18-447 Lecture 21: Parallel Architecture Overview

James C. Hoe
Department of ECE
Carnegie Mellon University
Housekeeping

• Your goal today
 – see the diverse landscape of parallel computer architectures/organizations
 – set the context for focused topics to come

• Notices
 – Lab 4: **status check 4/26, due 5/7**
 – HW5: **Friday, 5/7**
 – Midterm 2 Regrade: **Monday, 5/3**
 – Midterm 3: **Tuesday, 5/11, 5:30~6:25pm**

• Readings
 – P&H Ch 6
Parallelism Defined

- T_1 (work measured in time):
 - time to do work with 1 PE
- T_∞ (critical path):
 - time to do work with infinite PEs
 - T_∞ bounded by dataflow dependence
- Average parallelism:
 $$P_{\text{avg}} = \frac{T_1}{T_\infty}$$
- For a system with p PEs
 $$T_p \geq \max\{\frac{T_1}{p}, T_\infty\}$$
 When $P_{\text{avg}} \gg p$
 $$T_p \approx \frac{T_1}{p}, \text{aka “linear speedup”}$$

```
x = a + b;
y = b * 2
z = (x - y) * (x + y)
```
A Non-Parallel “Architecture”

- Memory holds both program and data
 - instructions and data in a linear memory array
 - instructions can be modified as data
- Sequential instruction processing
 1. program counter (PC) identifies current instruction
 2. fetch instruction from memory
 3. update some state (e.g. PC and memory) as a function of current state (according to instruction)
 4. repeat

Dominant paradigm since its invention
Inherently Parallel Architecture

- Consider a von Neumann program
 - What is the significance of the program order?
 - What is the significance of the storage locations?

\[
\begin{align*}
v &:= a + b; \\
w &:= b \times 2; \\
x &:= v - w; \\
y &:= v + w; \\
z &:= x \times y;
\end{align*}
\]

- Dataflow program instruction ordering implied by data dependence
 - instruction specifies who receives the result
 - instruction executes when operands received
 - no program counter, no* intermediate state

[dataflow figure and example from Arvind]
More Conventionally Parallel

Do you naturally think parallel or sequential?
Simple First Look: Data Parallelism

- Abundant in matrix operations and scientific/numerical applications
- Example: DAXPY/LINPACK (inner loop of Gaussian elimination and matrix-mult)

\[
Y = a \times X + Y = \begin{cases}
\text{for} (i=0; \ i<N; \ i++) \{ \\
Y[i] = a \times X[i] + Y[i] \\
\}
\end{cases}
\]

- \(Y\) and \(X\) are vectors
- same operations repeated on each \(Y[i]\) and \(X[i]\)
- no data dependence across iterations

How to exploit data parallelism?
Parallelism vs Concurrency

\[
\text{for}(i=0; \ i<N; \ i++) \ { \\
\quad C[i]=\text{foo}(A[i], \ B[i]) \\
}\]

- Instantiate \(k \) copies of the hardware unit \(\text{foo} \) to process \(k \) iterations of the loop in parallel
Parallelism vs Concurrency

for(i=0; i<N; i++) {
 C[i]=foo(A[i], B[i])
}

- Build a deeply (super)pipelined version of `foo()`

Can combine concurrency and pipelining at the same time
A Spotty Tour of the MP Universe
<table>
<thead>
<tr>
<th></th>
<th>Single Instruction Stream</th>
<th>Multiple Instruction Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Data Stream</td>
<td>SISD: your vanilla uniprocessor</td>
<td>MISD: DB query??</td>
</tr>
<tr>
<td>Multiple Data Stream</td>
<td>SIMD: many PEs following common instruction stream/control-flow on different data</td>
<td>MIMD: fully independent programs/control-flows working in parallel (collaborating SISDs?)</td>
</tr>
</tbody>
</table>
SIMD vs. MIMD
(an abstract and general depiction)

together or separate?
together or separate?
Variety in the details

- Scale, technology, application
- Concurrency
 - granularity of concurrency (how finely is work divided)—*whole programs down to bits*
 - regularity—*all “nodes” look the same and look out to the same environment*
 - static vs. dynamic—*e.g., load-balancing*
- Communication
 - message-passing vs. shared memory
 - granularity of communication—*words to pages*
 - interconnect and interface design/performance
SIMD: Vector Machines

- Vector data type and regfile
- Deeply pipelined fxn units
- Matching high-perf load-store units and multi-banked memory
- E.g., Cray 1, circa 1976
 - 64 x 64-word vector RF
 - 12 pipelines, 12.5ns
 - ECL 4-input NAND and SRAM (no caches!!)
 - 2x25-ton cooling system
 - 250 MIPS peak for ~10M 1970$
SIMD: Big-Irons

- Sea of PEs on a regular grid
 - synchronized common ctrl
 - direct access to local mem
 - nearest-neighbor exchanges
 - special support for broadcast, reduction, etc.
- E.g., Thinking Machines CM-2
 - 1000s of bit-sliced PEs lock-step controlled by a common sequencer
 - "hypercube" topology
 - special external I/O nodes
SIMD: Modern Renditions

• Intel SSE (Streaming SIMD Extension), 1999
 – 16 x 128-bit “vector” registers, 4 floats or 2 doubles
 – SIMD instructions: ld/st, arithmetic, shuffle, bitwise
 – SSE4 with true full-width operations

 Core i7 does upto 4 sp-mult & 4 sp-add per cyc per core, (24GFLOPS @3GHz)

• AVX 2 doubles the above (over 1TFLOPS/chip)
• “GP” GPUs . . . (next slide)

 Simple hardware, big perf numbers but only if massively data-parallel app!!
8+ TFLOPs Nvidia GP104 GPU

- 20 Streaming Multiproc
 - 128 SIMD lane per SM
 - 1 mul, 1 add per lane
 - 1.73 GHz (boosted)

- Performance
 - 8874 GFLOPs
 - 320GB/sec
 - 180 Watt

How many FLOPs per Watt? How many FLOPs per DRAM byte accessed?

[NVIDIA GeForce GTX 1080 Whitepaper]
Aside: IPC, ILP, and TLP

- Each cycle, select a “ready” thread from scheduling pool
 - only one instruction per thread in flight at once
 - on a long latency stall, remove the thread from scheduling

- Simpler and faster pipeline implementation since
 - no data dependence, hence no stall or forwarding
 - no penalty in making pipeline deeper

e.g., Barrel Processor [HEP, Smith]
What 1 TFLOP meant in 1996

- ASCI Red, 1996—World’s 1st TFLOP computer!!
 - $50M, 1600ft² system
 - ~10K 200MHz PentiumPro’s
 - ~1 TByte DRAM (total)
 - 500kW to power + 500kW on cooling

- Advanced Simulation and Computing Initiative
 - how to know if nuclear stockpile still good if you can’t blow one up to find out?
 - require ever more expensive simulation as stockpile aged
 - Red 1.3TFLOPS 1996; Blue Mountain/Pacific 4TFLOPS 1998; White 12TFLOPS 2000; Purple 100TFLOPS 2005; . . . IBM Summit 200 PetaFLOPS
SIMD vs. MIMD
(an abstract and general depiction)

together or separate?

together or separate?
MIMD: Message Passing

- Private address space and memory per processor
- Parallel threads on different processors communicate by explicit sending and receiving of messages
MIMD Message Passing Systems
(by network interface placement)

- Beowulf Clusters (*I/O bus*)
 - Linux PCs connected by Ethernet
- High-Performance Clusters (*I/O bus*)
 - stock workstations/servers but exotic interconnects, e.g., Myrinet, HIPPI, Infiniband, etc.
- Supers (*memory bus*)
 - stock CPUs on custom platform
 - e.g., Cray XT5 (“fastest” in 2011 224K AMD Opteron
- Inside the CPU
 - single-instruction send/receive
 - e.g., iAPX 432 (1981), Transputers (80s)
MIMD Shared Memory: Symmetric Multiprocessors (SMPs)

- Symmetric means
 - identical procs connected to common memory
 - all procs have equal access to system (mem & I/O)
 - OS can schedule any process on any processor

- Uniform Memory Access (UMA)
 - processor/memory connected by bus or crossbar
 - all processors have equal memory access performance to all memory locations
 - caches need to stay coherent
MIMD Shared Memory: Big Irons

Distributed Shared Memory

• UMA hard to scale due to concentration of BW
• Large scale SMPs have distributed memory with non-uniform memory (NUMA)
 – “local” memory pages (faster to access)
 – “remote” memory pages (slower to access)
 – cache-coherence still possible but complicated

• E.g., SGI Origin 2000
 – upto 512 CPUs and 512GB DRAM ($40M)
 – 48 128-CPU system was collectively the 2nd fastest computer (3TFLOPS) in 1999
MIMD Shared Memory: it is everywhere now!

- General-purpose “multicore” processors implement SMP (not UMA) on a single chip
- Moore’s Law scaling in number of core’s

![Diagram of Intel Xeon e5345](image-url)
Today’s New Normal

Intel® Xeon® E5-2600

Remember how we got here
Today’s Exotic

Microsoft Catapult
[MICRO 2016, Caulfield, et al.]

Google TPU
[Hotchips, 2017, Jeff Dean]
March Toward Exascale (10^{18}) HPC