing proportionally more work. By

contrast, local checkpoints require discarding and re-executing the work of only a single processor

core.

Furthermore, global checkpoints restore the entire system to a state that was previously en-

countered. In the case of recovery due to races in phased-based workloads, this a particularly

unfortunate situation. Phase-based workloads can exhibit well-defined points in execution where

input incoherence-causing data races are likely to re-occur. When a data race occurs in a global

checkpoint-based system, all processors are recovered to an identical point prior to the race. Unfor-

tunately, this also recreates the precise conditions for the race to recur (this can also affect phase-less

workloads which are otherwise unlikely to repeatedly encounter the same race again). With the Re-

union re-execution protocol as stated above, this process produces one additional load’s worth of

forward progress, and then the race scenario repeats itself again! This situation has the compound

cost of repeated recovery, each time discarding the work of all processors and can greatly affect

performance [56].

90

By contrast, local checkpoints only discard the work of individual processor cores—greatly re-

ducing the amount of work that needs to be recomputed during recovery. Furthermore, recovery

does not recreate the same global race situation as before. Hence, the recovery with local check-

points is cheaper and less likely to be repeated (particularly in phase-less workloads where the

operations on other processors are uncorrelated with the recovering processor).

Checkpoint interval. As with the checkpoint scope, the interval between checkpoints also de-

termines the amount of work that must be discarded and reexecuted following a recovery. Short

checkpoint intervals incur a small tolerable penalty, while longer intervals can significantly increase

the recovery overhead (particularly if races recur) [56].

The checkpoint interval is primarily determined by the costs of error detection and taking a

checkpoint. For a traditional out-of-order superscalar processor such as Pentium-M, a per-instruction

checkpoint granularity is feasible because of existing precise exception support, which already re-

quires the processor to stop architectural execution at any instruction boundary.

Checkpoint intervals must be equal to or longer than the comparison intervals. This is because,

for the purposes of error detection, no additional benefits are accrued from checkpointing more fre-

quently than errors are detected because intermediate checkpoints will never be used for recovery.

For architectural fingerprint-based error detection, the primary system-level limit is the bandwidth

required for transferring fingerprints between cores [105]. With dedicated comparison channels,

comparison can feasibly done every two to four instructions, while with fingerprints over an inter-

connect, the interval must be longer to minimize the performance impact on the on-chip memory

system.

Alternatively, checkpoint interval can be driven by a more expensive checkpoint mechanism,

such as copying the register file (as with Intel’s C6 architectural checkpoints [35] or academic

proposals [51, 56, 108]). In these designs, the checkpoint interval must be increased to amortize the

time spent stopping the system while creating the checkpoint or performing error detection.

91

Table 10. Simulated baseline CMP parameters.

Processor cores 4 logical processors, UltraSPARC III ISA

4 GHz 12-stage pipeline; out-of-order

4-wide dispatch / retirement

256-entry RUU; 64-entry store buffer

L1 cache 64KB split I/D, 2-way, 2-cycle load-to-use,

2 read, 1 write ports, 64-byte lines, 32 MSHRs

Shared L2 16MB unified, 4 banks, 8-way,

Cache 35-cycle hit latency, 64-byte lines,

crossbar to L1s, 64 MSHRs

ITLB 128 entry 2-way; 8K page

DTLB 512 entry 2-way; 8K page

Memory 3GB, 60ns access latency, 64 banks

5.5 Evaluation

This thesis evaluates Reunion using Flexus, which provides cycle-accurate, full-system simula-

tion of a chip multiprocessor [118]. Flexus extends Virtutech Simics with cycle-accurate models of

an out-of-order processor and memory system.

A CMP with four logical processors is simulated: four cores for non-redundant models and eight

cores for redundant models. On-chip cache bandwidth is assumed to scale in proportion with the

number of cores. The CMP model uses a cache hierarchy derived from Piranha [15]. For Reunion,

the vocal and mute L1 cache tags and data are independently modeled. System parameters are listed

in Table 10.

Table 11 lists the commercial and scientific application suite. All workloads run on Solaris 8.

The commercial workloads include TPC-C v3.0 OLTP on two commercial database management

systems, IBM DB2 v8 Enterprise Server Edition, and Oracle 10g Enterprise Database Server. The

database is tuned to maximize performance of the non-redundant system model.

Three representative queries from the TPC-H decision support system (DSS) workload are se-

lected, showing scan-dominated, join-dominated, and mixed behavior. Web server performance is

evaluated with the SPECweb99 benchmark on Apache HTTP Server v2.0 and Zeus Web Server

v4.3. The server performance of web servers saturated by separate clients over a high-bandwidth

link is reported. The scientific workloads are four parallel shared-memory scientific applications

that exhibit a range of memory access patterns.

92

Table 11. Simulated workload parameters.

Commercial Workloads

DB2 OLTP 100 warehouses (10GB), 64 clients, 2GB BP

Oracle OLTP 100 warehouses (10GB), 16 clients, 1.4GB SGA

DB2 DSS Qry 1 (scan); Qry 2 (join); Qry 17 (balanced)

100 warehouses (10GB), 2GB BP

Apache Web 16K connections, fastCGI, worker thread model

Zeus Web 16K connections, fastCGI

Scientific Workloads

em3d 768K nodes, degree 2, span 5, 15% remote

moldyn 19,652 molecules, boxsize 17, 2.56M max iters.

ocean 258x258 grid, 9600s relax, 20K res., errtol 1e-7

sparse 4096x4096 matrix

This evaluation employs a sampling approach that draws many brief measurements over 10 to

30 seconds of simulated time for OLTP and web applications, the complete query execution for

DSS, and a single iteration for scientific applications. 95% confidence intervals of +/-5% error on

change in performance are targeted using matched-pair comparison [118]. Measurements launch

from checkpoints with warmed caches and branch predictors, then run for 100,000 cycles to warm

pipeline and queue state prior to 50,000 cycles of measurement. Aggregate user instructions com-

mitted per cycle are reported as the performance metric, which is proportional to overall system

throughput. Fingerprints are compared on every instruction. Soft faults are not injected, however

input incoherence events, output comparison, and recovery are modeled in detail.

5.5.1 Baseline Performance

This section evaluates the baseline performance of redundant execution in a CMP for a repre-

sentative system using strict input replication (“Strict”) and Reunion.

Strict models a system with strict input replication, fingerprint comparison across cores for

error detection, and recovery within the ROB (as described for Reunion in Section 5.4.3). Strict

serves as an oracle performance model for all strict input replication designs with recovery. It

imposes no performance penalty for input replication (e.g., lockstepped processor cores or an LVQ

with no resource hazards). However, the model includes the penalties from buffering instructions

during check. The Reunion model demonstrates the performance of relaxed input replication and

fingerprint comparison and recovery. To support recovery within the speculative window, both

93

Figure 29: Baseline performance of redundant execution with strict input replication and
Reunion, normalized to a non-redundant CMP, with a 10-cycle comparison latency.

systems check instruction results before irrevocably retiring them to the architectural register file

and non-speculative store buffer.

Figure 29 shows the baseline performance of both models normalized to the performance of a

non-redundant baseline CMP, with a ten-cycle comparison latency between cores. As compared

to the non-redundant baseline, the strict model has a 5% and 2% average performance penalty

for commercial and scientific workloads, respectively, while Reunion shows 10% and 8% average

respective performance penalties. The low performance overhead of Reunion demonstrates that

relaxed input replication is a viable redundant execution model. In the following sections, explore

the performance of these execution models is explored in more detail.

5.5.2 Checking Overhead

This section first examines the performance of Strict to understand the performance penalties of

checking redundant executions across cores in a CMP. First, serializing instructions cause the entire

pipeline to stall for the check because no further instructions can execute until these instructions

complete. The check fundamentally extends this stall penalty: as the comparison latency increases,

the retirement stalls must also increase. Second, pipeline occupancy increases from instructions in

check occupying additional ROB capacity in the speculative window. For workloads that benefit

from large instruction windows, this decreases opportunities to exploit memory-level parallelism

(MLP) or perform speculative execution.

94

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
Comparison Latency (cycles)

No
rm

al
iz

ed
 IP

C

OLTP
Web
DSS
Scientific

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
Comparison Latency (cycles)

No
rm

al
iz

ed
 IP

C

OLTP
Web
DSS
Scientific

(a) (b)

Figure 30: Performance sensitivity to the comparison interval of (a) strict input replication

with fingerprint comparison and (b) Reunion’s relaxed input replication with fingerprint com-
parison.

Figure 30(a) shows the average performance impact from checking in Strict for each workload

class over a range of on-chip comparison latencies, normalized to a non-redundant baseline. At a

zero-cycle comparison latency, the workloads do not show a statistically significant performance

difference from non-redundant execution. The performance penalty increases linearly with increas-

ing comparison latency. Both commercial and scientific workloads exhibit similar sensitivity to the

comparison latency; however, the mechanisms are different.

In commercial workloads, the dominant performance effect comes from frequent serializing

instructions. With increased comparison intervals, the number of these events remains constant, but

the stall penalty increases. At forty cycles, the average performance penalty from checking is 17%.

In contrast, the scientific workloads suffer from increased reorder buffer occupancy because

they can saturate this resource, which decreases MLP. At a comparison latency of forty cycles, the

average performance penalty is 11%. Larger speculation windows (e.g., thousands of instructions,

as in checkpointing architectures [4]) completely eliminate the resource occupancy bottleneck, but

cannot relieve stalls from serializing instructions.

5.5.3 Reunion Performance

This section now evaluates the performance penalty of relaxed input replication under Reunion

and explores Reunion’s sensitivity to comparison latencies. Unlike the strict input replication model,

vocal and mute execution in Reunion is only loosely coupled across the cores. For non-serializing

95

instructions, these differences can be absorbed by buffering in the check stage. However, serializing

instructions expose the loose coupling because neither core can make further progress until the

slower core arrives at and compares the instruction. This introduces additional retirement stalls that

affect both cores, on top of the comparison overheads discussed above. Figure 30(b) shows the

performance of Reunion for a range of comparison latencies. Reunion’s performance is determined

by checking overheads, loose coupling, and input incoherence.

The first observation from Figure 30(b) is that, unlike Strict, Reunion has a performance penalty

from loose coupling and relaxed input replication at a zero-cycle comparison latency. For commer-

cial workloads, the serializing events expose the loose coupling, because one core must wait for its

partner to catch up before comparing fingerprints. For scientific workloads, contention at the shared

cache increases the effective memory latency, decreasing performance. This result shows that the

baseline performance penalty of Reunion’s relaxed input replication is small on average, 5% and

6% for commercial and scientific workloads, respectively.

The second observation in Figure 30(b) is that at non-zero comparison latencies, performance

converges towards the limits set by the strict input replication model. As the comparison latency

grows, the comparison overhead and resource occupancies dominate the performance, because more

time is spent waiting on the comparison than resolving loose coupling delays. At a forty-cycle

comparison latency, the average performance penalty is 22% and 13% for commercial and scientific

workloads, respectively, which closely follows the Strict model’s trend. This result shows that the

primary performance impact with larger comparison latencies comes from fundamental limits of

checking and recovery, instead of relaxed input replication.

Figure 31 shows an execution time breakdown for the lockstep CMP baseline normalized to

unity and Reunion, at a 10-cycle fingerprint comparison latency (unlike the normalized IPC graphs,

higher bars indicate slower execution in this chart). The differences between the two bars shows

the contribution of performance factors for each workload, starting with time where the cores are

busy, waiting on memory requests (loads or stores), or serializing atomic or side-effect instructions.

Reunion introduces two new categorizes: time spent where the ROB is full and cannot drain be-

cause of a pending fingerprint comparison and time spent where execution stalls because of pending

fingerprint comparison of serializing instructions.

For the commercial workloads, the primary performance factor comes from increased time spent

96

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

B R B R B R B R B R B R B R B R B R B R B R
Apache Zeus DB2 Oracle Q1 Q2 Q17 em3d moldyn ocean sparse

Web OLTP DSS Scientific

No
rm

al
iz

ed
 C

PI

 Busy Memory Atomic FP:PipelineFull FP:Serializing

Figure 31. Execution time breakdown for the baseline CMP (B) and Reunion (R).

waiting for fingerprint comparisons during serializing instructions. The fingerprint comparison am-

plifies the time spent on each atomic instruction. Because the average time spent on each atomic

instruction differs across workloads, the relative impact of this comparison also differs across work-

loads.

For the scientific workloads, the primary performance factor comes from increased time spent

on memory operations. Memory latency increases due to vocal-mute contention within the shared

cache coherence controller. This is particularly evident for the workloads with high off-chip miss

rates: em3d and moldyn. Contention arises because the shared cache controller serializes on-chip

and off-chip coherence operations on a cache-block basis. In particular, when a mute request requir-

ing coherence reaches the controller before the vocal request for the same cache block, the cache

controller issues an off-chip phantom request for the block. However, because the request is a phan-

tom, it is incoherent and therefore cannot be utilized by the later vocal request. Hence, the vocal

request must repeat the off-chip request, in effect doubling the off-chip memory latency when the

vocal loses the race. In contrast, when the vocal wins the race, the result will be consumed by the

mute through faster on-chip coherence operations.

5.5.4 Input Incoherence

Next, this section provides empirical evidence to demonstrate that input incoherence events in

Reunion are uncommon. Table 12 shows the frequency of input incoherence events per million

97

Table 12: Input incoherence events for each phantom request strength, TLB miss frequency.

Per 1M instructions

Input incoherence

Workload Global Shared Null TLB Misses Atomic Instructions

Apache Web 0.9 3,818 8,620 1,973 747

Zeus Web 0.2 1,818 5,456 1,654 903

DB2 OLTP 0.7 5,340 16,197 2,492 896

Oracle OLTP 0.6 4,578 17,140 3,297 366

DB2 DSS Q1 21.1 1,909 4,004 207 547

DB2 DSS Q2 0.7 4,852 7,991 1,040 583

DB2 Q17 1.5 4,863 10,466 1,089 833

Avg. Scientific 0.4 17,406 22,607 239 0.22

retired instructions in Reunion for all three phantom request strengths, with a ten-cycle comparison

latency. As a point of comparison, the input incoherence events are juxtaposed with another com-

mon system event with a comparable performance penalty: the translation lookaside buffer (TLB)

miss.

Reunion is first considered with global phantom requests. Recall that global phantom requests

initiate on- and off-chip non-coherent reads on behalf of the mute. As shown, the workloads en-

counter input incoherence events infrequently with global phantom requests, while data and instruc-

tion TLB misses generally occur orders of magnitude more frequently. From this data indicates that

input incoherence events are, in fact, uncommon in these workloads. Furthermore, even with relaxed

input replication, the penalty of recovery is overshadowed by other system events.

Next, this section investigates whether choices for weaker phantom requests from Section 5.4.2

are effective. The data for shared and null phantom requests in Table 12 show that input incoher-

ence events are three to four orders of magnitude more frequent than with global phantom request

strengths and in both cases are more frequent than TLB misses. These high frequencies indicate

that recovery from input incoherence can become a bottleneck with weaker phantom requests.

Figure 32 compares the performance of the three phantom request strengths with a 10-cycle

comparison latency, normalized to the non-redundant baseline. Both shared and null phantom re-

quests incur a severe performance impact from frequent recoveries. Shared phantom requests cap-

ture most mute L1 misses because of the high shared-cache hit rate. One notable exception is em3d,

whose working set exceeds the shared cache and therefore frequently reads arbitrary data instead of

98

0.0
0.2
0.4
0.6
0.8
1.0

Apache Zeus DB2 Oracle DB2
Q1

DB2
Q2

DB2
Q17

em3d moldyn ocean sparse

Web OLTP DSS Scientific

No
rm

al
iz

ed
 IP

C

Global Shared Null

Figure 32: Reunion performance with different phantom request strengths at a 10-cycle
comparison latency.

initiating off-chip reads. The null phantom request policy has a severe performance impact for all

workloads because each L1 read miss is followed by input incoherence rollbacks.

The analysis of input incoherence in this section shows that global phantom requests are effec-

tive in reducing input incoherence events to negligible levels in the workloads. Furthermore, the

weaker phantom request strengths increase the frequency of input incoherence to levels that cause

a severe performance impact.

5.5.5 Synchronizing request type

Next, this section evaluates the practical performance implications of synchronizing request im-

plementations. Figure 33 shows the performance of both bilateral and null synchronizing requests.

There is virtually no sensitivity to the synchronizing request type in any of the workloads 3 This re-

sult is expected because, (1) the cost of performing a bilateral (or unilateral) synchronizing request

is similar to that of a null synchronizing request, (2) the synchronizing requests are infrequent, and

(3) null synchronizing requests are not expected to repeat often. Both request types are dominated

by the shared L2 cache access, therefore have similar average access latencies. Synchronizing re-

quests occur infrequently (already demonstrated in Table 12). Finally, the simulation results indicate

that none of the null synchronizing requests encountered a persistent race, therefore in practice, no

null synchronizing requests needed to repeat. This result indicates that simple synchronization re-

3A t-test indicates that statistically significant claims cannot be made about the small performance difference in DSS

query 1.

99

0.0
0.2
0.4
0.6
0.8
1.0

Apache
Web

DB2
OLTP

DB2 Q1
DSS

DB2 Q17 moldyn sparseNo
rm

al
iz

ed
 IP

C

Reunion-Sync Reunion-NullSync

Figure 33: Performance of Reunion with bilateral and null synchronizing requests at a 10-

cycle comparison latency.

quest mechanisms are sufficient for good performance on realistic workloads. Furthermore, even if

a “hammer” mechanism is needed to guarantee forward progress, it will not be invoked frequently;

therefore, it can be simple and slow without incurring a large performance burden.

5.5.6 Serialization Overhead

Next, the importance of architecturally defined serializing instructions to redundant execution

performance is identified. In this system, serializing instructions are traps, memory barriers, and

non-idempotent memory requests. Many of these events are inherent in the workloads, such as

memory barriers needed to protect critical sections, while others, such as system traps, are specified

by the instruction set architecture.

The results presented up to this point in the chapter have eliminated the dominant source of

system-specific traps in the baseline UltraSPARC III architecture: the software-managed TLB miss

handler. In commercial workloads, the fast TLB miss handler is invoked frequently (see Table 12),

due to their large instruction and data footprints. The handler function includes two traps, for entry

and exit, and executes three non-idempotent memory requests to the memory management unit

(MMU).

Figure 34 contrasts the average performance of commercial workloads with a hardware-managed

TLB model and the architecturally-defined UltraSPARC III software-managed TLB handler. As the

comparison interval increases, the contribution of the serializing checks is readily apparent increas-

ing the performance impact to 28% at a forty-cycle comparison latency. While this result is from

Reunion, a comparable impact also occurs with strict input replication.

100

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
Comparison Latency (cycles)

No
rm

al
iz

ed
 IP

C

US III Hardware TLB
US III Software-managed TLB

Figure 34: Reunion’s average performance for commercial workloads with hardware and
software TLBs. Scientific workloads have infrequent TLB misses and are therefore show no

sensitivity to TLB implementation.

Strong memory consistency models can also affect checking performance. In contrast with Sun

TSO, the Sequential Consistency (SC) memory consistency model places memory barrier semantics

on every store (5-10% of the dynamic instructions in the workloads). Hence, every store serializes

retirement. An average performance loss of over 60% is observed at 40 cycles due to store serial-

ization with SC.

The results in this section underscore the importance of considering serializing instructions,

especially architecture-specific ones, in the performance of redundant execution microarchitectures.

5.5.7 Fingerprinting interval and fingerprints on the interconnect

This section now briefly evaluates the performance impact of moving architectural fingerprint

comparison from dedicated channels to the on-chip memory interconnect.

Architectural fingerprints are modeled as an additional cache request that consumes a port on

the snoop channel. The snoop channel is a high-priority channel that bypasses the L1 cache and is

typically used for acknowledging invalidation and downgrade coherence requests. The fingerprint

message traverses the core-l2 cache crossbar twice, with a routing and processing delay at the L2 of

four cycles.

101

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70
Fingerprint comparison interval (instructions)

No
rm

al
iz

ed
 IP

C

Web
OLTP
DSS
Scientific
Web
OLTP
DSS
Scientific

Figure 35: Performance of Reunion as the fingerprint comparison interval is varied for ded-
icated comparison channels (solid lines) and on-chip memory interconnects (dashed lines)

normalized to non-redundant baseline.

Figure 35 shows the performance of Reunion with fingerprints on dedicated channels with a

fixed ten-cycle latency (solid lines) and the on-chip interconnect (dashed lines) over a range of

fingerprint intervals, normalized to a non-redundant baseline. 4 Workloads have been combined

into their respective classes to simplify presentation. The results are equivalent to those presented

in [27], however the implementation in this thesis is written independently, the full set of workload

checkpoints further tightens the confidence intervals, and the baseline is a non-redundant CMP.

The results show little sensitivity to the fingerprint interval with dedicated interconnects. This

result is expected from the both results of the analytical model for the fingerprint interval in Sec-

tion 5.4.5 and the fact that only the scientific workload Ocean exercises the maximum retirement

bandwidth of the four-wide processor core, therefore ample buffering opportunity exists within the

ROB. This result shows that the predictions of the analytical model for the fingerprint comparison

interval also hold for realistic workloads—there is little sensitivity.

By contrast, the on-chip interconnect shows a drastic (10x) performance loss with a fingerprint

4Fingerprint intervals range from a minimum of one fingerprint per instruction to one fingerprint per sixty-three

instructions. In this implementation, large numbers of consecutive stores—e.g., more than sixty-four—will cause a

deadlock unless the interval is less than or equal to the store buffer size. Such bursts occur in Solaris context switch

routines.

102

comparison on every instruction. This performance loss, relative to a 10-cycle dedicated channel, is

almost eliminated as the fingerprint interval increases to sixteen instructions. The scientific work-

loads show the most significant performance sensitivity with smaller fingerprint intervals, primarily

due to cache port contention in ocean, which already has high MLP and IPC near four. The other

extreme, the OLTP workloads have low IPCs of 0.3 to 0.5 due to memory stalls. These workloads

place an order of magnitude less pressure on the ports and interconnects, and therefore are signifi-

cantly less affected by contention on cache ports and the memory hierarchy. Compared to dedicated

channels at an interval of one instruction, the average L2 cache transaction latency increases by

220%. However, this latency is only 13% at a sixteen-instruction interval and just 4% at a 63-

instruction interval. Therefore, the latency impact can be eliminated by choosing the appropriate

interval. These results (and further analysis in [27]) show that transmitting architectural fingerprints

over the on-chip interconnect is viable—and comparable in performance to a dedicated 10-cycle

comparison latency—for both commercial and scientific workloads.

5.6 Conclusion

Designs for redundant execution in multiprocessors must address input replication and output

comparison. Strict input replication requires significant changes to the pipeline. This thesis observes

that the input incoherence targeted by strict input replication is infrequent. This thesis proposes

the Reunion execution model, which uses relaxed input replication, backed by light-weight error

recovery within the processor’s speculative window. The model preserves the existing memory

system, including the coherence protocol and memory consistency model. The results show that the

overhead of relaxed input replication in Reunion is only 5% and 6% for commercial and scientific

workloads, respectively.

103

Chapter 6

Microarchitectural Fingerprints

Recent studies have shown that the vast majority of errors do not affect architectural state, there-

fore looking only at architectural results misses most errors [73, 117]. For faults that worsen with

time, such as device wearout, detecting early evidence of their existence (even if architectural state

is currently unaffected) is valuable for predicting and tracking future growth. An ideal detection

mechanism compares every sequential node with a error-free model on each clock cycle. While

manufacturing test approaches this limit by using expensive testers coupled with full-hold scan ar-

chitectures [55], this solution is impractical for in-field detection where testers are unavailable. As

a further constraint, the detection mechanism must (1) avoid false positives from non-determinism

in microarchitectural sources such as floating tri-state buses and asynchronous interfaces, both of

which carry architecturally-important important outputs, and (2) operate at-speed to detect errors

that are timing-dependent.

This chapter introduces the concept of microarchitectural fingerprints. Microarchitectural fin-

gerprints detect errors that are visible in microarchitectural state, even if these errors do not prop-

agate to architectural state. In-field detection of emerging device wearout is one application for

microarchitectural fingerprints. This application, called FIRST, differs from soft error detection—

where it is sufficient to check only retired architectural state. Instead, FIRST requires detecting

errors that are architecturally masked during normal operation and therefore do not currently affect

correct execution but, given time, will develop into errors in architectural state in normal operation.

Because the basic metrics only differ slightly from architectural fingerprints, this chapter is

structured assuming an understanding of the discussion in Chapter 2. Section 6.1 introduces the

104

fault model for microarchitectural fingerprints. Section 6.2 describes microarchitectural fingerprints

in detail. Section 6.3 explains the metrics as they apply to microarchitectural fingerprints, followed

by a hardware design in Section 6.4. The soft error coverage of microarchitectural fingerprints is

briefly evaluated in Section 6.5 and then the chapter concludes.

6.1 Fault Model

Microarchitectural fingerprints detect microarchitectural errors. Microarchitectural errors are

deviations from the implemented microarchitecture—the state in internal latches—of a processor

caused by an underlying fault. Microarchitectural fingerprints must are still subject to logical mask-

ing, which hides some internal errors. However, because microarchitectural fingerprints inspect

internal state that is not always visible architecturally, these fingerprints do not suffer from architec-

tural masking. This thesis does not evaluate latch-window and electrical masking.

The fault model targeted by microarchitectural fingerprints is the same as for architectural fin-

gerprints as defined in Section 2.1 (that is, soft errors and device wearout). However, for practical

reasons explained later in this chapter, microarchitectural fingerprints are not well suited for soft

error detection applications.

6.2 Microarchitectural Fingerprints

This section introduces microarchitectural fingerprints. Microarchitectural fingerprints capture

a reproducible, deterministic hash of internal microarchitectural state during execution to detect

differences with respect to a reference execution. Microarchitectural fingerprints leverage built-in

observe-only test and debug hardware, known as signature-mode scanout, to accumulate a concise

summary of microarchitectural state throughout the processor. Scanout consists of chains of special

observe-only latch cells added to a design [24].

Traditionally, signature-mode scanout has been of little practical use outside of manufacturing

test and debug due the indiscriminate selection of scanout cells within the design which capture

non-deterministic values and consequently renders the resulting hash useless. The proposed design

provides limited tolerance of non-determinism on monitored nodes, while maintaining coverage of

105

known-deterministic values on those nodes. This design leverages the logic designer’s knowledge

of the functionality to sample selectively values with scanout only when the values are known to

be deterministic. While traditional signature-mode scanout produces a single continuous hash for

the entire microprocessor, the proposed design also permits temporal and spatial error localization

by collecting the scanout chain output in small (16-bit) linear feedback shift registers (LFSR) or

multiple-input shift registers (MISR). This localization information can be useful for applications

such as graceful degradation so that error detection can continue after units have already failed in

the field [111].

6.3 Metrics

As with architectural fingerprinting, detection latency, comparison bandwidth, and error cover-

age remain the key evaluation metrics. However, the specific tradeoffs change in this domain.

Detection latency. Detection latency scales with the length of the scanout chains that can easily

reach thousands of nodes in industrial designs. However, this latency can be ameliorated by break-

ing long chains into several smaller chains and combining the resulting chains in parallel. While

the detection latency is bounded, the latency may be too long to permit timely recovery with soft

error detection. However, because microarchitectural fingerprints are intended to detect emerging

errors—not soft error recovery—the detection latency primarily serves to reduce the test time.

Comparison bandwidth. Microarchitectural fingerprints compact data into signatures over space

and time. Each chain generates one bit per cycle, which can be fed into a hash circuit. As with

architectural fingerprints, the hash is sampled periodically, therefore the comparison bandwidth is

primarily a function of the fingerprint comparison interval. Because microarchitectural fingerprints

operate below the level of instruction sets and architectural structures, microarchitectural fingerprint

comparison intervals are measured in cycles rather than instructions.

Error coverage. Error coverage is limited by logical and electrical masking in the circuit be-

ing observed. Furthermore, the location and number of scanout nodes and degree of determinism

determine how widely and how often values can be sampled by scanout.

106

DataIn ⊕ ShiftDataIn, shift chain11
Shift chain01
Snapshot DataIn10
Reset00
OperationLoadShift

Scanout
Latch

Scanout
LatchShift

ShiftIn

Load
DataIn

ScanClock

Out

Pipeline
Latch

Pipeline
LatchPipeline

logic
Pipeline
logic

Prev
cell
Prev
cell

Next
cell
Next
cell

Figure 36: The scanout cell and its logical operations. Load and Shift are external control

signals that allow sampling of the monitored DataIn input and shifting of the ShiftIn input.

6.3.1 Discussion

The long detection latency (thousands of cycles) and determinism requirements can make mi-

croarchitectural fingerprints unattractive for runtime soft error detection. Unlike architectural finger-

prints, microarchitectural fingerprints do have the restriction that execution must be cycle-for-cycle

deterministic. Furthermore, the internal state of the microprocessor must be carefully initialized be-

fore collecting a microarchitectural fingerprint. These restrictions limit the instances when microar-

chitectural fingerprints can be applied—for example, synchronizing replicated inputs between two

distant processor cores, and even local units, is increasingly difficult [18, 66]. Therefore, unlike ar-

chitectural fingerprints, which are expected to operate with arbitrary workloads, microarchitectural

fingerprints are realistically limited to executing controlled workloads in deterministic processor

test modes [75].

6.4 Hardware Design

Microarchitectural fingerprints are assembled using a combination of scanout cells to monitor

individual nodes and LFSRs or MISRs to compress the output over space and time.

107

Combinational/Sequential Logic

Combinational/Sequential Logic

SO SO SO SO

Figure 37. Scanout cells applied in a digital circuit.

Scanout Chains. Scanout cells are observe-only latches attached to combinational and sequential

nodes in the design that are selected by design engineers who target manufacturing test and silicon

debug. The scanout cell and its functions are shown in Figure 36 [24, 55]. The cell can load

monitored values into its latch and shift values from a previous cell. In addition, the scanout cell

has a “signature mode” operation that performs a logical XOR of previous values in the chain

with the currently-monitored value, producing a continuous hash—a fingerprint—of current values

combined with prior cycles’ state. The scanout cells are linked together as a long scanout chain,

similar to traditional scan architectures and as illustrated in Figure 37. However, unlike traditional

scan chains, because the scanout chains do not feed into subsequent circuit logic, they can passively

monitor the circuit as it operates without changing its intended behavior.

Because designers aggressively add scanout cells to their designs to aid test and debugging, the

scanout chains in actual designs commonly include non-deterministic values (referred to as an ”X”)

in the scanout signature.1 Unfortunately, the presence of a single non-deterministic value anywhere

along the scanout chain can result in false-positive microarchitectural error detection and the loss of

signature-mode scanout coverage for the entire chain. Thus, non-determinism becomes a key factor

that limits the usefulness of scanout chains in commercial designs.

In current designs, the non-determinism problem is partially addressed by globally disabling

loads on pre-determined cycles or disabling entire chains. However, this masking requires knowing,

a priori, the time and location of non-determinism and the masks can only be applied on a limited

number of cycles per execution.

1Sources of non-determinism include floating values on tri-state buses, uninitialized state following reset, unpre-

dictable external inputs, and marginal timing.

108

Datapath NodesDatapath Nodes

Scanout CellsScanout CellsLoad

Valid

LFSRLFSR

Module

Scanout CellsScanout CellsLoad TAP/RegTAP/Reg

Datapath NodesDatapath Nodes

Scanout CellsScanout CellsLoad

Valid

LFSRLFSR

Module

Scanout CellsScanout CellsLoad

Global load

Figure 38: The design of microarchitectural fingerprints: each module contains a scanout
chain and local LFSR. The values of each module’s LFSRs are sampled and shifted out to

internal registers or the test access port (TAP).

Microarchitectural Fingerprints. Microarchitectural fingerprints overcome non-determinism prob-

lem of scanout chains, while preserving observability of internal nodes in the circuit. Microarchi-

tectural fingerprints take advantage of the fact that designers have selected nodes for observation

and know the node’s intended function. This information can be exploited to avoid sampling nodes,

on a fine granularity when determinism cannot be guaranteed.

The proposed hardware design for microarchitectural fingerprints is illustrated in Figure 38.

Individual scanout nodes can be locally disabled for all or portions of a scanout chain by control-

ling the ScanLoad signal (the chain still shifts values, independent of the ScanLoad). This allows

individual signals on scanout nodes to be dynamically disabled during cycles when the nodes are

known or suspected to be non-deterministic. For example, one instance where this is particularly

useful is on tri-state nodes: these nodes typically include important datapath values. Furthermore,

these nodes can be triggered by existing enable signals from the control path that indicate cycles

when the tri-state bus is being driven.

Because microarchitectural fingerprints are intended for in-field error detection, expensive testers—

with their associated high external pin bandwidth—will not be available. With traditional testers,

full state of the chip can be scanned out for diagnosis of which modules are failing and when,

which is important for isolating failures. However, the same techniques cannot be performed in the

field. The design for microarchitectural fingerprints preserves spatial and temporal error locations,

as shown with the global load signal. Within each module, local LFSRs collect the output of the

local scanout chains. These values are periodically transferred out over a global scanout chain to

109

an architecturally-visible debug register or the test access port. At this point, the microarchitectural

fingerprint is compared with known-good values for the same execution. This design has the ad-

vantage of bounding the microarchitectural error detection latency to the length of the chain and,

therefore, the comparison interval. Furthermore, the comparison bandwidth required scales with the

number of modules and the hash size, not the total number of bits being monitored.

6.5 Soft Error Injection Evaluation

This section evaluates the coverage of soft errors for microarchitectural fingerprint and compares

them to architectural fingerprints in the OpenSPARC T1 RTL model.

6.5.1 Methodology

The statistical error injection experimental framework is the same as described in Chapter 3.4 for

architectural fingerprints, except for the addition of a microarchitectural fingerprint model. A cus-

tom Verilog PLI module simulates the scanout chains and LFSRs. Microarchitectural fingerprints

are applied recursively to all registers in the chosen top-level module, in addition to a boundary

scanout chain on the outputs of the module. Bit flips injected into pipeline latches are not regis-

tered as microarchitectural errors in the scanout chain unless the erroneous value propagates to a

subsequent consuming latch without being logically masked. The microarchitectural fingerprint is

compared once after the chain has been fully shifted into an LFSR at the end of each test program

execution.

6.5.2 Results

Figure 39 shows the baseline coverage of architectural and microarchitectural fingerprints using

the methodology outlined above. Each bar reports the fraction of soft errors injected that were

detected as errors by the respective detection mechanism. The individual architectural results are

identical to those presented in Chapter 3.4, therefore this discussion is limited to new results with

microarchitectural fingerprints and a comparison of the two error detection mechanisms.

110

0

0.2

0.4

0.6

0.8

1

byp exu fcl fdp lsu swl tlu Full
SPARC

Fr
ac

tio
n o

f in
jec

ted
fau

lts
 de

tec
ted

Microarchitectural Architectural

Figure 39. Soft error injection detection results.

Logical masking. Logical masking in the RTL model prevents microarchitectural fingerprints

from reaching 100% coverage. This error masking is particularly acute in the load-store unit (lsu)

and trap logic unit (tlu), where complicated control paths and datapaths handle exceptional con-

ditions, but are largely unused during common-case execution. By contrast, the bypass network

(byp) has a high error detection rate, because it holds operands and results for instructions on ev-

ery active cycle. Furthermore, the bypass unit is dominated by muxes that select three independent

operands from a single set of source values. This design increases the likelihood of propagating the

error on at least one path, hence its relatively high fault coverage. Overall, due to the high level of

logical masking during program execution, only 55% of the injected errors are detected as errors by

microarchitectural fingerprints on the full-core model.

The microarchitectural fingerprint masking is not comparable to the 85% average level of mask-

ing at the microarchitecture level reported by Wang et al. [117]. This is because Wang inspects

microarchitectural state (all latches) at the end of program execution, where erroneous values can

be masked by execution in subsequent cycles. By contrast, microarchitectural fingerprints preserve

errors that occur temporarily in the middle of execution, even if they are logically masked in sub-

sequent cycles. Therefore, microarchitectural fingerprints are more sensitive to microarchitectural

errors.

Architectural masking. The difference between microarchitectural and architectural fingerprint

bars in Figure 39 indicates the contribution of architectural masking in the design. The individual

units architecturally mask 77% of the microarchitectural errors, on average, with the thread switch

111

logic being the notable exception. This level is higher than logical masking, where errors need only

propagate to a monitored latch.

This result provides motivation against using microarchitectural fingerprints for soft error de-

tection. The demands of soft error tolerance are satisfied if architectural execution remains correct.

Therefore, because microarchitectural fingerprints show strong sensitivity to microarchitectural soft

errors that never affect architecturally correct execution and the microarchitectural fingerprint pro-

vides no indication of whether the microarchitectural error will be masked architecturally, this detec-

tion mechanism needlessly detects errors that should be derated [73]. By contrast, for applications

where there is temporal correlation between instances of a fault (e.g., emerging wearout detection),

detecting architecturally masked errors provides a useful indicator of more widespread future faults.

6.6 Conclusion

In closing, microarchitectural fingerprints provide high observability of the internal microar-

chitectural state; however, they are limited by the determinism requirement. Microarchitectural

fingerprints are further evaluated for emerging wearout detection in Chapter 7.

112

Chapter 7

FIRST

7.1 Introduction

This chapter introduces a process for early detection of emerging wearout faults in processor

cores called Fingerprinting In Reliability and Self-Test (FIRST).

As CMOS feature sizes continue to shrink, transistor and interconnect reliability worsens [65].

While numerous physical phenomena will account for future device failures, the overall system-

level impact is shorter and less predictable lifetimes for microprocessors [110].

Unlike traditional manufacturing defect and single-event upset fault models (e.g., stuck-at faults

and transient bit flips, respectively), wearout-related faults in future process technologies will ap-

pear with gradual onset and will first affect device timing [60, 89]. Designers conservatively add

timing and voltage slack—known as a guardband—to ensure that logic meets latch setup times and

to provide noise margins. As logic devices transition more slowly over their lifetime, combinational

logic paths will eventually fail to meet timing requirements and encroach on the design’s guard-

band [58]. Initially faults will appear intermittent, depending on specific operating conditions (e.g.,

voltage, temperature, circuit inputs, etc.), but eventually result in permanent failure through hard

breakdown. The number of potential critical paths in complex designs—particularly those due to

rising within-die and across-die static variations [22]—makes the task of predicting the first paths

to develop wearout difficult.

Recent work advocates detecting and recovering from errors caused by wearout as they occur

during normal operation. This thesis refers to such techniques as just-in-time error detection. Prior

113

proposals integrate carefully designed error detection mechanisms into existing designs, but face

significant challenges from the increasing number of unpredictable critical paths [19], need custom

latch designs [2, 33] or require integration with resource scheduling mechanisms [98]. Bower et

al. [23] avoid the challenges of circuit-level test, but require extensive design changes to support

instruction-level checking.

This thesis proposes early error detection with FIRST: Fingerprinting in Reliability and Self

Test. FIRST uses infrequent, periodic (e.g., once daily) testing where application and system soft-

ware are suspended from a core, and the core is subjected to marginal operating conditions while

running special test programs to detect the onset of wearout. FIRST reduces the processor’s ef-

fective guardbands to expose marginal critical paths well before developing wearout faults affect

normal operation on those paths.

This thesis evaluates detection two mechanisms for use with FIRST: microarchitectural and

architectural fingerprints. Microarchitectural fingerprints provide a lightweight signature of mi-

croarchitectural state updates using existing test hardware, while architectural fingerprints sum-

marize architectural state updates with dedicated hardware added at the retirement stages. Both

techniques allow detection of growing wearout faults across the processor core without requiring

advance knowledge of which devices will fail.

The contributions of this work are:

• FIRST: This thesis introduces the idea of reducing guardbands to provide early runtime de-

tection of device wearout.

• Wearout fault model: This thesis presents a path delay fault-based model of wearout that is

fast enough to simulate unit-wide faults, with FIRST, on full-chip RTL.

• Detection mechanism evaluation: This thesis evaluates coverage of wearout detection mech-

anisms over a range of representative units in full-chip RTL simulation using the FIRST

procedure. The results show that microarchitectural fingerprints provide high coverage for

isolated wearout, while architectural fingerprints are as powerful as microarchitectural finger-

prints for detecting widespread development of wearout.

114

This chapter is organized as follows. Section 7.2 provides background on wearout faults. Sec-

tion 7.3 introduces the FIRST concept and implementation. Section 7.4 presents a simulation model

for wearout faults. This thesis evaluates the simulation model and FIRST procedure with finger-

prints in Section 7.5 and then concludes.

7.2 Background

Sources of device wearout include gate oxide breakdown, hot-carrier injection, negative-bias

temperature instability (NBTI), and electromigration [65]. The onset and end stages of device

wearout (soft breakdown and hard breakdown, respectively) have been studied extensively in device

reliability literature using accelerated wearout testing techniques. The effects of device wearout are

expected to worsen with process technology scaling [65].

During gate oxide soft breakdown, transistor switching speed decreases for a given operating

voltage [58]. The logical operation of the transistor is nevertheless maintained [11]. This behavior

means logic gate outputs transition more slowly as the soft breakdown progresses. Similar results

have been shown for NBTI [87] and hot-carrier injection [28].

In light of this behavior, wearout manifests as slow rising or falling transitions on the affected

devices [25]. For example, a NAND gate with a failing NMOS transistor experiences a slowdown

for the falling output, while a failing PMOS transistor experiences a slow rising output transition.

Depending on the precise fault location in a logic gate, speedups are also possible [89], however

slow-downs still dominate performance and are decidedly detectable.

While today’s designs have multiple statically known critical paths, increasing within-die vari-

ation associated with process scaling means that a particular die’s critical paths are not necessarily

known at design time [21]. Furthermore, experiments show that switching speed decreases dramati-

cally during soft breakdown [87], which means that existing critical paths lengthen and new critical

paths can arise. While growing levels of process variation mean that some devices are inherently

more likely to fail than others, the development of wearout faults is also strongly temperature and

voltage-dependent [19, 65, 109, 110] and therefore widespread instances of faults can develop con-

currently within the same unit. This is shown in simulation-based studies of NBTI [78] and gate

oxide breakdown [19]. Because of these issues, predicting the location and number of wearout

115

faults is difficult and detection mechanisms must look broadly across the design to detect the timing

changes.

Although device wearout is gradual and the precise failure locations are unpredictable, the fail-

ure rate is shown to fit time-dependent distributions (e.g., log-normal and Weibull [58, 111]) and

the failure rate is known to increase with time. Furthermore, empirical evidence shows that once

a device has begun the failure process, the degradation rate increase with time and is also strongly

affected by operating conditions (e.g., exponentially related to supply voltage) [60]. With typical

operating conditions, the soft breakdown occurs gradually and progressively over days or weeks.

Thus, there is opportunity for early detection of devices that begin soft breakdown.

7.3 Detection with FIRST

Based on the observation that common wearout faults exhibit a gradual onset, this thesis pro-

poses the FIRST (Fingerprinting In Reliability and Self Test) methodology for early detection of

device wearout. The key idea behind FIRST is to test periodically the processor core in near-

marginal conditions to expose changes in timing that initially hide inside the processor’s frequency

and voltage guardbands. FIRST can utilize both architectural fingerprints (described in Chapter 2.2)

and microarchitectural fingerprints (described in Chapter 6) to compact and efficiently compare the

outcome of each test.

Effective early wearout detection demands (1) mechanisms to induce marginal operation that

exposes wearout faults in the processor core and (2) extensive coverage of circuit nodes to detect

the developing marginal faults.

The FIRST procedure performs in-field wearout detection in processor cores. To start a test

period, the operating system temporarily takes the core offline and places it in a deterministic test

mode. The core then loads deterministic functional test programs that exercise logic transitions

within control logic and datapaths. While the programs execute, the core generates an at-speed

fingerprint of execution that summarizes internal microarchitectural or architectural state updates.

The core repeats the same programs and fingerprint collection as operating conditions are gradually

moved to less-conservative operating corners (e.g., by lowering supply voltage or increasing clock

frequency) which effectively reduces the frequency and voltage guardbands.

116

When the recorded fingerprint no longer matches those of earlier executions with more conser-

vative conditions, the frequency guardband has been exceeded and the test period ends. A finger-

print mismatch at progressively more conservative operating conditions in subsequent test periods

(e.g., over several days) indicates the onset of wearout. The appearance of a small number of faults

presages extensive future failures from hard breakdown and severe soft breakdown. The early warn-

ing allows time for scheduled replacement or removal of the failing processor.

The fingerprint for a suite of tests programs and information on when they begin to differ can

be stored over time by the operating system or in the BIOS using machine check storage [82].

The long-term storage and analysis of this information is beyond the scope of this work; however,

trending algorithms such as those utilized by Blome et al [19] can potentially be applied to identify

and track the onset of wearout or extend the lifetime of the processor.

7.3.1 Inducing Marginal Operation

Several knobs are already available for artificially producing a near-marginal operating envi-

ronment in the processor core, including voltage regulators with dynamic voltage scaling, dynamic

clock frequency and width controls, and thermal monitoring and control [37]. These mechanisms

are discussed below.

Dynamic voltage scaling. Modern processors request changes in the voltage regulator output

to save power [46]. Lower voltages cause slower switching speeds that also serve to reduce the

guardbands for a given clock frequency. Wearout faults have been empirically shown to increase

frequency sensitivity to operating voltages [87]. This mechanism provides a safe and practical

procedure for inducing marginal operation.

Dynamic frequency scaling. Processors also include clock frequency scaling capabilities to re-

duce power consumption during periods when the processor is idle. This capability can be employed

to decrease the core’s clock cycle time and consequently reduce the guardband. Some processors

also allow regional adjustment of clock skew and temporary phase shrinking and stretching [92],

which can isolate sections of the design for testing. Test modes also provide deterministic opera-

tion of the processor core, although sometimes only at a subset of possible clock rates [113]. This

117

mechanism provides a way to reduce directly the frequency guardbands, but the mechanism may be

constrained by the design’s power envelope.

Thermal scaling. On the monitoring side, processors contain thermal diodes to measure temper-

atures across the die. Coupled with functional test programs that run power-consuming instruction

sequences, the diodes can help establish a desired core temperature. Given the well-known relation-

ship between switching speeds and temperature in CMOS, this factor also temporarily reduces the

guardband and exposes wearout faults. As with dynamic voltage scaling, this mechanism indirectly

reduces the frequency guardband, but as with dynamic frequency scaling, may also be constrained

by the design’s power envelope.

While all three methods discussed in this section will reduce the guardband, dynamic voltage

scaling is the safest procedure for long-term reliability. Unlike dynamic voltage scaling, dynamic

frequency and thermal scaling both have the potential to place extra thermal stress on the processor,

which accelerates wearout.

7.4 Wearout Fault Modeling

A key challenge in evaluating microarchitecture-level device wearout detection methodologies

such as FIRST is accurately modeling the effects of wearout faults. This section outlines the wearout

fault injection study and simulation framework.

7.4.1 Wearout Fault Injection Study

The overall goal is to understand the fault coverage characteristics of a range of in-field wearout

fault mechanisms. Detection mechanisms range from simply checking the output of functional test

programs to detailed observation of internal microarchitectural state.

Integral to the study of wearout faults is a model of wearout’s effect on logic. This thesis

models wearout faults as path delay faults [102], a model that is used in manufacturing tests to

exercise critical paths [74]. Because wearout faults appear as increased switching times, the path

delay model applies to modeling the effects of wearout. A path is a sequence starting at a primary

input (the output of a latch), through a sequence of cells, to a primary output (the input of a latch).

118

The path’s delay determines how long a transition on the input of the path takes to propagate to

the output. When the delay along the path exceeds the clock cycle time, the values in the primary

outputs may be latched incorrectly, resulting in errors that appear as bit flips in digital circuits.

This model allows investigation of wearout faults in a baseline circuit with pre-determined path

delays. While this represents a static view of a circuit’s path delays, the simulation environment

controls the clock period to model the application of FIRST to a processor with a fixed degree

of wearout. The framework is extended to inject errors due to wearout into specific paths in the

microprocessor logic. This framework allows investigation of wearout detection techniques over

different instances of wearout.

7.4.2 Wearout Fault Simulation

The path delay values are easily generated from synthesis and can be simulated efficiently in an

RTL model. In this test, the circuit’s critical paths are identified and logic transitions are monitored

for triggering conditions. On a matching transition during gate-level simulation, the affected logic

is forced to an erroneous value to model the activated fault.

To maintain reasonable simulation speed and to support a large number of simulations, faults

should be simulated in RTL (register-transfer level) instead of gate-level models. However, RTL

generally models combinational and sequential logic without accounting for delay. Given wearout’s

similarities to path delay faults, delay fault simulation should provide an accurate model of wearout

faults for coverage evaluation. A technique similar to that used in SpeedGrade [50] is implemented

to achieve the accuracy of gate-level simulations for path delay faults, but with simulation of RTL

and wearout fault trigger conditions.

Fault Simulator Wearout faults are modeled using the flow shown in Figure 40. The input is an

RTL description of the circuit to be analyzed, a test program, and a selected clock frequency that

determines the slack in the guardband. The output consists of activation statistics for wearout fault

sites and error coverage of the detection mechanism.

From an RTL description, ASIC synthesis with a standard cell library generates a list of path

delays in the circuit. The path delay list contains timing estimates for both rising and falling input

transitions, based upon the standard cell library’s characterization for each pair of primary inputs

119

ASIC
Synthesis
ASIC

Synthesis

RTL
Simulator
RTL

Simulator

Fault injector,
Scanout

Fault injector,
Scanout

Coverage
statistics
Coverage
statisticsFrequency/

guardband
setting

Frequency/
guardband
setting

Path
Delay List
Path

Delay List

RTL DesignRTL Design

Figure 40. The tool flow for modeling wearout faults.

and outputs that form a path. This information is used to determine when a particular path is a

candidate for missing timing in a baseline model of the circuit without wearout. For each circuit,

the path delay list is static and only needs to be computed once. The path delay list’s delays can be

altered later to model the onset of wearout in a once-good unit.

Next, an RTL simulator is augmented with a custom wearout fault injection and scanout chain

model. The RTL simulator is a commercial Verilog simulator, while the fault simulator and scanout

chains are C-language based libraries that communicate with the simulator through the Verilog

programming language interface (PLI). The fault simulator works as follows. The path delay list

is read for the circuit. The selected guardband, specified as a clock period in this model, is used

to eliminate paths from consideration in later simulation. If it can be determined that the selected

clock period meets timing for all possible input transitions on a path, the path is eliminated from

consideration.

On each simulated clock cycle, the fault simulator identifies transitions on primary inputs that

potentially cause the primary output to miss timing. If timing is missed, the combinational logic

driving the primary output should behave as if the primary input had never transitioned (i.e., stuck

at the previous cycle’s value). In this situation, the primary output determined by the RTL simulator

needs to be recomputed with respect to the fault model.

This process, however, is not as simple as flipping the output bits, however. Because the primary

input may not be a controlling value, the primary output may still be unaffected by the path delay

120

fault. To determine the correct values for primary outputs, the fault simulator temporarily rolls back

the input transition (by forcing the previous cycle’s value on that node) and steps the Verilog model

to update the corresponding primary outputs. The updated primary outputs are then compared with

the original fault-free output to determine whether the error was masked by a controlling input

or propagated to the primary output. The simulator then restores the original primary inputs for

unaffected paths. If the affected primary output does differ, the simulator forces the primary output

to its erroneous value. The simulator then advances the clock. The fault simulator also collects

statistics for each path, including tracking whether any triggering conditions occurred and whether

the induced errors propagate to a primary output or are masked.

Instances of wearout are modeled by applying a distribution of added delay along paths in a

path delay model for selected units. In this study, a uniform random delay of up to 10% is added

to the original delays (estimated by synthesis) across all paths in the selected unit. This process

is repeated with different random seeds to model different wearout patterns that can occur in each

processor core over its lifetime. Averages over all of these instances are reported to estimate the

behaviors over a population of processors affected by wearout.

7.5 Evaluation

This section characterizes the wearout fault model and evaluates FIRST’s detection capabilities

using architectural and microarchitectural fingerprints. The objectives of these experiments are to

demonstrate and compare the detection capabilities of architectural and microarchitectural finger-

prints for the early stages of wearout.

This evaluation is structured as follows: a preliminary study shows the baseline feasibility of

FIRST using microarchitectural fingerprints. Next, architectural fingerprints and microarchitectural

fingerprints are compared for widespread wearout across the unit; these results are further analyzed

to identify instances where silent data corruption resulted. Finally, the detection mechanisms are

compared for a single instance of a wearout fault.

The wearout fault modeling tool flow from Section 7.4 is applied to several representative units

of the Sun OpenSPARC T1 release 1.4 [113] with architectural and microarchitectural fingerprints

added, as described in Chapters 2 and 6. The OpenSPARC T1 is a multi-threaded, multi-core chip

121

design, made available in synthesizable Verilog RTL. The evaluated units are listed in Table 13 and

their functions are briefly described here. The units are selected to evaluate a range of representa-

tive circuit types in a typical processor core. Note that the synthesis does not count SRAMs and

supporting logic (due to a lack of a memory compiler), and full path counts and maximum paths

across modules are unavailable for the full core model in this synthesis flow. Finally, the individual

units represent a sampling of the entire core; therefore, the sum of the measures for each unit does

not match the total for the core.

• The execute bypass (byp) logic is pure datapath circuitry which contains the operating for-

warding and bypass network for the ALU and load values, as well as ECC computation for

results being written to the integer register file. The critical paths are clustered in the pipelined

ECC generation logic.

• The execute ALU (exu alu) unit contains the datapath for the pipeline’s 64-bit ALU and

logical operations. The critical path, however, is in error detection for invalid virtual ad-

dresses. Because the test programs used to evaluate FIRST always use valid virtual addresses,

the effective critical path for this study is on the bus lines between datapath operand inputs

and operand outputs.

• The fetch control logic (fcl) contains the control path for the instruction cache, fetch stage,

and program counter/next program counter management for the entire pipeline. The critical

path is in trap/exception determination for fetching the next cycle’s instruction.

• The fetch datapath (fdp) is the datapath controlled by fcl. It contains fetched instruction

bits, program counters for the entire pipeline, as well as PC+4 and PC+branch offset com-

putations (48-bit adders), similar to the exu alu. The critical path is in the next fetch PC

selection and computation.

• Finally, the thread select logic (swl) contains a set of finite state machines that control the

ready-to-execute state across four threads and selects one thread to issue on each cycle, based

upon readiness, fairness, and pipeline structural hazards. The critical path is in the next state

selection.

122

Table 13: Structural information for the studied microarchitectural units studied in the
OpenSPARC. These measures include the small additional logic required to integrate ar-

chitectural fingerprints into the pipeline.

Unit Name Registers Latch Area Standard Paths Maximum

Bits (µ2) Cells path (ps)

Execute bypass (byp) 110 708 141,767 5,450 19,783 769

Execute ALU (exu alu) 377 2,198 48,881 1,734 26,887 1,337

Fetch control path (fcl) 135 280 51,033 2,698 11,323 826

Fetch data path (fdp) 31 1,358 177,077 8,463 41,210 800

Thread select logic (swl) 80 190 39,733 2,193 7,061 993

Full core 2,827 22,095 3,209,188 127,325 — —

Due to the lack of a memory compiler, timing estimates for SRAM-based structures such as the

register file or TLB cannot be determined; however, the datapath portions of these structures are

similar in nature to the bypass network.

7.5.1 Feasibility of FIRST

This thesis first evaluates the potential of microarchitectural fingerprints for detecting the timing

faults that are crucial to the effectiveness of FIRST.

The path delays are calculated using the Synopsys Design Compiler mapping to the Arti-

san/TSMC 0.18um low-power standard cell library [9]. In this experiment, the statistics differ from

Table 13 because this evaluated unit lacks architectural fingerprint support (this difference does not

affect the conclusions of this experiment). The longest transition delay in the unit is estimated to

be 951ps over 6,929 paths between 186 latch bits. The unmodified thread switch logic is simu-

lated using Synopsys VCS. The scanout chains are modeled using Verilog PLI and accumulated

in a 16-bit LFSR. The circuit is exercised with uniform random input vectors at the module level

for 10,000 input vectors following a reset sequence (additional input vectors do not significantly

change the observed results) and a cool-down time to shift remaining values out of the scanout

chain. The modeled operating frequency is varied between 900ps and 955ps. The baseline circuit

delay, without wearout, is employed for this result.

The fault activation results are summarized in Table 14. The total number of potentially sensi-

tized paths is listed in the second column. As discussed in Section 7.4, path delays that are shorter

than the clock period are discarded from consideration; therefore, the number of sensitized paths

123

Table 14. Fault activation results for the thread scheduler over a range of clock periods.

Clock Possible Activated Propagated

Period (ps) Paths Paths Paths

955 0 0 0

950 4 1 0

945 9 1 0

940 14 2 0

935 22 2 0

930 33 3 0

925 51 6 1

920 73 12 4

915 99 16 4

910 137 20 6

905 181 25 7

900 207 28 9

increases with shorter clock periods. The third column indicates the activated paths. Activation oc-

curs when there is a transition at the primary input of a path between two consecutive input vectors.

For most paths in this circuit, no transitions are observed at the primary inputs that activate the fault.

Furthermore, because of logical masking even fewer of activated paths sensitize and propagate an

incorrect value at the primary output (shown in the final column). The baseline circuit has 6,929

total paths, of which 2,459 and 1,029 can be activated and propagated, respectively. As shown in

the table, the vast majority of these paths are shorter than 900ps. One important result of this ex-

periment is that the statically determined longest paths do not necessarily determine the minimum

usable clock period, even if activating transitions can be produced at primary inputs.

The final column in Table 14 indicates when timing faults manifest as microarchitectural errors.

The first such failure occurs at 925ps. The microarchitectural fingerprints accumulated over each

test period correctly distinguished executions where all timing has been met (over 925ps) from

those where an error had been propagated to a primary output (925ps and below). That is, as the

clock period is decreased, the tested fingerprint begins to mismatch with the error-free fingerprint at

925ps, just as the first error propagates to a latch.

This result shows that microarchitectural fingerprints differ even when only a single path de-

lay fault has caused a path delay error during the test. The microarchitectural fingerprints clearly

124

Table 15. OpenSPARC processor parameters.

Core Single 64-bit 6-stage scalar pipeline

4-way hardware multithreaded

1 ALU, 3 read, 2 write port ECC-protected RegFile

1 load, 1 store cache ports

1GHz core frequency

L1 Cache 16KB I-cache, parity-protected

8-KB D-cache, write-through, parity-protected

L2 Cache 3MB 12-way associative, 4-banks

Unified, ECC-protected, 7-cycle hit latency

Memory 256MB 400MHz DDR2 DRAM

128 cycle latency

identify when one or a small number of paths in the design begin to miss timing. Therefore, microar-

chitectural fingerprints do provide the high fault observability needed for the FIRST methodology.

7.5.2 Wearout Detection with FIRST

The previous section established that microarchitectural fingerprints are clearly sufficient for

detecting errors from timing faults in the thread switch logic. The next question is whether archi-

tectural fingerprints on a processor core running test programs are also sufficient for error detection

with device wearout.

Methodology

This section describes the methodology for comparing detection mechanisms using validation

test programs running on a single processor core. The processor parameters match those of the

shipping Sun Niagara T1 processor and are summarized in Table 15.

Because the number of combinations of faults and processor states is enormous, a sampling

methodology is employed to estimate the behavior of different detection mechanisms over a range

of wearout scenarios and test programs. Wearout faults are simulated in the baseline path timing

for each unit to produce sixty-four instances of wearout, as described in Section 7.4 (each instance

starts with a different random seed and adjusts the delay of all paths in the unit). Error injection

is enabled as the processor enters the main function of each test program, following execution of

reset and initialization code.

125

Table 16. The test programs used to evaluate FIRST.

Name Dynamic Test Description

instructions

dram mt 4th loads 3,610 DRAM load/store misses

attrib many

exu irf local 39,538 Local windowed registers and bypass network

mt alu ldx 1,264 Combination of ALU, load, and endian programs

mtblkldst loop 2,564 Back-to-back block loads/stores

mt Ifill L2 1,582 I-cache fills/misses

mt raw 2,018 Combination of read-after-write programs

tr tixcc0 4,232 Integer condition code traps

Each of these wearout instances is executed with seven multithreaded validation test programs

supplied with OpenSPARC T1. These programs, summarized in Table 16, are selected to test a range

of units in the processor. The test programs are written for architectural verification. While they

focus on exposing improper operation architecturally, the test programs are not specifically written

to activate and propagate all possible errors to architectural state. Therefore, with more targeted

test programs, wearout faults could potentially be activated at lower degrees of stress and additional

faults can be directed towards architectural state. In this situation, architectural fingerprints can

improve their coverage, approaching that of microarchitectural fingerprints.

For executions where all threads of the program complete, the comparison of fingerprints with

a error-free model is reported after the last thread completes and the scanout chains have shifted out

completely. Microarchitectural fingerprints are gathered on all latches within the unit, as well as

a boundary scan on all outputs of the specified unit. Architectural fingerprints are gathered on all

architectural register and store value/address retirements, as described in Chapter 3. For executions

where the processor ceases executing on at least one thread, the results of fingerprint comparison

(both architectural and microarchitectural) are reported following a timeout of 10,000 clock cycles

of inactivity, which is well beyond the maximum latency experienced by normal on-chip or off-

chip operations. The timeout condition, which is a trivial—but sometimes effective—detection

mechanism, is also reported separately.

126

Baseline wearout error detection

The detection coverage is evaluated for three error detection mechanisms: microarchitectural

fingerprints, architectural fingerprints, and a simple timeout.

Figure 41 reports the results for the test programs, averaged over a range of wearout conditions.

Along the horizontal axis, the processor is stressed by decreasing the clock period. The level of

stress ranges from zero, where the clock period is equal to the longest path in the unit, up to 200ps.

The vertical axis indicates the fraction of executions in which an error was detected by each detec-

tion mechanism. This measure is the coverage of the detection mechanism over these test programs

and faults. This fraction is out of 448 runs per clock period for each unit (sixty-four instances of

wearout and seven test programs).

In each plot, the microarchitectural fingerprint curve also establishes the bound for “perfect”

error detection. Microarchitectural fingerprints have high observability of errors propagating to

a latch. In practice, these fingerprints show the same behavior as perfect detection, modulo the

extremely rare instance of aliasing. This behavior has been verified in the simulator, where software

can distinguish between masked and true activations (errors) for each fault.

The microarchitectural fingerprint curve is not constant at unity because, although path delay

faults can be activated at a longer clock period, they can also be logically masked and therefore

produce the same fingerprint as an error-free execution, as demonstrated in the previous section.

Hence, the curve should monotonically increase from zero as additional faults activate at higher

stress levels. Furthermore, other detection mechanisms, with imperfect coverage, will fall below—

or at best, match—the microarchitectural fingerprint curve.

The high-order result to observe from each of these graphs is that first, with the exception of

exu alu unit, the architectural fingerprint curve maintains only a small gap between itself and

the microarchitectural fingerprint curve. Second, the architectural fingerprints quickly converge to

the high level of coverage of microarchitectural fingerprints. This result indicates that architectural

fingerprints are as effective as microarchitectural fingerprints in detecting wearout in the FIRST

framework. That is, for the same level of stress, architectural fingerprints are as effective as mi-

croarchitectural fingerprints in detecting wearout.

127

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut Microarch. FP
Arch. FP
Timeout

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut

Microarch. FP
Arch
Timeout

(a) byp (b) exu alu

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut

Microarch. FP
Arch. FP
Timeout

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut

Microarch. FP
Arch. FP
Timeout

(c) fcl (d) fdp

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut Microarch. FP
Arch. FP
Timeout

(e) swl

Figure 41: Baseline wearout fault detection coverage for microarchitectural fingerprints,
architectural fingerprints, and timeout mechanisms. As each unit’s clock period is reduced,

the number of wearout fault paths increases. Coverage is measured as the fraction of total

executions where the mechanism detected an error.

Next, this thesis examines each unit’s results in detail. For the execute bypass unit in Fig-

ure 41(a), wearout directly corrupts architectural state values within the bypass network. Archi-

128

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 fa

ilu
re

s
de

te
ct

ed

exu_irf_local.s
mt_alu_ldx.s
mtblkldst_loop.s
mt_Ifill_L2.s
mt_raw.s
tr_tixcc0.s

Figure 42: Wearout fault coverage for architectural fingerprints and the exu alu unit, sepa-

rated by test program. The mtblkldst loop and mt Ifill L2 fail to activate any true faults in this
unit, while the remaining programs activate true wearout faults at varying levels of stress.

tectural fingerprints capture virtually all detectable errors with a low level of stress. This will be

further analyzed in the following section. The lack of timeouts until high levels of stress also indi-

cates that the processor continues to run the test programs with silent data corruption effects, despite

the injected errors.

Similar results are shown for the execute ALU unit in Figure 41(b). Timeouts are simply not

triggered at all for faults within the tested clock period range on this unit. However, this unit shows

two other interesting behaviors. First, no faults are triggered at less than 50ps of stress. This implies

that the longest paths in the design are not true critical paths: they cannot be logically activated,

or at least cannot be activated with these test programs. The slowest logic paths are used to check

for valid virtual memory addresses for calculated load addresses (architecturally, this logic checks

the so-called “VA-hole” in SPARC v9 [113]). The path lengths in the baseline case for this logic

span to over 75ps before another exercised path is uncovered. Because the selected test programs

purposefully generate valid virtual memory addresses, this logic is never activated. The next true

longest paths are operand datapaths, starting at 50-75ps below the longest paths. These paths are

exercised by the test programs.

Second, the execute ALU unit exhibits a stair step-like behavior for the architectural fingerprint

coverage. This behavior is strongly correlated with the individual test programs. To analyze this

129

further, Figure 42 shows the architectural fingerprint detection coverage for the execute ALU unit,

separated by program. Most of the programs show the familiar behavior of sharply increasing

coverage after a specific stress level. However, as shown in the figure, two programs, mt Ifill L2

and mtblkldst loop, are unable to propagate any true fault activations to architectural state,

regardless of the evaluated stress levels.

The stair step behavior for the execute ALU unit is not, however, a deficiency in architectural

fingerprint coverage. Only if the coverage were zero over all test programs should this be a concern.

For error detection to succeed, only one program is necessary to activate and propagate each fault

site. Furthermore, this situation can be rectified by writing more effective test programs that trigger

the critical paths to architectural state when coverage is low.

The fetch control logic shown in Figure 41(c) differs from the prior two units because it is a pure

control path. In this unit, the microarchitectural and architectural fingerprints closely follow each

other in fault coverage. Because errors in the fetch stage are likely to directly affect architectural

state. Furthermore, beginning at 50ps below the longest paths, timeouts are observed as well. This

indicates the occurrence of deadlocks in the processor, which should be unsurprising because the

fetch control logic is critical to fetching and executing instructions.

The fetch datapath unit shown in Figure 41(d) behaves similarly to the exu alu datapath logic.

Microarchitectural and architectural fingerprints show nearly equal coverage. However, because

every program necessarily utilizes PC+4 and PC+branch offset logic, there is no stair step be-

havior evident in this unit. Furthermore, the processor continues fetching instructions—at invalid

addresses—without immediately incurring deadlocks. Only when the processor is stressed hard

enough (past 150ps) does the fetch logic fail badly enough to cause timeouts.

Finally, the thread switch logic shown in Figure 41(e) shows identical behavior for all three

of the detection methods. This behavior results because, in practice, the thread switch logic is

extremely sensitive to timing faults. The switch logic consists of multiple sparsely encoded state

machines holding thread state (runnable, stalled, disabled, etc.) which can be easily corrupted

by any propagated error. Unknown states are not handled in the RTL; therefore, the processor

simply ceases scheduling the thread when it reaches an invalid state. Hence, the processor reaches

a deadlock scenario almost instantly. This situation is easily detected by both types of fingerprints

and by a simple timeout. This result differs from the prior section because new critical paths are

130

formed with wearout, thus affecting execution even at lower levels of stress.

In summary, architectural fingerprints maintain coverage near that of microarchitectural fin-

gerprints for at least one test program in all studied units. Furthermore, architectural fingerprints

converge to the same coverage as microarchitectural fingerprints, making them as powerful as mi-

croarchitectural fingerprints for widespread wearout detection.

Detecting Silent Data Corruption

Next, this thesis analyzes the wearout detection results. The previous section shows that errors

can be detected by timeouts alone in most units, if the processor is stressed hard enough. An

interesting question is how far along will the processor continue retiring values architecturally under

stressed conditions—potentially with silent data corruption. This separates out the situations where

architectural and microarchitectural fingerprints are needed from where a simpler mechanism, such

as waiting for a timeout, suffices.

Figure 43 shows the contribution of architectural fingerprints, marked with triangles, when silent

data corruption has been detected through a direct architectural fingerprint mismatch first, but ex-

cludes other cases. The excluded cases are when processor times out in execution (e.g., deadlocks

on at least one thread) or the processor executes more instructions than expected (e.g., enters an

infinite loop). This separates the sole contribution of silent data corruption detected by architectural

fingerprints. The microarchitectural fingerprint, unchanged from the prior figure, again serves as

perfect detection, while timeouts which are also unchanged, show a simpler detection method.

The results are divided into two distinct camps. First, the execute bypass, execute ALU and

fetch datapath results in Figure 43(a)/(b)/(d) show no change in the coverage of architectural finger-

prints. This result is expected because errors in these units are highly likely to first result in retiring

incorrect data values without initially affecting the control flow of the program—and consequently,

the number of instructions retired.

By contrast, the fetch control logic and thread select logic in Figure 43(c)/(e) both show a steep

decrease in the coverage of architectural fingerprints when looking solely at silent data corruption.

For the fetch control logic, this occurs in tandem with the rise in detected timeouts. The rise of

architectural fingerprint detection indicates that the processor first shows moderate levels of silent

data corruption in one test program, but as the stress level increases, the processor instead succumbs

131

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut Microarch. FP
Arch. Mismatch
Timeout

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut

Microarch. FP
Arch. Mismatch
Timeout

(a) byp (b) exu alu

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut Microarch. FP
Arch. Mismatch
Timeout

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut

Microarch. FP
Arch. Mismatch
Timeout

(c) fcl (d) fdp

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut

Microarch. FP
Arch. Mismatch
Timeout

(e) swl

Figure 43: Coverage of wearout faults where the contribution of silent data corruption de-
tection with architectural fingerprints is isolated. Microarchitectural fingerprints and timeout

results are unchanged.

to timeouts. For the thread switch logic, because the processor is so sensitive to changes in this

logic, timeouts dominate. The small fraction of programs that show silent data corruption occur

132

only because timing faults affect the stall signal paths, which temporarily re-enables the thread.

However, the affected programs universally end in a timeout.

In summary, these results show that the strong detection results for architectural fingerprints are

only partly due to directly detecting silent data corruption. The contribution of architectural finger-

print mismatches due to “collateral damage”, where the pipeline enters a timeout, is an important

source of mismatches at the end of execution. While these effects can be detected by a simple

mechanism such as an instruction timeout, detecting silent data corruption provides the earlier ob-

servation of wearout-induced timing faults at lower levels of stress that is needed to match high

observability mechanisms such as microarchitectural fingerprints.

Detection with Architectural Test Programs

Because of the promising device wearout detection results with architectural fingerprints for

wearout detection, this thesis now explores whether the same detection can be performed by simply

looking at architectural outputs of a program. This mode of operation has the advantage that, if

the architectural state can be easily exposed for comparison in software, this technique can be used

on existing processors without additional hardware (e.g., fingerprint compaction). While simpler,

the main disadvantage of software-based architectural error detection is additional masking by the

program. Because there are intermediate results in execution—values later overwritten in registers

and memory—the final architectural state is subject to program-level masking. Therefore, the cov-

erage of software-based architectural error detection should be strictly less than or equal to that of

architectural fingerprints, differing by the degree of program-level masking.

A second disadvantage of the software-based architectural error detection is that in order to per-

form the comparison, the architectural registers and memory must remain accessible by software.

However, the nature of the FIRST procedure can make this impractical. If the core has deadlocked

after attempting to run a test program in marginal conditions, the core may require a reset before

registers and memory can be read for comparison. Unfortunately, reset procedures typically cause

the processor to run initialization code that overwrites portions of architectural registers and mem-

ory. Therefore, this low-cost error detection mechanism may be impractical. However, to determine

error detection capabilities of this mechanism, this evaluation optimistically assumes that the com-

plete, final architectural register and memory state remains accessible following the test.

133

For this evaluation, the final architectural register and memory state of the program (either by

timeout or by completing execution) is assumed accessible by a software comparison mechanism

that compares the processor’s architectural state to error-free reference outputs. A C program accu-

mulates the register updates produced by the OpenSPARC processor under the range of stress levels

into architectural registers and a memory image and compares that image with the same program’s

architectural output during error-free operating conditions.

Figure 44 shows the coverage of device wearout over the seven workloads and instances of

wearout using the three detection mechanisms presented earlier and the additional proposed software-

based architectural error detection mechanism. As expected, the coverage is consistently less than

or equal to architectural fingerprint coverage for a given stress level. For the fetch control logic,

fetch datapath, and thread switch logic, the detection capabilities are almost identical to architec-

tural fingerprints. This outcome is unsurprising because these units produce serious control flow

errors in execution when subjected to faults. By contrast, the bypass and execute units continue to

execute the program with SDC when subjected to faults. In these units, the final architectural results

are more clearly masked by the test programs. For example, only two test programs manage to avoid

partially program-level masking with the execution unit. This difference can be largely eliminated

by re-writing test programs that program level masking (e.g., by preserving intermediate values in

memory) at the cost of longer execution time and a larger test output for comparison at the end of

execution.

In summary, this result shows that software-based architectural error detection is almost as ef-

fective as architectural fingerprints for early widespread device wearout detection. The results can

be further improved with test programs that avoid masking.

7.5.3 The Persistent Nature of Wearout Faults

While radiation-induced soft errors exhibit high degrees of masking on architectural, microar-

chitectural, and logical levels in RTL simulation, wearout fault models show high coverage with

architectural detection mechanisms. This section quantitatively discusses the differences between

the two fault models and explains the disparity in architecture-level fault coverage.

The wearout faults have two key properties that make them easier to detect architecturally than

radiation-induced soft errors: higher spatial distribution of faults and higher temporal repetition

134

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut

Microarch. FP
Arch. FP
Software Compare
Timeout

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut

Microarch. FP
 Arch
Software Compare
Timeout

(a) byp (b) exu alu

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut

Microarch. FP
Arch. FP
Software Compare
Timeout

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut Microarch. FP
Arch. FP
Software Compare
Timeout

(c) fcl (d) fdp

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
Stress past guardband (ps)

Fr
ac

tio
n

of
 e

xe
cu

tio
ns

 w
ith

de

te
ct

ed
 w

ea
ro

ut

Microarch. FP
Arch. FP
Software Compare
Timeout

(e) swl

Figure 44: Coverage of wearout faults with software-based architectural error detection.
Microarchitectural and architectural fingerprints and timeout results are unchanged.

of the same underlying fault. The wearout faults are best described as intermittent faults in the

literature [12]. The intermittent faults repeat, given the correct environmental conditions and input

stimulus. This behavior is in contrast to radiation-induced soft errors that strike once and affect a

135

0

200

400

600

800

1000

0 25 50 75 100 125 150 175
Stress level (ps)

Nu
mb

er
of

tru
e a

cti
va

ted
 pa

ths

byp
exu_alu
fcl
fdp
swl

Figure 45. The number of true activated paths as a function of stress level for each unit.

small number of state bits.

Spatial distribution. Because modern designs typically have several critical paths that are similar

in length and levels of wearout are thought to be roughly uniform across a unit, multiple fault sites

can appear simultaneously when reducing the guardband. This increases the chance that at least one

erroneous path remains unmasked.

Figure 45 quantifies the average number of unique paths that were truly activated for each unit

as a function of stress level. As the stress level increases, all units show a clear trend of increasing

numbers of paths that fail to meet timing. This number quickly grows to hundreds of paths with

small levels of stress, which greatly increases the chances of an error being made visible architec-

turally.

Temporal Repetition. Wearout faults are also activated when the environmental and logical con-

ditions are fulfilled—situations that can occur repeatedly during execution. This repetition provides

further opportunities for the errors to avoid further masking on logical and microarchitectural levels.

Figure 46 shows, for all true activated errors in each unit, the distribution of time between

successive activations for a stress level of 200ps. This measure indicates the frequency at which

faults are reactivated. In stark contrast to soft errors, where radiation-induced errors are typically

136

0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Cycles between activations

Fr
ac

tio
n o

f p
ath

s

0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Cycles between activations

Fr
ac

tio
n o

f p
ath

s

(a) byp (b) exu alu

0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Cycles between activations

Fr
ac

tio
n o

f p
ath

s

0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Cycles between activations

Fr
ac

tio
n o

f p
ath

s

(c) fcl (d) fdp

0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Cycles between activations

Fr
ac

tio
n o

f p
ath

s

(e) swl

Figure 46: Histograms showing the distribution of activations (in cycles) between succes-
sive true activations of the same path over all test programs, separated by unit.

single-event upsets, a majority of wearout errors reoccur within 16 cycles. This provides repeated

opportunities for an error that may have been masked to appear as an architectural error.

137

0

0.2

0.4

0.6

0.8

1

byp exu_alu fcl fdp swl

Fr
ac

tio
n

of
 a

ct
iv

at
ed

 fa
ul

ts Microarchitectural Architectural

Figure 47: Detection coverage for a single wearout error site in each unit for microarchitec-

tural and architectural fingerprints.

7.5.4 Isolated Wearout Faults

Section 7.2 outlines an argument for expecting multiple, widespread wearout faults to grow

concurrently within a processor. However, it is fair to ask what coverage is possible if only one

device initially experiences wearout. This study briefly characterizes the detection coverage for a

single wearout fault.

Figure 47 shows the detection coverage for microarchitectural and architectural fingerprints

monitoring a single wearout fault. In each simulation (over the same set of tests as in the prior

section), a single path is chosen to be the most critical path in the unit, uniformly selected over all

paths in the unit. The stress conditions are set to trigger only that path; however, the fault may be

activated repeatedly during execution. The figure only reports runs where an error is truly activated

by the test programs, therefore microarchitectural fingerprints are guaranteed to have observed the

error. This filtering procedure eliminates the quality of the test program as a factor in the result.

When a single error exists, the test program must exercise the correct transition without logical

masking to activate the fault. However, these test programs are not designed to activate specific

fault sites, therefore a majority of the executions in this experiment fail to produce errors.

The results in Figure 47 show coverage of the single wearout error for microarchitectural and

architectural fingerprints. Each bar indicates the fraction of errors that are detected by each detection

mechanism. The microarchitectural fingerprints are guaranteed to observe the errors, except in the

unlikely event of aliasing. By contrast, the architectural fingerprints observe the same errors only

48% of the time, on average. This indicates that architectural fingerprints are less powerful than

138

microarchitectural fingerprints when only one fault is present and activated. However, this should

not be taken as a blanket conclusion that architectural fingerprints are ineffective in this scenario.

Instead, higher-quality test programs that are specifically written to propagate a wide range of errors

to architectural state can improve the coverage of these errors, as is commonly done for functional

tests in manufacturing test.

7.6 Conclusion

This thesis proposed FIRST, an early wearout detection procedure. FIRST avoids the complex or

area-inefficient detection mechanisms associated with just-in-time error detection by running func-

tional tests and exposing faults by changing the operating environment (e.g., voltage, frequency,

temperature) of the processor to expose marginal circuits that are affected by the early stages of

wearout. Through an RTL fault injection-based evaluation over a selection of representative units,

this thesis shows that microarchitectural fingerprints are effective at detecting errors from both iso-

lated and widespread wearout. Furthermore, architectural fingerprints are as effective as microar-

chitectural fingerprints for detecting errors from widespread wearout.

139

Chapter 8

Related Work

This chapter places the work from this thesis in the context of related work and products in the

areas of reliable computer system design using redundant execution for concurrent error detection

and wearout detection. The fingerprint concept studied in this thesis provides lightweight error

detection for errors affecting the processor pipeline through efficient compaction and comparison

of carefully constructed hashes that represent the architectural or microarchitectural state updates

produced by a processor over an interval of execution. Fingerprints provide a timely and bandwidth-

efficient mechanism for comparing large amounts of state, as is necessary for making error-free

checkpoints, and checking or testing the correct operation of a processor.

This chapter is organized by the applications of fingerprints. The Reunion execution model in

Chapter 5 proposes a complexity-effective set of changes to existing non-redundant multiproces-

sor designs that allow concurrent error detection and recovery using architectural fingerprints for

lightweight error detection. Recent developments in concurrent error detection and reliable system

design are discussed. The FIRST procedure in Chapter 7 investigates the use of architectural and

microarchitectural fingerprints for early device wearout detection by tracking the development of

timing faults by periodically testing processor cores with functional tests in marginal operating con-

ditions. The FIRST procedure is compare to recent proposals for competing and complementary

wearout detection techniques.

140

8.1 Concurrent Error Detection

Concurrent error detection with lockstep. Traditional approaches to concurrent error detec-

tion originate from mainframe designs. Recent IBM zSeries mainframe designs detect datapath

errors using custom dual-lockstepped pipelines whose results are directly compared on every in-

struction [101]. This configuration reaches the ideal limits of an architectural fingerprint—minimal

error detection latency, ample on-chip bandwidth, and no possibility of aliasing because values are

directly compared.

The Tandem NonStop approach uses lockstepped commercial processors with chip-external

comparison on the memory bus to detect errors and initiate rollback-recovery [16]. Because of

the unbounded detection latency associated with chip-external detection, the NonStop systems rely

upon software checkpoints of the system state, which requires a custom operating system and ap-

plications.

Instead of requiring custom software for rollback-recovery, the lockstepped Stratus ftServer

supports commodity operating systems on commodity processors by performing forward error re-

covery [112]. With this recovery the system can avoid checkpoints and thus tolerates long detection

latencies; however, the system’s integrity is critically dependent upon the existing error detection

hardware to identify correctly the failing unit. Error detection and isolation in the ftServer is per-

formed through a combination internal processor error signals (e.g., parity detection) and output

comparison at I/O requests. The system pauses execution on error detection and continues ex-

ecution with the remaining units, following isolation. In the absence of an error signal or clear

diagnostic evidence of the failing unit, which is likely with soft errors, the correct execution can

only be determined through voting with triple modular redundancy. Such a solution incurs at least

50% higher system hardware costs than dual-modular redundant systems.

Maintaining lockstep in future systems, even on a single chip, requires fighting increasingly bur-

densome technology trends, with concerns over wire delay, process variations, and defects making

lockstep difficult to maintain [66]. Furthermore, lockstep requires deterministic execution, which

has increasing validation expenses as systems evolve. While manufacturing test typically drives

validation for determinism today, the needs of manufacturing test are limited to a relatively short

runtime and a predetermined set of applications under carefully controlled conditions. System-

141

wide validation of asynchronous interfaces, shared components (e.g., buses and interconnects), er-

ror handling and correction routines, and thermal controls make lockstep increasingly difficult to

maintain [18].

Redundant Multithreading. In an effort to relax the lockstep requirements, industry and re-

searchers have investigated a wide variety of redundant multithreaded (RMT) execution. In these

systems, two or more threads execute the same program redundantly in time or space, but do not

require microarchitectural determinism, as is needed for lockstep. Instead, the redundant threads

are required to produce the same architectural results, but not necessarily in the same way. The key

differences in these proposals lie with 1) coordinating replicated inputs across the redundant exe-

cutions and 2) comparing the outputs with error detection mechanisms. Architectural fingerprints

are appropriate for RMT approaches because they only require architectural determinism—that re-

dundant executions produce the same results—but specifically allow those results to be produced

through different methods.

Within industry, the Tandem NonStop Advanced Architecture (NSAA) has moved from lock-

stepped redundant execution to RMT across loosely coupled processor pairs [18]. NSAA replicates

processors and memory across physically separate units and compares execution through I/O trans-

actions at a custom I/O controller. As with prior NonStop systems, a custom operating system

coordinates delivery of external interrupts to the processors and recovery occurs through software

checkpoints. To keep the redundant executions synchronized at the I/O level, the processors’ spec-

ulation support is disabled to prevent the processors from producing different page faults (which

would appear as erroneous outputs at the I/O controller). Finally, this system does not support

shared memory.

Marathon everRun servers implement RMT with commodity operating systems by using virtual

machine monitors to hide the input replication and output comparison [63]. The virtual machine co-

ordinates external interrupt delivery by single-stepping the processors to predetermined time quanta

and delivering the interrupts only at these points. Errors are detected at I/O requests, which are

trapped and compared by the virtual machine. As with the lockstepped Stratus machines, diagnos-

tics are used to determine the failing unit and execution halts, or if possible, continues with working

units.

142

The Marathon, Stratus and the NonStop systems have the common advantage that they can use

existing commodity microprocessor designs. However, this results in the common drawback that

none can conclusively determine, at a given point in execution, whether undetected errors exist in

the core’s architectural output because of the unbounded error detection latency. Thus, they depend

on software recovery mechanisms or forward error recovery that are tolerant of long error detection

latencies, but require custom operating systems or high hardware costs to protect against soft errors

in the pipeline. By contrast, architectural fingerprints provide a light-weight architectural mecha-

nism to efficiently and quickly detect pipeline errors at a fixed point in execution, as is needed for

producing error-free checkpoints. This enables RMT with fine-grained hardware-based checkpoint

recovery and OS-transparent redundant execution without lockstep.

Research proposals investigate RMT in two main contexts. First, redundant threading within

a single core is studied heavily in recent research [36, 72, 81, 85, 88, 90, 106, 115]. These sys-

tems reuse existing microarchitectural throughput mechanisms, such as multithreading and specu-

lation to provide redundant execution and recovery in a shared pipeline. The load inputs are typi-

cally replicated through a load value queue (LVQ) which records a sequence of loads and replays

them for a consuming thread [88] and outputs are compared through direct comparison of stores

(if just detection is desired) or architectural register values and stores (if recovery is also desired).

Two main drawbacks of these techniques are the microarchitectural implementation complexity and

its resulting validation issues—these techniques and the LVQ all require significant changes to an

already-complicated out-of-order processor core—and the 20-30% performance penalty of redun-

dant execution on a shared pipeline [106].

Second, researchers investigate redundant execution across cores in a chip multiprocessor (CMP) [40,

56, 72, 114], including the Reunion proposal in Chapter 5. As compared to within-core RMT, these

proposals have the added burden of replicating inputs and comparing outputs across physically-

distributed cores. Both of these tasks require significant cross-core bandwidth, matching the band-

width of the L1 cache ports and architectural register file to copy inputs from one core and replay

them for the other, while comparing the architectural outputs. However, existing datapaths do not

support this level of cross-core bandwidth, so expensive, wide buses must be added and each core

must be modified to support the strict input replication (LVQ) and direct output comparison [40, 72].

Furthermore, none of these proposals address redundant execution in shared memory, which is now

143

a necessary feature for mainstream computer systems.

The Reunion proposal from this thesis addresses the input replication, output comparison, and

shared memory problems. Reunion is predicated on the observation that in the common case, even

for shared memory programs, two redundant executions will receive the same load values. In the

uncommon case, soft error detection already observes this situation and rollback-recovery can re-

solve the difference. This leads to a complexity-effective design that provides redundant execution

without changing the complicated parts of the microarchitecture. Furthermore, with architectural

fingerprints, the error detection latency is timely enough to permit fine-grained recovery with exist-

ing speculation mechanisms, while the bandwidth overhead can be satisfied with existing on-chip

interconnects. The design presents a single logical processor to the system, which means that soft-

ware changes are not necessary to permit redundant execution. Finally, because the microarchitec-

ture requires small changes to portions of the pipeline and cache off the critical path, the design also

allows a dual-use redundant and non-redundant design with little incremental hardware cost.

Comparison Bandwidth Reduction. Researchers have looked at reducing the comparison band-

width. For detection-only operation, researchers have proposed directly comparing store addresses

and values [72, 88]. Alternatively, for recovery, the death and dependence-based checking elision

(DDBCE) compression in [40] follows errors that propagate through architectural data dependen-

cies. Only results terminating a dependence chain must be compared. However, chains can be

ended early by instructions that potentially mask an error; therefore, the authors are only able to

elide about 20% of instruction comparisons in SPEC CPU 2000. Architectural fingerprints eas-

ily reduce comparison bandwidth by orders of magnitude through compaction within and across

instruction results. This compaction enables comparison across cores within and across chips.

Self-checking and hardened logic. An alternative to redundant execution for soft error protection

is to build structures that are more resilient. As early as the 1950’s, architects have implemented

various forms of self-checking such as parity prediction and residue codes in arithmetic units and

processor logic of mainframe systems [100]. These techniques provide protection for specific logic

units within the pipeline. However, such designs prove too expensive for commodity processors

because of their impact on clock frequency and area overhead.

144

Circuit-level protections, such as soft error-tolerant latches, also provide protection across the

pipeline with minimal timing overhead by time-shifting combinational logic outputs across two

latches [70]. However, this design provides protection for glitches that propagate to latches in the

pipeline and can more than double the latch area overhead.

By contrast, architectural fingerprints, which inspect state at the retirement stages of the pipeline,

provide comprehensive detection of architectural errors that occur within the pipeline without unit-

specific protection. The cost of this protection, however, is that redundant execution support is

necessary.

Signature-based error detection. Researchers have looked at using signatures of control flow

for microprocessor error detection [119]. This technique depends upon compiler-inserted data to

compute signatures of legal control flow graphs, along with a watchdog processor that does an on-

line comparison of actual control flow to that specified in the signature. Unfortunately, this work

cannot easily be extended to data values, because compilers can only determine allowable data

values in limited situations. Architectural fingerprints, by contrast, are generated by hardware at

runtime, and are compared with a redundant unit and can therefore detect errors in both control

and data flow. In both cases, the signature-based detection mechanisms require determinism on the

architectural level to avoid false mismatches.

Architectural Fingerprints. The TRUSS project at Carnegie Mellon University uses architec-

tural fingerprints to compare redundant processors in a distributed shared memory machine [39].

Recently, other researchers have also applied architectural fingerprints to allow aggressive over-

clocking [41] and to allow redundant core pairs to be decoupled and separated across cores in

Reunion-based process in a CMP [56]. These techniques allow simultaneous improvements in reli-

ability and single-thread performance over non-redundant systems.

8.2 Wearout Detection

This section discusses the related work in early wearout detection and processor manufacturing

test. Existing design-for-test (DFT) hardware addresses a problem similar to that faced by finger-

prints, namely efficient compaction of large amounts of state to allow efficient and fast detection of

145

errors within that state. The wearout error detection attempts to find evidence of faults in a processor

core, as done in traditional manufacturing test, except the test must occur at runtime in a customer

environment instead of in a high-volume tester.

Scan and scanout. Modern microprocessors include full-hold scan and partial chip scanout tech-

nology [55]. The scanout hardware forms the basis of the microarchitectural fingerprints discussed

in Chapter sec:mf. Full-hold scan chains link all pipeline latches in a chain that can then create

a snapshot of the global latch state, which is then scanned out. The scan operation provides high

observability of internal state and is used in manufacturing test and debug, however it is destructive

(the core clock is paused, original latch values are overwritten and execution cannot continue), re-

quires expensive testers to control the test, and has high bandwidth and storage overheads. Scanout

chains are added to existing logic, providing a non-destructive and compact summary of execu-

tion over time [24, 55]. Scanout can operate without a tester, which enables runtime applications.

However, even with highly controlled environments and automated testers, non-determinism in the

circuit under test can cause both scan and scanout to falsely declare an error [80].

Researchers have also looked at scanout-like devices for on-line error detection [107]. Unlike

microarchitectural fingerprints, this technique compares a constant stream of monitored nodes to a

reference model. Hence, this technique cannot tolerate the non-determinism that plagues scanout.

Output compaction and non-determinism. Researchers have investigated output compaction

and non-determinism tolerance techniques in the context of manufacturing test. With these tech-

niques, the system under test runs pre-determined test vectors or functional tests in an automated

tester. Test output is typically compacted with parity tree-like structures [86], LFSRs, and MISRs [13,

52]. By determining a priori when non-determinism will be exhibited in output sequences, non-

deterministic signals can be masked out [80] or corrected with techniques derived from coding

theory [69] if the test output is known and the number of non-deterministic signals is small. Mi-

tra and Sup Kim’s X-compact technique is applied in this thesis as a strong spatial compactor for

architectural fingerprints, without taking advantage of its correction properties.

Compaction researchers also study designs that guarantee zero aliasing in the signature output.

Chakrabarty et al. investigate spatial output compaction with zero aliasing [26]. A key limitation

146

to this work, however, is that the error space must be known prior to the test in order to achieve the

guarantee, a task that becomes difficult when large numbers of errors are expected concurrently.

The key difference between these compaction techniques and microarchitectural fingerprints

is using the designer’s knowledge of the circuit to mask values that are non-deterministic before

they reach the compaction stage. The output masking and correction techniques focus on blocking

non-deterministic inputs at the input to the compactor with special masks for each test. If non-

deterministic sites are identified beforehand, microarchitectural fingerprints can eliminate the non-

determinism without needing customization for each test.

Wearout detection. Recently there has been much activity in the area of predicting and detecting

the onset of wearout. Srinivasan et al. [111] propose an empirically derived environmental model for

predicting circuit failure and enabling spare units. Empirical models provide a statistical prediction

of wearout’s onset; however, they do not directly observe wearout on the core and therefore may

be overly conservative. Techniques such as sparing can improve the useful operating lifetime of a

processor by replacing failing units with spare, undamaged units.

Techniques such as Razor [33] and circuit failure prediction [2] allow circuits to monitor them-

selves constantly for timing violations at runtime using special double-sampling latches. The Razor

technique allows dynamic voltage scaling to reduce power until the circuit begins to produce in-

correct results. Circuit failure prediction aims to extend processor lifetimes by gradually increasing

the frequency guardband when device wearout begins to occur, thus absorbing the slowdown and

preserving correct operation.

Blome et al. [19] inserts delay detection units throughout the pipeline to sample, measure, and

track the progression of delay from device wearout. In particular, this technique presents a simple

hardware monitor that accumulates and averages delays across the chip to identify gradual slow-

down. Similar work has been proposed with canary circuits that are designed to fail before other

devices on the chip [87], however these techniques rely on the canary circuit to be stressed as heavily

as the rest of the chip. Furthermore, the canary circuit must experience the same degree of wearout

as the most vulnerable devices in the design.

Built-in self-test (BIST) techniques implement test hardware directly in the design, avoiding the

need to propagate errors to external pins and reducing the dependence on external testers [1]. These

147

structures constitute a fixed hardware overhead that is typically only used during manufacturing

test and is otherwise disabled at runtime. Therefore, techniques that can reuse these structures at

runtime are extremely attractive.

Shyam, et al. [98] recently proposed a continuous online BIST to detect failures in the field

using distributed test vectors that are pushed through major microarchitectural components on idle

cycles. Their technique requires custom BIST hardware constructions and test vector ROMs to be

designed for each piece of the design. While microarchitectural fingerprinting requires designer

knowledge for each unit, it also has a common architecture that can be used throughout the design.

This allows a single common set of rules for design engineers to follow.

Li et al [59] propose using existing scan chains and externally-stored tests to periodically run

thorough structural and functional tests on the core microarchitecture at runtime in a procedure

called CASP (Concurrent Autonomous chip self-test using Stored test Patterns). The procedure is

initiated similar to FIRST by periodically taking cores off-line and running self-test programs and

structural test patterns through scan chains, using an added test controller. Because testing runtime

is more relaxed than in high-volume manufacturing test, the selected tests can have high coverage

that meets or exceeds that of traditional manufacturing test. As proposed, CASP does not reduce

the frequency or voltage guardbands, as is done in FIRST, however doing this could improve timely

detection of wearout before it affects execution at normal operating frequencies and voltages.

The FIRST procedure presented in this thesis provides an alternative and potentially comple-

mentary method for identifying and predicting wearout. Architectural and microarchitectural fin-

gerprints provide a compact method for storing the outcome of a test, which avoids program-level

masking and speeds the execution of functional tests. FIRST helps identify developing faults earlier

and more precisely by proactively removing the guardband (as opposed to waiting for runtime latch

timing failures) and looking broadly across the design for actual microarchitectural and architectural

errors (as opposed to sampling a small number of signals). Furthermore, analysis and storage of test

results from FIRST can be stored and processed in software, which simplifies long-term tracking of

device wearout.

When comparison is performed with architectural fingerprints or architectural state comparison,

FIRST is limited to running functional test programs. This limitation has the drawbacks associated

with functional test fault coverage, which is traditionally lower than structural tests in the manufac-

148

turing test regime. However, this concern may be unjustified if, instead of emerging as isolated path

delays, wearout appears a widespread slowdown simultaneously affecting a multiple paths at once.

In this situation, as shown in Chapter 7, even a small number of short functional verification tests

are effective at revealing widespread device wearout architecturally.

149

Chapter 9

Conclusion

As CMOS technology continues scaling to smaller dimensions, aggressive processor designs

are widely expected to confront increasing rates of both soft errors and device wearout. Without

techniques to detect and recover from these errors, microprocessors will become increasingly unre-

liable. This thesis develops the concept of fingerprints to detect soft errors and device wearout in the

processor pipeline. Architectural fingerprints are signatures of in-order architectural state updates

collected during execution by a small unit added at the retirement stages of the pipeline. These

fingerprints provide lightweight detection of architectural errors over a chosen interval of execution

by a simple comparison. Microarchitectural fingerprints utilize existing design-for-test hardware to

collect an in-depth summary of internal microarchitectural state updates. These signatures provide a

higher level of coverage for internal nodes as compared to architectural fingerprints; however, with

more stringent requirements for determinism.

This thesis investigates the design and implementation of architectural fingerprints in detail. The

key results of this study show that architectural fingerprints provide effective lightweight detection

architectural errors through soft error injection in a commercial processor RTL model. Furthermore,

synthesis results demonstrate that hardware for architectural fingerprints requires less than 4% of

the logic area of an already-simple commercial scalar pipeline. A hash design study shows that the

combination of an X-compact-like spatial compactor and a MISR temporal compactor yield an area

and timing-efficient implementation with aliasing properties approaching those of an ideal cyclic

redundancy check.

150

This thesis also shows two applications for fingerprints that help preserve reliability in micro-

processors. The Reunion execution model provides a formal framework for complexity-effective

redundant execution in shared memory systems to provide soft error tolerance. This study shows

that the same mechanism needed for soft error detection—architectural fingerprints—can be ap-

plied to detect input incoherence during redundant execution. Furthermore, with simple changes to

the operation of the cache controllers, the execution model permits correct redundant execution in

designs with shared memory, while avoiding changes to the complicated system components such

as the out-of-order execution, cache coherence protocol, and memory consistency model. A cycle-

accurate simulation-based evaluation of a chip multiprocessor shows that Reunion incurs a modest

5-6% performance overhead over more complicated concurrent error detection designs with strict

input replication.

Finally, this thesis proposes and evaluates the FIRST procedure to detect early signs of de-

vice wearout. FIRST places the processor in marginal operating conditions to identify changes,

over time, in the speed of devices in the pipeline. Fingerprints provide a fast, bandwidth-efficient

mechanism for comparing the results of these repeated tests at runtime. The results show that mi-

croarchitectural fingerprints are effective at observing both single and widespread wearout fault

development, while architectural fingerprints are as effective as microarchitectural fingerprints for

detecting widespread wearout fault development.

9.1 Future Work

The work presented in this thesis opens new questions that are ripe for investigation by future

researchers.

Reunion. The Reunion execution model has been thoroughly investigated for parameters on to-

day’s and near-future chip multiprocessors with short latencies between cores and precise-exception

rollback. However, the design tradeoffs can change in other system architectures, such as distributed

shared memory systems. In such systems, the latency between processors is orders of magnitude

higher, while the bandwidth is lower, therefore fingerprint comparison intervals must grow commen-

surately. Furthermore, when processors include checkpoint capabilities they can potentially execute

151

more instructions between comparisons, which opens up the possibility for additional data races

and the need for efficient rollback-recovery protocols. There is evidence that indiscriminate appli-

cation of the unoptimized Reunion recovery protocol seriously impacts performance [56], however

appropriate changes to checking and recovery should be able to eliminate this loss.

Reunion is primarily motivated by the need for reliable execution. However, the current im-

plementation will roughly require double the processor power budget and yield less than half the

performance of two individual cores. Paceline [41] investigates over-clocking redundant cores in a

slipstream-like configuration to improve performance. Reunion can be applied to do similar aggres-

sive execution at different voltage and frequency corners. Halving the dynamic power at constant

performance, to match non-redundant power, is an unrealistic goal, but the overhead need not be

twice the non-redundant power.

Correlated failures in redundant cores with aggressive execution are also a concern. However,

the cores need not be identical for several reasons. The increasing trend of within-die variability may

be a blessing in disguise, heterogeneous chip multiprocessors can naturally avoid some correlated

failures, and sparing mechanisms for lifetime reliability may provide enough diversity to avoid

correlated failures. Furthermore, running one core with more-conservative margins than the other

will reduce power saving, but can also change the intermittent failures enough to be consistently

detectable. If these failures are reproducible, predictors also may be used to indicate when more

conservative execution is needed. The correlated failures warrant further studies to characterize

how processors actually fail—gracefully degrade or fail abruptly—in marginal conditions.

FIRST. FIRST has a number of avenues for future work. The general connection between wearout

onset and changing architectural fingerprints has been made in this thesis. However, the model

can be strengthened to yield actual predictions about the extent of wearout, time left before hard

breakdown, both inferred from changes in the fingerprint with time and environmental settings.

In addition to predictions about failure time, the information gained from FIRST can potentially

extend the lifetime of failing processor components. The growth of many wearout faults has been

shown to be dependent on environmental conditions (e.g., voltage and temperature). Therefore,

when developing wearout faults are detected, the processor’s voltage and frequency can be dropped

152

to more-conservative set points. In this way, performance can be traded for longer processor lifetime

from both the combined benefits of both an increased guardband and slower fault growth rates.

FIRST with microarchitectural fingerprints depends heavily on the microarchitecture remaining

a constant over time (except for wearout). However, lifetime and defect-aware processors will

change over time as spare units are swapped in for failing units. Methods need to be developed for

tolerating a microarchitecture that reconfigures with time due to repair. By contrast, for architectural

fingerprints, the FIRST procedure should be cognizant of microarchitectures that contain spare units

and ensure that errors in redundant and spare units can be detected. The impact on FIRST of a

microarchitecture that changes over time should be investigated.

More information on wearout of non-critical paths can be gleaned from FIRST than just the

initial change in a fingerprint’s signature at specific condition. The proposed FIRST procedure

only stresses the processor core until the first mismatch. However, there may also be “plateaus” of

path lengths where, at a stress level higher than the first signature mismatch, the fingerprint again

becomes a stable value—different from the error-free value—yet still stable. Assuming variability

does not destroy this opportunity; additional evidence of wearout can be ascertained for shorter

paths that never slow down enough to become critical paths before entering hard breakdown.

153

References

[1] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital Systems Testing and

Testable Design. IEEE Press, revised printing edition, 1990.

[2] Mridul Agarwal, Bipul C. Paul, Ming Zhang, and Subhasish Mitra. Circuit failure prediction

and its application to transistor aging. In Proceedings of the 25th Annual IEEE VLSI Test

Symposium (VTS-07), May 2007.

[3] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. DBMSs on a

modern processor: Where does time go? In The VLDB Journal, pages 266–277, September

1999.

[4] Haitham Akkary, Ravi Rajwar, and Srikanth T. Srinivasan. Checkpoint processing and re-

covery: Towards scalable large instruction window processors. In Proceedings of the 36th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 36), Dec 2003.

[5] Guido Albertengo and Riccardo Sisto. Parallel CRC generation. IEEE Micro, 10(5):63–71,

Oct 1990.

[6] AMD Corp. BIOS and Kernel Developer’s Guide for AMD NPT Family 0Fh Processors,

revision 3.04 edition, Dec 2006.

[7] AMD Corp. AMD Opteron Processor Product Data Sheet, revision 3.23 edition, Mar 2007.

[8] Hisashige Ando, Ken Seki, Satoru Sakashita, Masatosh Aihara, Ryuji Kan, Kenji Imada,

Masaru Itoh, Masamichi Nagai, Yoshiharu Tosaka, Keiji Takahisa, and Kichiji Hatanaka.

Accelerated testing of a 90nm sparc64 v microprocessor for neutron ser. In Proceedings of

the 3rd IEEE Workshop on Silicon Errors in Logic – System Effects (SELSE-3), Apr 2007.

154

[9] Artisan Components. TSMC 0.18µm Process 1.5-Volt (Low-Voltage) SAGE-X Standard Cell

Library Databook, 3.0 edition, Feb 2002.

[10] Todd M. Austin. DIVA: A reliable substrate for deep submicron microarchitecture design. In

Proceedings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO 32), November 1999.

[11] Alejandro Avellan and Wolfgang H. Krautschneider. Impact of soft and hard breakdown on

analog and digital circuits. IEEE Transactions on Device and Materials Reliability, 4(4):676–

680, Dec 2004.

[12] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts

and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and

Secure Computing, 1(1):11–33, Jan-Mar 2004.

[13] Carl Barnhard, Vanessa Brunkhorst, Frank Distler, Owen Farnsworth, Brion Keller, and

Bernd Koenemann. OPMISR: the foundation for compressed ATPG vectors. In Proceed-

ings of the 2001 International Test Conference, October 2001.

[14] Luiz Andre Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory system char-

acterization of commercial workloads. In Proceedings of the 25th Annual International Sym-

posium on Computer Architecture (ISCA), pages 3–14, June 1998.

[15] Luiz Andre Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk, Shaz

Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Verghese. Piranha: A scalable

architecture base on single-chip multiprocessing. In Proceedings of the 17th Annual Interna-

tional Symposium on Computer Architecture, June 2000.

[16] Joel Bartlett, Jim Gray, and Robert Horst. Fault tolerance in tandem computer systems.

Technical Report TR-86.2, HP Labs, 1986.

[17] Robert Baumann. Soft errors in advanced computer systems. IEEE Design and Test of

Computers, pages 258–266, May-June 2005.

155

[18] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jardine, Jim Klecka, and

Jim Smullen. Nonstop advanced architecture. In Proc. Intl. Conf. Dependable Systems and

Networks, Jun 2005.

[19] Jason Blome, Shuguang Feng, Shantanu Gupta, and Scott Mahlke. Self-calibrating online

wearout detection. In Proceedings of the 40th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO 40), Dec 2007.

[20] Darrell Boggs, Aravindh Baktha, Jason Hawkins, Deborah T. Marr, J. Alan Miller, Patrice

Roussel, Ronak Singhal, Bret Toll, and K. S. Venkatraman. The microarchitecture of the intel

pentium 4 processor on 90nm technology. Intel Technology Journal, 8(1), Feb 2004.

[21] Shekhar Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23–29, Jul-

Aug 1999.

[22] Shekhar Borkar. Designing reliable systems from unreliable components: the challenges of

transistor variability and degradation. IEEE Micro, 25(6):10–16, Nov-Dec 2005.

[23] Fred A. Bower, Daniel J. Sorin, and Sule Ozev. A mechanism for online diagnosis of hard

faults in microprocessors. In Proceedings of the 38th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO 38), Dec 2005.

[24] Adrian Carbine. Scan mechanism for monitoring the state of internal signals of a VLSI

microprocessor chip. US Patent 5,253,255, Oct 1993.

[25] Jonathan R. Carter, Sule Ozev, and Daniel J. Sorin. Circuit-level modeling for concurrent

testing of operational defects due to gate oxide breakdown. In Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition (DATE’05), 2005.

[26] Krishendu Chakabarty and John P. Hayes. Test response compaction using multiplexed parity

trees. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 15(11), Nov

1996.

[27] Srinivas Chellappa, Frédéric de Mesmay, Jared C. Smolens, Babak Falsafi, James C. Hoe, and

Ken Mai. Fingerprinting across on-chip memory interconnects. In Proceedings of the 3rd

IEEE Workshop on Silicon Errors in Logic – System Effects (SELSE-3), Apr 2007. (poster).

156

[28] Jone F. Chen, Jiang Tao, Peng Fang, and Chenming Hu. Performance and reliability com-

parison between asymmetric and symmetric LDD devices and logic gates. IEEE Journal of

Solid-State Circuits, 34(3), March 1999.

[29] SELSE Organizing Committee. Selse-II reverie. In Proceedings of the 2nd Workshop on

System effects of Logic Soft Errors (SESLE-2), Apr 2006.

[30] Compaq Computer Corporation. Alpha 21264 Microprocessor Hardware Reference Manual,

July 1999.

[31] Zarka Cvetanovic. Performance analysis of the Alpha 21364-based HP GS1280 multiproces-

sor. In Proceedings of the 30h Annual International Symposium on Computer Architecture,

pages 218–229, June 2003.

[32] Edward W. Czeck and Daniel P Siewiorek. Effects of transient gate-level faults on program

behavior. In Digest of Papers 20th Annual International Symposium on Fault-Tolerant Com-

puting (FTCS’90), Jun 1990.

[33] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad

Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, and Trevor Mudge. Razor: A low-

power pipeline based on circuit-level timing speculation. In Proceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO 36), December 2003.

[34] Keith I Farkas, Norman P. Jouppi, and Paul Chow. Register file design considerations in

dynamically scheduled processors. Technical Report 95/10, Digital Western Research Labo-

ratory, Nov 1995.

[35] Stephen Fischer. Technical overview of the 45nm next generation intel core microarchitecture

(penryn). In Intel Developer Forum, Apr 2007.

[36] M. Franklin. A study of time redundant fault tolerant techniques for superscalar processors.

In Proceedings of IEEE Intl. Workshop on Defect and Fault Tolerance in VLSI Systems, 1995.

[37] Simcha Gochman, Avi Mendelson, Alon Haveh, and Efraim Rotem. Introduction to intel

core duo processor architecture. Technical report, Intel, 2006.

157

[38] Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel Berkovits, Tsvika Kurts, Alon Naveh, Ali

Saeed, Zeev Sperber, and Robert C. Valentine. The intel pentium m processor: Microarchi-

tecture and performance. In Intel Technology Journal, volume 7, May 2003.

[39] Brian T. Gold, Jangwoo Kim, Jared C. Smolens, Eric S. Chung, Vasilis Liaskovitis, Eriko

Nuvitadhi, Babak Falsafi, James C. Hoe, and Andreas G. Nowatzyk. TRUSS: a reliable,

scalable server architecture. IEEE Micro, 25:51–59, Nov-Dec 2005.

[40] Mohamed Gomaa, Chad Scarbrough, T. N. Vijaykumar, and Irith Pomeranz. Transient-fault

recovery for chip multiprocessors. In Proceedings of the 30h Annual International Sympo-

sium on Computer Architecture, June 2003.

[41] Brian Greskamp and Josep Torrellas. Paceline: Improving single-thread performance in

nanoscale CMPs through core overclocking. In Proceedings of the 16th International Con-

ference on Parallel Architectures and Compilation Techniques (PACT), Sept 2007.

[42] Richard Hankins, Trung Diep, Murali Annavaram, Brian Hirano, Harald Eri, Hubert Nueckel,

and John P. Shen. Scaling and characterizing database workloads: Bridging the gap between

research and practice. In Proceedings of the 37th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO 37), pages 151–162, Dec 2003.

[43] C-K. Hu, D Camaperi, S. T. Chen, and et al. Effects of overlayers on electromigration

reliability improvement for cu/low k interconnects. In 42nd Annual International Reliability

Physics Symposium (IRPS), 2004.

[44] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic

Architecture, 2004.

[45] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume

3A, May 2007.

[46] Intel Corporation. Intel Core 2 Duo Processors and Intel Core 2 Extreme Processors for

Platforms Based on Mobile Intel 965 Express Chipset Family, Aug 2007.

[47] International Telecommunications Union. ITU-T X.25: Data Networks and Open System

Communication, 1997.

158

[48] T. Juhnke and H. Klar. Calculation of the soft error rate of submicron cmos logic circuits.

IEEE Journal of Solid State Circuits, 30(7):830–834, July 1995.

[49] Jeffrey W. Kellington, Ryan McBeth, Pia Sanda, and Ronald N. Kalla. IBM POWER6 pro-

cessor soft error tolerance analysis using proton irradiation. In Proceedings of the 3rd IEEE

Workshop on Silicon Errors in Logic – System Effects (SELSE-3), Apr 2007.

[50] Kee Sup Kim, Rathish Jayabharathi, and Craig Carstens. SpeedGrade: an RTL path delay

fault simulator. In Proceedings of the 10th Annual Asian Test Symposium, Nov 2001.

[51] Meyrem Kirman, Nevin Kirman, and José F. Martínez. Cherry-MP: correctly integrating

checkpointed early resource recycling in chip multiprocessors. In Proceedings of the 38th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 38), Dec 2005.

[52] Bernd Koenemann, Joachim Much, and Gunther Zwiehoff. Built-in logic block observation

techniques. In Proceedings of the 1979 IEEE Test Conference, September 1979.

[53] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-way mul-

tithreaded sparc processor. IEEE Micro, 25(2):21–29, Mar-Apr 2005.

[54] Smita Krishnaswamy, Igor L. Markov, and John P. Hayes. When are multiple gate errors

significant in logic circuits? In Proceedings of the 2nd Workshop on System effects of Logic

Soft Errors (SESLE-2), April 2006.

[55] Ravishankar Kuppuswamy, Peter DesRosier, Derek Feltham, Rehan Sheikh, and Paul

Thadikaran. Full hold-scan systems in microprocessors: Cost/benefit analysis. Intel Technol-

ogy Journal, 8(1), February 2004.

[56] Christopher LaFrieda, Engin İpek, José F. Martínez, and Rajit Manohar. Utilizing dynami-

cally coupled cores to form a resilient chip multiprocessor. In International Conference on

Dependable Systems and Networks, June 2007.

[57] Shih-Chang Lai, Shih-Lien Lu, Konrad Lai, and Jih-Kwon Peir. Ditto processor. In Pro-

ceedings of the International Conference on Dependable Systems and Networks (DSN), Jun

2002.

159

[58] Yung-Huei Lee, Neal Mielke, Marty Agostinelli, Sukirti Gupta, Ryan Lu, and William

McMahon. Prediction of logic product failure due to thin-gate oxide breakdown. In Pro-

ceedings of the 44th Annual International Reliability Physics Symposium, June 2006.

[59] Yanjing Li, Samy Makar, and Subhasish Mitra. CASP: concurrent autonomous chip self-

test using stored test patterns. In Proceedings of the Design, Automation and Test in Europe

Conference and Exhibition (DATE’08), 2008.

[60] Barry P. Linder, James H Stathis, David J Frank, Salvatore Lombardo, and Alex Vayshenker.

Growth and scaling of oxide conduction after breakdown. In Proceedings of the 41st Annual

International Reliability Physics Symposium, August 2003.

[61] Jose Maiz, Scott Hareland, Kevin Zhang, and Patrick Armstrong. Characterization of multi-

bit soft error events in advanced srams. In IEEE International Electron Devices Meeting

(IEDM), Dec 2003.

[62] Deborah T. Marr, Subrananian Natarajan, Shreekant Thakkar, and Richard Zucker. Multipro-

cessor validation of the pentium pro. In IEEE Computer, Nov 1996.

[63] Marthon Technologies Corporation. Marathon everRun FT whitepaper, 2007.

[64] Cameron McNairy and Rohit Bhatia. Montecito: A dual-core, dual-thread Itanium processor.

IEEE Micro, 25(2), March 2005.

[65] Joseph W. McPherson. Reliability challenges for 45nm and beyond. In Proceedings for the

43rd Annual Design Automation Conference (DAC), June 2006.

[66] Patrick J. Meaney, Scott B. Swaney, Pia N. Sanda, and Lisa Spainhower. IBM z990 soft error

detection and recovery. IEEE Trans. device and materials reliability, 5(3):419–427, Sept

2005.

[67] Avi Mendelson and Neeraj Suri. Designing high-performance and reliable superscalar ar-

chitectures: The Out of Order Reliable Superscalar O3RS approach. In Proceedings of the

International Conference on Dependable Systems and Networks (DSN), Jun 2000.

160

[68] MIPS Technologies Inc. MIPS R10000 Microprocessor User’s Manual, version 2.0 edition,

1996.

[69] Subhasish Mitra and Kee Sup Kim. X-Compact: an efficient response compaction tech-

nique. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems,

23(3):421–432, March 2004.

[70] Subhasish Mitra, Ming Zhang, Saad Wagas, Norbert Seifert, Balkaran Gill, and Kee Sup

Kim. Combinational logic soft error correction. In Proceedings of the 2006 International

Test Conference (ITC), Oct 2006.

[71] Shubhendu S. Mukherjee, Joel Emer, and Steven K. Reinhardt. The soft error problem:

An architectural perspective. In Proceedings of the Eleventh IEEE Symposium on High-

Performance Computer Architecture (HPCA), Feb 2005.

[72] Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt. Detailed design and

evaluation of redundant multithreading alternatives. In Proceedings of the 29th Annual Inter-

national Symposium on Computer Architecture (ISCA), May 2002.

[73] Shubhendu S. Mukherjee, Christopher T. Weaver, Joel Emer, Steven K. Reinhardt, and Todd

Austin. A systematic methodology to compute the architectural vulnerability factors for a

high-performance microprocessor. In Proceedings of the 36th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO 36), Dec 2003.

[74] Suriyaprakash Natarajan, Srinivas Patil, and Sreejit Chakravarty. Path delay fault simulation

on large industrial designs. In Proceedings of the 24th IEEE VLSI Test Symposium, August

2006.

[75] Umesh Gajanan Nawathe, Mahmudul Hassan, Lynn Warriner, King Yen, Bharat Upputuri,

David Greenhill, Ashok Kumar, and Heechoul Park. An 8-core, 64-thread, 64-bit, power

efficient SPARC SoC (Niagara 2). In Proceedings of the International Solid-State Circuits

Conference (ISSCC), Feb 2007.

[76] Umesh Gajanan Nawathe, Mahmudul Hassan, Lynn Warriner, King Yen, Bharat Uputuri,

David Greenhill, Ashok Kumar, and Heechoul Park. An 8-core, 64-thread, 64-bit power

161

efficient sparc soc (niagara2). In Proceedings of the International Solid-State Circuits Con-

ference (ISSCC), Mar 2007.

[77] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kun-Yung Chang.

The case for a single-chip multiprocessor. In Proceedings of the Seventh International Con-

ference on Architectural Support for Programming Languages and Operating Systems (ASP-

LOS VII), Oct 1996.

[78] Bipul C. Paul, Kunhyuk Kang, Haldun Kufluoglu, Muhammad A. Alam, and Kaushik Roy.

Negative bias temperature instability: Estimation and design for improved reliability of

nanoscale circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 26(4), Apr 2007.

[79] Vera Pless. Introduction to the Theory of Error-Correcting Codes. Wiley-interscience, 2nd

edition, 1989.

[80] Irith Pomeranz, Sandip Kundu, and Sudhakar M. Reddy. On output response compression in

the presence of unknown output values. In Proceedings of the 39th Annual Design Automa-

tion Conference (DAC), June 2002.

[81] Zach Purser, Karthik Sundaramoorthy, and Eric Rotenberg. Slipstream processors: Improv-

ing both performance and fault tolerance. In Proceedings of the 33rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO 33), Dec 2000.

[82] Nhon Quach. High availability and reliability in the Itanium processor. IEEE Micro, 20(5),

Sep-Oct 2000.

[83] Nhon Quach. Private TRUSS group presentation, Oct 3 2006.

[84] Tenkasi V. Ramabadran and Sunil S. Gaitonde. A tutorial on CRC computations. IEEE

Micro, 8(4):62–75, Aug 1988.

[85] Joydeep Ray, James C. Hoe, and Babak Falsafi. Dual use of superscalar datapath for transient-

fault detection and recovery. In Proceedings of the 34th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO 34), Dec 2001.

162

[86] Sudhakar M. Reddy, Kewal K. Sluja, and Mark G. Karpovsky. A data compression technique

for built-in self test. IEEE Transactions on Computers, 37(9):1151–1156, September 1988.

[87] Vijay Reddy, Anant T. Krishnan, Andrew Marshall, John Rodriguesz, Sreedhar Natarajan,

Tim Rost, and Srikanth Krishnan. Impact of negative bias temperature instability on digital

circuit reliability. In 40th Annual International Reliability Physics Symposium (IRPS), 2002.

[88] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault detection via simultaneous

multithreading. In Proceedings of the 17th Annual International Symposium on Computer

Architecture (ISCA), Jun 2000.

[89] R. Rodriguez, J. H. Stathis, and B. P. Linder. Modeling and experimental verification of the

effect of gate oxide breakdown on CMOS inverters. In 41st Annual International Reliability

Physics Symposium (IRPS), Aug 2003.

[90] Eric Rotenberg. AR-SMT: A microarchitectural approach to fault tolerance in microproces-

sors. In Digest of Papers 29th Annual International Symposium on Fault-Tolerant Computing

(FTCS’99), Jun 1999.

[91] Franz X. Ruckerbauer and Greorg Georgakos. Soft error rates in 65mn srams - analysis

of new phenomena. In Proceedings of the 13th International On-Line Testing Symposium

(ILOTS), July 2007.

[92] Stefan Rusu and Simon Tam. Clock generation and distribution for the first IA-64 micropro-

cessor. In Proceedings of the International Solid-State Circuits Conference (ISSCC), 2000.

[93] Kewal. K. Saluja and M. Karpovsky. Testing computer hardware through data compression

in space and time. In Proceedings of the International Test Conference, pages 83–88, 1983.

[94] John P. Shen and Mikko H. Lipasti. Modern processor design: fundamentals of superscalar

processors. McGraw Hill, 2005.

[95] Larry Sherman. Stratus continuous processing technology – the smarter approach to uptime.

Technical report, Stratus Technologies, 2003.

163

[96] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. Modeling the effect of

technology trends on soft error rate of combinational logic. In International Conference on

Dependable Systems and Networks, June 2002.

[97] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger, and Lorenzo

Alvisi. Modeling the effect of technology trends on the soft error rate of combinational logic.

In Proceedings of the International Conference on Dependable Systems and Networks (DSN),

Jun 2002.

[98] Smitha Shyam, Kypros Constantinides, Sujay Phadke, Valeria Bertacco, and Todd Austin.

Ultra low-cost protection for microprocessor pipelines. In Proceedings of the Twelfth Inter-

national Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XII), Oct 2006.

[99] Alex Shye, Tipp Moseley, Vijay Janapa Reddi, Joseph Blomstedt, and Danieal A. Connors.

Using process-level redundancy to exploit multiple cores for transient fault tolerance. In

International Conference on Dependable Systems and Networks, June 2007.

[100] Daniel P. Siewiorek and Robert S. Swarz (Eds.). Reliable Computer Systems: Design and

Evaluation. A K Peters, 3rd edition, 1998.

[101] T.J. Slegel, R.M. Averill III, M.A. Check, B.C. Giamei, B.W. Krumm, C.A. Krygowski, W.H.

Li, J.S. Liptay, J.D. MacDougall, T.J. McPherson, J.A. Navarro, E.M. Schwarz, K. Shum,

and C.F. Webb. IBM’s S/390 G5 microprocessor design. IEEE Micro, 19(2):12–23, Mar-Apr

1999.

[102] Gordon L. Smith. Model for delay faults based upon paths. In Proceedings of the 1983

International Test Conference (ITC), Oct 1983.

[103] James. E. Smith and Andrew R. Pleszkun. Implementing precise interrupts in pipelined

processors. IEEE Transactions on Computers, C-37(5):562–573, May 1988.

[104] Jared C. Smolens, Brian T. Gold, Babak Falsafi, and James C. Hoe. Reunion: Complexity-

effective multicore redundancy. In Proceedings of the 39th ACM/IEEE International Sympo-

sium on Microarchitecture, December 2006.

164

[105] Jared C. Smolens, Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C. Hoe, and An-

dreas G. Nowatzyk. Fingerprinting: Bounding soft-error detection latency and bandwidth. In

Proceedings of the 11th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 224–234, Oct 2004.

[106] Jared C. Smolens, Jangwoo Kim, James C. Hoe, and Babak Falsafi. Efficient resource shar-

ing in concurrent error detecting superscalar microarchitectures. In Proceedings of the 37th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 37), December

2004.

[107] E.S. Sogomonyan, A. Morosov, M. Gossel, A. Singh, and J. Rzeha. Early error detection in

systems-on-chip for fault-tolerance and at-speed debugging. In Proceedings of the 19th VLSI

Test Symposium, May 2001.

[108] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, and David A. Wood. SafetyNet: improv-

ing the availability of shared memory multiprocessors with global checkpoint/recovery. In

Proceedings of the 29th Annual International Symposium on Computer Architecture, June

2002.

[109] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. The case for lifetime

reliability-aware microprocessors. In Proceedings of the 31st Annual International Sympo-

sium on Computer Architecture (ISCA), June 2004.

[110] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. The impact of tech-

nology scaling on lifetime reliability. In Proceedings of the International Conference on

Dependable Systems and Networks (DSN), June 2004.

[111] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. Exploiting structural

duplication for lifetime reliability enhancement. In Proceedings of the 32nd Annual Interna-

tional Symposium on Computer Architecture (ISCA), June 2005.

[112] Stratus Technologies. Benefit from Stratus Continuous Processing Technology, July 2007.

[113] Sun Microsystems. OpenSPARC T1 Microarchitecture Specification, Revision A, Aug 2006.

165

[114] Karthik Sundaramoorthy, Zachary Purser, and Eric Rotenberg. Slipstream processors: im-

proving both performance and fault tolerance. In Proceedings of the Ninth International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS IX), November 2000.

[115] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient fault recovery using simulta-

neous multithreading. In Proceedings of the 29th Annual International Symposium on Com-

puter Architecture, May 2002.

[116] Mathys Walma. Pipelined cyclic redundancy check (CRC) calculation. In Proceedings of the

16th International Conference on Computer Communications and Networks, Aug 2007.

[117] Nicholas J. Wang, Justin Quek, Todd M. Rafacz, and Sanjay J. Patel. Characterizing the

effects of transient faults on a high-performance processor pipeline. In Proceedings of the

2004 International Conference on Dependable Systems and Networks (DSN), June 2004.

[118] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia Ailamaki, Babak

Falsafi, and James C Hoe. SimFlex: statistical sampling of computer system simulation.

IEEE Micro, 26(4):18–31, Jul-Aug 2006.

[119] Kent Wilken and John P. Shen. Continuous signature monitoring: Low-cost concurrent de-

tection of processor control errors. IEEE Transactions on Computer-Aided Design, 9(6):629–

641, June 1990.

[120] Huiyang Zhou. A case for fault tolerance and performance enhancement using chip multi-

processors. In IEEE Computer Architecture Letters, Sept 2005.

[121] J. F. Ziegler, et al. IBM’s experiments in soft fails in computer electronics (1978-1994). IBM

Journal of Research and Development, 40(1), 1998.

166

	1 Introduction
	1.1 Problem and Scope
	1.2 Fingerprints
	1.3 Thesis contributions

	2 Architectural Fingerprints
	2.1 Fault model
	2.2 Architectural Fingerprints
	2.3 Metrics
	2.3.1 Discussion

	2.4 Conclusion

	3 Architectural Fingerprint Implementation
	3.1 Architectural Fingerprints in a Superscalar Out-of-Order Core
	3.1.1 P6 Overview
	3.1.2 Architectural Fingerprint Constraints
	3.1.3 Pentium 4 Architectural Fingerprints
	3.1.4 Evaluation

	3.2 System-level Implementation of Architectural Fingerprints
	3.2.1 OpenSPARC T1 Overview
	3.2.2 System-level Design
	3.2.3 Hardware Design

	3.3 Architectural Fingerprint Synthesis
	3.4 Soft Error Injection Evaluation
	3.4.1 Methodology
	3.4.2 Results

	3.5 Conclusion

	4 Hash Design
	4.1 Introduction
	4.2 Background
	4.3 Hash Architecture
	4.3.1 Design requirements.
	4.3.2 Parallel Input CRC units.
	4.3.3 A Scalable Hash Architecture.

	4.4 Hash Structures
	4.4.1 Spatial Compactors
	4.4.2 Temporal Compactors

	4.5 Evaluation
	4.5.1 Methodology
	4.5.2 Empirical Aliasing Properties
	4.5.3 Synthesis Results for latency and area

	4.6 Conclusion

	5 Reunion
	5.1 Introduction
	5.2 Background
	5.2.1 Fault Model
	5.2.2 Redundant Execution
	5.2.3 Input Incoherence
	5.2.4 Output Comparison
	5.2.5 Fingerprints over On-Chip Interconnects.

	5.3 Reunion Execution Model
	5.3.1 System Definition
	5.3.2 Execution Model
	5.3.3 Recovery

	5.4 Reunion Microarchitecture
	5.4.1 Baseline CMP
	5.4.2 Shared Cache Controller
	5.4.3 Processor Pipeline
	5.4.4 Serializing Check Overhead
	5.4.5 Fingerprint comparison interval and latency: analytic model
	5.4.6 Lock Primitive Implementation
	5.4.7 Checkpointing and Re-execution

	5.5 Evaluation
	5.5.1 Baseline Performance
	5.5.2 Checking Overhead
	5.5.3 Reunion Performance
	5.5.4 Input Incoherence
	5.5.5 Synchronizing request type
	5.5.6 Serialization Overhead
	5.5.7 Fingerprinting interval and fingerprints on the interconnect

	5.6 Conclusion

	6 Microarchitectural Fingerprints
	6.1 Fault Model
	6.2 Microarchitectural Fingerprints
	6.3 Metrics
	6.3.1 Discussion

	6.4 Hardware Design
	6.5 Soft Error Injection Evaluation
	6.5.1 Methodology
	6.5.2 Results

	6.6 Conclusion

	7 FIRST
	7.1 Introduction
	7.2 Background
	7.3 Detection with FIRST
	7.3.1 Inducing Marginal Operation

	7.4 Wearout Fault Modeling
	7.4.1 Wearout Fault Injection Study
	7.4.2 Wearout Fault Simulation

	7.5 Evaluation
	7.5.1 Feasibility of FIRST
	7.5.2 Wearout Detection with FIRST
	7.5.3 The Persistent Nature of Wearout Faults
	7.5.4 Isolated Wearout Faults

	7.6 Conclusion

	8 Related Work
	8.1 Concurrent Error Detection
	8.2 Wearout Detection

	9 Conclusion
	9.1 Future Work

