18-447 Lecture 22:
1 Lecture Worth of Parallel Programming Primer

James C. Hoe
Department of ECE
Carnegie Mellon University
Housekeeping

• Your goal today
 – see basic concepts in shared-memory multithreading (context for topics to come)
 – appreciate how easy parallel programming can be
 – appreciate how difficult “good” parallel programming can be

• Notices
 – Lab 4 and HW5: due Friday, 5/7
 – Midterm 2 Regrade: Monday, 5/3
 – Midterm 3: Tuesday, 5/11, 5:30~6:25pm

• Readings
 – P&H Ch 6
Shared-Memory Multicores

- Today’s general-purpose multicore processors are MIMD, symmetric, shared memory
 - individual cores follow classic von Neuman
 - common access to physical address space and mem
 - processes/threads on different cores communicate by writing and reading agreed-upon mem locations
Single Program Multiple Data

- SPMD is MIMD except all threads based on the same program image
- On SMP, SPMD starts as a single-thread process and its memory
- Independent “threads of execution” (think program counters, regfile and stacks) spawned
 - **same process memory**—same EA in different threads refers to shared program and data locations
 - different threads run concurrently (on different cores) or interleaved

SPMD just one of many options; prevalent and easy to start on
E.g., POSIX Threads Create and Join

```c
long count=0;      // globals are in memory and shared!!

void *foo(void *arg) { return count = count + (long)arg; }

int main(){
    pthread_t tid[HOWMANY];     // array of thread IDs
    long i;
    void *retval;

    // spawn children threads
    for(i=0; i<HOWMANY; i++ )
        pthread_create( &tid[i],    // ID to be set
                         NULL,          // attribute (default)
                         foo,           // fxn to run by thread
                         (void*)i);     // ptr-size arg to fxn

    // wait for children threads to exit
    for (i=0; i<HOWMANY; i++ )
        pthread_join( tid[i],     // ID to wait on
                       &retval);    // ptr-size return value
}
```
Memory Consistency

• Memory consistency model says for each read which write bound the value to be returned
 – intuitively: a read should return value of “most recent” write to the same address
 – straight forward for a single thread

• In a shared-memory multicore, cores C1/C2/C3 perform following streams of reads and writes

 C1: W(x)
 C2: . . . W(x), W(x), W(y), R(x), R(y) . .
 C3: W(x), W(y), W(x) . .

Which is the last write to x before R(x) by C2?

Ordering determines what can be seen by reads, but what is observed by reads determines ordering!!
Sequential Consistency (SC)

- A thread perceives its own memory ops in program order (of course)
- Memory ops from threads in program order can be interleaved arbitrarily; different interleaving allowed on different runs, i.e., nondeterminism
- For each run, all threads must not disagree on any orderings observed
- Switch Model:

 ![Diagram showing the concept of sequential consistency with a switch model.
 The diagram illustrates a sequence of checkpoints, C₀, C₁, C₂, ..., Cₙ₋₁, which are points of serialization across memory operations. The diagram connects these checkpoints showing the serialization points, indicating how memory operations are ordered across different runs.]
SC Example: what can and cannot be

• Threads **T1** and **T2** and shared locations **X** and **Y** (initially \(X = 0, \ Y = 0 \))

\[
\begin{align*}
\text{T1:} & \quad \ldots \ldots \\
& \text{store}(X, \ 1); \\
& \text{store}(Y, \ 1); \\
& \ldots \ldots \\
\text{T2:} & \quad \ldots \ldots \\
& \text{vy} = \text{load}(Y); \\
& \text{vx} = \text{load}(X); \\
& \ldots \ldots
\end{align*}
\]

• SC says
 – \(\text{vy} \) and \(\text{vx} \) may get different values from run to run

 \text{e.g., (vy=0, vx=0), (vy=0, vx=1), or (vy=1, vx=1)}

 – but if \(\text{vy} \) is 1 then \(\text{vx} \) cannot be 0
An Useful Example

- Threads T1 and T2 communicate via shared memory locations X and Y
 - T1 produces result in X to be consumed by T2
 - T1 signals readiness to T2 by setting Y

\[
\begin{array}{|c|c|}
\hline
T1: & T2: \\
\hline
Y is initially 0 & do {} & \text{ready} = \text{load } Y \\
\cdots & \text{while } (!\text{ready}) & \text{data} = \text{load } X \\
\text{compute } v & \text{do} & \text{data} = \text{load } X \\
\text{store } (X, v) & \text{while } (!\text{ready}) & \text{ready} = \text{load } Y \\
\text{store } (Y, 1) & \text{do} & \text{data} = \text{load } X \\
\cdots & \text{while } (!\text{ready}) & \text{ready} = \text{load } Y \\
\hline
\end{array}
\]

- This works because SC says T1 and T2 must see the stores to X and Y in the same order
Easy to think about hard to build

- Where is “point of serialization” if memory ops don’t always go to memory or even onto a bus?
- SC restricts many memory reordering optimizations taken-for-granted in sequential execution (e.g., non-blocking miss)
Weak Consistency (WC)

• WC imposes only uniprocessor memory dependence: \(R_i(x) < W_j(x); W_i(x) < R_j(x); W_i(x) < W_j(x) \)

• Program inserts explicit memory fence instructions to force serialization when it matters

\[
\begin{align*}
T1: \\
\text{Y is initially 0} \\
\text{......} \\
\text{compute v} \\
\text{store (X, v)} \\
\text{fence} \\
\text{store (Y, 1)}
\end{align*}
\]

\[
\begin{align*}
T2: \\
\text{......} \\
\text{do {}} \\
\text{ready=load Y} \\
\text{}} \text{ while (!ready)} \\
\text{fence} \\
\text{data = load X}
\end{align*}
\]

• If serialization is rare, cheap(hw)/slow fences okay, e.g., completely drain/restart pipeline

Intermediate models exist between SC and WC
Embarrassingly Parallel Processing

• Summing 10,000 numbers from array $A[]$
• In sequential algorithm

$$\text{for } (i=0; \ i<10000; \ i=i+1)$$
$$\text{sum} = \text{sum} + A[i];$$

• Assuming “+” is 1 unit-time; everything else free
 – $T_1=10,000$
 – $T_\infty = \lceil \log_2 10,000 \rceil = 14$ (using associativity of “+”)
 – $P_{\text{avg}} = T_1/T_\infty = 714$
• Ideally, at $p=100 \ll T_1/T_\infty$
 expect $T_{100} \approx T_1/p=100$ or $S_{100} \approx p=100$

recall if $T_1/T_\infty >> p$ then $S \approx p$
Shared-Memory Pthreads Strategy 1

- Fork $p=100$ threads on a p-way shared memory multiprocessor
 - $A[10000]$ is in shared memory
 - $psum[100]$ is also in shared memory
- Child thread-i uses $psum[i]$ to compute its portion of the partial sum
- When all threads finish, parent sums $psum[0]\sim psum[99]$
double A[ARRAY_SIZE];
double psum[p];

void *sumParallel(void *id) {
 long id=(long) _id;
 long i;

 psum[id]=0;

 for(i=0;i<(ARRAY_SIZE/p);i++)
 psum[id]+=A[id*(ARRAY_SIZE/p) + i];

 return NULL;
}
double \texttt{A[ARRAY_SIZE]};
double \texttt{psum[p]};
double \texttt{sum}=0;

\textbf{int main}(){

\hspace{1em}... \textbf{skipped pthreads boilerplate} ...

\hspace{1em}for (i=0; i<p; i++)
\hspace{2em}pthread_create(\&tid[i],
\hspace{3em}NULL,
\hspace{3em}sumParallel,
\hspace{3em}(\text{void}*\texttt{i});

\hspace{1em}for (i=0; i<p; i++) {
\hspace{2em}pthread_join(\texttt{tid[i]}, \&retval);
\hspace{3em}\texttt{sum+=psum[i];}
\hspace{2em}}
\hspace{1em}}
Performance Analysis

• Summing 10,000 on 100 cores
 – 100 threads performs 100 +’s each in parallel
 – parent thread performs 100 +’s sequentially
 – $T_{100} = 100 + 100$
 – $S_{100} = 50$

• If summing 100,000 on 100 cores
 – $T_{100} = 1000 + 100$
 – $S_{100} = 90.9$

• If summing 10,000 on 10 cores
 – $T_{10} = 1000 + 10$
 – $S_{10} = 9.9$

• Don’t forget,
 – *fork* and *join* are not free
 – moving data (even thru shared memory) not free
The Actual Amdahl’s Law

- If only a fraction \(f \) (by time) is parallelizable by \(p \)

\[
\text{time}_{\text{parallelized}} = \text{time}_{\text{sequential}} \cdot \left((1-f) + \frac{f}{p} \right)
\]

\[
S_{\text{effective}} = \frac{1}{ (1-f) + \frac{f}{p} }\]

- if \(f \) is small, \(p \) doesn’t matter
- even when \(f \) is large, diminishing return on \(p \); eventually “1-f” dominates
Strategy 2: parallelizing the reduction

- How about asking each thread to do a bit of the reduction, i.e.,

```c
void *sumParallel(void *id) {
    long id = (long) id;
    long i;

    psum[id] = 0;
    for (i = 0; i < (ARRAY_SIZE / p); i++)
        psum[id] += A[id * ARRAY_SIZE / p + i];

    sum = sum + psum[id];

    return NULL;
}
```

Assume SC for simplicity
Data Races

• On last slide sum is read and updated by all threads at around the same time
• Let’s try just 2 threads T1 and T2, sum is initially 0

\[
\begin{align*}
\text{T1:} & \quad \text{compute } v \\
& \quad \text{temp=load } \text{sum} \\
& \quad \text{temp= temp+}v \\
& \quad \text{store (sum, temp)}
\end{align*}
\]

\[
\begin{align*}
\text{T2:} & \quad \text{compute } w \\
& \quad \text{temp=load } \text{sum} \\
& \quad \text{temp= temp+w} \\
& \quad \text{store (sum, temp)}
\end{align*}
\]

• What are the possible final values of sum?
 – \(v+w\) or \(v\) or \(w\) depending on the interleaving of the read/modify/write sequence in T1 and T2
• To work, RMW regions needs to be atomic

 i.e., no intervening reads/writes by other threads
Critical Sections

• Special “lock” variables and lock/unlock operators to demarcate a “critical section” that only one thread can enter at a time, e.g.,

```c
pthread_mutex_lock(&lockvar);
sum=sum+psum[id];    // atomic RMW
pthread_mutex_unlock(&lockvar);
```

• `lock()` blocks until `lockvar` is free or freed (released by previous owner)

• on `unlock()`, if multiple `lock()` pending, only 1 should succeed; the rest keep waiting

• Strategy 2 is now correct but actually slower

Reduction still sequential plus extra cost of locking and unlocking
Strategy 3: Parallel Reduction
(assume “+” associative and commutative)

```c
// at the end of sumParallel()
remain=p;
do {
    pthread_barrier_wait(&barrier);
    half=(remain+1)/2;
    if (id<(remain/2))
        psum[id]=psum[id]+psum[id+half];
    remain=half;
} while (remain>1);
```
Performance Analysis

- Summing 10,000 on 100 cores
 - 100 threads performs 100 +’s each in parallel, and
 - between 1~7 +’s each in the parallel reduction
 - $T_{100} = 100 + 7$
 - $S_{100} = 93.5$

- If summing 100,000 on 100 cores
 - $T_{100} = 1000 + 7$
 - $S_{100} = 99.3$

- If summing 10,000 on 10 cores
 - $T_{10} = 1000 + 4$
 - $S_{10} = 10.0$

First-order analysis! Don’t bet on this.
Message Passing

- Private address space and memory per processor
- Parallel threads on different processors communicate by explicit sending and receiving of messages

Review
Example using Matched Send/Receive

```c
if (id==0) //assume node-0 has A initially
    for (i=1;i<p;i=i+1)
        SEND(i, &A[SHARE*i], SHARE*sizeof(double));
else
    RECEIVE(0,A[]) //receive into local array

sum=0;
for(i=0;i<SHARE;i=i+1) sum=sum+A[i];

remain=p;
do {
    BARRIER();
    half=(remain+1)/2;
    if (id>=half&&id<remain) SEND(id-half,sum,8);
    if (id<(remain/2)) {
        RECEIVE(id+half,&temp);
        sum=sum+temp;
    }
    remain=half;
} while (remain>1);
```

SHARE=HOWMANY/p

[based on P&H Ch 6 example]
Communication Cost

• Communication cost is a part of parallel execution
• Easier to perceive communication cost in message passing
 – overhead: takes time to send and receive data
 – latency: takes time for data to go from A to B
 – gap (1/bandwidth): takes time to push successive data through a finite bandwidth
• Same cost was also there in shared memory

To be continued