18-447 Lecture 14: Memory Hierarchy

James C. Hoe
Department of ECE
Carnegie Mellon University
Housekeeping

• Your goal today
 – understand memory system and memory hierarchy design in big pictures

• Notices
 – HW 3, past due due Friday 3/6
 – Lab 3, due week of 3/23
 – Handout #11: HW 3 solutions out on Friday
 – Lab and HW on hiatus over Spring Break

• Readings
 – P&H Ch5 for the next many lectures
Wishful Memory

• So far we imagined
 – a program owns contiguous 4GB private memory
 – a program can access anywhere in 1 proc. cycle

• We are in good company

4.1. Ideally one would desire an indefinitely large memory capacity such that any particular aggregate of 40 binary digits, \textit{word} (cf. 2.3), would be immediately available—i.e., in a tin

---- Burks, Goldstein, von Neumann, 1946
The Reality

• Can’t afford/don’t need as much memory as size of address space (think 64-bit ISAs)
 RV32I said 4GB addr “space” not 4GB memory

• Can’t find memory technology that is affordable in GByte and also cycle in GHz

• Most systems multi-task several programs

• But, “magic” memory is nevertheless a useful approximation of reality due to
 – memory hierarchy: appear large and fast
 – virtual memory: appear contiguous and private

cover this part first
cover this part later
Memory Hierarchy: The Principles at Work
The Law of Storage

• Bigger is slower
 – SRAM 512 Bytes @ sub-nsec
 – SRAM KByte~MByte @ nsec
 – DRAM GByte @ ~50 nsec
 – SSD TByte @ msec
 – Hard Disk TByte @ ~10 msec

• Faster is more expensive (dollars and chip area)
 – SRAM ~$10K per GByte
 – DRAM ~$10 per GByte
 – “Drives” ~$0.1 per GByte

How to make memory bigger, faster and cheaper?
Memory Locality

• “Typical” programs have strong locality in memory references—instruction and data we put them there ... loops, arrays, and structs ...

• Temporal: after accessing A, how many other distinct addresses before accessing A again

• Spatial: after accessing A, how many other distinct addresses before accessing a “near-by” B

• **Corollary:** a program with strong temporal and spatial locality must be accessing only a compact “working set” at a time

“near-by” is some predictable relationship
Memoization

- If something is costly to compute, save the result to be reused

- With strong reuse
 - storing just a small number of frequently used results can avoid most recomputations

- With poor reuse
 - storing a large number of different results that are rarely or never reused
 - locating the needed result from a large number of stored ones can itself become as expensive as computing
Cost Amortization

- **overhead**: one-time cost to set up
- **unit-cost**: cost for each unit of work

- total cost = overhead + unit-cost x N
- average cost = total cost / N

\[= \left(\frac{\text{overhead}}{N} \right) + \text{unit-cost} \]

In memoization, high up-front cost to compute once is no problem if results reused many times.
Putting the principles to work
Memory Hierarchy

- keep what you use actively here
- with strong locality
 - effectively as fast as
 - and as large as
- hold what isn’t being used

- fast small
- big but slow

faster per byte cheaper per byte
Managing Memory Hierarchy

• Copy data between levels explicitly and manually
 – vacuum tubes vs Selectron (von Neumann paper)
 – “core” vs “drum” memory in the 50’s
 – “scratchpad” SRAM used on modern embedded and DSP

 Register file is a level of storage hierarchy

• Single address space, automatic management
 – as early as ATLAS, 1962
 – common in today’s fast processor with slow DRAM
 – programmers don’t need to know about it for typical programs to be both fast and correct

 What about atypical programs?
Modern Storage Hierarchy

- **Regfile**
 - (10~100 words, sub-nsec)

- **L1 cache**
 - ~32KB, ~nsec

- **L2 cache**
 - ~512KB~1MB, many nsec

- **L3 cache**
 -

- **Main memory (DRAM)**
 - GB, ~100nsec

- **Swap disk**
 - 100GB~TB, ~10msec

Memory Abstraction

- Manual register spilling
- Automatic cache management
- Automatic demand paging
Average Memory Access Time

- Memory hierarchy level \(L_i \) has access time of \(t_i \)
- Perceived access time \(T_i \) is longer than \(t_i \)
 - a chance (hit-rate \(h_i \)) you find what you want \(\Rightarrow t_i \)
 - a chance (miss-rate \(m_i \)) you don’t find it \(\Rightarrow t_i + T_{i+1} \)
 - \(h_i + m_i = 1.0 \)
- In general

\[
T_i = h_i \cdot t_i + m_i \cdot (t_i + T_{i+1})
\]

\[
T_i = t_i + m_i \cdot T_{i+1}
\]

Think of this as "miss penalty"

Note: \(h_i \) and \(m_i \) are of references missed at \(L_{i-1} \)

\[h_{\text{bottom-most}} \] = 1.0
\[T_i = t_i + m_i \cdot T_{i+1} \]

- Goal: achieve desired \(T_1 \) within allowed cost

\(T_i \approx t_i \) is not a goal:

- Keep \(m_i \) low
 - increase capacity \(C_i \) lowers \(m_i \), but increases \(t_i \)
 - lower \(m_i \) by smarter management, e.g.,
 - replacement: anticipate what you don’t need
 - prefetching: anticipate what you will need

- Keep \(T_{i+1} \) low
 - reduce \(t_{i+1} \) with faster next level memory leads to increased cost and/or reduced capacity
 - better solved by adding intermediate levels
Memory Hierarchy Design

• DRAM
 – optimized for capacity-per-dollar (cost)
 – T_{DRAM} is essentially same regardless of capacity

• SRAM
 – optimized for latency-per-byte (capacity)
 – different tradeoff between capacity and latency possible, $t = O(\sqrt{\text{capacity}})$

• Memory hierarchy bridges the difference between CPU speed and DRAM speed
 – $T_{pclk} \approx T_{DRAM} \implies$ no hierarchy needed
 – $T_{pclk} \ll T_{DRAM} \implies$ one or more levels of increasingly larger but slower SRAMs to minimize T_1
Intel P4 Example
(very fast, very deep pipeline)

- 90nm, 3.6 GHz
- 16KB L1 D-cache
 - \(t_1 = 4 \) cyc int (9 cycle fp)
- 1024KB L2 D-cache
 - \(t_2 = 18 \) cyc int (18 cyc fp)
- Main memory
 - \(t_3 \approx 50\text{ns} \) or 180 cyc

Notice:
- best case latency is not 1 cycle
- worst case access latency is 300+ cycles depending on exactly what happens

\[
\begin{align*}
\text{if } m_1=0.1, m_2=0.1 \quad T_1 &= 7.6, T_2 = 36 \\
\text{if } m_1=0.01, m_2=0.01 \quad T_1 &= 4.2, T_2 = 19.8 \\
\text{if } m_1=0.05, m_2=0.01 \quad T_1 &= 5.00, T_2 = 19.8 \\
\text{if } m_1=0.01, m_2=0.50 \quad T_1 &= 5.08, T_2 = 108
\end{align*}
\]
What is m_1 and m_2?
Aside: Why is DRAM slow?

- DRAM fabrication at forefront of VLSI, but scaled with Moore’s law in capacity and cost not speed
- Between 1980 ~ 2004
 - 64K bit \rightarrow 1024M bit (exponential \sim55% annual)
 - 250ns \rightarrow 50ns (linear)
- A deliberate engineering choice
 - memory capacity needs to grow linearly with processing speed in a balanced system – Amdahl’s Other Law
 - DRAM/processor speed difference reconcilable by SRAM cache hierarchies (L1, L2, L3,)

Pareto-optimal faster/smaller/more-costly DRAM do exist
Don’t Forget Bandwidth and Energy

- Assume RISC pipeline 1GHz and IPC=1
 - 4GB/sec of instruction fetch bandwidth
 - 1GB/sec load and 0.6GB/sec store (if 25% LW and 15% SW, Agerwala&Cocke)
 - multiply by number of cores if multicore
- DDR4 ~20GB/sec/channel (under best-case access pattern) and ~10 Watt at full blast
- With memory hierarchy

\[\text{BW}_{i+1} = \text{BW}_1 \cdot \prod_{1}^{i} m_j \]

Critical for multicore and GPU
Now we can talk about caches . . .

Generically in computing, any structure that “memoizes” frequently repeated computation results to save on the cost of reproducing the results from scratch, e.g. a web cache.
Cache in Computer Architecture

- An invisible, automatically-managed memory hierarchy
- Program expects reading M[A] to return most-recently written value, with or without cache
- Cache keeps “copies” of frequently accessed DRAM memory locations in a small fast memory
 - service load/store using fast memory copies if found
 - transparent to program if memory idempotent (L13)
 - funny things happen if mmap’ed or if memory can change (e.g., by other cores or DMA)
Cache Interface for Dummies

- Like the magic memory
 - present address, R/W command, etc
 - result or update valid after a short/fixed latency
- Except occasionally, cache needs more time
 - will become valid/ready eventually
 - what to do with pipeline until then? Stall!!
The Basic Problem

• Potentially $M=2^m$ bytes of memory, how to keep “copies” of most frequently used locations in C bytes of fast storage where $C << M$

• Basic issues (intertwined)
 (1) when to cache a “copy” of a memory location
 (2) where in fast storage to keep the “copy”
 (3) how to find the “copy” later on (*LW and SW only give indices into M*)
Basic Operation
(demand-driven version)

1. hit? (M address)
 - yes: return data
 - no: choose location

2. occupied? (choose location)
 - yes: fetch new from L_{i+1}
 - no: update cache

3. cache lookup
 - yes: return data
 - no: evict old to L_{i+1}
Basic Cache Parameters

- \(M = 2^m \): size of address space in bytes
 sample values: \(2^{32}, 2^{64} \)

- \(G = 2^g \): cache access granularity in bytes
 sample values: 4, 8

- \(C \): “capacity” of cache in bytes
 sample values: 16 KByte (L1), 1 MByte (L2)
Direct-Mapped Cache (v1)

let \(t = \log_2 \frac{M}{C} \)

What about writes?

Tag Bank
- \(C/G \) lines by \(t \) bits
- valid

Data Bank
- \(C/G \) lines by \(G \) bytes

hit?

\(G \) bytes
Storage Overhead and Block Size

• For each cache block of \(G \) bytes, also storing “\(t+1 \)” bits of tag (where \(t = \log_2 M - \log_2 C \))

 – if \(M = 2^{32} \), \(G = 4 \), \(C = 16K = 2^{14} \)

 \[\Rightarrow t = 18 \text{ bits for each 4-byte block} \]

 60% overhead; 16KB cache actually 25.5KB SRAM

• Solution: “amortize” tag over larger \(B \)-byte block

 – manage \(B/G \) consecutive words as indivisible unit

 – if \(M = 2^{32} \), \(B = 16 \), \(G = 4 \), \(C = 16K \)

 \[\Rightarrow t = 18 \text{ bits for each 16-byte block} \]

 15% overhead; 16KB cache actually 18.4KB SRAM

• Larger caches wants even bigger blocks
Direct-Mapped Cache (final)

\[\text{let } t = \lg_2 M - \lg_2 C \]

1. \(\text{lg}_2 M \)-bit address
2. \(\text{tag} \), \(\text{idx} \), \(\text{bo} \), \(\text{g} \)
3. \(\text{lg}_2 (C/B) \) bits
4. \(\text{t} \) bits
5. \(\text{lg}_2 (B/G) \) bits
6. \(\text{valid} \)
7. \(\text{Tag Bank} \)
8. \(C/B \)-by-\(t \) bits
9. \(\text{Data Bank} \)
10. \(C/B \)-by-\(B \) bytes
11. \(B \) bytes
12. \(G \) bytes
13. \(\text{hit?} \)
14. \(\text{data} \)
Basic Cache Parameters

- \(M = 2^m \): size of address space in bytes
 sample values: \(2^{32}, 2^{64} \)
- \(G = 2^g \): cache access granularity in bytes
 sample values: 4, 8
- \(C \): “capacity” of cache in bytes
 sample values: 16 KByte (L1), 1 MByte (L2)
- \(B = 2^b \): “block size” in bytes
 sample values: 16 (L1), >64 (L2)
- \(a \): “associativity” of the cache
 sample values: 1, 2, 4, 5(... “C/B”)

\[\text{to be continued} \]