18-643 Lecture 3: FPGA on Moore’s Law

James C. Hoe
Department of ECE
Carnegie Mellon University
Housekeeping

• Your goal today: get caught up on 30 years of progress

• Notices
 – Complete survey on Blackboard, past due
 – Handout #2: lab 0, due noon, 9/9
 – Make friends, make teams, due noon, 9/9

• Readings
 – Ch 1, Reconfigurable Computing
Where we stopped last time:
FPGA as Universal Fabric

- I/O pins
- Programmable lookup tables (LUT) and flip-flops (FF) aka “soft logic” or “fabric”
- Programmable routing

Interconnect

LUT

FF
Fast-forward through Moore’s Law

what happened is more than Moore

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Logic Capacity (gates)</th>
<th>Configurable Logic Blocks</th>
<th>User I/Os</th>
<th>Configuration Program (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC2064</td>
<td>1200</td>
<td>64</td>
<td>58</td>
<td>12038</td>
</tr>
<tr>
<td>XC2018</td>
<td>1800</td>
<td>100</td>
<td>74</td>
<td>17878</td>
</tr>
</tbody>
</table>

XC2064/XC2018 Logic Cell Arrays: Product Specification

[Table 1, UltraScale Architecture and Product Datasheet: Overview]
30 Years of Becoming Hardwired
Hardwired Logic

- LUTs can do everything (digital)
- Why hardwired flip-flop in CLB?
 - would take 4 LUTs to make 1 M-S flip-flop
 - LUT-built FF would have poor timing
 - almost all designs affected in cost and speed
- Makes sense to hardwire a functionality
 - needed by everyone (or by the big customers)
 - expected benefit outweigh displaced LUT area, i.e.,
 - much more expensive/slow in LUTs
 - easy/cheap to ignore when not in use

Hardwiring is a great thing if it is usable and is used
E.g., Special Support for Addition

- A full-adder fits perfectly in 1 CLB with 2x3LUTs
- But carry propagation slow---flow through several configurable connections and two switch blocks
- Addition is pretty important to most designs
Fast Carry Logic (1990s)

- Cost = 1 (real) wire and 1 mux
- Huge win in adder performance

If arithmetic is so important, why not put in real adders? How about multipliers?
Hard Multipliers (2000s)

- Motivating forces
 - DSP became an important domain
 - very expensive and slow to multiply in LUTs
 - dies large enough to spare some area
- Virtex-II hardwired multiplier blocks
 - 18-bit inputs, full 36-bit product
 - explicit instantiation or inferable from RTL
 - relatively cheap (since native implementation)
 - but no hard adders, why?

 Adders came later as a part of MAC in DSP slices
 In the meanwhile, multiply faster/cheaper than add!!
Ultrascale DSP48E2

optional pipeline stages inferable from RTL and retiming

Where are these hard DSP slices? How to get to them?
SRAM

- Flip-flops relatively scarce (only 1-bit per CLB)
- Need more storage when applications moved beyond FSM controllers and glue logic
- Option A: LUTs repurposable as 16x1-bit SRAMs
- Option B: 4Kb (now 32Kb) 2-ported SRAM blocks
 - very compact, very fast because native in silicon
 - explicit instantiation or inferable from RTL
 (tool can even decide which SRAM option to use)
 - configurable and combinable to a wide range of sizes and aspect ratios

Where are they? How to connect up to them?
Xilinx ASMBL Architecture
(Application Specific Modular Block Arch.)

- Xilinx fabric assembled from composable tall-and-thin strip types of CLB, BRAM, DSP, I/O, etc.
Processor Cores

• Not everything needs to be in hardware; not everything improves when made into hardware

• Augment fabric with simple embedded CPUs
 – provide universality of functionality
 – easy handling of irregular, sequential operations
 – easy handling anything that doesn’t need to be fast

• Interests developed in early 2000s when FPGA applications grew to whole systems with DRAM, video, and Ethernets, etc.

 Hard or soft core?
Hardcore vs Softcore

• First came PowerPC hardcores on Virtex-II
 – you got 2 whether you needed it or not
 – new tool promote IP-based system building
 – entirely soft-logic built surroundings: busses and IPs (DRAM controller, Ethernet, video,)

• Microblaze softcores took over role in later rounds
 – Xilinx proprietary ISA (runs OS, gcc and all that)
 – configurable for cost-performance tradeoff
 – available in RTL to some folks
 – by this time, softcore footprint and performance was acceptable

Several 3rd-party softcores existed in that era, e.g., LEON SPARC
Embedding PowerPC in Fabric

- everything else is soft
- two hierarchies of soft-logic busses
 (slow and slower)
- special on-chip memory (OCM) port allows ld/st directly into fabric
- CoreGen Library of IPs to hang off the busses
Hardcores Return in Virtex7 (~2010)

- This time in a complete, full-speed, fully-capable, two-core Cortex-A9 system
- Latest Ultrascale uses 64-bit ARMv8 Cortex-A53 + ARM R5 + Mali GPU
- Why ARMs?

[Figure 3-1, Zynq-7000 All Programmable SoC Technical Reference Manual]
Hardcore vs Softcore

- **Table 4.2: The Zynq Book**

<table>
<thead>
<tr>
<th>Processor</th>
<th>Configuration</th>
<th>DMIPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroBlaze 900LUT/700FF/2BRAM to 3800LUT/3200FF/6DSP/21BRAM</td>
<td>area optimized (3-stage)</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>perf. optimized (5-stage) with branch optimizations</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>perf. optimized (5-stage) without branch optimizations</td>
<td>259</td>
</tr>
<tr>
<td>ARM Cortex-A9</td>
<td>1GHz; both cores combined</td>
<td>5000</td>
</tr>
</tbody>
</table>

- **Table 4.3: The Zynq Book**

<table>
<thead>
<tr>
<th>Processor</th>
<th>Configuration</th>
<th>CoreMark</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroBlaze</td>
<td>125MHz; 5-stage (Virtex-5)</td>
<td>238</td>
</tr>
<tr>
<td>ARM Cortex-A9</td>
<td>1GHz; both cores combined</td>
<td>5927</td>
</tr>
<tr>
<td>ARM Cortex-A9</td>
<td>800MHz; both cores combined</td>
<td>4737</td>
</tr>
</tbody>
</table>

PPC405 about 1/5 of ARM in Figure 4.3 of The Zynq Book
Hardwired IPs Added Over Time

• 1990s
 – fast carry
 – LUT RAM
 – block RAM

• 2000s
 – programmable clock generator
 – PowerPC core
 – gigabit transceiver
 – multiplier and DSP splices
 – Ethernet and PCI-E

• 2010s
 – system monitor
 – ADC
 – power management
 – ARM cores and GPU
 – DRAM controller
 – floating point arithmetic
 – “UltraRAM” hierarchy (up to 500Mbits)
 – HBM controllers
Chicken or Egg First?

• 1990s: glue logic, embedded cntrl, interface logic
 – reduce chip-count, increase reliability
 – rapid roll-out of “new” products

• 2000s: DSP and HPC
 – strong need for performance
 – abundant parallelism and regularity
 – low-volume, high-valued

• 2010s: communications and networking
 – throughput performance
 – fast-changing designs and standards
 – price insensitive
 – $value in field updates and upgrades
Today: SoC with reconfigurable fabric

Die Area “Return on Investment”

Soft-logic logic dominates die area, but compute/storage concentrated in DSP and BRAM—consider what if 100% soft or 100% hard
Xilinx ASMBL Architecture
(Application Specific Modular Block Arch.)

- Xilinx fabric assembled from composable tall-and-thin strip types, CLB, BRAM, DSP, I/O, etc.
- Derivative products at the cost of just new masks
 - vary capacity by composing more or less strips
 - domain-specialization by varying ratios of strips e.g., {DSP+IP} vs logic for DSP vs ASIC replacement market
 - variations handled by parameterization in design tool algorithms
Stacked Silicon Interconnect (SSI)

• 2.5D stacking: multiple dies on passive interposer
 – lower latency, higher bandwidth, lower power than crossing package
 – much better yield than equivalent capacity monolithic device
 – mix dies for domain-specialization
 – possible to insert customer proprietary dies?
Intel’s take on 2.5D with EMIB

- monolithic fabric
- displace noisy, hot analog IPs
- connect same-package HBMs
- connect 3rd-party chiplets?

[Figure 8, Enabling Next-Generation Platforms Using Altera’s 3D System-in-Package Technology]
Xilinx Ultrascale Offerings

<table>
<thead>
<tr>
<th>Feature</th>
<th>Kintex UltraScale</th>
<th>Kintex UltraScale+</th>
<th>Virtex UltraScale</th>
<th>Virtex UltraScale+</th>
<th>Zynq UltraScale+</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPSoC Processing System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Logic Cells (K)</td>
<td>318–1,451</td>
<td>356–1,143</td>
<td>783–5,541</td>
<td>862–3,780</td>
<td>103–1,143</td>
</tr>
<tr>
<td>Block Memory (Mb)</td>
<td>12.7–75.9</td>
<td>12.7–34.6</td>
<td>44.3–132.9</td>
<td>23.6–94.5</td>
<td>4.5–34.6</td>
</tr>
<tr>
<td>UltraRAM (Mb)</td>
<td>0–36</td>
<td></td>
<td>0–36</td>
<td>90–360</td>
<td>0–36</td>
</tr>
<tr>
<td>HBM DRAM (GB)</td>
<td></td>
<td></td>
<td></td>
<td>0–8</td>
<td></td>
</tr>
<tr>
<td>DSP (Slices)</td>
<td>768–5,520</td>
<td>1,368–3,528</td>
<td>600–2,880</td>
<td>2,280–12,288</td>
<td>240–3,528</td>
</tr>
<tr>
<td>DSP Performance (GMAC/s)</td>
<td>8,180</td>
<td>6,287</td>
<td>4,268</td>
<td>21,897</td>
<td>6,287</td>
</tr>
<tr>
<td>Transceivers</td>
<td>12–64</td>
<td>16–76</td>
<td>36–120</td>
<td>32–128</td>
<td>0–72</td>
</tr>
<tr>
<td>Max. Transceiver Speed (Gb/s)</td>
<td>16.3</td>
<td>32.75</td>
<td>30.5</td>
<td>32.75</td>
<td>32.75</td>
</tr>
<tr>
<td>Max. Serial Bandwidth (full duplex) (Gb/s)</td>
<td>2,086</td>
<td>3,268</td>
<td>5,616</td>
<td>8,384</td>
<td>3,268</td>
</tr>
<tr>
<td>Integrated Blocks for PCIe®</td>
<td>1–6</td>
<td>0–5</td>
<td>2–6</td>
<td>2–6</td>
<td>0–5</td>
</tr>
<tr>
<td>Memory Interface Performance (Mb/s)</td>
<td>2,400</td>
<td>2,666</td>
<td>2,400</td>
<td>2,666</td>
<td>2,666</td>
</tr>
<tr>
<td>I/O Pins</td>
<td>312–832</td>
<td>280–668</td>
<td>338–1,456</td>
<td>208–832</td>
<td>82–668</td>
</tr>
<tr>
<td>I/O Voltage (V)</td>
<td>1.0–3.3</td>
<td>1.0–3.3</td>
<td>1.0–3.3</td>
<td>1.0–1.8</td>
<td>1.0–3.3</td>
</tr>
</tbody>
</table>

[Table 1, UltraScale Architecture and ProductDatasheet: Overview]
Intel Stratix-10 Offerings

Intel Stratix 10 Product Table

| PRODUCT LINE | GX 400 | SX 400 | GX 650 | SX 650 | GX 850 | SX 850 | GX 1100 | SX 1100 | GX 1650 | SX 1650 | GX 2100 | SX 2100 | GX 2500 | SX 2500 | GX 2800 | SX 2800 | GX 4500 | SX 4500 | GX 5500 | SX 5500 |
|--------------|
| Logic elements (LEs) | 378,000 | 612,000 | 841,000 | 1,092,000 | 1,624,000 | 2,006,000 | 2,422,000 | 2,753,000 | 4,463,000 | 6,510,000 |
| Adaptive logic modules (ALMs) | 128,160 | 207,360 | 284,960 | 370,080 | 550,640 | 679,680 | 821,150 | 933,120 | 1,512,820 | 1,867,680 |
| ALM registers | 512,040 | 829,440 | 1,139,840 | 1,480,320 | 2,202,160 | 2,718,720 | 3,284,800 | 3,732,480 | 6,051,280 | 7,470,720 |
| Hyper-Registers from Intel® HyperFlex™ FPGA architecture |
| Programmable clock trees synthesizable |
| M20K memory blocks | 1,537 | 2,489 | 3,477 | 4,401 | 5,851 | 6,501 | 9,083 | 11,721 | 17,033 | 17,033 |
| M20K memory size (Mb) | 30 | 49 | 68 | 86 | 114 | 127 | 195 | 229 | 137 | 137 |
| M20K memory size (Mb) | 2 | 3 | 4 | 6 | 11 | 13 | 13 | 15 | 23 | 29 |
| MLAB memory size (Mb) | 648 | 1,162 | 2,016 | 2,520 | 3,145 | 3,744 | 5,011 | 5,760 | 1,880 | 1,880 |
| Variable-precision digital signal processing (DSP) blocks | 1,296 | 2,304 | 4,032 | 5,040 | 6,290 | 7,488 | 10,022 | 11,520 | 3,000 | 3,000 |
| 18 x 19 multipliers | 2.6 | 4.6 | 8.1 | 10.1 | 12.6 | 15.0 | 20.0 | 23.0 | 7.9 | 7.9 |
| Peak fixed-point performance (TMACS)² | 1.0 | 1.8 | 3.2 | 4.0 | 5.0 | 6.0 | 8.0 | 9.2 | 3.2 | 3.2 |
| Peak floating-point performance (TFLOPS)³ | | | | | | | | | | | |
| Secure device manager | AES-256/SHA-256 bitstream encryption/authentication, physically unclonable function (PUF), ECDSA 256/384 boot code authentication, side channel attack protection |
| Hard processor system⁴ | Quad-core 64 bit ARM® Cortex®-A53 up to 1.5 GHz with 32 KB I/O cache, NEON® coprocessor, 1 MB L2 cache, direct memory access (DMA), system memory management unit, cache coherency unit, hard memory controllers, USB 2.0 x2, 1G EMAC x3, UART x2, SPI x4, I²C x5, general-purpose timers x7, watchdog timer x4 |
| Maximum user I/O pins | 362 | 400 | 736 | 736 | 736 | 736 | 1,160 | 1,160 | 1,160 | 1,160 |
| Maximum LVDS pairs 1.6 Gbps (RX or TX) | 162 | 212 | 360 | 360 | 336 | 336 | 576 | 576 | 816 | 816 |
| Total full duplex transceiver count | 24 | 48 | 48 | 48 | 24 | 24 | 24 | 24 | 24 | 24 |
| GXT full duplex transceiver count (up to 30 Gbps) | 16 | 32 | 32 | 32 | 64 | 64 | 64 | 64 | 16 | 16 |
| GX full duplex transceiver count (up to 17.4 Gbps) | 8 | 16 | 16 | 16 | 32 | 32 | 32 | 32 | 8 | 8 |
| PCI Express® (PCIe®) hard intellectual property (IP) blocks (Gen3 x16) | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 |
| Memory devices supported | DDR4, DDR3, DDR2, DDR, QDR II, QDR II+, RLDRAM II, RLDRAM 3, HMC, Msy4 | | | | | | | | | | |
Parting Thoughts

• FPGAs steadily moved away from universal fabric
 – efficiency of hardwired logic (driven by application demands) complements flexibility of reconfig. logic
 – architected deliberately to play up this advantage

• Retain a high degree of regularity to ease design and manufacturing
 – fastest way to use up transistors from Moore’s Law
 – power and performance advantage by just being first on new process

• Architectural evolution both push-and-pull with applications