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ABSTRACT
This paper presents a parameterized soft core generator for the
discrete Fourier transform (DFT). Reusable IPs of digital signal
processing (DSP) kernels are important time-saving resources in
DSP hardware development. Unfortunately, reusable IPs, how-
ever optimized, can introduce inefficiencies because they cannot
fit the exact requirements of every application context. Given the
well-understood and regular computation in DSP kernels, an auto-
matic tool can generate high-quality ready-to-use IPs customized
to user-specified cost/performance tradeoffs (beyond basic param-
eters such as input size and data format). The paper shows that
the generated DFT cores can match closely the performance and
cost of DFT cores from the Xilinx LogiCore library. Furthermore,
the generator can yield DFT cores over a range of different perfor-
mance/cost tradeoff points that are not available from the library.

Categories and Subject Descriptors: B.6.3 [Hardware]: Design
Aids—Automatic synthesis

General Terms: Algorithm, Design

Keywords: Discrete Fourier transform, IP, design generator, FPGA

1. INTRODUCTION
To improve productivity and time-to-market, hardware design-

ers are increasingly using ready-to-use components from IP (in-
tellectual property) libraries. However, a shortcoming of reusable
IPs is that the end-designers cannot dictate application-specific cus-
tomizations. An alternative is to use customized IPs generated by a
parameterized design generator that can be tailored for application-
specific tradeoffs in performance, size, power consumption, and
numerical accuracy. We argue that parameterized IP generation is
particularly well suited for DSP kernels such as transforms and fil-
ters because of their well-understood structure and regularity.

This paper focuses on the generation of discrete Fourier trans-
form (DFT) cores, which are among the most important building
block in DSP applications. However, the assumptions and the tech-
niques in this paper are not restricted to the DFT and can be ex-
tended to other linear DSP transforms.
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To support end-user customization, the DFT generator presented
in this paper accepts a scalar parameter p that enables a designer
to control the degree of concurrency in the microarchitecture of the
resulting core. This control allows the designer to achieve a cus-
tom tradeoff between minimizing cost (e.g., area and power) and
maximizing performance (e.g., latency and throughput). In addi-
tion to microarchitectural-level parameterization, our DFT gener-
ator (currently developed for Xilinx Virtex2-Pro FPGAs) also ac-
cepts a low-level parameter to reflect the designer’s preference for
spending memory versus logic resources in the resulting core.

The output of the soft core generator is a synthesizable RTL-level
Verilog description. Our evaluation shows that the generated DFT
cores can match closely the performance and cost of DFT cores
from the Xilinx LogiCore library. More importantly, we show that
by varying p, our parameterized generator can yield DFT cores over
a range of different performance/cost tradeoff points that are not
available from the Xilinx library.

Paper outline. Section 2 provides a brief background on DFT
and the Pease algorithm. Section 3 explains our framework for
extracting logic structures from mathematically represented DSP
algorithms. Section 4 next elaborates on the implementation and
operation of the generated DFT cores. Section 5 reports a com-
parative evaluation of our generated DFT cores against the Xilinx
LogiCore library. Section 6 discusses related work in the area of
DFT IP design and optimization. Section 7 provides a summary
and our conclusions.

2. BACKGROUND: DFT AND PEASE FFT
The DFT of a complex-valued input vector x of length n is the

matrix-vector product y = DFTn x, where DFTn is an n-by-n
complex matrix. In particular,

DFT2 =
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is the so-called butterfly matrix, which we denote by F2. A direct
evaluation of DFTn x requires O(n2) arithmetic operations. Prac-
tical implementations, based on fast Fourier transform (FFT) algo-
rithms, achieve O(n log(n)) operations by factoring DFTn into a
series of multiplications by structured sparse matrices [5]. For a
given n, there is a large number (exponential in n) of different FFT
algorithms.

A special case of an FFT is the Pease algorithm given by the
factorization

DFT2k = R2k

(

k−1
∏

i=0

Ti(I2k−1 ⊗ F2)L
2k

2k−1

)

. (1)



Table 1: Matrix primitives and formulas M interpreted as
multiplication x 7→ M · x.

M = A · B apply B, then A
M = In ⊗ A apply A, n times, in parallel
M is a permutation permute element of x
M is diagonal scale the elements of x by elements

on the diagonal

C block
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Figure 1: The dataflow graph of the Pease FFT for size n = 8.
The formula terms appear in reverse order to match the left-
to-right flow of the dataflow graph.

The equation above formulates the Pease FFT as a product of sparse
matrices (that are to be multiplied to the input vector x starting
with the rightmost factor).1 The product

∏

in (1) indicates that the
Pease algorithm for DFT2k comprises k iterations of multiplying

by Ti(I2k−1 ⊗ F2)L
2k

2k−1 ; these stages are identical apart from the
scaling step Ti. For example,

DFT8 = R8
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8
4

) (

T1(I4 ⊗ F2)L
8
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)
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T2(I4 ⊗ F2)L
8
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)

. (2)

3. ALGORITHM TO HARDWARE
The matrix formula framework provides an easy visualization of

an algorithm’s dataflow for datapath synthesis. For example, the
dataflow for M = A · B is the dataflow of B followed by the
dataflow of A. Table 1 gives the rules for mapping matrix formulas
to dataflow for the other constructs relevant to this paper.

For example, using the interpretations in Table 1, the Pease FFT
in (2) translates into the dataflow graph in Figure 1. In accordance
with the formula, the DFT8 dataflow comprises three successive
stages of “T (I4 ⊗ F2)L

8
4,” followed by a R8 bit-reversal permu-

tation. In general, the Pease FFT computes the DFT of 2-power
size n in log2(n) stages of “T (In/2 ⊗ F2)L

n
n/2.” Let C, shown

in Figure 1, be the computation block comprising a butterfly F2

followed by a twiddle multiplier2. Then we can view the Pease
1In this notation, the upper-case letters represent well-known struc-
tured sparse matrices. R2k denotes the bit-reversal permutation
matrix that reorders a vector by bit-reversing the indices. Ti is a
diagonal matrix that multiplies (scales) the elements of the input
vector by complex constants (known as the twiddle factors). In is
an n-by-n identity matrix, and, more importantly, the Kronecker
(or tensor) product In ⊗ F2 is a 2n-by-2n block-diagonal matrix
that is zero everywhere except for F2’s along the diagonal. Lastly,
Ln

m is the stride permutation matrix that reorders a vector accord-
ing to Ln

m : i 7→ mi mod n−1 (0 ≤ i < n−1), n−1 7→ n−1.
Most pertinent to this paper, Ln

n/2 is the “perfect-shuffle” permuta-
tion (e.g., L8

4 reorders [0,1,2,3,4,5,6,7] as [0,4,1,5,2,6,3,7]).
2Only a single twiddle multiplier is needed in each C block be-
cause one of the two twiddle factors is always 1.
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Figure 2: A fully h-folded Pease FFT, size n = 8 (p = n/2

many C blocks).
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Figure 3: A fully h- and v-folded Pease FFT, size n = 8 (p = 1

C block).

dataflow as a log2(n)-by-n/2 grid of C blocks, where the columns
are separated by the Ln

n/2 stride permutations. The regularity and
structure in the dataflow is directly reflected by the product and
tensor product in the Pease FFT formula (1) and is conducive to
the concurrency parameterization employed by our core generator.
In contrast, the more commonly used Cooley-Tukey algorithm [5]
has identical cost in terms of the number of C blocks but does not
exhibit a similar degree of regularity.

The dataflow graph for the Pease FFT can be directly mapped
to a combinational implementation, but except for very small n
the cost would be prohibitive. A practical DFT implementation re-
quires a sequential implementation where the logic resources, e.g.,
C, are reused iteratively. The grid-like organization of the Pease
DFT dataflow graph enables resources to be reused iteratively in
two dimensions: horizontally and vertically, as we explain next.

3.1 Folding the datapath horizontally
The Pease dataflow graph can be trivially folded horizontally into

a single column of n/2 C blocks. Figure 2 shows the resulting
implementation for n = 8 including the necessary multiplexers
and registers. A vector iterates over the feedback datapath log2(n)
times to compute the DFTn. In each iteration, a control signal se-
lects, from a table, the appropriate set of twiddle factors as operands
to the n/2 twiddle multipliers. In this fully horizontally folded con-
figuration, the resource requirements are reduced by approximately
a factor of log2(n). The throughput and latency of the folded im-
plementation is practically unchanged from the combinational im-
plementation. There is no advantage in considering a partial degree
of horizontal folding; therefore we always use “h-folded” to mean
“fully h-folded” in this paper.

3.2 Folding the datapath vertically
Starting from an h-folded datapath, the n/2 C blocks within the

column can be folded vertically to differing degrees to achieve dif-
ferent levels of concurrency and therefore different performance
and cost tradeoffs. In the extreme, the n/2 C blocks are fully v-
folded onto a single C block, as shown in Figure 3, again for size
n = 8. This C block is now reused iteratively (n log2(n))/2 times
to compute the complete DFTn.
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4. IMPLEMENTATION DETAILS
In our DFT generator, a user-specified parameter p controls the

degree of v-folding; p = n/2 signifies the original h-folded con-
figuration with n/2 C blocks (Figure 2); p = 1 signifies the fully
v-folded configuration with just one C block (Figure 3). Relative to
a baseline configuration with h-folding only, v-folding by a degree
p reduces resource requirements by roughly a factor of n/2p; the
performance, in terms of both latency and throughput, degrades by
the same factor of n/2p commensurately. In our DFT generator, p
is the main microarchitectural parameter that controls the tradeoff
between performance and cost.

4.1 Folding the Ln
n/2

permutation
To vertically fold the Pease datapath, the main problem is in fold-

ing the Ln
n/2 permutation. Without v-folding, Ln

n/2 is a simple
permutation in space implemented by wires. In a v-folded config-
uration with p < n/2, the input and the intermediate vectors in the
datapath are streamed in segments of 2p elements per cycle. Thus,
a v-folded Ln

n/2 permutation becomes a sequential logic block that
buffers and reorders the vector elements in space and time.

Takala et al. [4] describe an efficient v-folded implementation of
general stride permutations. Specifically, Ln

n/2 can be decomposed
into the structure shown in Figure 4 for any choice of 0 < p < n.
In the figure, the L2p

p block remains a simple wiring. The occur-
ring 2-input, 2-output Jm blocks are implemented sequentially as
shown in Figure 5. Each Jm block requires two m/4-entry syn-
chronous FIFOs and a programmable switch that allows the two
data values either to pass-through for m/4 cycles or to criss-cross
for m/4 cycles. The switching state alternates every m/4 cycles
repeatedly to permute a continuous stream of input vectors. An
Ln

n/2 permutation v-folded to have 2p inputs and 2p outputs has a
pipeline delay of n/2p − 1.

4.2 Basic operation and latency
The DFT computation of a v-folded Pease FFT with parameter

p begins with loading the input vector, 2p elements per cycle, into
the datapath through the input-bypass multiplexer (refer back to
Figures 2 and 3 for a visual reference). After n/2p cycles, the
vector is fully loaded and buffered in the feedback register (for p =
n/2) or in the FIFOs of the folded Ln

n/2 (for p < n/2). Once
loaded, the vector cycles through the pipeline log2(n) times. In the
last iteration, the transformed vector is read out instead of being fed
back into the datapath. When processing a stream of input vectors,
the last iteration of one vector is overlapped with loading of the
next vector.

If the C blocks are not pipelined, a vector of length n passes
through p concurrent C blocks in n/2p cycles. This matches the

latency of the v-folded Ln
n/2 permutation. Therefore, a new it-

eration can start every n/2p cycles. In the actual implementa-
tion, the C block (with an internal critical path comprising one
16-bit fixed-point multiplication and two 16-bit fixed-point addi-
tions) is pipelined into three stages to increase the clock-rate; there-
fore the actual iteration time is ( n

2p
+ 3) cycles. Thus, the latency

of our Pease DFT core is log2(n)( n
2p

+ 3)t where t is the cycle
time (which varies with n and p). The steady-state throughput is
1/latency.

The generated DFT core does not implement the bit-reversal per-
mutation at the end of log2(n) iterations because in most applica-
tions, this bit-reversal permutation is absorbed with another permu-
tation in a subsequent computation. Thus, the generated DFT core
has a “natural-in, bit-reversed-out” data ordering interface.3 This is
a common interface option found in many DFT cores.

5. EVALUATION
We compare our generated DFT cores to their counterparts from

the Xilinx LogiCore library [6]. The Xilinx DFT cores are based
on an in-place radix-4 (and optionally radix-2) Cooley-Tukey algo-
rithms. The radix-4 algorithm is scheduled to serially reuse a sin-
gle pipelined DFT4 block n log2(n)/8 times. Input and interme-
diate vectors are stored in a multi-ported memory array. Although
the Xilinx LogiCore library does not provide parameterized control
over cost/performance, it does offer three distinct choices of DFT
microarchitectures, with tradeoffs between performance and cost.
The library also offers a selection of data ordering, data format and
rounding modes.

We select Xilinx radix-4 DFT cores with a scaled fixed-point
(16-bit) data format, burst I/O interface, and natural-in bit-reverse-
out data ordering. This configuration matches the interface speci-
fication of our generated DFT cores. All results in this study are
based on synthesis for Xilinx Virtex2-Pro XC2VP100 FPGAs us-
ing the Xilinx ISE version 6.1. The slice and BRAM utilizations
are extracted after synthesis and mapping.4 The cycle times used
to compute the latency are extracted after place-and-route.

Figures 6 and 7 report the results for DFT64 and DFT1024, re-
spectively. For each DFT size, the graph reports, as a function
of p, the slice utilization, the BRAM utilization, and the relative
speedup5. Our generator allows the user to specify whether storage
structures (twiddle tables and FIFOs of varying sizes) are imple-
mented using logic slices or BRAMs. Results corresponding to
three exemplary resource settings are given: 1) minimize the use of
slices; 2) minimize the use of BRAMs; and 3) store twiddle tables
and large FIFOs in BRAMs.6 The dashed horizontal line in each
graphs reflects the Xilinx reference value.

For small values of p (e.g., 2 or 4), our soft cores with balanced
storage assignments (option 3) closely match the absolute cost and
performance of the Xilinx DFT cores. For DFT64 in particular,
at p = 2, our generated core matches the performance of the Xil-
inx core while using 38% less slices and 75% less BRAMs. More

3The generator can also produce a “bit-reversed-in, natural-out”
variation.
4A slice is the basic logic building block in Virtex FPGAs. Each
slice has two SRAM-based 4-to-1 lookup tables and two 1-bit reg-
isters. A BRAM block is a 2-KByte memory block embedded in
the Virtex2-Pro architecture. The Xilinx XC2VP100 FPGA has
44,096 slices and 444 BRAMs.
5speedup= latencyXil

latencygen
where latencyXil is 0.61 µsec and 8.59

µsec for DFT64 and DFT1024, respectively
6Note that for DFT64 at p > 8, the minimum-slice option is indis-
tinct from option 3.
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Figure 6: Synthesis Results for DFT64. From left to right: slice utilization, BRAM utilization, and throughput performance.
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Figure 7: Synthesis Results for DFT1024. From left to right: slice utilization, BRAM utilization, and throughput performance.

importantly, by varying p, our generator can further produce DFT
cores of higher or lower performance in exchange for more or less
resources. For DFT1024 at p = 4, our generated core with bal-
anced resource assignments also matches the performance of the
Xilinx core but requires 82% more slices. However, if surplus
BRAMs are available, the difference in slices can be eliminated by
opting to minimize slice usage. The complete set of results corre-
sponding to option 1 (minimizing slices) and option 2 (minimizing
BRAMs) further delineates the additional range of customization
flexibility afforded by parameterizing user preference for spending
logic slices versus BRAMs.

6. RELATED WORK
Creating an optimized hardware implementation of a DSP trans-

form is a non-trivial undertaking since it requires combined exper-
tise in both transform mathematics and hardware design. There are
companies that specialize in creating custom hardware implemen-
tations of DSP transforms for customers who do not have the nec-
essary expertise in-house. Commercially, besides the Xilinx Logi-
Core library, ready-to-use DFT cores are supplied by nearly every
technology vendor’s IP library and numerous third party IP devel-
opers. The radix-2 and radix-4 Cooley-Tukey based DFT cores are
the current mainstay designs.

Optimized hardware implementations of DFTs remain an area of
active interest and research. Kumhom, et al. [2] propose a universal
DFT processor that is scalable in the number processing elements
(arithmetic unit, local memory and address generator) connected by
an on-chip reconfigurable network. Choi, et al. [1] present a radix-
4 Cooley-Tukey based FFT datapath that can be scaled by a factor
of up to 4 to trade off between energy and throughput. In their
study, their comparison to the Xilinx cores assumes all cores are
fixed at 100 MHz operation, and they do not show that their range
of scaling includes the cost/performance tradeoff point occupied by
the Xilinx cores.

7. CONCLUSIONS
We presented a parameterized soft core generator for DFTs based

on the Pease FFT. Besides standard parameters such as input size
and data format, the generator accepts a microarchitectural input
parameter that controls the degree of concurrency in the generated
DFT cores. Different cost/performance tradeoff points are achieved
by varying the hardware mapping of the Pease FFT. The results
show that our approach can yield DFT cores that are comparable
in quality to DFT cores from the Xilinx LogiCore library. We fur-
ther show that by varying the user controlled parameters, the gen-
erator returns ready-to-use DFT cores that are customized to user-
specific requirements. This work is part of the Spiral project [3],
which aims to automate the implementation and optimization of
DSP functionality in software and hardware.
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