
18-447-S20-L04-S1, James C. Hoe, CMU/ECE/CALCM, ©2020

18-447 Lecture 4:
Development of ISAs

James C. Hoe
Department of ECE

Carnegie Mellon University

18-447-S20-L04-S2, James C. Hoe, CMU/ECE/CALCM, ©2020

Housekeeping
• Your goal today

– understand how ISAs got to be the way they are
• Notices

– Lab 1, Part A, due this week
– Lab 1, Part B, due next week
– HW1, due next Wed

• Readings
– P&H Ch 2 (optional P&H App D: RISC Survey)
– optional (in supplemental handout on Canvas)

• 1946 von Neumann paper
• 1964 IBM 360 paper

– P&H Ch 1.6~1.9 for next time

18-447-S20-L04-S3, James C. Hoe, CMU/ECE/CALCM, ©2020

An Early ISA: EDSAC

• Single accumulator architecture, i.e.
ACCACCM[n]

• Instruction examples
– A n: add M[n] into ACC (also S, R, L)
– T n: transfer the contents of ACC to M[n] and clear
– E n: If ACC≥0, branch to M[n] or proceed serially
– I n: Read the next character from paper tape, and

store it as the least significant 5 bits of M[n]
– Z: Stop the machine and ring the warning bell

Notice: address hardcoded in instruction

opcode5 n10

reserved operand size

18-447-S20-L04-S4, James C. Hoe, CMU/ECE/CALCM, ©2020

Let’s try some basic things
• Function call • Array access in a loop

......
a: E f

......

......
b: E f

......

f:
......
......
E a+1

?

......
a:

A i
......
......
E a
......

i
i+1
i+2

What was the “pioneering” way?
What is the proper fix?

18-447-S20-L04-S5, James C. Hoe, CMU/ECE/CALCM, ©2020

Technology Context Calibration

[images from Wikipedia]

18-447-S20-L04-S6, James C. Hoe, CMU/ECE/CALCM, ©2020

Evolution of Register Architecture
• Accumulator

– a legacy from the “adding” machine days
Ever wonder about that “AC” button on your calc?

• Accumulator + address registers
– need register indirection (data and control-flow)
– initially address registers were special-purpose,

i.e., only used to hold address for indirection
– eventually arithmetic on address registers

• General purpose registers (GPR)
– all registers good for all purposes
– grew from a few registers to 32 (common for RISC)

to 128 in Intel Itanium
What drove the changes?

18-447-S20-L04-S7, James C. Hoe, CMU/ECE/CALCM, ©2020

Operand Sources?
• Number of Specified Operands

Niladic Op (e.g. Burroughs)
Monadic OP in2 (e.g. EDSAC)
Dyadic OP inout, in2 (e.g. IBM 360)
Triadic OP out, in1, in2 (e.g. MIPS)

• Can ALU operands be in memory?
No! e.g. MIPS/“RISC”/load-store arch.
Yes! e.g. x86/VAX/“CISC”

• How many different formats and addressing modes?
a very few e.g. MIPS / “RISC”
a lot e.g. x86
everything goes e.g. VAX

18-447-S20-L04-S8, James C. Hoe, CMU/ECE/CALCM, ©2020

Memory Addressing Modes
• Absolute LW rt, 10000

use immediate value as address
• Register Indirect: LW rt, (rbase)

use GPR[rbase] as address
• Displaced or based: LW rt, offset(rbase)

use offset+GPR[rbase] as address
• Indexed: LW rt, (rbase, rindex)

use GPR[rbase]+GPR[rindex] as address
• Memory Indirect LW rt ((rbase))

use value at M[GPR[rbase]] as address
• Auto inc/decrement LW Rt, (rbase++)

use GPR[rbase] as address, and inc. or dec. GPR[rbase]
• Anything else you like to see

18-447-S20-L04-S9, James C. Hoe, CMU/ECE/CALCM, ©2020

VAX-11: ISA in mid-life crisis

• First commercial 32-bit machine
• Ultimate in “orthogonality” and “completeness”

All of the above addressing modes x { 7 integer and 2
floating point formats} x {more than 300 opcodes}

• Opcode in excess
– 2-operand and 3-operand versions of ALU ops
– INS(/REM)QUE (for circular doubly-linked list)
– “polyf”: 4th-degree polynomial solve

• Variable length encoding
addl3 r1,737(r2),(r3)[r4]

7-byte instruction, sequenced decoding

18-447-S20-L04-S10, James C. Hoe, CMU/ECE/CALCM, ©2020

“RISC”
• Simple operations

– 2-input, 1-output arithmetic and logical operations
– few alternatives for accomplishing the same thing

• Simple data movements
– ALU ops are register-to-register (need large GPR file)
– “load-store” architecture, 1 addressing mode

• Simple branches
– limited varieties of branch conditions and targets

• Simple instruction encoding
– all instructions encoded in the same number of bits
– few, simple encoding formats
motivated by/intended for compiled code over assembly

18-447-S20-L04-S11, James C. Hoe, CMU/ECE/CALCM, ©2020

Evolution of ISAs
• Why were the earlier ISAs so simple? e.g., EDSAC

– technology
– precedence

• Why did it get so complicated later? e.g., VAX11
– assembly programming
– lack of memory size and speed
– microprogrammed implementation

• Why did it become simple again? e.g., RISC
– memory size and speed (cache!)
– compilers

• Why is x86 still so popular?
– technical merit vs. {SW base, psychology, deep pocket}

• Why has ARM thrived while other RISC ISAs vanished
Why RISC-V now?

18-447-S20-L04-S12, James C. Hoe, CMU/ECE/CALCM, ©2020

Major ISAs
• 60s: IBM 360, DEC PDP-8

CDC 6000 (the original RISC)
• 70s: DEC PDP-11  VAX

(CISCs) Intel x86, Motorola 680x0
6502, Z80, 8051

• 80s&90s: MIPS, ARM, SUN SPARC, HP PA-RISC,
(RISCs) IBM Power, Motorola 88K, DEC Alpha,

PowerPC (“AIM”)
• 2000s: Intel IA-64
• 2010s: RISC-V

(overlooking embedded-only ISAs)

18-447-S20-L04-S13, James C. Hoe, CMU/ECE/CALCM, ©2020

Intel IA-64/Itanium Architecture
• Late 90’s attempt to counter RISC in servers market
• IA-64 Instruction “Bundle”

– three IA-64 instructions (aka syllables)
– template bits specify dependencies within a bundle

and between bundles
– group=collection of dependence-free bundles

encode instruction parallelism explicitly

• “Thin” abstraction for simple/fast hardware
– shift from dynamic HW to compiler static analysis

and/or profile-driven
– expose inst-by-inst performance mechanisms to SW
– very hard to produce high performing code by hand

inst1 inst2 inst3 template

18-447-S20-L04-S14, James C. Hoe, CMU/ECE/CALCM, ©2020

• 128 general purpose physical
integer registers

• Register names R0 to R31 are
static; refer to the first 32
physical GPRs

• Register names R32 to R127 are
“rotating registers”; renamed
onto the remaining 96 physical
registers by an offset

• Simplifies register use on function
call/return and on loop
optimizations (when register
names are reused in code)

Example: Rotating Registers

ph
ys

ic
al

 re
gi

st
er

R0
 to

 R
31

ph
ys

ic
al

 re
gi

st
er

 R
32

 to
 R

12
7

re
gi

st
er

 n
am

e
R3

2
an

d
up

offset

re
g

na
m

e
R0

 to
 R

31

18-447-S20-L04-S15, James C. Hoe, CMU/ECE/CALCM, ©2020

cmp

Example: Predicated Execution
• 64 one-bit predicate register file

– each instruction carries a 6-bit predicate operand field
– instruction has no effect if predicate operand is false

• A way to realize conditionals without control flow

br
else1
else2

br
then1
then2
join1
join2

p1 p2 cmp

join1

join2

else1p2

then2p1 else2p2

then1p1

A good idea when branch very
expensive and excess resources

ready to absorb “extra” work

18-447-S20-L04-S16, James C. Hoe, CMU/ECE/CALCM, ©2020

Example: Exposed Memory Hierarchies
• ISA included the concept of cache hierarchy

– multiple levels
– separate “temporal” vs “non-temporal”

• Memory instructions give hints where best to cache
As hints, microarchitecture does not have to

comply
L1 L2 L3

Main
Memory

NT
L1

NT
L2 NT L3

temporal

non-temporal-All

non-temporal-L1

non-temporal-L2

18-447-S20-L04-S17, James C. Hoe, CMU/ECE/CALCM, ©2020

How much should ISA still matter?

18-447-S20-L04-S18, James C. Hoe, CMU/ECE/CALCM, ©2020

Birth of “Binary Compatibility”

• “The term architecture is used here to describe
the attributes of a system as seen by the
programmer, i.e., the conceptual structure and
functional behavior, as distinct from the
organization of the data flow and controls, the
logical design, and the physical implementation.”

--- first defined in Architecture of the IBM
System/360, Amdahl, Blaauw and Brooks, 1964.

• A single architecture with multiple price&perf
variants replaced 4 incompatible product lines

18-447-S20-L04-S19, James C. Hoe, CMU/ECE/CALCM, ©2020

Key Idea: Inter-Model Compatibility
“a valid program whose logic will not depend implicitly
upon time of execution and which runs upon
configuration A, will also run on configuration B if the
latter includes at least the required storage, at least the
required I/O devices ….”
• Invalid programs not constrained to yield same result

– “invalid”==violating architecture manual
– “exceptions” are architecturally defined

• The King of Binary Compatibility: Intel x86, IBM 360
– stable software base and ecosystem
– performance scalability

[Amdahl, Blaauw and Brooks, 1964]

18-447-S20-L04-S20, James C. Hoe, CMU/ECE/CALCM, ©2020

Key Idea: General Purpose

• Effective support for “large and small, separate
and mixed applications” in many domains

• Code-independent operation
– no special interpretation of bit pattern in data

e.g. ASCII character has no special significance
– except where essential

e.g., integer, floating point, etc.

• Support full generality of logic manipulation on
bit and data entities

• Fine-grain memory addressability (down to small
units of bits)

[Amdahl, Blaauw and Brooks, 1964]

18-447-S20-L04-S21, James C. Hoe, CMU/ECE/CALCM, ©2020

Key Idea: Open-Ended Design

“a dependable base for a decade of customer
planning and customer programming . . .”

• Asynchronous operation of componentsabstract
out exact time, performance etc. to allow changing
technology and relative speed of components

• Parameterization of storage capacity, multi CPU,
multi I/O, etc.

• Standard interfaces for expansion sub-systems
• Permit future extensions by “reserving” spare bits

in instruction encoding
[Amdahl, Blaauw and Brooks, 1964]

18-447-S20-L04-S22, James C. Hoe, CMU/ECE/CALCM, ©2020

What about Binary Translation
• Generate a new executable in target ISA with same

functional behavior as the original in source ISA
– not the same as interpretation or VM
– not easy but doable (for the right source and target)
– static vs dynamic

• Holy grail
– all software run on the ISA/processor I sell
– all processors can run the software I sell

• “Architecture” need not be the HW/SW contract
– binary compatibility by translation virtualization
– ISA and processor can become commodity
– old software and ISA can live on for ever

What is CUDA?

18-447-S20-L04-S23, James C. Hoe, CMU/ECE/CALCM, ©2020

Transmeta Crusoe & Code Morphing

• Crusoe boots “Code Morpher” from ROM at power-up
• Crusoe+Code Morphing == x86 processor

x86 software (including BIOS) cannot tell the difference

Crusoe VLIW Processor
(**with superset of x86 ISA state)

Code Morphing
Dynamic Binary Translation

Native
SW

HW

x86 applications

x86 OS
x86 BIOS

Complete
x86

Abstraction

BTW, this really worked in the early 2000s

18-447-S20-L04-S24, James C. Hoe, CMU/ECE/CALCM, ©2020

Code Morphing Software (CMS)
• Begins execution at power-up

– fetches first-time x86 basic block from memory
– translates BB into Crusoe VLIW and caches the

translation for reuse
– jumps to the generated Crusoe code for execution
– continue directly from BB to BB if translation already

cached; CMS regains control on new BBs
BB with “unsafe” x86 instructions not translated

• Re-optimize a translated block after runtime profiling
• The only native SW for Crusoe ISA

Crusoe processors do not need to be binary
compatible between generations

18-447-S20-L04-S25, James C. Hoe, CMU/ECE/CALCM, ©2020

Not really so different from Intel’s own

Tr
an

sl
at

e

x86 uOP

O
ut

-o
f-O

rd
er

D
isp

at
ch

P4
 u

O
P

Tr
ac

e
Ca

ch
e

Pa
ra

lle
l F

U
s

In
-O

rd
er

Re
tir

e

Code Morphing SW
(translate & interpret)

x86

VL
IW

D
is

pa
tc

h

Translation
Cache

VL
IW

 F
U

s

Tr
an

sm
et

a
In

te
l S

up
er

ca
la

r O
O

O

18-447-S20-L04-S26, James C. Hoe, CMU/ECE/CALCM, ©2020

Stored Program Architecture
a.k.a. von Neumann

• Memory holds both program and data
– instructions and data in a linear memory array
– instructions can be modified as data

• Sequential instruction processing
1. program counter (PC) identifies current instruction
2. fetch instruction from memory
3. update some state (e.g. PC and memory) as a

function of current state (according to instruction)
4. repeat

…

program counter

0 1 2 3 4 5 . . .

Dominant paradigm since its invention

18-447-S20-L04-S27, James C. Hoe, CMU/ECE/CALCM, ©2020

von Neumann abstraction not free

• Significant transistor and energy overhead in
presenting the simplifying abstraction
– per-instruction access to program memory
– dataflow through reading/writing of registers and

memory state
– “appearance” of sequentiality and atomicity

• In fact, von Neumann processors mostly overhead
• ISA future?

– move away from von Neumann as doctrine?
– do away with ISAs (lower-level, more explicit HW)?

Depend on what languages and compilers can do

