18-643 Lecture 5: Hardware Design Metrics

James C. Hoe
Department of ECE
Carnegie Mellon University
Housekeeping

• Your goal today: review basic concepts and avoid common gotcha's

 Digested from three 18-447 lectures

• Notices
 – Handout #4 & #5: Lab 1, due noon, Mon, 9/28
 – Ultra96 ready for pick up
 – Look for DevCloud account email
 – Recitation starts this week, Wed 5:10~6:30

• Readings
 – 18-447 Spring 2020 Lectures 5, 12 and 23
Performance is about time

• To the first order, performance $\propto \frac{1}{\text{time}}$

• Two very different kinds of performance!!
 – latency = time between start and finish of a task
 – throughput = number of tasks finished in a given unit of time
 \hspace{1cm} (a rate measure)

• Either way, shorter the time, higher the performance, but . . .
Throughput ≠ 1/Latency

• If it takes T sec to do N tasks, throughput=N/T; latency$_1$=T/N?

• If it takes t sec to do 1 task, latency$_1$=t; throughput=$1/t$?

• When there is concurrency, throughput≠1/latency

• Optimizations can tradeoff one for the other

(think bus vs F1 race car)
Little’s Law

- \(L = \lambda \cdot W \)
 - \(L \): number of customers
 - \(\lambda \): arrival rate
 - \(W \): wait time

In steadystate, fix any two, the third is decided

E.g.,
- AXI DRAM read: latency and # outstanding requests determine achieved BW (until peak)
- in-order instruction pipeline: ILP and RAW hazard distance determine instruction throughput
Overhead and Amortization

• Throughput becomes a function of \(N \) when there is a non-recurring start-up cost (aka overhead)

• E.g., DMA transfer on a bus
 – bus throughput\(_{raw}\) = \(1 \) Byte / \((10^{-9} \text{ sec}) \) \textit{steadystate}
 – \(10^{-6} \) sec to setup a DMA
 – throughput\(_{effective}\) to send 1B, 1KB, 1MB, 1GB?

• For start-up-time=\(t_s \) and throughput\(_{raw}\)=\(1/t_1 \)
 – throughput\(_{effective}\) = \(N / (t_s + N \cdot t_1) \)
 – if \(t_s >> N \cdot t_1 \), throughput\(_{effective}\) \(\approx N/t_s \)
 – if \(t_s << N \cdot t_1 \), throughput\(_{effective}\) \(\approx 1/t_1 \)

we say \(t_s \) is “amortized” in the latter case
Latency Hiding

- What are you doing during the latency period?
- Latency = hands-on time + hands-off time
- In the DMA example
 - CPU is busy for the t_s to setup the DMA
 - CPU has to wait $N \cdot t_1$ for DMA to complete
 - CPU could be doing something else during $N \cdot t_1$ to “hide” that latency
“Performance” is more than time
Moore’s Law without Dennard Scaling

Under fixed power ceiling, more ops/second only achievable if less Joules/op?
Power = Energy / time

• Energy (Joule) dissipated as heat when “charge” move from VDD to GND
 – takes a certain amount of energy per operation, e.g., addition, reg read/write, (dis)charge a node
 – to the first order, energy \propto work

 You care if on battery or pay the electric bill

• Power (Watt=Joule/s) is rate of energy dissipation
 – more op/sec then more Joules/sec
 – to the first order, power \propto performance

 Usually the problem is “thermal design power”
Power and Performance not Separable

- Easy to minimize power if don’t care about performance
- Expect superlinear increase in power to increase performance
 - slower design is simpler
 - lower frequency needs lower voltage
- Corollary: Lower perf also use lower J/op (=slope from origin)
- Don’t forget leakage power
Scale Makes a Difference

- Perf/Watt and J/op are normalized measures
 - hides the scale of problem and platform
 - recall, Watt \(\propto \text{perf}^k \) for some \(k>1 \)
- 10 GFLOPS/Watt at 1W is a very different design challenge than at 1KW or 1MW or 1GW
 - say 10 GFLOPS/Watt on a <GPGPU,problem>
 - now take 1000 GPUGPUs to the same problem
 - realized perf is < 1000x (less than perfect parallelism)
 - required power > 1000x (energy to move data & heat)

In general be careful with normalized metrics
Design Tradeoff
Multi-Dimensional Optimizations

• HW design has many optimization dimensions
 – throughput and latency
 – area, resource utilization
 – power and energy
 – complexity, risk, social factors . . .

• Cannot optimize individual metrics without considering tradeoff between them, e.g.,
 – reasonable to spend more power for performance
 – converse also true (lower perf. for less power)
 – but never more power for lower performance
Pareto Optimality (2D example)

All points on front are optimal (can’t do better)

How to select between them?
Application-Defined Composite Metrics

• Define scalar function to reflect desiderata---incorporate dimensions and their relationships

• E.g., energy-delay-(cost) product
 – smaller the better
 – can’t cheat by minimizing one ignoring others
 – what does it mean? why not energy\(^3\times\)delay\(^2\)?

• Floors and ceilings
 – real-life designs more often about good enough than optimal
 – e.g., meet a perf. floor under a power(cost)-ceiling (minimize design time, i.e., stop when you get there)
Which is Design Point is Best?
(runtime, energy, power, EDP)

Is B really lowest power?
Parallelism, Speedup and Scalability
Parallelism Defined

- \(T_1 \) (work measured in time):
 - time to do work with 1 PE
- \(T_\infty \) (critical path):
 - time to do work with infinite PEs
 - \(T_\infty \) bounded by dataflow dependence
- Average parallelism:
 \[P_{\text{avg}} = \frac{T_1}{T_\infty} \]
- For a system with \(p \) PEs
 \[T_p \geq \max\{ \frac{T_1}{p}, T_\infty \} \]
- When \(P_{\text{avg}} \gg p \)
 \[T_p \approx \frac{T_1}{p}, \text{aka “linear speedup”} \]

\[
x = a + b; \\
y = b \times 2 \\
z = (x-y) \times (x+y)
\]
Linear Parallel Speedup

- Ideally, parallel speedup is linear with p

$$\text{speedup} = \frac{\text{runtime}_{\text{sequential}}}{\text{runtime}_{\text{parallel}}}$$

$\propto \frac{1}{p}$
Scalability

This happens when $P_{\text{avg}} < p$; how else?
Amdahl’s Law

• If only a fraction f is parallelizable by a factor of p

\[
\text{speedup} = \frac{1}{(1 - f) + \frac{f}{p}}
\]

- if f is small, p doesn’t matter
- even when f is large, diminishing return on p; eventually “1-f” dominates
Non-Ideal Speed Up

Best parallel algo may not be same as seq. algo, often worse at $p=1$

If \(\text{time}_{\text{parallel@p=1}} = K \cdot \text{time}_{\text{seq}} \)

then \(\text{best-case speedup} = \frac{p}{K} \)
Non-Ideal Speedup

How could this be?
Communication not Instantaneous

- **Latency**: transit time between sender and receiver as if lengthening critical path (T_∞)
- **overhead**: time used up to setup a send or a receive (cycles not doing computation) as if adding more work (T_1)
- **gap**: wait time in between successive send’s or receive’s due to limited transfer bandwidth

The LogP Model
 Arithmetic Intensity

• An algorithm has a cost in terms of operation count
 – runtime_{compute-bound} = # operations / FLOPS

• An algorithm also has a cost in terms of number of bytes communicated (ld/st or send/receive)
 – runtime_{BW-bound} = # bytes / BW

• Which one dominates depends on
 – ratio of FLOPS and BW of platform
 – ratio of ops and bytes of algorithm

• Average Arithmetic Intensity (AI)
 – how many ops performed per byte accessed
 – # operations / # bytes
Roofline Performance Model
[Williams&Patterson, 2006]

Attained Performance of a system (op/sec)

runtime > max (# op/FLOPS, # byte/BW)
> #op·max(1/FLOPS, 1/(AI·BW))

perf = min(FLOPS, AI·BW)
Parallelization and Efficiency

- For a given functionality, non-linear tradeoff between power and performance
 - slower design is simpler
 - lower frequency needs lower voltage

⇒ For the same throughput, replacing 1 module by 2 half-as-fast reduces total power and energy

Good hardware designs derive performance from parallelism
Parting Thoughts

• Need to understand performance to get performance!

• Good HW/FPGA designs involve many dimensions (each one nuanced)
 – optimizations involve making tradeoff
 – over simplifying is dangerous and misleading
 – must understand application needs

Power and energy is first-class!!

• Real-life designs have non-technical requirements