«’) Electrical & Computer CMU 18-447
ENGINEERING Spring 10 1
©2010
J.C. Hoe
J.F. Martinez

18-447
Virtual Memory, Protection and Paging

James C. Hoe and José F. Martinez
Dept of ECE, CMU
March 22-24, 2010

Assigned Reading

"Virtual memory in contemporary microprocessors."

B. L Jacob and T. N. Mudge. IEEE Micro, July/August 1998.
(on Blackboard)

«) EIectvicaI&Comruter CMU 18-447
ENGINEERING Spring 110 2
©2010
J.C. Hoe

2 Parts to Modern VM

+ In a multi-tasking system, VM provides each process
with the illusion of a large, private, and uniform
memory

+ Ingredient A: Naming and Protection

- each process sees a large, contiguous memory segment
without holes (“virtual” address space is much bigger than
the available physical storage)

- each process’s memory space is private, i.e. protected from
access by other processes

+ Ingredient B: demand paging
- capacity of secondary storage (swap space on disk)
- at the speed of primary storage (DRAM)

) Electrical & Computer CMU 18-447
ENGINEERING Spring 103
©2010
J.C. Hoe

Mechanism: Address Translation

+ Protection, VM and demand paging enabled by a
common HW mechanism: address translation

¢ User process operates on “effective” addresses

¢ HW translates from EA to PA on every memory
reference

- controls which physical locations (DRAM and/or swap disk)
can be named by a process

- allows dynamic relocation of physical backing store (DRAM
vs. swap disk)
& Address translation HW and policies controlled by the
OS and protected from users, i.e., priviledged

«) EIectricaI&ComIputer CMU 18-447
ENGINEERING Spring 10 4
©2010
J.C. Hoe

Evolution of Memory Protection

¢ Earliest machines did not have the concept of
protection and address translation
- no need---single process, single user
automatically “private and uniform” (but not very large)
- programs operated on physical addresses directly
cannot support multitasking protection

¢ Multitasking 101

- give each process a non-overlapping,
contiguous physical memory region

- everything belonging to a process
must fit in that region

- how do you keep one process from
reading or trashing another process’
data?

CMU 18-447

«) Electrical & Computer
ENGINEERIN Spring 105
©2010

Base and Bound L

¢ A process’s private memory region can be defined by
- base: starting address of the region
- bound: ending address of the region

¢ User process issue “effective” address (EA) between

0 and the size of its allocated region
private and uniform

°|PA
0]
base EA
bound
max
privileged control
registers
«) Electrical & Computer CMU 18-447
ENGINEERING Spring 106

©2010
J.C. Hoe
J.F. Martinez

Base and Bound Registers

¢ When switching user processes, OS sets base and
bound registers

+ Translation and protection check in hardware on
every user memory reference
- PA =EA + base
- if (PA < bound) then okay else violation

¢ User processes cannot be allowed to modify the base
and bound registers themselves
= requires 2 privilege levels such that the OS can
see and modify certain states that the user cannot
privileged instructions and state

«’) Ele(trical&CDmruter CMU 18-447
ENGINEERING Spring ‘107
©2010
J.C. Hoe

Segmented Address Space

¢ Limitations of the base and bound scheme

- large contiguous space is hard to come by after the system
runs for a while---free space may be fragmented

- how do two processes shared some memory regions but not
others?

¢ A “base&bound” pair is the unit of protection
= give user multiple memory “segments”
- each segment is a continuous region
- each segment is defined by a base and bound pair
+ Earliest use, separate code and data segments
- 2 sets of base-and-bound reg’s for inst and data fetch

- allow processes to share read-only code segments
became more elaborate later: code, data, stack, etc

«) EIectvicaI&Comruter CMU 18-447
ENGINEERING Spring 10 8
©2010
J.C. Hoe

Segmented Address Translation

¢ EA comprise a segment number (SN) and a segment
offset (SO)

- SN may be specified explicitly or implied (code vs. data)

- segment size limited by the range of SO

- segments can have different sizes, not all SOs are meaningful
¢ Segment translation table

- maps SN to corresponding base and bound

- separate mapping for each process

- must be a privileged structure

SN SO

segment
table PA

base | bound

?
how to change mapping okay?

when swapping processes?

QO

ical & Com)

G NEERﬁ{Tg Spring ‘10 9

tri

CMU 18-447

©2010
J.C. Hoe

Access Protections

< In addition to naming, finer-grain access protection can
be associated with each segment as extra bits in the
segment table
¢ Generic options include
- readable?
- writeable?
- executable?
also misc. options such as cacheable? which level?
¢ Normal data pages = RW(!E)
+ Static shared data pages = R(!W)(!E)
¢ Code pages = R(IW)E What about self modifying code?

¢ lllegal pages = (IR)('W)(IE) Why would any one want this?

Electrical & Computer CMU 18-447

«) ENGINEERING Spring 10 10

can be orthogonal L \/\ large
N

from protection large” basel
considerations

©2010

Another Use of Segments e

+ How to extend an old ISA to support larger addresses
for new applications while remain compatible with old
applications?

& User-level segmented addressing

- old applications use identity mapping in table

- new applications reload segment table at run time with “active
segments” to access different regions in memory

- complications of a “non-linear” address space: dereferencing
some pointers (aka long pointers) requires more work if it is not
in an active segment

SN Ye) small EA

EA

(() Electrical & Computer CMU 18-447
ENGINEERING Spring 10 11
©2010
J.C. Hoe

Paged Address Space

+ Divide PA and EA space into fixed size segments
known as “page frames”, historically 4KByte

¢ EAs and PAs are interpreted as page number (PN) and
page offset (PO)
- page table translates EPN to PPN
- VPO is the same as PPO, just concatenate to PPN to get PA

EPN PO
page PPN PA
table protection?

QEveERe
Fragmentation J.F. Martinez

¢ External Fragmentation

- asystem may have plenty of unallocated DRAM, but they
are useless in a segmented system if they do not form a
contiguous region of a sufficient size

- paged memory management eliminates external
fragmentation

< Internal Fragmentation

- with paged memory management, a process is allocated an
entire page (4KByte) even if it only needs 4 bytes

- asmaller page size reduces likelihood for internal
fragmentation

- modern ISA are moving to larger page sizes (Mbytes) in
addition to 4KBytes

«’) Electrical & Computer CMU 18-447
ENGINEERIN Spring 10 13
©2010

J.C. Hoe

J.F. Martinez

Demand Paging

¢ Use main memory and “swap” disk as automatically
managed levels in the memory hierarchies

analogous to cache vs. main memory

+ Early attempts

- von Neumann already described manual memory
hierarchies
- Brookner’s interpretive coding, 1960

+ a software interpreter that managed paging between a
40KByte main memory and a 640KByte drum

- Atlas, 1962

+ hardware demand paging between a 32-page (512 word/
page) main memory and 192 pages on drums

* user program believes it has 192 pages

«) Electrical & Computer CMU 18-447
ENGINEERING Spring 10 14
©2010

J.C. Hoe

J.F. Martinez

Demand Paging vs. Caching

e Drastically different size and time scale
= drastically different design considerations

L1 Cache L2 Cache Demand Paging
Capacity 10~100KByte MByte GByte
Block size ~16 Byte ~128 Byte 4K~4M Byte
hit time a few cyc a few 10s cyc a few 100s cyc
miss penalty a few 10s cyc a few 100s cyc 10 msec
miss rate 0.1~10% (?) 0.00001~0.001%
hit handling HW HW HW
miss handling HW HW SW

Hit time, miss penalty and miss rate are not really
independent variables!!

) Electrical & Computer CMU 18-447
£ ERERERRE Spring 10 15

Same Fundamentals

J.C. Hoe
J.F. Martinez

+ Potentially M=2" bytes of memory, how to keep the
most frequently used ones in C bytes of fast storage
where C << M

¢ Basic issues ?SAM in
(1) where to “cache” a virtual page in DRAM? . dznff:ﬁi
(2) how to find a virtual page in DRAM? paging

(8) granularity of management
(4) when to bring a page into DRAM?

(5) which virtual page to evict from DRAM to disk to
free-up DRAM for new pages?

(5) is much better covered in an OS course
BTW, architects should take OS and compiler

«) EIectvicaI&ComIputer CMU 18-447
ENGINEERING Spring ‘10 16
©2010
J.C. Hoe

Terminology and Usage

¢ Physical Address
- addresses that refer directly to specific locations on DRAM
or on swap disk
+ Effective Address

- addresses emitted by user applications for data and code
accesses

- usage is most often associated with “protection”

+ Virtual Address
- addresses in a large, linear memory seen by user app’s
often larger than DRAM and swap disk capacity

- virtual in the sense that some addresses are not backed up
by physical storage (hopefully you don’t try to use it)

- usage is most often associated with “demand paging”

Modern memory system always have both protection and demand
paging; usage of EA and VA is sometimes muddled

«) Electrical & Computer CMU 18-447
ENGINEERING Spring 10 17
©2010

EA, VA and PA (IBM’s view) .

EA, divided into X
fixed-size segments

PA divided into W pages
(2»wW)

_______________________________ Swap disk divided info V
pages (Z>»V, V>»>W)

EA, divided into X VA divided into Y segments (¥>>X);
fixed-size segments also divided as Z pages (Z»Y)
~ segmented EA: ~ demand paged VA:
private, contiguous + sharing size of swap, speed of DRAM
O Rk o s

010

EA, VA and PA (almost everyone elsei"ﬁ:znez

/

EAo o
PA divided into W pages

with unique ASID=0
/ s

with unique ASID=i
Swap disk divided into V
pages (Z»V, V>»W)

EA and VA almost VA divided into N “address space” how do processes

synon ous indexed by ASID;
y Ym u also divided as Z pages (Z>>Y) shar‘e pGQCS?

«’) Electrical & Computer CMU 18-447
ENGINEERING Spring 10 19
©2010
J.C. Hoe

How large is the page table?
64-bit

VPN PO

+52-bi‘r J[lz-bif
page | , . PA
table | 28-bit 40-bit

¢ A page table holds mapping from VPN to PPN

¢ Suppose 64-bit VA and 40-bit PA, how large is the
page table? 252 entries x ~4 bytes = 16x10'° Bytes

«) EIectvicaI&Comruter CMU 18-447
ENGINEERING Spring ‘10 20
©2010
J.C. Hoe

How large is the page table?

¢ Don’t need to keep track of the entire VA space

- the total allocated VA space in a system is 264 bytes x #
processes, but most of which is not alive

- the system can’t possibly use more memory locations than
the physical storage (DRAM and swap disk)
+ A clever page table scales “linearly” with the size of
physical storage (and not the size of the VA space)

¢ Also

- apage table must be “walkable” by HW

- apage table is accessed not infrequently
¢ Two basic themes in use today

- hierarchical page tables

- hashed (inverted) page tables

«’) Ele(tri(al&CDmruter CMU 18-447
ENGINEERING Spring ‘10 21
©2010
J.C. Hoe

Hierarchical Page Tables
+ Hierarchical page table is a “tree” data structure in
DRAM
PID [vA[31:22]] VA[21:13]] VA[11:0] |
context L1 L2 |l page
table table table frame
descriptor Ls[descriptor t——{__ PTE data
Q) ERGREERRE . . gpt:’?‘o oz
Hierarchical Page Tables g

+ Hierarchical page table is a “tree” graph,
- for example on previous page
+ L1 table has 1024 decedents (L2 tables) indexed by VA
[31:22]
+ each L2 table has 1024 decedents (physical page frames)
indexed by VA[21:12]
- more levels can be used to accommodate larger VA space

- assume 4-byte descriptors and PTEs, each table is 4KByte
(size of page frames) such that the tables themselves can be
demand paged between DRAM and disk

+ Hierarchical page table is a “sparse” tree graph
- if none of the virtual page frames associated with a L2 table is
in used, the L2 table does not need to exist (corresponding L1
entry simply points to null)
- in general, an entire unused sub-tree can avoided
- considering typical size ratio of VA to PA, the tree should be
quite sparse

) Electrical & Computer CMU 18-447
£ ERERERRE Spring 10 23

How large is the hierarchical table?

¢ Assume 32-bit VA with 4 MByte in use

¢ Best Case: one contiguous 4-MByte region in VA
aligned on 4MByte boundaries
- 1K physical page frames
- needs 1 L2 table + 1 L1 table=2 x 4KBytes,

¢ Worst Case: 1K 4-KByte regions in VA; each is
4MByte aligned
- 1K physical page frames
- needs 1K L2 tables (only 1 entry per L2 table in use)
- 1025 x 4KBytes

¢ Locality says we should be close to the best case

CMU 18-447

O ERGINERRING Sonng 1024
Hashed Page Tables

J.C. Hoe
¢ Choose an appropriate page table storage overhead
- atleast 1 entry per physical page, but probably more to avoid
“hash” conflicts
- e.g. 1GB DRAM = 256K frames = 256K PTEs
¢ Page table works like a hash table

- to lookup a translation, hash VPN and PID into a index e.g.
(VPN®PID)%table_size

- assumes the PTE was inserted according to the same hash
- each entry must be “tagged” by PID and VPN to detect collision

table
offset —_ |pID|VPNI[PTE
VPN hash 4@ PA Of enTr‘y | |

-
(|
|—UF

«’) Electrical & Computer CMU 18-447
ENGINEERING Spring 10 25
©2010

How large is the hashed page table?"*

+ Size of hashed page table is a function of physical
memory size

¢ The exact proportion is an engineering choice
large enough to reduce hash collisions

+ Often hashed page table only stores translation for
pages currently in DRAM; on a miss, must consult a
complete table structure to determine if the VPN is on
swap disk or if the VPN is non-existent

¢ The original “inverted” page table (a historical note)
- allocate exactly 1 entry per physical page frame

- hashed location in table corresponds exactly to page frame in
main memory (the table entries do not need to hold PPN)

- viewing the table by itself, it is indexed by PPN and returns VPN

«) EIectvicaI&Comruter CMU 18-447
ENGINEERING Spring ‘10 26
©2010
J.C. Hoe

Translation Look-Aside Buffer (TLB)

¢ Every user memory reference (code or data) requires a
translation
- how many memory accesses per translation?
hierarchical vs. hashed
- what good is it to hit in the cache if translation takes forever

¢ TLB: a “cache” of most recently used translations
- same type of “tagged” lookup structure as caches and BTBs
- given a VPN, returns a PTE (PPN & protections)
- TLB entry:
tag: address tag (from VA), PID
PTE: PPN, protection bits
misc: valid, dirty, etc.
- similar design considerations as caches
capacity, block size, associativity, replacement policy

«’) Ele(tri(al&CDmruter CMU 18-447
ENGINEERING Spring 10 27
©2010
J.C. Hoe

Direct-Mapped TLB (bad example) “*

PID VPN PO
tag idx
T R
Tag Bank E; PTE Bank
(=)
N
hit? PTE
Q) EReERRE
TLB DeS|gn JF Martinez
¢ Separate | and D-TLB, multi-level TLBs make sense
as in caches

o C:ifthe L1 I-cache is 64KB, what’s the |-TLB size?
- should cover the same 64KB footprint
- aminimum of 16 TLB entries x some safety factor
- in the old days 32~64 entries; nowadays a few hundred
+ B: after accessing a page, how likely is it to access
the next page?
- typically one PTE per TLB entry
+ a: what associativity to minimize collision?
- in the old days, fully-associative is the norm
- nowadays, 2~4-way-associative is more common

O

trical & Com)

Elect uter
ENGINEERING

On a TLB Miss

CMU 18-447
Spring ‘10 29
©2010

J.C. Hoe

J.F. Martinez

¢ Most address translation resolved in ~1 cycle in the
TLB

¢ On a TLB miss

must “walk” the page table to determine translation

walk usually done by HW (MIPS walks in SW)

can take 100’s of cycles to complete

if PTE is found and page is in memory, then replace TLB

with new PTE and continue

if PTE is found but the page is on disk, then trigger “page

fault” exception to initiate kernel handler for demand paging
if PTE is not found, trigger “segmentation fault” exception to
What to do now?

initiate kernel handler

©

Electrical & Computer

ENGINEERING

VA to PA Translation

CMU 18-447
Spring 10 30
©2010

J.C. Hoe

J.F. Martinez

EA

'

TLB
lookup

~1 palk
oo\ yes P
]
protection
check

]

update TLB Pg%;];?‘lé”

paging
L

10 msec

no es

“protection
violation”

PA to
cache

) Electrical & Computer CMU 18-447
£ ERERERRE Spring 10 31

How should VM and Caches Interact 2+«

CPU CPU CPU
1 1
VA
LB A cache v
A
| | cache |--r-Hb -2
cache S N 08 2o
PA
1 [
lower lower lower
hier. hier. hier.
physical cache virtual (L1) cache hybrid??
) BiGNEERRIE
Virtual CaCheS JF Martinez

¢ Even with TLB, translation takes time
+ Naively, memory access time in the best case is
TLB hit time + cache hit time
+ Why not access cache with virtual addresses and
only translate on a cache miss to DRAM
make sense if TLB hit time >> cache hit time

¢ Virtual caches in SUN SPARC, circa 1990

- CPU has gotten fast enough that off-chip a SRAM access
takes multiple cycles

- dies size has gotten large enough to integrate L1 caches
- MMU and TLB still on a separate chip
the conditions no longer hold

) Electrical & Computer CMU 18-447
£ ERERERRE Spring 10 33

Managing Virtual Caches:
Synonyms and Homonyms

¢ Homonyms (same sound different meaning)
- same EA (in different processes) points to different PAs
- flush virtual cache between context; or include PID in cache
tag
¢ Synonyms (different sound same meaning)

- different EAs (from the same or different processes) point to
the same PA
- in avirtually addressed cache
+ a PA could be cached twice under different EAs

+ updates to one cached copy would not be reflected in the
other cached copy

+ solution: make sure synonyms can’t co-exist in the
cache, e.g., OS can forces synonyms to have the same
index bits in a direct mapped cache

«) EIectvicaI&ComIputer CMU 18-447
ENGINEERING Spring ‘10 34
©2010
J.C. Hoe

Virtually-Indexed Physically-Tagged -
(a misnomer)
o If C<(page_size x associativity), the cache index bits
come only from page offset (same in VA and PA)

¢ If both cache and TLB are on chip
- index both arrays concurrently using VA bits
- check cache tag (physical) against TLB output at the end

| VPN PO
— IDX IBO
Iﬁ
TLB physical
cache

l —

v
| PPN }*@*—I tag || data |

TLB hit? cache hit? Only an issue for L1 caches

) Electrical & Computer CMU 18-447
£ ERERERRE Spring 10 35

Large Virtually-Indexed Caches

J.C. Hoe
J.F. Martinez

. Lo . . Two-VAs moy have
¢ If C>(page_size x associativity), the cache index bits different bity in '@’ and
include VPN = Synonyms can cause problems therefore map to-
. different cache sety, yet
+ Solutions tronslate into-the same
- increase associativity /////*PA -> must force IDX to-
- increase page size _— stay within PO to-
- page coloring _— %%jm n
- MIPS R10K | VPN | /Pd the cache
— i “IDX.. . .BQO
_v_l I—‘
TLB ° physical
cache
l v I v
| PPN F@*—I tag | | data |
TLB hit? cache hit?
QO B S 050

2010

R10000’s Virtually Index Caches ..

¢ 32KB 2-Way Virtually-Indexed L1
- needs 10 bits of index and 4 bits of block offset
- page offset is only 12-bits = 2 bits of index are VPN[1:0]

+ Direct-Mapped Physical L2
- L2isinclusive of L1
- VPNI[1:0] is appended to the “tag” of L2

¢ Given two virtual addresses VA and VB that differs in a
and both map to the same physical address PA
- Suppose VA is accessed first so blocks are allocated in L1&L2
- What happens when VB is referenced?
1 VB indexes to a different block in L1and misses
2 VB translates to PA and goes to the same block as VA in L2
3. Tag comparison fails (VA[1:0]=VB[1:0])
4. L2 detects that a synonym is cached in L1 = VA’s entry in L1
is ejected before VB is allowed to be refilled in L1

martinez
Callout
Two VAs may have different bits in "a" and therefore map to different cache sets, yet translate into the same PA -> must force IDX to stay within PO to guarantee conflict between synonyms in the cache

