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Research Overview
Linear DSP transforms
- e.g. DFT, DCTs, WHT, DWTs, ….
- ubiquitously used, often in computation intensive kernels
- comprised of additions and multiplication-by-constant
- applications: multimedia, bio-metric, image/data processing . . . .

Light-weight hardware implementations
- fixed-point data format 
- multiplierless: mult-by-constant as shifts and adds
- problem 1: output quality reduced by cost-saving measures

(reducing the bitwidth of data and constants) 
- problem 2: different applications have vastly different quality 

metric and requirements
⇒ need application specific tuning

Our Goal: automatic, custom reduction of arithmetic   
(additions) w.r.t. a given  application’s requirements
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Related Work
Liang/Tran, “Fast Multiplierless Approximation of the DCT with the Lifting 
Scheme,” IEEE Trans. Sig. Proc., 49(12) 2001, pp. 3032-3044
- examined arithmetic cost reduction for DCT size 8
- steps performed by hand, exhaustive search

Fang/Rutenbar/Püschel/Chen, “Toward Efficient Static Analysis of Finite-
Precision Effects in DSP Applications via Affine Arithmetic Modeling,” Proc. 
DAC 2003
- efficient static analysis of output error (hard and probabilistic)
- range of input values used/needed
- analysis assumes a common global bitwidth

Püschel/Singer/Voronenko/Xiong/Moura/Johnson/Veloso/Johnson, “SPIRAL 
system”, www.spiral.net
- automatic generation of custom runtime optimized DSP transform software
- provides implementation environment for our approach (in particular algorithm 

generation and manipulation)
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DSP Algorithms as Formulas: 
Example DFT size 4

Cooley/Tukey FFT (size 4):

allows for computer generation/manipulation
(provided by SPIRAL)
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Example: DCT size 8
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(generated by SPIRAL) as data flow diagram

Basic building blocks:
- 2 x 2 rotations, DFT_2’s (butterflies), permutations, diagonal matrices (scaling)

Algorithm is orthogonal = robust to input errors (from fixed point representation)
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Fixed Point Error: Data vs. Transform

Error in input x: 
- from rounding of the input coefficients x to the fix-point data 

representation 
- for robustness: choose orthogonal algorithms

Error in transform: 
- from finite precision multiplication by constants

further approximation is a source of savings in
multiplierless implementations

- for robustness: translate algorithm into lifting steps

Implementing a transform            in fixed point arithmetic 
produces two type of errors:

Txx a

||~|| xx −

x~

||~|| TT −
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Lifting step (LS):

- invertible (det = 1) independent of approximation of x, y
- inverse of LS is also LS (with –x, -y)

∴ if LS is cheap, then so is its inverse
Rotation as lifting steps

Lifting Steps 
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rotation based algorithms can be 
automatically expanded into LS

target for approximation
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Error Analysis
rounding error in the first lifting step (third LS analogous)

rounding error in the second lifting step
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Ensuring Robustness
Steps to ensure robustness

Choose algorithms based on rotations
Manipulate angles of rotations
Expand into lifting steps

Done automatically as formula manipulation
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Multiplication by Constants

cxy =

Operations in transforms:
21 xxy += additions

multiplication by constant

c=0.11000101

Example:

3 adds (3 shifts)SD recoding 2

c=0.10111011 = 5 adds (5 shifts)simple

SD recoding is not optimal

c=0.11001101 4 adds (3 shifts)SD recoding 1
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Addition/Subtraction Chain
c=0.10111011

+

0.10110000

0.00001011
+

0.000000010.00001010

0.00000100

0.00000101

x16

+

0.00000001

x2

Provide optimal solution for 
constant mult using adds and shifts

Finding the optimal addition chain 
is a hard problem

A near optimal table of solutions 
can be computed using dynamic 
programming methods*

For all constants up to 219

- only 225 constants require 
more than 5 additions
(214@6, 11@7)

3 adds (3 shifts)

*Sebastian Egner, Philips Research, Eindhoven
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Histogram of addition cost for all constants between 1 and 219

SD recoding

Addition Chain
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Optimization Problem
Given a linear DSP transform and quality measure Q

1. Find the multiplierless implementation with the least 
arithmetic cost C (number of additions) that satisfies a 
given Q threshold

2. Find the multiplierless implementation with the highest 
quality Q for a given arithmetic cost C threshold
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Quality Measures of Transforms

Transform independent Q
- for some norm || · ||

Transform dependent Q
- coding gain for DCT
- convolution error for DFT

Application-based Q
- MPEG standard compliance test

For an approximation     of a transform T.T~

||~|| TT −
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Search Space: approximating 
multiplicative constants

For each multiplication-by-constant in the transform 
choose custom bitwidth 
- Given n constants,     configurations are possible

But, for a given constant, not all k configurations lead 
to different cost, 

e.g., given 5-bit constant 0.11101, SD recoding gives
5-bit = .11101 = 1.00101 ⇒ 2 adds
4-bit = .1110 = 1.0010 ⇒ 1 adds
3-bit = .111 = 1.001 ⇒ 1 adds
2-bit = .11 = 0.11 ⇒ 1 adds
1-bit = .1 = 0.1 ⇒ 0 adds
0-bit = 0 = 0 ⇒ 0 adds

]10[ −∈ ki K
nk

Recall all constants up to 19-bits can be reduced to 5 adds
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Search Methods
Global Bitwidth
- all constant assigned the same bitwidth
- very fast (small search space), but only works well in some cases

Greedy Search
- starting with maximum bitwidth, in each round, choose one constant 

to be reduced by 1-bit that minimizes quality loss 
(also go bottom-up instead of top-down)

- local minima traps are possible
Evolutionary Search
- start with a population of random configurations
- in each round

1. breed a new generation by crossbreeding and mutations
2. select from generation the fittest members
3. repeat new round

- local minima traps
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Interaction between 
Transforms, Q and Search

Goal: given a transform and a required Q threshold, find an 
approximation to the transform that requires the fewest additions
Transforms and Q tested

3 searches methods were compared
entire framework implemented as part of SPIRAL (www.spiral.net)

LC MP3 decoder♣18x36 IMDCT

Limited Compliance (LC) 
MP3 decoder♣32-pt. DCT-II

Convolution error = 116-pt. DFT

8.82 dB coding gain (cg)8-pt. DCT-II

Quality ThresholdTransform

♣MAD Decoder by Robert Mars, http://www.underbit.com/products/mad
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Summary of Search Comparison

One search method alone is not sufficient — each 
search performs differently depending on transform 
and quality measure

6431222500126initial (31 bits)

n/an/a15457greedy 
(bottom-up)

17041715856greedy 
(top-down)

21249018536evol.

18240816840global

18x36 IMDCT 
(LC MP3)

32 pt. DCT-II 
(LC MP3)

16 pt. DFT 
(conv. err = 1)

8 pt. DCT-II 
(8.82 dB cg)

Number of Additions (fewer is better)
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Approximation of DCT within JPEG
Approximate DCT-II inside JPEG while retain images 
of reasonable quality 
- Q = Peak Signal to Noise Ratio (decibels) of decompressed 

JPEG image against the original uncompressed input image.

- Q Threshold
• Test Image:  Lena, 512x512 pixel, 8-bit grayscale
• PSNR must be at least 30 decibels or 

image becomes noticeably lossy).
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Approximation of DCT within JPEG
Before approximating, the original DCT♣ requires 261 additions and 
produces a Lena image with a PSNR of 37.6462 dB.

Compare constants global vs. greedy search:
- Global: [ 3/2, 3/2, 3/2, 3/2, 3/2, 3/2, 3/2, 1/2, -1/2, 1, 

-1/2, -1/2, 1/2, -1/2, -1, 1, -1, -1/4, 1/2, -1/4 ]
- Greedy: [ 3/2, 1, 1, 1, 1, 1, 1, 1/2, -1/2, 1, -1/2, 

0, 1/2, 0,  -1, 1, -1, 0, 1/2, -1/4 ]
- Greedy succeeds in zeroing 3 constants that affect the high frequency 

(HF) outputs ‘thrown away’ by JPEG

32.450328greedy (t-d)
36.532367evolutionary
30.035437global
PSNR# AdditionsMethod

♣Base on source from Independent JPEG Group (IJG), http://www.ijg.org
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Summary
Application specific tuning yields ample opportunities 
for optimization
The optimization flow can be automated
- algorithm selection and manipulation
- arithmetic reduction through search
- arbitrary quality measures supported

Details of the arithmetic reduction is non-trivial
- non-monotonic relation between Q and C
- different search methods succeed in different scenarios

The results of this study needs to be combined with 
other aspects of DSP domain-specific high-level 
synthesis


