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Abstract— We present a domain-specific approach to generate
high-performance hardware-software partitioned implementa-
tions of the discrete Fourier transform (DFT). The partitioning
strategy is a heuristic based on the DFT’s divide-and-conquer
algorithmic structure and fine tuned by the feedback-driven
exploration of candidate designs. We have integrated this ap-
proach in the Spiral linear-transform code-generation framework
to support push-button automatic implementation. We present
evaluations of hardware-software DFT implementations running
on the embedded PowerPC processor and the reconfigurable
fabric of the Xilinx Virtex-II Pro FPGA.

In our experiments, the 1D and 2D DFT’s FPGA-accelerated
libraries exhibit between 2 and 7.5 times higher performance
(operations per second) and up to 2.5 times better energy
efficiency (operations per Joule) than the software-only version.

I. INTRODUCTION

The goal of a hardware-software partitioned implementation
is to achieve the fast execution time of a hardware imple-
mentation while retaining the flexible programmability of a
software implementation. Typically, the most computation-
intensive kernels that are conducive to hardware acceleration
are extracted from an algorithm and realized as hardware,
while the remaining computations are carried out in software.
In such a scenario, the hardware kernels are utilized in
different contexts under software control. Thus, the hardware-
software implementation combines the flexibility of software
and the performance benefits of hardware.

In general, the determination of an optimal partitioning
strategy while satisfying a set of constraints is an NP-hard
problem [1] and several heuristic methods for its solution
have been proposed (e.g., [2], [3]). In this paper, we present
a domain-specific approach to generating high-performance
hardware-software implementations of fast Fourier transform
algorithms (FFT). The partitioning strategy is based on heuris-
tics derived from the FFT’s divide-and-conquer algorithmic
structure and further refined by feedback-driven exploration
of candidate designs.

The discrete Fourier transform (DFT) is an important primi-
tive underlying many DSP applications. Fast algorithm to com-
pute the DFT—called FFT algorithms—have been extensively
studied and exhibit very regular structure. An FFT algorithm
recursively decomposes a large DFT into repeated calculations
of many smaller DFTs. From this general structure, we infer
that the hardware accelerated kernels must be in the form
of throughput-optimized DFT cores for small problem sizes.

When considering two-power problem sizes (i.e., DFTs on
2n points), we only need to consider two-power sized DFT
kernels (i.e., DFT2k ). By off-loading the appropriate kernels
into hardware, the software receives the benefit of hardware
acceleration and yet can still compute arbitrary sized DFTs
on top of the available kernels. Different kernels in hardware
yield different performance (e.g., operations per second) and
necessitate different amounts of resources (e.g., logic or num-
ber of BRAM).

As a consequence, the DFT partitioning problem becomes
the problem of selecting the appropriate set of throughput-
optimized two-power sized DFT cores to satisfy a given
resource constraint (logic, power, energy) while maximizing
a scalar metric, such as performance. We present our solution
to this problem in two parts. First, in what we call the
forward design problem, we make use of the Spiral [4]
generator framework to automatically produce a hardware-
software implementation given a pre-specified partitioning
strategy, in our case defined by the set of DFT cores avail-
able in hardware. These hardware cores are generated using
Spiral [5], [6] and are often faster and smaller than other
available implementations. Secondly, we solve the inverse
design problem: given the desired constraints and an objective
function, select the optimal set of two-power-sized DFT cores
to include in hardware. Together, the overall design generation
problem is solved by first solving the inverse design problem
by emulating the hardware cores (i.e., without synthesizing any
DFT cores) and then the resulting forward design problem,
given the candidate hardware cores. In solving the inverse
design problem, a simple scalar optimization metric (e.g.,
runtime) is used to maximize the performance for a single
DFT problem size. The scalar metric can also be defined
as the average performance over multiple problem sizes (to
optimize a DFT library) or a composite function that takes
into account a combination of performance, power, and logic
cost simultaneously.

As a demonstration, we present experimental results of
applying our automatic generator to create hardware-software
implementations of the DFT for the Xilinx XUP2VP develop-
ment board with a Virtex-II Pro XC2VP30 FPGA. 1D and
2D DFT problems of two-power and non-two-power sizes
are partitioned into software (running on one of the two
PowerPC hard cores in the FPGA) and hardware (comprised
of the DFT cores instantiated in the reconfigurable fabric).



The specific partitioning strategy to be decided in these
experiments is which two two-power DFT kernels, ranging
between size 25 to 210, must be synthesized in hardware
to maximize a single problem’s performance or the average
library performance. Our evaluation includes the optimization
of runtime, energy and power, and thus their Pareto tradeoff.
In this paper, we focus solely on hardware-software solutions
for embedded-system implementations; for example, see [4]
for high-performance software solutions or [5], [6] for custom
hardware solutions.

Synopsis. In Section II, we briefly survey the related work.
In Section III, we present the necessary background for the
DFT, Spiral and our evaluation platform. In Section IV, we
first present the forward design problem of how to generate
a concrete implementation from a DFT formula and a parti-
tioning decision. In Section V, we present the inverse design
problem of arriving at the optimal partitioning strategy. We
present our experimental results in Section VI and conclude
in Section VII.

II. RELATED WORK

Companies like XtremeData and DRC are positioning FP-
GAs on the fast memory interconnects of high-performance
PC workstations. These technologies promote a new compu-
tation paradigm with FPGAs as first-class processing elements
alongside of traditional microprocessors.

An algorithm will nevertheless need to be partitioned—
ideally with performance-critical kernels in hardware and
control-intensive kernels in software—to take advantage of
these new hybrid hardware-software platforms; an algorithm
needs this because 1) not all sections benefit from hardware
acceleration and 2) hardware accelerators may require new
hardware data paths that are difficult to synthesize onto an
FPGA.

The hardware-software partitioning problem is based on the
ability to determine and isolate the part of a computation that
could be realized into specialized hardware, for which we
could improve performance, energy, size or any other com-
posed measure. The general hardware-software partitioning
problem has been shown to be NP-hard [1]. Efficient heuristic
partitioning procedures have been studied (e.g., [2], [3]). In
these works, the most difficult challenge is in choosing the
appropriate granularity of representation in the computation
graph; for example, a node can represent an instruction, a
loop, a function call, or a module. This issue is addressed
by system level design languages such as SpecSyn [7], [8].
The development frameworks for these languages deploy
search techniques and implementation strategies based on the
ability to represent and manipulate specific solution features
at various levels of abstraction and where the user is always
welcome to interact during the design process.

The subject of this paper is the domain-specific partitioning
of the DFT where high-level algorithmic knowledge greatly
simplifies the viable implementation space. There have been
other scenario-specific partitioning methods developed for
image processing (e.g., [9]), scalability of a design (e.g., [10]),

reactive systems (e.g., [11]) and custom processor applications
(e.g., [12]).

III. BACKGROUND

We provide the necessary background on the 1D and 2D
DFT, FFTs, the program generator Spiral, and the Virtex-II
Pro platform.

DFT and FFT. The DFT is a matrix-vector multiplication
x 7→ y = DFTn x, where x, y are the input and output vector,
respectively, of length n, and DFTn is the n×n DFT matrix,
given by DFTn = [ωk`

n ]0≤k,`<n, ωn = exp(−2πj/n), j =√−1.
Algorithms for the DFT are sparse structured factorizations

of the transform matrix [13]. For example, the Cooley-Tukey
fast Fourier transform algorithm (FFT) can be written as

DFTmn → (DFTm⊗In)Dm,n(Im ⊗DFTn)Lmn
m . (1)

Here, Im is the m × m identity matrix; Dm,n is a diagonal
matrix, and Lmn

m is the stride permutation matrix, both de-
pending on m and n (see [13] for details). The Kronecker, or
tensor product is defined as

A⊗B = [ak,`B]k,` for A = [ak,`]. (2)

For example,

Im ⊗DFTn =




DFTn

. . .
DFTn


 . (3)

Similarly, the 2D DFT of an input of size m×n is given by a
matrix DFTm×n that, using the row-column method, can be
broken down as

DFTm×n → (DFTm⊗In)(Im ⊗DFTn). (4)

Both (1) and (4) represent divide-and-conquer algorithms.
For example, (1) asserts that DFTmn x can be computed
in four steps by first permuting x with Lmn

m , dividing the
computation into m consecutive DFTn subvectors of length
n (see (3)), scaling with Dm,n, and finally dividing the
computation into n DFTm to subvectors at stride n.

In fixed-point implementations, scaling is often used to
avoid overflow. This is formally captured by replacing above
DFTn with 1

n DFTn in the formulas above. In particular,
every so-called butterfly DFT2 is then succeeded by a scaling
of 1

2 (i.e., each vector element is shifted right by one bit).
Spiral. Spiral [4] is a program generation and optimization

system for transforms. In Spiral, the formalism above is called
SPL (signal processing language); a decomposition like (1) is
called a rule. For a given transform, Spiral recursively applies
these rules until all transforms have reached a pre-defined
basic problem size (often 2). These rules are then compiled
to generate one algorithm represented as a matrix formula.
There are many formulas for each transform due to the choices
of expansion. For example, in (1) different factorizations
can be chosen (i.e., different m and n). The formula is
then structurally optimized using a rewriting system, which
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Fig. 1. The code generator Spiral

performs formula level vectorization, parallelization, and loop
optimizations, if needed. Finally, the resulting formula is
compiled into actual C code or Verilog. The performance
of the implementation (e.g., runtime, power, energy, error)
is measured or estimated and fed back into a search engine,
which decides how to modify the algorithm, using a dynamic
programming search. Eventually, this feedback loop terminates
and outputs the best implementation found. The entire process
is depicted in Figure 1.

Spiral takes a similar approach to generate hardware im-
plementations of transforms, currently restricted to the DFT
[6]. In this case a model is used to aid the feedback driven
optimization [14].

Platform: Virtex-II Pro. We demonstrate and evaluate our
approach by generating hardware-software partitioned imple-
mentations of the DFT for the Xilinx XUPV2P development
board, which contains the Xilinx Virtex-II Pro XC2VP30
FPGA. The software portion of the partitioned implementa-
tion is executed on one of the two PowerPC405 processor
cores embedded in the FPGA; the hardware data-path of the
partitioned implementation is mapped onto the FPGA’s re-
configurable fabric. The hardware and software communicate
through the DSOCM (data-side on-chip memory) interface
in the Virtex-II Pro architecture. A block diagram of this
arrangement is shown in Figure 2. We briefly elaborate on
the relevant platform parameters.

The embedded PowerPC 405 processor is a 300MHz
in-order pipelined processor supporting integer operations
only. The processor can access 512 MByte of DRAM on
the XUPV2P board with a bandwidth of approximately
80MByte/second. Each PowerPC processor is also served
by separate 1-cycle 16-KByte instruction and data caches.
We run embedded Linux 2.4.27 on the PowerPC with the
peripherals necessary to enable remote telnet through Ethernet.
In this setup, the main Spiral engine is running on a separate
workstation host. Executables for the PowerPC processor

Virtex-II Pro FPGA

200 MB/sec
OCM bus

PPC 405
300 MHz

cache

memory
controller

to off-chip DDR DRAM

HW core
100 MHz

Fig. 2. Virtex II Pro: SW/HW Platform for Experiments.

are generated, compiled, and linked on the remote host and
communicated to the XUP board via Ethernet.

The Virtex-II Pro XC2VP30 FPGA has 13,969 reconfig-
urable slices, 136 18-bit hard multipliers and 136 2KByte
BlockSelect RAMs (BRAMs). The DSOCM interface in the
Virtex-II Pro architecture allows the PowerPC processor to
memory-map up to 16 BRAMs in the fabric with 158
MByte/sec and 198 MByte/sec in read and write bandwidth.
The reconfigurable fabric is clocked at the frequency of the
DSOCM interface (100MHz). All of our FPGA configurations
are created using Xilinx EDK tools.

IV. AUTOMATIC PARTITIONING OF TRANSFORMS

In this section, we explain the automatic partitioning of the
DFT for a given set of hardware accelerators. Furthermore,
we explain how we map the (partitioned) formula into inter-
operating hardware and software. In this paper, we restrict the
discussion to the 1D and 2D DFT, but the methodology is
applicable to the domain of linear transforms.

To generate partitioned implementations for a given trans-
form, the Spiral system searches over a space of candidate
algorithms that compute the transform. Different algorithms
lead to different hardware-software partition boundaries and
thus different final performance.

A. Partitioning: Idea

Fast divide-and-conquer algorithms for the DFT are equiv-
alent to the recursive application of breakdown rules like (1)
and (4) (for 1D and 2D DFTs respectively). Both recursively
compute multiple smaller 1D DFTs and combine their results.
The structure of these breakdown rules directly suggests a
good partitioning strategy, namely to compute the subproblems
DFTm and DFTn in hardware, and to let the software
orchestrate the conquer step. Depending on the size of m and
n, DFTm and DFTn may need to be further factorized to use
smaller DFT hardware kernels that can fit within the available
FPGA logic resources.

In all of the factorizations, the DFT kernels occur in
the context of a tensor product with an identity matrix. In
particular, Im ⊗ DFTn (see (3)) indicates m data parallel
applications of DFTn to a vector of length mn. In hardware,
for a wide vector that is presented sequentially as a stream of
data flits, we can instantiate a single pipelined implementation



of DFTn and reuse it m times for the complete vector. Using
the known identity

DFTm⊗In = Lmn
m (In ⊗DFTm)Lmn

n , (5)

we can convert DFTm⊗In into the same form plus two data
permutations to be handled in software; these permutations
do not allocate extra memory space because they manage data
movement through the temporary buffers used by the hardware
cores.

The Spiral hardware core generator currently only generates
DFT cores of two-power problem sizes. However, using (1),
we can decompose the problem for other sizes into a two-
power portion and a non-two-power portion. Then, the hard-
ware can accelerate the former, while the latter portion must be
implemented in software. We will present experimental results
for this type of problem.

To summarize, based on an analysis of the DFT formula
structure, we can restrict our choices of hardware cores to dif-
ferent sized streaming pipelined DFT kernel implementations.
In this restricted partitioning problem, the key degree of design
freedom is in choosing the appropriate set of DFT kernel sizes
to be synthesized into the available FPGA resources in order
to maximize the desired metric. For most performance metrics,
this means choosing the set of kernel sizes that maximizes the
computation off-loaded from the PowerPC processor into the
FPGA fabric.

B. Partitioning: Formal method

We use a rewriting system [15] that constructs partitioned
FFTs for a given DFT. The partitioning algorithm is encoded
as a set of rewrite rules that operate in tandem with breakdown
rules such as (1). The input to the rewrite system is a transform
tagged “to be partitioned”, and a list of available hardware
cores. The output is one or a set of partitioned formulas.

Tags. Throughout the rewriting process, partitioning infor-
mation is propagated using tags. We introduce two tags:

A︸︷︷︸
partition

and A︸︷︷︸
HW

.

A formula A tagged with partition needs to be partitioned;
however, its partitioning is not yet known. For a formula A
that is not tagged no further rewriting needs to be done and
it is implemented in software. For a formula A tagged with
HW, this decision has been made and A is mapped to hardware
cores.

Rewriting rules. In order to extract hardware-mappable
sub-formulas, we utilize a set of rewriting rules summarized
in Table I. For example, rule (7) distributes the partition
tag across factors of a product; rule (8) implements the
identity (5), effectively mapping DFTm⊗In to the form (3)
compatible with streaming pipelined DFT cores. Note that
any rule where the left side is untagged (as (1) and (4))
can be applied “inside” a tagged expression, leaving the tag
unchanged.

Base cases. When the desired set of hardware DFT kernel
sizes is known, those DFT kernels are encoded as base cases

TABLE I
REWRITING RULES FOR HARDWARE-SOFTWARE PARTITIONING.

A︸︷︷︸
partition

→ A Software only (6)

A B︸︷︷︸
partition

→ A︸︷︷︸
partition

B︸︷︷︸
partition

Distribution (7)

DFTm⊗In︸ ︷︷ ︸
partition

→ Lmn
m (In ⊗DFTm︸ ︷︷ ︸

HW

)Lmn
n If DFTm in HW (8)

DFTm⊗In︸ ︷︷ ︸
partition

→ DFTm︸ ︷︷ ︸
partition

⊗In If DFTm not in HW (9)

Im ⊗DFTn︸ ︷︷ ︸
partition

→ Im ⊗DFTn︸ ︷︷ ︸
HW

If DFTn in HW (10)

Im ⊗DFTn︸ ︷︷ ︸
partition

→ Im ⊗DFTn︸ ︷︷ ︸
partition

If DFTn not in HW (11)

which cannot be broken down further. The base case rule (10)
matches subformulas of the form Im ⊗ DFTn where DFTn

is a hardware supported DFT kernel size. This is because a
streaming pipelined DFT core efficiently handles any number
of consecutive, data-parallel applications to an input stream.

Lastly, the software termination rule (6) is the rule indicating
that everything that cannot be further rewritten is implemented
in software. This rule is used only when no other rules apply,
ensuring that a subformula is mapped to hardware whenever
beneficial.

Rewriting process. The input to the rewriting system is a
tagged transform, for instance

DFTn︸ ︷︷ ︸
partition

or DFTm×n︸ ︷︷ ︸
partition

.

In a final partitioned formula, the tag “partition” has been
removed, and all subformulas are either untagged or tagged
as “HW”.

The rewriting system contains three rule sets: 1) breakdown
rules (1) and (4), 2) partitioning rules (7)–(11), and 3) the
cleanup rule (6).

Example. We show a partitioning example of a DFTmnr,
where r is a small odd prime number (for instance 3 or 5),
and m and n are two-powers (e.g., m = 2`). We assume the
availability of two streaming hardware cores, Ik⊗DFTm, and
Ik ⊗ DFTn. The input to our rewriting system is the tagged
problem specification,

DFTmnr︸ ︷︷ ︸
partition

.

The rewriting system first applies (1), producing subproblems
of size mn and r. Then, the partitioning rule set is applied. In
the next breakdown step, the system applies (1), reducing the
problem of size mn into m and n. The partitioning rule set
is applied again, and finally, the cleanup rule (6) is applied,
leading to the partitioned formula (12) (seen in Figure 3). The
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search space of all partitioned formulas is obtained by enu-
merating all possible choices of parameterizations whenever
(1) is applied.

Next we explain how a partitioned formula like (12) is
mapped to hardware and software.

C. Software and Hardware Generation

Mapping a partitioned formula like (12) to an FPGA-
accelerated program for the PowerPC requires three steps:
1) generating software for the untagged parts, 2) generating
the required hardware designs, and 3) interfacing with the
accelerators from within the generated software.

Software. We use the standard fixed-point code generation
process of Spiral [4], [16] to generate software implemen-
tations for the untagged parts of a formula. The hardware
portions of the formula are dispatched to the DFT cores in the
FPGA fabric via a specialized hardware function call interface.

Hardware. We use Spiral’s DFT IP core generator [5], [6]
to generate hardware cores implementing a streaming version
of Im ⊗ DFTn for a two-power n. For a DFT core of a
given size, it is possible to compute the DFT of a smaller
two-power size by interleaving the smaller vector’s elements
with zero elements (i.e., up-sampling in time); the results are
in the leading elements of the output vector (i.e., periodic
in frequency). In other words, each instantiated DFTn core
actually provides a set of virtual cores for the smaller DFTs
of sizes n/2, n/4, . . . The disadvantage of using the virtual
cores is that they have the same latency as computing the larger
native-sized DFTs. Fortunately, our primary performance con-
cern is in the throughput of repeated DFT computations.
By overlapping multiple DFT calculations in flight, we can
completely hide the effect of the extra latency and see no
throughput penalty when using a DFTn core to compute
problem sizes down to n/4.

Interface. Figure 4 shows the architecture of two hardware
cores accelerating the PowerPC. The PowerPC is in control,
processing data residing in the main memory. It communicates
with the hardware cores via the DSOCM bus, which is used
to send and receive data, as well as control information.

To initiate a DFT calculation, the PowerPC writes the DFT
input data into BRAM and sets a bit in the control registry
to select the desired core size (virtual or real) and initiate
processing. The selected DFT core begins streaming the data
from the input BRAM, through the streaming DFT pipeline
and returns the processed data into the output BRAM. Once
all data is processed, the DFT core sets a ready status bit in the
control registry polled by the PowerPC. The PowerPC begins
retrieving the data from the return BRAM buffer.

In order to obtain full streaming utilization, the PowerPC
loads data into the next buffer and retrieves the previous result
while the hardware core is processing the current data set. The
BRAM interface implements a ring buffer for 4 sets of data,
allowing 4 DFT calculations to be in flight concurrently to
hide latency.

V. OPTIMIZING AN ENTIRE LIBRARY

So far, we have shown in a forward design problem how
to generate a partitioned implementation for a given DFT and
a given set of hardware cores. Next we discuss the inverse
design problem of determining the optimal set of hardware
cores based on a performance metric and resource constraints.
The overall optimized design generation problem is solved by
first solving the inverse design problem and then the resulting
forward design problem.

The straightforward approach to an inverse design problem
is to solve many forward design problems and search for
the best solution. This approach has been used in Spiral
to generate optimized software-only implementations. It is
possible since software code generation and evaluation are
fast enough to enable a feedback-driven optimization loop.
However, it is impractical to let Spiral generate and try out all
sets of hardware cores admissible under a specified area/power
budget since synthesis takes on the order of hours for each
trial.

Fortunately, the timing behavior of DFT cores is extremely
predictable, resembling a delay buffer of a precisely known
delay (a function of the size of the DFT). For performance
evaluation in Spiral’s search-based feedback loop, a special
version of the DFT software is used on the PowerPC pro-
cessor. The timing software faithfully performs all software
instructions including loads and stores to memory (through
caches) and the BRAM-based hardware interface. However,
the expected computation delay of the DFT core invocations
is emulated in software using cycle counters. This enables us
to explore the performance space of different DFT core sizes
without actually synthesizing or downloading any actual hard-
ware cores. Using this approximation, we can fully explore the
available hardware core choices in typically a few hours (up
to 30 minutes per hardware-core configuration).
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Fig. 3. DFTmnr partitioned for streaming hardware cores Ik ⊗DFTm and Ik ⊗DFTn. m and n are two-powers and r is a small prime.
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We have empirically verified that this modeling approach is
sufficiently accurate to support meaningful design space explo-
ration (e.g., Figure 5). The model predicts execution very well
especially for in-cache DFT sizes less than 512. For the larger,
out-of-cache sizes, we have seen a maximum error of 15%, but
the model accurately estimates the performance/energy trends.

A. Pruning The Search Space

For a given transform size, there are exponentially many
formulas. In addition, allowing any combination of hardware
cores leads to a combinatorial explosion. To make our ap-
proach feasible we need to prune this search space in addition
to speeding up evaluation. We employ two pruning ideas.

Choice of cores. Due to the overlap in functionality,
latency, and energy consumption arising from virtual cores,
some combinations of DFT kernel sizes are not beneficial
for joint mapping onto an FPGA. Specifically, the possibility
of using the virtual cores associated with each real DFT
core dramatically reduces the number of sensible hardware
configurations. This claim is made specific in Section VI-B,
where a performance analysis of virtual cores is given.

Dynamic programming. We reduce the algorithm search
space by taking advantage of the recursive nature of transform
algorithms. Experiments show that dynamic programming
(DP) is a viable method to optimize these algorithms. The DP
methodology is based on the assumption that the performance
of a subproblem does not depend on its context. For instance,
this means that the performance of DFTn is assumed the same
in the context of Im ⊗DFTn or DFTn⊗Im.

To find the best solution for a given problem (say, DFTn),
DP tries all applicable breakdown rules (in this paper, Cooley-
Tukey FFT (4) only). For each applicable rule, DP first
recursively finds the best solutions for its subproblems and
all rule parameterization (in our example, all DFTk and
DFTm with km = n). It then finds the best solution for the

original problem (DFTn) by evaluating all parameterizations
of the breakdown rule and plugging in the best subproblem
solutions that it has already found. All problems are cached
after they are evaluated, accelerating the search for any future
overlapping problems.

VI. EXPERIMENTAL RESULTS

In this section we evaluate our approach on the Xilinx
Virtex-II Pro FPGA with embedded PowerPC processor by
generating FPGA-accelerated DFT libraries optimized for both
performance and energy efficiency. After specifying the exper-
imental setup, we first briefly consider the necessary library
components: Spiral-generated DFT software libraries, Spiral-
generated hardware cores, and virtual cores. Then, we evaluate
a specific example of FPGA-accelerated DFT libraries and
discuss the tradeoffs between using one core versus two cores.
Finally, we evaluate in detail DFT libraries accelerated with
two hardware cores; we discuss the tradeoffs of the hardware
core choice in the performance/area/power space. Again we
stress that in all accelerated libraries both the software com-
ponents and the hardware cores are Spiral-generated (“push-
button”).

In this work, we present DFT implementations in fixed-
point precision (16 bits with 14 bits fractions). We implement
scaled DFTs to avoid overflow. We do not address the
minimization of the error by using different algorithms in finite
precision; however, in Section VI-D, we will experimentally
address the issues of finite precision errors arising from
different algorithms and partitioning.

Performance metrics. We assume an operation count
of 5n log2 n for the 1D DFTn and 5mn log2 mn for
the 2D DFTm×n. We measure runtime performance in
pseudo Mop/s (mega-operations per second), computed
as operations [op]/runtime [µs], and energy efficiency in
pseudo Mop/J (mega-operations per Joule), computed as



TABLE II
PERFORMANCE [MOP/S], FOR PROBLEMS OF SIZE 16—1024 ON

HARDWARE CORES OF SIZE 32—1024.

problem size

Core size 1024 512 256 128 64 32 16

32 460 313
64 603 460 296

128 739 603 439 230
256 866 739 585 313 135
512 980 866 726 396 178 74

1024 1092 980 858 476 220 96

operations [op]/energy [µJ]. These metrics are scaled inverses
of runtime and energy, respectively, and thus preserve runtime
and energy relations. In Pareto plots we use normalized
runtime [ns/op] (inverse of runtime performance) vs. power
[W] and area [slices].

Physical measurements. To obtain the required measure-
ment resolution, we perform the same computation multi-
ple times. We measure runtime using the PowerPC’s cycle
counter, and the power supplied to the board is determined
by measuring the supply current (at 5V) using an Agilent
34401A digital multi meter. Both measurements are acquired
automatically and fed back to the Spiral search engine, closing
the performance tuning loop (see Fig. 1). We compute the
energy as the product of measured runtime and power.

A. Performance Evaluation of Software and Hardware

Software. Spiral-generated floating-point and fixed-point
software code is competitive with the best available DFT
software implementations across many platforms [4], [17]. The
300 MHz PowerPC typically achieve on average 100 pseudo
Mop/s on in-cache DFT calculations.1

Hardware cores. We have shown Spiral-generated DFT
cores are competitive in performance and size with the Xilinx
LogiCore DFT library for DFT sizes up to 1024 [5], [6].
Table II reports the throughput performance (Mops/s) of the
streaming pipelined DFT cores, including when the cores are
applied to smaller problem sizes in the virtual mode. We
observe that in each case for n/2 and n/4 there is virtually
no performance penalty compared to the real core of that size.
The reason is that in these cases the performance bottleneck is
the data copy bandwidth of the DSOCM bus. The extra latency
incurred by virtual cores is fully hidden. As a consequence,
any two DFT hardware cores of size n and m (n > m) used for
acceleration in larger problems (i.e., when used in throughput
mode) should be chosen to satisfy n/m > 4.

B. Accelerating Software with Hardware Cores

We now consider the first example of an FPGA-accelerated
DFT library generated by Spiral. We choose two hardware
cores: DFT64 and DFT512. Figure 6 shows the performance

1Note that the operation count does not comprise loads/stores, index
computations, loop bound computations and scaling. Thus, we use an under-
estimation of the number of operations actually issued.
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Fig. 6. Performance of Spiral-generated 1D DFT software accelerated by
one or two hardware cores DFT64 and DFT512. Higher is better.

impact of using one or both hardware cores compared to a
generated software DFT library.

Single core. Accelerating the software implementation with
a single core shows the same characteristic trend for each of
the choices. For very small sizes, employing the hardware core
does not speed up computation due to overhead and, there, the
software-only library is faster. This is the case for n = 16 for
the DFT64 core and for n ≤ 64 for the DFT512 core.

When the problem size is between this “break-even” point
and the size of the hardware core, we observe a ramp-up in
which the highest performance is reached at the core’s native
size, for a speed-up of 2.6 times for n = 64 and 5.6 times for
n = 512. In this region all computation is done in hardware
(via real or virtual cores), and software is only used to route
data in and out of the cores.

We observe a drop in performance for the first problem size
larger than the core size (n = 128 for DFT64, and n = 1024
for DFT512) to about two times the software performance.
For this size and larger sizes a significant amount of the
computation is done in software. Nevertheless, the hardware
acceleration provides a speed-up of at least two times for large
in-cache problem sizes. Once data does not fit into cache at
n = 8192, memory bandwidth becomes the main bottleneck
and practically reduces all possible speedups.

Two cores. Both single core configurations have weak
spots: the DFT64 core speeds up small sizes but provides
only moderate speed-up for large sizes, and the DFT512

core provides high speed-up for medium and large sizes but
cannot speed up small sizes. By employing a system with both
hardware cores we leverage the positive aspects of both cores.
Figure 6 shows that a system with two cores achieves the
maximum performance of both single core systems for each
problem size.

C. Optimizing an Entire DFT Library

Due to the nature of the 1D and 2D DFT algorithms (1) and
(4), we can speed up an entire library of two-power and non-
two-power sizes using two (or any other number of) hardware



cores. However, there are multiple possible choices for the
sizes of the hardware cores, which give different performance
characteristics and thus tradeoffs for the entire DFT library.

We investigate these tradeoffs with respect to both perfor-
mance and energy efficiency. To compare the different libraries
(i.e., different choices of cores) across all sizes, we use average
normalized runtime [ns/op] and average power as metrics.
This choice weighs all problem sizes equally.

Choice of hardware cores: Details. Figure 7 displays the
performance and energy efficiency behavior of a two-power
1D and 2D DFT library for different choices of two hardware
cores.

Figure 7 (a) and (b) show that for 1D DFT, there is clearly
a best configuration for each fixed problem size. However,
across all problem sizes, each configuration is the best at
least twice. Choosing the best choice across a library is
not straightforward and depends on the targeted application
context.

The shape of the energy efficiency plot is similar to the
performance plot, with the notable difference that for small
problem sizes software is the most energy-efficient choice.

Figure 7 (c) and (d) show the same evaluation for 2D DFTs.
The 2D DFTm×n has the same memory footprint as a 1D
DFTmn. All sizes larger than or equal to 64 × 128 do not
fit into cache, which leads to a performance degradation for
all choices of cores. As in the 1D case, smaller problem sizes
are accelerated by hardware, but software-only is more energy
efficient. The latter effect is more pronounced than in the 1D
case. Thus, the possible speed-up through FPGA acceleration
is smaller and the variance across different core choices is less
pronounced than in the 1D case.

Using two-power hardware cores we can also accelerate
libraries of non-two-power sizes by computing two-power
factors in hardware and the remainder in software. Figure 8
displays the performance for non-two-power problems DFTn

with n = 3 · 2k and n = 5 · 2k. In this situation, a significant
amount of computation—the radix-3 and radix-5 kernels—
is done in software. Nevertheless, using two hardware cores
we obtain up to 2.5 times speed-up over a software-only
implementation.

Trade-offs and Pareto analysis. Choosing different hard-
ware core pairs allows an exploration of trade-offs between
performance and power or FPGA area across a whole DFT
library. For instance, one can choose the set of hardware cores
that yields the fastest DFT library (averaged over all sizes) for
a given slice or power budget.

Figure 9 shows that there is indeed room to trade runtime
for area or power. We assume a 1D DFT library for two-power
sizes n = 64, . . . , 2048. Each point represents the average per-
formance/power/area values for the whole library for different
pairs of hardware cores. The software-only configuration is
marked with a different symbol. Note that in the power data
we subtracted the XUP2VP development board’s idle power
consumption (3.8W).

Figure 9 (a) shows that there is a 4 times variation in both
area consumption and normalized runtime across all possible
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DFT implementations

configurations. Figure 9 (b) shows that there is also a 3 times
variation in the power consumed by the DFT calculations. In
other words, by allowing up to 3 times more power (or 4 times
more area) to be consumed, one can speed up a whole library
up to 4 times (averaged across the library). As there are many
points between these extremes, we provide a fine-grain choice
for adapting the performance and resource usage of a whole
DFT library to application-specific needs.

D. Error Analysis

Finally, we show experiments detailing the error behavior
of our generated hardware-software partitioned libraries. We
follow the error models for fixed-point DFTs [18], [19],
specialized to our case of 16-bit precision with 14 fraction
bits. We compare the software-only library to the hardware-
software partitioned libraries considered in the performance
evaluation (Figure 7).

In Figure 10 we evaluate the signal-to-noise ratio (SNR). We
see that the software library and hardware-software partitioned
libraries have very similar SNR and hardware acceleration
does not introduce further error.
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Figure 11 shows the maximum absolute error and the
average absolute error. Figure 11 (a) shows that all considered
libraries behave similarly and stay well below the theoretical
upper bound for the maximum absolute error of a fixed-point
DFT, given in [18]. We see up to 20% variation in the error.
This could be exploited to obtain low-error implementations
by using error as search metric in Spiral’s feedback loop.
Figure 11 (b) shows that the average absolute error saturates
at about 2−15≈3 · 10−5, which is the system precision.

VII. CONCLUSION

Architectures with tightly integrated FPGAs and general
purpose processors are starting to play an important role in
both embedded and high performance computing settings. The
tight integration makes it possible to offload fine and coarse
grain functionalities from processors to the FPGA fabric,
combining the strengths of both components.

In this paper we introduce an extension to the program and
hardware design generation system Spiral, that automatically
partitions DFT kernels across software and hardware, and
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Fig. 11. Error behavior of Spiral-generated scaled fixed-point DFT implementations.

generates both components. In addition, our extension finds—
under user-supplied resource constraints and performance
metrics—a partition choice that optimizes an entire library,
not a single problem instance.

In our experiments on a Xilinx Virtex-II Pro, the automati-
cally partitioned and generated FPGA-accelerated library has
between 2 and 7.5 times higher performance and up to 2.5
times better energy efficiency than the software-only version.
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