
Custom-Optimized Multiplierless Implementations
of DSP Algorithms

Markus Püschel, Adam C. Zelinski, and James C. Hoe
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA, U.S.A.

{pueschel, acz, jhoe}@ece.cmu.edu

Abstract
Linear DSP kernels such as transforms and filters are com-
prised exclusively of additions and multiplications by con-
stants. These multiplications may be realized as networks of
additions and wired shifts in hardware. The cost of such a
“multiplierless” implementation is determined by the num-
ber of additions, which in turn depends on the value and
precision of these constants. For a given transform or filter,
the set of constants and their required precision is affected
by algorithmic and implementation choices and hence pro-
vides a degree of freedom for optimization. In this paper we
present an automated method to generate, for a given linear
transform, a minimum addition multiplierless implementa-
tion that satisfies a given quality constraint. The method
combines automatic algorithm selection to improve numer-
ical robustness and automatic search methods to minimize
constant precisions in a chosen algorithm. We present ex-
periments that show the trade-offs between cost and qual-
ity, including custom optimizations of the transforms used in
JPEG image and MP3 audio decoders.

Keywords
DSP, transforms, multiplierless, finite precision, fixed point,
optimization

INTRODUCTION
Designers of digital signal processing (DSP) applications use
various techniques to reduce area and power requirements for
mobile and embedded applications. One important design
point is the finite-precision, multiplierless implementation of
linear DSP kernels. Most commonly used DSP kernels, such
as transforms and filters, are linear; they consist exclusively
of additions and multiplications by constants. In a multiplier-
less implementation, the constant multiplications are realized
as networks of additions and wired shifts. For example, the
multiplication y = 5x would be realized as y = (x � 2)+x,
i.e., by one addition and one shift. Multiplierless implemen-
tations are primarily of interest for hardware, but are also
useful in software, e.g., in fixed point processors that have a
large multiplication overhead.
A typical design flow for creating and optimizing a finite-
precision, multiplierless implementation of a transform is
shown in Figure 1. First, the designer has to choose a nu-
merically robust algorithm to allow for the least possible
precision in the final fixed point implementation. Algorithm
selection is a manual process that requires the designer to

algorithm selection

accuracy configuration

(reduction of no. ops)

synthesis

synth. level optimizations

transform

error measure

error constraint

�����
 C code

� ���
 RTL

algorithm

data flow graph (adds/subs & shifts)

Figure 1. Design flow for creating and optimizing a mul-
tiplierless implementation of a DSP transform.

understand relevant DSP concepts and literature. Given that
there is often a large variety of possible algorithms (each
with a complex structure), this step often requires significant
effort. The second step is the accuracy configuration. The
goal is to reduce the precision of the multiplicative constants
(and thus the number of additions) without exceeding a given
error constraint. The two major problems are 1) the expo-
nentially large number of different configurations of constant
precisions and 2) the fact that reducing the precision of one
or several constants has a virtually unpredictable impact on
the output error and is strongly dependent on the chosen error
measure. The chosen error measure, in turn, depends on the
application context. Note that the precision of the datapath
and the precision of the constant multiplications can be cho-
sen independently (e.g., the multiplication y = 5x requires
one addition independent of the bitwidth of x, y). The result
of the accuracy configuration is a data flow graph consist-
ing of additions, subtractions, and shifts. At this point the
input/output function of the final implementation is deter-
mined. In the final synthesis step, the actual implementation
is produced after undergoing additional optimization (e.g.,
scheduling and register allocation for software, and resource
allocation and scheduling for hardware).

Automatic constraint-based cost reduction. In this paper
we present, for the domain of linear DSP transforms, an

approach for automating the first two steps in Figure 1: al-
gorithm selection and accuracy configuration. Given a trans-
form T , an arbitrary error measure E and an error threshold
Emax, our method consists of the following two high-level
steps:
• We automatically select and generate a numerically robust

algorithm for T .
• We use intelligent search methods to find, for a given

datapath bitwidth, the lowest cost (i.e., least number of
additions) configuration of constant precisions in this al-
gorithm such that the corresponding approximate trans-
form T̃ satisfies E(T̃) ≤ Emax. Further, we use addition
chains to optimally expand constant multiplications into
additions and shifts.

To the best of our knowledge, we claim novelty in three
directions by 1) providing the first method for automatic
robust algorithm selection; 2) addressing arbitrary, includ-
ing application driven, error measures; and 3) providing the
first automatic method for independently configuring con-
stant precisions across a large set of transforms.
Our approach complements existing research and tools that
address the third (bottom) block in Figure 1, thus offering
the possibility of an entirely automated design flow from the
selected transform to the final implementation.
Related work. The main emphasis of current high-level
synthesis research addresses the bottom block in Figure 1,
the synthesis and optimization of a data flow graph to a final
implementation (refer to [1]). The synthesis and optimization
described in this paper are at a higher level, in the mathematic
and algorithmic domains.
To date, research on multiplierless implementations of linear
DSP kernels has been focused on filters; very little effort
has been devoted to the more complex domain of trans-
forms, which are the subject of this paper. Exceptions in-
clude [12, 3]. Reference [12] presents an in-depth study of
multiplierless implementations of a specific algorithm of the
DCT, type II, size 8, used in JPEG image compression; [3] ex-
pands on this work by introducing the idea of a greedy search
to find the best constant precisions. This work, however, re-
quires the knowledge of a robust algorithm as a starting point,
considers only the above DCT, and uses a method to convert
multiplications by constants into additions and shifts that is,
in general, suboptimal. We presented a first generalization
in [17] by considering different transforms and introducing
different types of feedback-driven searches. In this paper we
expand this work into a fully automated design flow by au-
tomating the algorithm selection, defining proper robustness
metrics, and presenting an evaluation of the cost-accuracy
tradeoffs in various application scenarios.
Our work is also related to research on mapping floating
point into fixed point implementations. For example, [4]
provides a tool to analyze the error propagation in a data
flow graph to determine the required range and a bound for
the error margin of the computation, but the precision is
determined only globally and the method is not easily adapt-

able for non-numerical error measures. Other recent papers
have also addressed issues in fixed point representation and
quantization errors (e.g., [15], [16]).
Organization of this paper. The Background section pro-
vides the necessary background on DSP transforms, algo-
rithms, and the techniques for mapping constant multipli-
cations into additions and shifts. The next section explains
automatic Algorithm Selection (the first block in Figure 1);
the section after that explains automatic Accuracy Config-
uration (the second block in Figure 1). The final section
presents experimental results of custom-optimized multipli-
erless implementations of transforms within several applica-
tion contexts. One particular experiment reduces the number
of additions required by the inverse modified discrete cosine
transform (IMDCT) within MP3 audio decoding to 288 ad-
ditions while still maintaining “limited accuracy” as defined
by the MP3 International Organization for Standardization
(ISO) standard.

BACKGROUND
In this section we provide the necessary background on DSP
transforms, DSP transform algorithms, the SPIRAL code
generator, and multiplierless implementation techniques.

DSP transforms, algorithms, and SPIRAL
Transforms. Mathematically, a (linear) DSP transform is a
multiplication y = Mx, where x is an input vector (e.g., a
sampled signal), M the transform matrix, and y the output
vector (e.g., a transformed signal). Many different trans-
forms are used in signal processing, including the discrete
Fourier transform, the discrete cosine transforms (DCTs),
and the discrete wavelet transform. In this paper, we con-
sider three variants of DCTs that are important kernels in the
JPEG and MPEG image/video/audio coding standards: type
II, type IV, and the IMDCT. They are defined by the matrices

DCT(II)
n =

[
cos

k(2` + 1)π

2n

]
0≤k,`<n

,

DCT(IV)
n =

[
cos

(2k + 1)(2` + 1)π

4n

]
0≤k,`<n

,

IMDCTn =
[
cos

(2k + 1)(2` + 1 + n)

4n

]
0≤k<2n,0≤`<n

.

Note that the IMDCTn is a 2n × n matrix.
Transform algorithms. For each transform of size n there
is a surprisingly large number of different fast algorithms,
which have similar, close to minimal arithmetic cost (typi-
cally of the order O(n log(n))), but have different structures
and different numerical accuracies. The reason for this va-
riety lies in the recursive structure of the algorithms. For
a given transform, there are various ways of computing it
using other, smaller transforms. The combination of these
choices leads to a combinatorial explosion: the number of
algorithms grows exponentially with n. For example, for a
DCT(II), SPIRAL (introduced in the next paragraph) reports
82 different algorithms for size 8, but as many as 1639236012
algorithms for size 32.

algorithm generation

algorithm compilation

runtime measurement

transform

platform-adapted implementation

controls

controls

s
e
a
rc

h
 e

n
g

in
e

runtime

algorithm

C code

Figure 2. Architecture of SPIRAL.

SPIRAL is a generator for optimized software implemen-
tations of DSP transforms [14]; SPIRAL’s architecture is
shown in Figure 2. For a given transform, SPIRAL uses
a rule mechanism to generate fast algorithms, represented
in a mathematical language called Signal Processing Lan-
guage (SPL). The algorithms are compiled into C code and
their measured runtime is fed back into a search engine that
triggers the generation of different algorithms with different
implementation options (e.g., the degree of loop unrolling).
Rather than using a brute force exploration of the entire al-
gorithmic space, SPIRAL employs a sophisticated feedback-
driven search engine to heuristically guide algorithm explo-
ration. While this method does not guarantee that the optimal
implementation will be uncovered, it finds close-to-optimal
algorithms quickly and automatically. In practice, SPIRAL-
generated competes with and, in some cases, even outper-
forms hand-tuned code (e.g., [5]).
Other forms of algorithm selection have been used to enable
optimizations of hardware datapaths for performance [13].
For the purpose of this paper, we borrow the SPIRAL frame-
work to generate numerically robust algorithms (the first
block in Figure 1). This is accomplished by replacing SPI-
RAL’s default runtime optimization metric with a robustness
measure defined in the Algorithm Selection section.

Addition chains
Linear DSP transform algorithms compute a transform us-
ing exclusively additions and multiplications by constants.
When multiplying by constants in hardware, costly full mul-
tipliers may be avoided by replacing them with networks of
additions and shifts. Since shifts are realized in hardware
by wires, we model the cost of such a multiplierless imple-
mentation as the number of additions. Now we will explain
the addition chain method for optimally expanding a mul-
tiplication by a constant into the least number of additions,
which offers a significant savings over the more commonly
used canonical signed digit (CSD) method.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

bitwidth

av
er

ag
e

co
st

 s
av

in
gs

Figure 3. Average cost savings of addition chains versus
CSD.

When approximating a constant c as a fixed point number, it
takes the form

c ≈ k/2n,

where n is the number of fractional bits. Since the number
of additions required to multiply by c is not affected by the
position n of the decimal point, we restrict our discussion to
integer fixed point numbers c = k. Given an integer k and
its bit representation

k =
∑

0≤i<n

bi2
i, bi ∈ {0, 1}, (1)

a direct method for multiplying by k would require as many
additions as the number of non-zero bi minus one, which can
be as large as n − 1.
The well-known canonical signed digit (CSD) representation
[10, chap. 6] expresses k as in (1), but allows bi ∈ {1, 0, 1},
where 1 stands for −1. The most salient feature of CSD is
that it replaces each sequence of s 1’s by a 1, followed by
s− 1 0’s, followed by a 1. Furthermore, no two consecutive
bits in a CSD representation are nonzero. The worst case
scenario now requires b(n− 1)/2c additions or subtractions.
For example, k = 315 has the bit representation 100111011
and the CSD representation 101000101.
It is known that CSD in general does not yield the mini-
mum cost solution for multiplying by a constant k. The
optimal method requires addition chains (or, more precisely,
addition/subtraction/shift chains), which reuse intermediate
results more flexibly. For example, the number k = 1197
has the CSD representation 10101010101, which requires
5 additions/subtractions. The best addition chain computes
y = kx using only 3 additions:

t = x � 3 + x

y = t � 7 + t � 2 + t

For a given k, finding the optimal addition chain is known to
be NP-complete [2]. Algorithmic methods exist to generate
the solutions for numbers up to at least 20 bits, e.g., [6],
which is the method we use. A maximum of five additions
is needed by constants of up to 19 bits. Figure 3 shows the
average savings (in additions/subtractions) achievable when
using addition chains versus CSD for bitwidths up to 20.

ALGORITHM SELECTION
In this section, we explain how to automate the first block in
Figure 1, the selection of a numerically robust algorithm for a
given transform. As mentioned in the Background section, a
given transform has many different algorithms. When imple-
mented in fixed point arithmetic, these algorithms will exhibit
different degrees of output quality degradation. In this sec-
tion, we first define a measure of robustness and then explain
how a numerically robust algorithm can be automatically
selected by using SPIRAL (introduced in the Background
section).
Robustness. Assume a given algorithm T exists, which
represents the exact transform matrix M , i.e., T = M . When
implemented in k-bit fixed point arithmetic, this algorithm
represents an approximation of the matrix M , i.e., T̃k-bit ≈
M . Thus, as a measure of robustness of the algorithm T , we
use

Nk(T) = ||T − T̃k-bit||, (2)

where || · || is a matrix norm. A good choice is a matrix norm
that is subordinate to a vector norm (see [7] for more details
on norms).
For a vector x = (x1, . . . , xn), the possible norm functions
are jointly written as ||x||p, where p ≥ 1 or p = ∞. Ex-
amples include the standard Euclidean norm (p = 2) and the
maximum norm (p = ∞), defined respectively by

||x||2 =
(∑

i

|xi|
2
)1/2

, ||x||∞ = max
i

{|xi|}.

For each vector norm || · ||p there is a unique matrix norm,
the subordinate norm, also written as || · ||p, that satisfies

||Mx||p ≤ ||M ||p · ||x||p, for all M, x. (3)

In particular, the matrix norm ||M ||2 is the spectral norm,
i.e., the largest singular value of M . In this paper, we will use
||M ||∞, the max-row-sum norm, since it is faster to compute:

||M ||∞ = max
i

{∑

j

|Mi,j |
}
.

Now we may motivate the use of the proposed robustness
measure Nk in (2): namely, the measure itself is input in-
dependent, but may still be used to derive input dependent
bounds. Assuming an input x and setting y = Tx (the exact
result) and ỹ = T̃k-bitx (the approximate result), and using
(3), we derive the output error bound

||y − ỹ||∞ ≤ ||T − T̃k-bit||∞||x||∞ = Nk(T)||x||∞.

For example, if we assume a given algorithm T and that x
is an image of 8-bit color values lexicographically arranged
into a vector, then ||x||∞ ≤ 255, yielding the concrete error
bound 255Nk(T).
Choosing a less robust algorithm results in a less accurate
implementation under a given choice of fixed point format
and limits the opportunity to reduce the precision of the fixed
point computation. Figure 4 shows a histogram of N8(T) for
all 82 algorithms for the DCT(II)

8
, all 226 algorithms for the

DCT(IV)
8

, and all 44 algorithms for the IMDCT18. (We chose
different scales since the transforms have different numbers
of multiplications and thus different accuracies.) The spread
in robustness is large, showing the importance of deliberately
choosing the right algorithm.
Using SPIRAL to generate robust algorithms. For this
paper, we use SPIRAL’s search mechanism to “find” a nu-
merically robust algorithm. This is achieved by replacing
the runtime measurement of an algorithm (see Figure 2) by
the robustness measure Nk. This automates the first block in
Figure 1.

ACCURACY CONFIGURATION
Once a numerically robust algorithm has been selected using
SPIRAL, the remaining problem considered in this paper is
how to choose the bitwidth of each multiplicative constant to
minimize the number of additions without exceeding a given
error constraint (the second block in Figure 1). Note that
the bitwidth of each constant may be chosen independently,
which yields an exponentially large space of alternatives that,
in general, may not be exhaustively searched over.
The optimization problem. We formally state the optimiza-
tion problem that we solve. Let T be the algorithm selected
for the transform to be implemented. An approximation
(finite-precision version) of T is denoted by T̃ . The cost of
T̃ , cost(T̃), is the number of additions it requires to compute.
Further, let an error measure E be given, which is a function
that assigns each T̃ a real value E(T̃) ≥ 0. We assume that a
lower value of E(T̃) is better. (The case of measures where
a higher value is better is handled analogously.) Further, a
quality threshold Emax is given. The problem can now be
stated as follows.

Given: an algorithm T , an error measure E, and
an error threshold Emax;
Find: an approximation T̃ with E(T̃) ≤ Emax

that minimizes cost(T̃).
We propose to solve this optimization problem through an
automated intelligent search in the space of alternatives, i.e.,
in the space of different constant approximations. In this
section, we first discuss different possible error measures E
and then we investigate the size of the actual search space.
Finally, we introduce the different search methods used for
optimization.
Error measures. Our approach does not make any assump-
tions on the error measure E used. The only requirement
is a reasonably efficient (fast) evaluation of E(T̃), since the
search methods introduced below will generate and evaluate
many different T̃ during the optimization process.
We consider two types of error measures E in this paper:
1) numerical error measures and 2) application-based error
measures.
A numerical error measure computes the norm of the differ-
ence between the exact algorithm T and its approximation T̃
as

E(T) = ||T − T̃ ||, (4)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

5

10

15

20

25

error N
8

nu
m

be
r

of
 a

lg
or

ith
m

s

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

error N
8

nu
m

be
r

of
 a

lg
or

ith
m

s

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

9

10

error N
8

nu
m

be
r

of
 a

lg
or

ith
m

s

Figure 4. Robustness (N8) histograms of algorithms generated by SPIRAL. From left to right: DCT(II)
8

, DCT(IV)
8

,
IMDCT18.

similar to (2) (where the constant precisions were globally
reduced). As explained in the Algorithm Selection section,
we prefer a subordinate matrix norm in (4).

An application-based error measure evaluates T̃ in the con-
text of an application. Evaluation requires inserting code for
T̃ into a simulation or software implementation of the appli-
cation. In the experiments in this paper we choose the second
option. The code generation for T̃ is provided by SPIRAL.
For applications, we consider a JPEG decoder [8] contain-
ing a DCT(II)

8
and an MP3 audio decoder [11] containing

an IMDCT18 and a DCT(II)
32

. Both applications are imple-
mented in software and use 32-bit fixed point arithmetic.

As a reasonable compliance test for the JPEG decoder, we use
the peak signal-to-noise ratio (PSNR) of a compressed and
then decompressed reference image compared to the original
uncompressed image. (The compliance test defined by the
JPEG standard is not commonly used.) A PSNR > 30
dB is considered reasonable for many applications. Note
that for evaluation we only insert the approximation T̃ into
the decompression stage (not into the compression stage),
because in many real-world scenarios we have no control
over the compression process. Also, note that higher PSNR
is better, i.e., it is not an error measure but rather a quality
measure.

The MP3 audio decoding standard defines two levels of com-
pliance [9]: limited accuracy (LA) and full compliance (FC).
Both provide thresholds for the root-mean-square (RMS)
difference between a certain reference audio file and the
compressed-decompressed version. In addition, FC provides
a threshold for the maximum difference. Similar to the JPEG
experiment, we only place our approximated transforms T̃
into the MP3 decoding stage.

Search space. Assume a given transform algorithm requires
N multiplications by constants and the maximum datapath
bitwidth is n. Then there are (n+1)N different bitwidth con-
figurations. However, not all of them are meaningful. When
reducing the bitwidth of a constant by one bit, the constant
may not change, or, if it changes, it may still require the same
number of additions. Clearly, among different bitwidths with
the same complexity, only the largest (i.e., the most precise)

Table 1. Different approximations for cos(π/16).

number # additions considered for search
1 0 x
31/32 1
63/64 1 x
251/256 2 x
2009/2048 3
4017/4096 3
8035/8192 4
16069/16384 3 x

has to be considered. For example, consider the constant
cos(π/16) represented with a maximal bitwidth of 16 (all
fractional bits). Among the 17 possible approximations (ob-
tained by rounding), only 8 lead to distinct numbers, which
are given in Table 1 together with their complexity; the ones
considered in the search are marked with an “x”. Note that a
coarser (i.e., less precise) approximation may have a higher
complexity.
From the data generated to produce Figure 3, we observed
that 6 additions are sufficient to multiply by any 20-bit con-
stant. Thus, if n = 20, the actual search space is at most of
size 7N (for each constant, between 0 and 6 additions may be
chosen, depending on the specific bitwidth). In this paper we
consider n = 16 for which 5 additions are sufficient; thus,
the search space has size of at most 6N . (In fact, 5 additions
are sufficient up to n = 19, as has been shown in [6].) Even
a small transform, such as DCT(II)

8
, requires at least 11 mul-

tiplications, which in this case means a search space of size
611, showing that exhaustive search is impractical even for
smaller sized transforms.
Optimization through search. We provide three heuristic
search methods that visit only a small subset of the possi-
ble bitwidth configurations while trying to find a close-to-
optimal solution. As before, n is the maximum bitwidth
considered. Evaluation of T̃ means computing E(T̃); the
threshold that must not be exceeded is Emax. A bitwidth
configuration for an algorithm means a particular choice of
bitwidth for each constant. As explained above, only those

20 30 40 50 60 70 80
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

additions

er
ro

r
(lo

g−
sc

al
e)

global
greedy
evol

20 40 60 80 100 120
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

additions

er
ro

r
(lo

g−
sc

al
e)

global
greedy
evol

100 150 200 250 300 350
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

additions

er
ro

r
(lo

g−
sc

al
e)

global
greedy
evol

Figure 5. Accuracy cost tradeoffs for DCT(II)
8

, DCT(IV)
8

, and IMDCT18 found using global, greedy, and evolutionary
search.

bitwidths that are maximal among all that incur the same cost
are considered.
Global search is the simplest method. It assumes that all
constants have the same bitwidth k ∈ {0, . . . , n}. Since
there are only n+1 alternatives, they are each evaluated and
the smallest k that still satisfies Emax is the result.
Greedy search (top-down) starts by assigning each constant
the maximum bitwidth n. Each constant in turn is now
reduced to require one fewer addition and the resulting T̃ is
evaluated. The choice with the least increase in E is chosen.
The procedure is repeated until Emax is exceeded.
Evolutionary search optimizes by mimicking the natural pro-
cess of evolution. In the first step, a random population of al-
gorithm approximations corresponding to constant bitwidth
configurations is chosen. Then the population is increased
by generating random new individuals and performing mu-
tations and cross-breeding. Mutation of an algorithm is im-
plemented by changing the bitwidth of one of its constants.
Cross-breeding between two approximations is implemented
by exchanging the bitwidths of the same constant in each.
After expanding the population with mutations and cross-
breeding, the fittest individuals (those that require few ad-
ditions and satisfy the error constraint) are selected to form
the next population. The procedure is repeated for a certain
number of generations.

EXPERIMENTAL RESULTS
In this section we present experiments that evaluate our ap-
proach. All evolutionary searches were conducted using a
population size of 75. During each generation, 10 random
individuals were inserted, 10 mutations were performed, and
10 pairs were cross-bred. The search terminated after 25
generations. In all global and greedy searches, the constants
considered have a maximum bitwidth n = 16 (initially, 15
are fractional bits). The application-based error measures for
JPEG and MPEG were evaluated by generating code for the
reduced precision algorithms with SPIRAL and inserting it
into the respective application.
Numerical error measure and search methods. This first
set of results characterizes the general relationship between
accuracy and cost. The results also assess the relative effec-

25 30 35 40 45 50 55
32

32.5

33

33.5

34

34.5

35

additions

Le
na

 P
S

N
R

 (
dB

)
greedy
evol
global

Figure 6. Cost reduction for DCT(II)
8

in JPEG using
global, evolutionary, and greedy search.

tiveness of the different search methods. For this first exper-
iment, we generated custom-optimized implementations for
the DCT(II)

8
, the DCT(IV)

8
, and the IMDCT18 with respect

to the numerical error measure E(T) = ||T − T̃ ||∞. For
the greedy and evolutionary search, we used multiple error
thresholds within the following range: 10−4 ≤ Emax ≤ 1.
The tradeoffs between cost and accuracy are shown in Fig-
ure 5. We observe that greedy search generally fared better
than global search, which is not surprising since it considers
a larger space of possible constant configurations. Evolu-
tionary search finds solutions very close to greedy search
for DCT(II)

8
, but yields suboptimal results in the other cases.

The reason is the difference in the number of multiplications
required to compute these transforms—12, 20 and 47 for
the DCT(II)

8
, the DCT(IV)

8
, and the IMDCT18, respectively.

In the latter two cases, 25 generations are apparently not
sufficient for the search to converge. Though some searches
perform better than others, all three return reasonable results.
The search time in each case was several minutes.

JPEG. For the second experiment, we custom-optimized the
DCT(II)

8
used in JPEG image decoding. As the error measure,

we computed the PSNR of the decompressed Lena image
(a commonly used DSP reference image), which was com-

8 9 10 11 12 13 14 15
0

0.5

1

x 10
−4

global search − bits right of fixed point

er
ro

r
maxdiff
rms

8 9 10 11 12 13 14 15
450

500

550

global search − bits right of fixed point

nu
m

be
r

ad
di

tio
ns

LA RMS

FC MaxDiff

FC RMS

Figure 7. Global search for reducing the DCT(II)
32

in MP3
audio decoding with error constraints LA and FC.

pressed using a full-precision DCT(II)
8

. For the error thresh-
old, we used different values within the following range:
32 ≤ Emin ≤ 35 (recall that higher PSNR is better, hence
Emin is used). The results are shown in Figure 6; all three
search methods were used. Each search took one hour at
most. Greedy and evolutionary search outperform global
search for higher PSNR thresholds; global search, in turn,
is better for PSNRs less than 33.5 dB. This experiment mo-
tivates the use of search methods other than global search,
since these other methods are able to tailor the precision of
individual constants. We have no explanation for poor per-
formance of greedy and evolutionary search in low PSNR
regions.

MP3. For the final experiment, we custom-optimized the
DCT(II)

32
and IMDCT18 in the MP3 audio decoder. We used

both the test for full compliance (FC) and the test for limited
accuracy (LA) for our error measures (see the explanation
in the Accuracy Configuration section regarding LA and FC
compliance ratings). We conducted only a global search,
which took several minutes. First we custom-optimized only
the DCT(II)

32
, leaving the IMDCT at full precision. Figure 7

shows the result. The RMS (root-mean-square) error drops
below the LA threshold for 9-bit precision and above. The
FC RMS threshold is satisfied for 13 bits and above; the FC
MaxDiff threshold for 12 bits and above. Thus, 13 bits are
sufficient for FC (since both FC thresholds are met). A simi-
lar experiment for optimizing solely the IMDCT (leaving the
DCT at full precision) yields the same bitwidths. Surpris-
ingly, a joint optimization of both transforms (i.e., reducing
both concurrently) produces the same bitwidths. The results
are summarized in Table 2 together with the costs (BW is
the determined global bitwidth/precision; ref BW stands for
reference bitwidth). The reference is an implementation with
15 fractional bits per constant. Note that the cost for this ref-
erence is also computed using addition chains. CSD would
fare considerably worse for this bitwidth as can be seen from
Figure 3.

Table 2. Global search for reducing additions in the
DCT(II)

32
and the IMDCT18 in MP3 audio decoding.

LA FC ref BW
BW adds BW adds BW adds

DCT 9 468 13 536 15 557
IMDCT 9 288 13 329 15 349

DCT + IMDCT 9 756 13 865 15 906

CONCLUSIONS
All successful designs are compromises between the design
quality and the design effort. Application specific tuning
offers a wealth of optimization opportunities, but at the
same time, the tuning effort may be time-consuming and
require specialized knowledge not generally available to the
designer. This paper considered the problem of minimizing
the number of additions, subject to an error threshold, in
multiplierless implementations of linear DSP transforms.
The paper presented a fully automatic design generation
and optimization framework that addresses this optimiza-
tion problem at two levels. First, we presented an automatic
tool for selecting an algorithm that is robust to low precision
fixed point approximations. Next, we presented another au-
tomatic tool to tailor the precisions of individual constants
to minimize the number of additions while staying below
a specified error threshold. In the former tool, high-level
domain-aware automation frees the designer from having a
detailed knowledge of DSP mathematics; in the latter, ef-
ficient feedback-driven exploration replaces the designer in
the tedious task of simultaneously optimizing a large number
of low-level parameters.
We applied our automatic framework to the optimization of
several transforms and multimedia applications. We used
our tools to automatically explore a large number of de-
sign points and investigated the tradeoff between resource
constraints and implementation quality. Overall, our results
show that custom design generation and optimization can
yield significant cost reduction. The ease of use of this fully
automatic framework offers a flexible alternative to static IP
design reuse.

ACKNOWLEDGMENTS
The authors wish to acknowledge the support by the Na-
tional Science Foundation through awards ACR-0234293,
SYS-0310941, and ITR/NGS-0325687. Further thanks go
to Yevgen Voronenko for helping with the experiments.

REFERENCES
[1] Reinaldo A. Bergamaschi. Behavioral synthesis: An

overview. TR 20944, IBM T.J. Watson Research
Center, Aug 1997.

[2] D.R. Bull and D.H. Horrocks. Primitive operator
digital filters. IEE Proceedings G, 138(3):401–412,
1991.

[3] Y.-J. Chen, S. Oraintara, T. D. Tran, K. Amaratunga,
and T. Q. Nguyen. Multiplierless approximation of

transforms with adder constraint. IEEE Signal
Processing Letters, 9(11):344–347, 2002.

[4] Claire F. Fang, Rob A. Rutenbar, and Tsuhan Chen.
Fast, accurate static analysis for fixed-point finite
precision effects in DSP designs. In Proc. ICCAD,
2003.

[5] F. Franchetti and M Püschel. Short vector code
generation for the discrete Fourier transform. In
Proc. IPDPS, pages 58–67, 2003.

[6] O. Gustafsson, A. G. Dempster, and L. Wanhammar.
Extended results for minimum-adder constant integer
multipliers. In Proc. ISCAS, volume I, pages
I–73–I–76, 2002.

[7] N.J. Higham. Accuracy and Stability of Numerical
Algorithms. SIAM, 2nd edition, 2002.

[8] Independent JPEG Group. JPEG image compression
software. Online. http://www.ijg.org.

[9] ISO/IEC. Information Technology – Coding of moving
pictures and associated audio for digital storage
media at up to about 1.5 Mbits/s – Part 4: Compliance
testing, 1995.

[10] Israel Koren. Computer Arithmetic Algorithms.
A. K. Peters, 2nd edition, 2001.

[11] R. Leslie. MAD MPEG audio decoder software.
Online. http://www.underbit.com/products/mad.

[12] J. Liang and T.D. Tran. Fast multiplierless
approximations of the DCT with the lifting scheme.
IEEE Transactions on Signal Processing,
49(12):3032–3044, 2001.

[13] M. Potkonjak and J. Rabaey. Algorithm selection: A
quantitative optimization intensive approach. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pages 524–32, May 1999.

[14] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura,
J. Johnson, D. Padua, M. Veloso, and R. W. Johnson.
SPIRAL: A generator for platform-adapted libraries of
signal processing algorithms. International Journal of
High Performance Computing Applications,
18(1):21–45, 2004.

[15] S. Roy and P. Banerjee. An algorithm for converting
floating-point computations to fixed-point in
MATLAB based FPGA design. In Proc. DAC, 2004.

[16] C. Shi and Brodersen R. W. Automated fixed-point
data-type optimization tool for signal processing and
communication systems. In Proc. DAC, 2004.

[17] A. C. Zelinski, M. Püschel, S. Misra, and J. C. Hoe.
Automatic cost minimization for multiplierless
implementations of discrete signal transforms. In
Proc. ICASSP, 2004.

