18-447 Lecture 23: Illusiveness of Parallel Performance

James C. Hoe
Department of ECE
Carnegie Mellon University
Housekeeping

• Your goal today
 – peel back simplifying assumptions to understand parallel performance (or the lack of)

• Notices
 – Midterm 2 regrades due Friday 4/24
 – HW 5 due Wed 4/29
 – Lab 4 due Friday 5/1

• Readings
 – P&H Ch 6
 – LogP: a practical model of parallel computation, Culler, et al. (advanced optional)
“Ideal” Linear Parallel Speedup

- Ideally, parallel speedup is linear with p

$$\text{Speedup} = \frac{\text{time}_{\text{sequential}}}{\text{time}_{\text{parallel}}}$$

$\propto \frac{1}{p}$

$\propto p$
Non-Ideal Speed Up

Never get to high speedup regardless of p!!
Parallelism Defined

- T_1 (work measured in time):
 - time to do work with 1 PE
- T_∞ (critical path):
 - time to do work with infinite PEs
 - T_∞ bounded by dataflow dependence

Average parallelism:

$$P_{avg} = \frac{T_1}{T_\infty}$$

For a system with p PEs

$$T_p \geq \max\{\frac{T_1}{p}, T_\infty\}$$

When $P_{avg} \gg p$

$$T_p \approx \frac{T_1}{p}, \text{aka "linear speedup"}$$

Example:

```
x = a + b;
y = b * 2
z = (x-y) * (x+y)
```
Amdahl’s Law

- If only a fraction \(f \) (by time) is parallelizable by \(p \)

\[
\text{time}_{\text{parallelized}} = \text{time}_{\text{sequential}} \cdot \left((1-f) + \frac{f}{p} \right)
\]

\[
S_{\text{effective}} = \frac{1}{(1-f) + \frac{f}{p}}
\]

- if \(f \) is small, \(p \) doesn’t matter
- even when \(f \) is large, diminishing return on \(p \); eventually “1-\(f \)” dominates
Non-Ideal Speed Up

limited scalability, $P_{\text{avg}} < p$

Never get to high speedup regardless of p!!
Communication not free

• PE may spend extra time
 – in the act of sending or receiving data
 – waiting for data to be transferred from another PE
 • latency: data coming from far away
 • bandwidth: data coming thru finite channel
 – waiting for another PE to get to a particular point of the computation (a.k.a. synchronization)

How does communication cost grow with T_1?
How does communication cost grow with p?
Non-Ideal Speed Up

Cheapest algo may not be the most scalable, s.t.

\[\text{time}_{\text{parallel-algo}@p=1} = K \cdot \text{time}_{\text{sequential-algo}} \quad \text{and} \quad K > 1 \]

and

\[\text{Speedup} = \frac{p}{K} \]

not efficient but acceptable if it is the only way to reach required performance
Aside: Strong vs. Weak Scaling

• Strong Scaling (assumed so far)
 – what is S_p as p increases for constant work, T_1
 run same workload faster on new larger system
 – harder to speedup as (1) p grows toward P_{avg} and
 (2) communication cost increases with p

• Weak Scaling
 – what is S_p as p increases for larger work, $T_1' = p \cdot T_1$
 run a larger workload faster on new larger system
 – $S_p = \frac{\text{time}_{\text{sequential}} (p \cdot T_1)}{\text{time}_{\text{parallel}} (p \cdot T_1)}$

• Which is easier depends on
 – how P_{avg} scales with work size T_1'
 – scaling of bottlenecks (storage, BW, etc)
Continuing from Last Lecture

- Parallel Thread Code (Last Lecture)

```c
void *sumParallel(void *id) {
    long id = (long) id;
    psum[id] = 0;
    for (long i = 0; i < (ARRAY_SIZE / p); i++)
        psum[id] += A[id * (ARRAY_SIZE / p) + i];
}
```

- Assumed “+” takes 1 unit-time; everything else free

\[T_1 = 10,000 \]
\[T_\infty = \lceil \log_2 10,000 \rceil = 14 \]
\[P_{\text{average}} = 714 \]

What would you predict is the real speedup on a 28-core ECE server?
Need for more detailed analysis

• What cost were left out in “everything else”?
 – explicit cost: need to charge for all operations (branches, LW/SW, pointer calculations)
 – implicit cost: **communication and synchronization**

• PRAM-like models (Parallel Random Access Machine) capture cost/rate of parallel processing but assume
 – zero latency and **infinite bandwidth** to share data between processors
 – zero overhead cycles to send and receive

Useful when analyzing complexity but not for performance tuning
Arithmetic Intensity: Modeling Communication as “Lump” Cost
Arithmetic Intensity

- An algorithm has a cost in terms of operation count
 - $\text{runtime}_{\text{compute-bound}} = \frac{\# \text{ operations}}{\text{FLOPS}}$
- An algorithm also has a cost in terms of number of bytes communicated (ld/st or send/receive)
 - $\text{runtime}_{\text{BW-bound}} = \frac{\# \text{ bytes}}{\text{BW}}$
- Which one dominates depends on
 - ratio of FLOPS and BW of platform
 - ratio of ops and bytes of algorithm
- Average Arithmetic Intensity (AI)
 - how many ops performed per byte accessed
 - $\frac{\# \text{ operations}}{\# \text{ bytes}}$

FLOPS=floating-point operations per second
Roofline Performance Model
[Williams & Patterson, 2006]

Attainable Performance of a system (op/sec)

- Compute-bound performance: $\text{perf}_{\text{compute-bound}} = \text{FLOPS}$
- Bandwidth-bound performance: $\text{perf}_{\text{BW-bound}} = \text{AI} \cdot \text{BW}$

runtime $> \max\left(\frac{\text{# op}}{\text{FLOPS}}, \frac{\text{# byte}}{\text{BW}}\right)$
$> \# \text{op} \cdot \max\left(\frac{1}{\text{FLOPS}}, \frac{1}{(\text{AI} \cdot \text{BW})}\right)$

$\text{perf} = \min(\text{FLOPS, AI} \cdot \text{BW})$
Parallel Sum Revisited with AI

- Last lecture we said
 - 100 threads perform 100 +’s each in parallel, and
 - between 1~7 (plus a few) +’s each in the parallel reduction
 - $T_{100} = 100 + 7$
 - $S_{100} = 93.5$

- Now we see
 - AI is a constant, 1 op / 8 bytes (for doubles)
 - Let BW be total bandwidth (byte/cycle) shared by threads on a multicore
 $$\text{Perf}_p < \min\{ p \text{ ops/cycle, AI*BW } \}$$
 - useless to parallelize beyond $p > BW/8$

What about a multi-socket system?
Interesting AI Example: MMM

```c
for (i=0; i<N; i++)
    for (j=0; j<N; j++)
        for (k=0; k<N; k++)
            C[i][j] += A[i][k] * B[k][j];
```

- \(N^2 \) data-parallel dot-product’s
- Assume \(N \) is large s.t. 1 row/col too large for on-chip
- Operation count: \(N^3 \) float-mult and \(N^3 \) float-add
- External memory access (assume 4-byte floats)
 - \(2N^3 \) 4-byte reads (of \(A \) and \(B \)) from DRAM
 - \(\ldots N^2 \) 4-byte writes (of \(C \)) to DRAM \(\ldots \)
- Arithmetic Intensity \(\approx \frac{2N^3}{(4 \cdot 2N^3)} = \frac{1}{4} \)

GTX1080: 8 TFLOPS vs 320GByte/sec
More Interesting **AI** Example: MMM

```plaintext
for(i0=0; i0<N; i0+=N_b)
    for(j0=0; j0<N; j0+=N_b)
        for(k0=0; k0<N; k0+=N_b) {
            for(i=i0; i<i0+N_b; i++)
                for(j=j0; j<j0+N_b; j++)
                    for(k=k0; k<k0+N_b; k++)
                        C[i][j]+=A[i][k]*B[k][j];
        }
```

- Imagine a ‘$\frac{N}{N_b}$’ x ‘$\frac{N}{N_b}$’ MATRIX of $N_b \times N_b$ matrices
 - inner-triple is straightforward matrix-matrix mult
 - outer-triple is MATRIX-MATRIX mult
- To improve **AI**, hold $N_b \times N_b$ sub-matrices on-chip for data-reuse
AI of blocked MMM Kernel \((N_b \times N_b) \)

\[
\begin{align*}
&\text{for} (i=i0; i<i0+N_b; i++) \\
&\quad \text{for} (j=j0; j<j0+N_b; j++) \{ \\
&\quad\quad t=C[i][j] \\
&\quad\quad \text{for} (k=k0; k<k0+N_b; k++) \\
&\quad\quad\quad t+=A[i][k]*B[k][j] \\
&\quad\quad C[i][j]=t \\
&\quad \}
\end{align*}
\]

- Operation count: \(N_b^3 \) float-mul and \(N_b^3 \) float-add
- When \(A, B \) fit in scratchpad \((2\times N_b^2 \times 4 \text{ bytes}) \)
 - \(2N_b^3 \) 4-byte on-chip reads \((A, B) \) (fast)
 - \(3N_b^2 \) 4-byte off-chip DRAM read \(A, B, C \) (slow)
 - \(N_b^2 \) 4-byte off-chip DRAM writeback \(C \) (slow)
- Arithmetic Intensity = \(2N_b^3/(4 \times 4N_b^2) = N_b/8 \)
AI and Scaling

- AI is a function of algorithm and problem size
- Higher AI means more work per communication and therefore easier to scale
- Recall strong vs. weak scaling
 - strong=increase perf on fixed problem sizes
 - weak=increase perf on proportional problem sizes
 - weak scaling easier if AI grows with problem size
LogP Model:
Components of Communication Cost
LogP

- A parallel machine model with explicit communication cost
 - **Latency**: transit time between sender and receiver
 - **overhead**: time used up to setup a send or a receive (cycles not doing computation)
 - **gap**: wait time in between successive send’s or receive’s due to limited transfer bandwidth
 - **Processors**: number of processors, i.e., computation throughput
Message Passing Example

if (id==0) //assume node-0 has A initially
for (i=1;i<p;i=i+1)
 SEND(i, &A[SHARE*i], SHARE*sizeof(double));
else
 RECEIVE(0,A[]) //receive into local array

sum=0;
for(i=0;i<SHARE;i=i+1) sum=sum+A[i];

remain=p;
do {
 BARRIER();
 half=(remain+1)/2;
 if (id>=half&&id<remain) SEND(id-half,sum,8);
 if (id<(remain/2)) {
 RECEIVE(id+half,&temp);
 sum=sum+temp;
 }
 remain=half;
}while (remain>1);

[based on P&H Ch 6 example]
Parallel Sum Revisited with LogP

1: if (id==0)
2: for (i=1;i<100;i=i+1)
3: SEND(i, &A[100*i], 100*sizeof(double));
4: else RECEIVE(0, A[])

• assuming no back-pressure, node-0 finishes sending to node-99 after 99× overhead of SEND()
• first byte arrives at node-99 some network latency later
• the complete message arrives at node-99 after $100\times\text{sizeof(double)}/\text{network_bandwidth}$
• node-99 finally ready to compute after the overhead to RECEIVE()

What if $100\times\text{sizeof(double)}/\text{network_bandwidth}$ greater than the overhead to SEND()?
Parallel Sum Revisited with LogP

How long?

sum=0;
for(i=0;i<100;i=i+1) sum=sum+A[i];

- ideally, this step is computed $p=100$ times faster than summing 10,000 numbers by one processor
- big picture thinking, e.g.,
 - is the time saved worth the data distribution cost?
 - if not, actually faster if parallelized less
- fine-tooth comb thinking, e.g.,
 - node-1 begins work first; node-99 begins work last
 \Rightarrow minimize overall finish time by assigning more work to node-1 and less work to node-99
 - maybe latency and bandwidth are different to different nodes

Performance tuning is a real craft
do {
 BARRIER();
 half=(remain+1)/2;
 if (id>=half&&id<remain) {
 SEND(id-half,sum,8);
 }
 if (id<(remain/2)) {
 RECEIVE(id+half,&temp);
 sum=sum+temp;
 }
 remain=half;
} while (remain>1);
Parallel Sum Revisited with LogP

\[
\textbf{do \{}
\]

\[
\qquad \underline{\text{BARRIER();}}
\]

\[
\quad \text{half}=(\text{remain}+1)/2;
\]

\[
\quad \text{if (id}\geq\text{half}&&\text{id}<\text{remain}) \text{ SEND(id-half,sum,8);} \\
\quad \text{if (id}<\text{remain}/2)) \{ \\
\qquad \text{RECEIVE(id+half,&temp);} \\
\qquad \text{sum=}\text{sum+temp};
\]

\[
\quad \text{remain=half;}
\]

\[
\} \text{ while (remain}>1); \]

• how does one build a \textbf{BARRIER()}?
• do we need to synchronize each round?
• is this actually faster than if all nodes sent to node-0?

What if \(p\) is small? What if \(p\) is very large?
Real answer is a combination of techniques
LogP applies to shared memory too

- When \(C_0 \) is reading \(\text{psum}[0+\text{half}] \), the value originates in the cache of \(C_{\text{"half"}} \)
 - \(L \): time from \(C_0 \)’s cache miss to when data retrieved from the cache of \(C_{\text{"half"}} \) (via cache coherence)
 - \(g \): there is a finite bandwidth between \(C_0 \) and \(C_{\text{"half"}} \)
 - \(o \): as low as a LW instruction but also pay for stalls

```c
    do {
        pthread_barrier_wait(…);
        half=(remain+1)/2;
        if (id<(remain/2))
            psum[id]=psum[id]+
                        psum[id+half];
        remain=half;
    } while (remain>1);
```
Implications of Communication Cost

- **Large g**—can’t exchange a large amount of data
 - must have lots of work per byte communicated
 - only scalable for applications with high AI
- **Large o**—can’t communicate frequently
 - can only exploit coarse-grain parallelism
 - if DMA, amount of data not necessarily limited
- **Large L**—can’t send data at the last minute
 - must have high average parallelism (*more work/time between production and use of data*)
- High cost in each category limits
 - the kind of applications that can speed up, and
 - how much they can speed up
Parallelization not just for Performance

• Ideal parallelization over \(N \) CPUs

 \[
 T = \frac{\text{Work}}{(k_{\text{perf}} \cdot N)}
 \]

 \[
 E = (k_{\text{switch}} + k_{\text{static}} / k_{\text{perf}}) \cdot \text{Work}
 \]

 \(N \)-times static power, but \(N \)-times faster runtime

 \[
 P = N (k_{\text{switch}} \cdot k_{\text{perf}} + k_{\text{static}})
 \]

• Alternatively, forfeit speedup for power and energy reduction by \(s_{\text{freq}} = 1/N \) (assume \(s_{\text{voltage}} \approx s_{\text{freq}} \) below)

 \[
 T = \frac{\text{Work}}{k_{\text{perf}}}
 \]

 \[
 E'' = (k_{\text{switch}} / N^2 + k_{\text{static}} / (k_{\text{perf}} \cdot N)) \cdot \text{Work}
 \]

 \[
 P'' = k_{\text{switch}} \cdot k_{\text{perf}} / N^2 + k_{\text{static}} / N
 \]

Also works with using \(N \) slower-simpler CPUs