
CMU 18-447!
Spring ʻ10 1!
© 2010!
J.C. Hoe!
J.F. Martínez!

18-447  
Virtual Memory, Protection and Paging!

James C. Hoe and José F. Martínez!
Dept of ECE, CMU!
March 22-24, 2010!

! !**Assigned Reading**!
! !"Virtual memory in contemporary microprocessors." !
! !B. L Jacob and T. N. Mudge. IEEE Micro, July/August 1998.!
! !(on Blackboard)!

CMU 18-447!
Spring ʻ10 2!
© 2010!
J.C. Hoe!
J.F. Martínez!2 Parts to Modern VM !

  In a multi-tasking system, VM provides each process
with the illusion of a large, private, and uniform
memory!

  Ingredient A: Naming and Protection!
­  each process sees a large, contiguous memory segment

without holes (“virtual” address space is much bigger than
the available physical storage)!

­  each processʼs memory space is private, i.e. protected from
access by other processes!

  Ingredient B: demand paging!
­  capacity of secondary storage (swap space on disk)!
­  at the speed of primary storage (DRAM)!

CMU 18-447!
Spring ʻ10 3!
© 2010!
J.C. Hoe!
J.F. Martínez!Mechanism: Address Translation !

  Protection, VM and demand paging enabled by a
common HW mechanism: address translation!

  User process operates on “effective” addresses!
  HW translates from EA to PA on every memory

reference!
­  controls which physical locations (DRAM and/or swap disk)

can be named by a process!
­  allows dynamic relocation of physical backing store (DRAM

vs. swap disk)!
  Address translation HW and policies controlled by the

OS and protected from users, i.e., priviledged!

CMU 18-447!
Spring ʻ10 4!
© 2010!
J.C. Hoe!
J.F. Martínez!Evolution of Memory Protection!

  Earliest machines did not have the concept of
protection and address translation!
­  no need---single process, single user!
!automatically “private and uniform” (but not very large)!

­  programs operated on physical addresses directly!
!cannot support multitasking protection!

  Multitasking 101!
­  give each process a non-overlapping, !
!contiguous physical memory region!

­  everything belonging to a process !
!must fit in that region!

­  how do you keep one process from!
!reading or trashing another processʼ!
!data?!

active process’s
region

another process’s
region

CMU 18-447!
Spring ʻ10 5!
© 2010!
J.C. Hoe!
J.F. Martínez!Base and Bound!

  A processʼs private memory region can be defined by!
­  base: starting address of the region!
­  bound: ending address of the region !

  User process issue “effective” address (EA) between
0 and the size of its allocated region !
! ! ! ! ! ! private and uniform !

active process’s
region

another process’s
region

base

bound
privileged control

registers

PA

EA

max

0

0

max

CMU 18-447!
Spring ʻ10 6!
© 2010!
J.C. Hoe!
J.F. Martínez!Base and Bound Registers!

  When switching user processes, OS sets base and
bound registers!

  Translation and protection check in hardware on
every user memory reference!
­  PA = EA + base!
­  if (PA < bound) then okay else violation!

  User processes cannot be allowed to modify the base
and bound registers themselves!
!⇒ requires 2 privilege levels such that the OS can
see and modify certain states that the user cannot !

! privileged instructions and state!

CMU 18-447!
Spring ʻ10 7!
© 2010!
J.C. Hoe!
J.F. Martínez!Segmented Address Space!

  Limitations of the base and bound scheme!
­  large contiguous space is hard to come by after the system

runs for a while---free space may be fragmented!
­  how do two processes shared some memory regions but not

others?!
  A “base&bound” pair is the unit of protection!
!⇒ give user multiple memory “segments”!
­  each segment is a continuous region!
­  each segment is defined by a base and bound pair!

  Earliest use, separate code and data segments!
­  2 sets of base-and-bound regʼs for inst and data fetch!
­  allow processes to share read-only code segments!
!became more elaborate later: code, data, stack, etc!

CMU 18-447!
Spring ʻ10 8!
© 2010!
J.C. Hoe!
J.F. Martínez!Segmented Address Translation!

  EA comprise a segment number (SN) and a segment
offset (SO)!
­  SN may be specified explicitly or implied (code vs. data)!
­  segment size limited by the range of SO!
­  segments can have different sizes, not all SOs are meaningful!

  Segment translation table!
­  maps SN to corresponding base and bound!
­  separate mapping for each process!
­  must be a privileged structure!

SN SO

segment
table

+,< base bound PA,
okay? how to change mapping

when swapping processes?

CMU 18-447!
Spring ʻ10 9!
© 2010!
J.C. Hoe!
J.F. Martínez!Access Protections!

  In addition to naming, finer-grain access protection can
be associated with each segment as extra bits in the
segment table!

  Generic options include!
­  readable?!
­  writeable?!
­  executable?!
! ! !also misc. options such as cacheable? which level?!

  Normal data pages ⇒ RW(!E)!
  Static shared data pages ⇒ R(!W)(!E)!
  Code pages ⇒ R(!W)E ! What about self modifying code?!
  Illegal pages ⇒ (!R)(!W)(!E) Why would any one want this?!

CMU 18-447!
Spring ʻ10 10!
© 2010!
J.C. Hoe!
J.F. Martínez!Another Use of Segments!

  How to extend an old ISA to support larger addresses
for new applications while remain compatible with old
applications?!

  User-level segmented addressing!
­  old applications use identity mapping in table!
­  new applications reload segment table at run time with “active

segments” to access different regions in memory!
­  complications of a “non-linear” address space: dereferencing

some pointers (aka long pointers) requires more work if it is not
in an active segment!

SN SO

“large” base large
EA

small EA

can be orthogonal
from protection
considerations

CMU 18-447!
Spring ʻ10 11!
© 2010!
J.C. Hoe!
J.F. Martínez!Paged Address Space!

  Divide PA and EA space into fixed size segments
known as “page frames”, historically 4KByte!

  EAs and PAs are interpreted as page number (PN) and
page offset (PO)!
­  page table translates EPN to PPN!
­  VPO is the same as PPO, just concatenate to PPN to get PA!

EPN PO

page
table

concat PA PPN
protection? actual table

is much more
complicated than this

CMU 18-447!
Spring ʻ10 12!
© 2010!
J.C. Hoe!
J.F. Martínez!Fragmentation!

  External Fragmentation!
­  a system may have plenty of unallocated DRAM, but they

are useless in a segmented system if they do not form a
contiguous region of a sufficient size!

­  paged memory management eliminates external
fragmentation!

  Internal Fragmentation!
­  with paged memory management, a process is allocated an

entire page (4KByte) even if it only needs 4 bytes!
­  a smaller page size reduces likelihood for internal

fragmentation!
­  modern ISA are moving to larger page sizes (Mbytes) in

addition to 4KBytes !Why? !

CMU 18-447!
Spring ʻ10 13!
© 2010!
J.C. Hoe!
J.F. Martínez!Demand Paging!

  Use main memory and “swap” disk as automatically
managed levels in the memory hierarchies!
! ! !analogous to cache vs. main memory!

  Early attempts !
­  von Neumann already described manual memory

hierarchies!
­  Brooknerʼs interpretive coding, 1960!

•  a software interpreter that managed paging between a
40KByte main memory and a 640KByte drum!

­  Atlas, 1962!
•  hardware demand paging between a 32-page (512 word/

page) main memory and 192 pages on drums!
•  user program believes it has 192 pages!

CMU 18-447!
Spring ʻ10 14!
© 2010!
J.C. Hoe!
J.F. Martínez!Demand Paging vs. Caching!

 Drastically different size and time scale !
! ⇒ drastically different design considerations!
! !L1 Cache !L2 Cache !Demand Paging!

Capacity !10~100KByte !MByte !GByte!
Block size !~16 Byte !~128 Byte !4K~4M Byte!
hit time !a few cyc !a few 10s cyc !a few 100s cyc!
miss penalty !a few 10s cyc !a few 100s cyc !10 msec!
miss rate !0.1~10% ! (?) !0.00001~0.001%!

hit handling !HW !HW !HW!
miss handling !HW !HW !SW!

Hit time, miss penalty and miss rate are not really
independent variables!!!

CMU 18-447!
Spring ʻ10 15!
© 2010!
J.C. Hoe!
J.F. Martínez!Same Fundamentals!

  Potentially M=2m bytes of memory, how to keep the
most frequently used ones in C bytes of fast storage
where C << M!

  Basic issues!
!(1) where to “cache” a virtual page in DRAM? !
!(2) how to find a virtual page in DRAM?!
!(3) granularity of management!
!(4) when to bring a page into DRAM? !
!(5) which virtual page to evict from DRAM to disk to
free-up DRAM for new pages?!
! !(5) is much better covered in an OS course!
! !BTW, architects should take OS and compiler!

DRAM in
the case

of demand
paging

CMU 18-447!
Spring ʻ10 16!
© 2010!
J.C. Hoe!
J.F. Martínez!Terminology and Usage!

  Physical Address!
­  addresses that refer directly to specific locations on DRAM

or on swap disk!
  Effective Address!

­  addresses emitted by user applications for data and code
accesses!

­  usage is most often associated with “protection”!
  Virtual Address!

­  addresses in a large, linear memory seen by user appʼs!
! ! !often larger than DRAM and swap disk capacity !

­  virtual in the sense that some addresses are not backed up
by physical storage !(hopefully you donʼt try to use it)!

­  usage is most often associated with “demand paging”!
Modern memory system always have both protection and demand

paging; usage of EA and VA is sometimes muddled!

CMU 18-447!
Spring ʻ10 17!
© 2010!
J.C. Hoe!
J.F. Martínez!EA, VA and PA (IBMʼs view)!

EA0 divided into X
fixed-size segments

EA1 divided into X
fixed-size segments

VA divided into Y segments (Y>>X);

segmented EA:
private, contiguous + sharing

PA divided into W pages
(Z>>W)

Swap disk divided into V
pages (Z>>V, V>>W)

demand paged VA:
size of swap, speed of DRAM

also divided as Z pages (Z>>Y)

CMU 18-447!
Spring ʻ10 18!
© 2010!
J.C. Hoe!
J.F. Martínez!

Swap disk divided into V
pages (Z>>V, V>>W)

PA divided into W pages
(Z>>W)

EA, VA and PA (almost everyone else)!

VA divided into N “address space”
indexed by ASID;

also divided as Z pages (Z>>Y)

EA0
with unique ASID=0

EAi
with unique ASID=i

EA and VA almost
synonymous how do processes

share pages?

CMU 18-447!
Spring ʻ10 19!
© 2010!
J.C. Hoe!
J.F. Martínez!How large is the page table?!

  A page table holds mapping from VPN to PPN!
  Suppose 64-bit VA and 40-bit PA, how large is the

page table? 252 entries x ~4 bytes ≈ 16x1015 Bytes
! !!

! ! ! !and that is for just one process!!?!

VPN PO

page
table

concat PA

64-bit

12-bit 52-bit

28-bit 40-bit

CMU 18-447!
Spring ʻ10 20!
© 2010!
J.C. Hoe!
J.F. Martínez!How large is the page table?!

  Donʼt need to keep track of the entire VA space !
­  the total allocated VA space in a system is 264 bytes x #

processes, but most of which is not alive!
­  the system canʼt possibly use more memory locations than

the physical storage (DRAM and swap disk)!
  A clever page table scales “linearly” with the size of

physical storage (and not the size of the VA space)!
  Also cannot be too convoluted !

­  a page table must be “walkable” by HW!
­  a page table is accessed not infrequently ! !!

  Two basic themes in use today!
­  hierarchical page tables!
­  hashed (inverted) page tables!

CMU 18-447!
Spring ʻ10 21!
© 2010!
J.C. Hoe!
J.F. Martínez!Hierarchical Page Tables!

  Hierarchical page table is a “tree” data structure in
DRAM!

VA[11:0] VA[21:13] VA[31:22]

L1
table

descriptor

L2
table

PTE

page
frame

data

PID

context
table

descriptor

PA to
base of L1

PA to
base of L2

PA to base of page
frame (i.e., PPN)

or
location on swap disk

Exact implementations vary
greatly. Next lecture!!

L1 idx10 L2 idx10 PO12

CMU 18-447!
Spring ʻ10 22!
© 2010!
J.C. Hoe!
J.F. Martínez!Hierarchical Page Tables!

  Hierarchical page table is a “tree” graph, !
­  for example on previous page!

•  L1 table has 1024 decedents (L2 tables) indexed by VA
[31:22]!

•  each L2 table has 1024 decedents (physical page frames)
indexed by VA[21:12]!

­  more levels can be used to accommodate larger VA space!
­  assume 4-byte descriptors and PTEs, each table is 4KByte

(size of page frames) such that the tables themselves can be
demand paged between DRAM and disk!

  Hierarchical page table is a “sparse” tree graph!
­  if none of the virtual page frames associated with a L2 table is

in used, the L2 table does not need to exist (corresponding L1
entry simply points to null) !

­  in general, an entire unused sub-tree can avoided!
­  considering typical size ratio of VA to PA, the tree should be

quite sparse ! ! ! !How sparse?!

CMU 18-447!
Spring ʻ10 23!
© 2010!
J.C. Hoe!
J.F. Martínez!How large is the hierarchical table?!

  Assume 32-bit VA with 4 MByte in use!
  Best Case: one contiguous 4-MByte region in VA

aligned on 4MByte boundaries!
­  1K physical page frames!
­  needs 1 L2 table + 1 L1 table=2 x 4KBytes, !!
­  overhead ≈ sizeof(PTE)/page_size per physical page!

  Worst Case: 1K 4-KByte regions in VA; each is
4MByte aligned!
­  1K physical page frames!
­  needs 1K L2 tables (only 1 entry per L2 table in use)!
­  1025 x 4KBytes!
­  overhead ≈ 1 page per data page!

  Locality says we should be close to the best case!
! ! ! ! !4 bytes/4Kbytes ≈ 0.1% !

CMU 18-447!
Spring ʻ10 24!
© 2010!
J.C. Hoe!
J.F. Martínez!Hashed Page Tables!

  Choose an appropriate page table storage overhead!
­  at least 1 entry per physical page, but probably more to avoid

“hash” conflicts!
­  e.g. 1GB DRAM ⇒ 256K frames ⇒ 256K PTEs!

  Page table works like a hash table!
­  to lookup a translation, hash VPN and PID into a index e.g.

(VPN⊕PID)%table_size (note: overly simplified)!
­  assumes the PTE was inserted according to the same hash!
­  each entry must be “tagged” by PID and VPN to detect collision!

VPN
PID

table base

hash

table
offset + PA of entry

PID VPN PTE

CMU 18-447!
Spring ʻ10 25!
© 2010!
J.C. Hoe!
J.F. Martínez!How large is the hashed page table?!

  Size of hashed page table is a function of physical
memory size!

  The exact proportion is an engineering choice!
! ! !large enough to reduce hash collisions!

  Often hashed page table only stores translation for
pages currently in DRAM; on a miss, must consult a
complete table structure to determine if the VPN is on
swap disk or if the VPN is non-existent!

  The original “inverted” page table (a historical note)!
­  allocate exactly 1 entry per physical page frame!
­  hashed location in table corresponds exactly to page frame in

main memory (the table entries do not need to hold PPN)!
­  viewing the table by itself, it is indexed by PPN and returns VPN!

CMU 18-447!
Spring ʻ10 26!
© 2010!
J.C. Hoe!
J.F. Martínez!Translation Look-Aside Buffer (TLB)!

  Every user memory reference (code or data) requires a
translation!
­  how many memory accesses per translation? !
! ! ! ! ! !hierarchical vs. hashed!

­  what good is it to hit in the cache if translation takes forever!
  TLB: a “cache” of most recently used translations!

­  same type of “tagged” lookup structure as caches and BTBs!
­  given a VPN, returns a PTE (PPN & protections)!
­  TLB entry:!

tag: address tag (from VA), PID !
PTE: PPN, protection bits !
misc: valid, dirty, etc.!

­  similar design considerations as caches!
capacity, block size, associativity, replacement policy!

CMU 18-447!
Spring ʻ10 27!
© 2010!
J.C. Hoe!
J.F. Martínez!Direct-Mapped TLB (bad example)!

PTE Bank

tag idx

PTE

=

Tag Bank

hit?

va
lid

VPN PO PID

CMU 18-447!
Spring ʻ10 28!
© 2010!
J.C. Hoe!
J.F. Martínez!TLB Design!

  Separate I and D-TLB, multi-level TLBs make sense
as in caches!

  C: if the L1 I-cache is 64KB, whatʼs the I-TLB size?!
­  should cover the same 64KB footprint!
­  a minimum of 16 TLB entries × some safety factor (2~8)!
­  in the old days 32~64 entries; nowadays a few hundred!

  B: after accessing a page, how likely is it to access
the next page? (coarse grain spatial locality)!
­  typically one PTE per TLB entry !
­  MIPS stores 2 consecutive pagesʼ translations per entry!

  a: what associativity to minimize collision?!
­  in the old days, fully-associative is the norm!
­  nowadays, 2~4-way-associative is more common ! Why?!

CMU 18-447!
Spring ʻ10 29!
© 2010!
J.C. Hoe!
J.F. Martínez!On a TLB Miss!

  Most address translation resolved in ~1 cycle in the
TLB!

  On a TLB miss!
­  must “walk” the page table to determine translation!
­  walk usually done by HW !(MIPS walks in SW)!
­  can take 100ʼs of cycles to complete!
­  if PTE is found and page is in memory, then replace TLB

with new PTE and continue!
­  if PTE is found but the page is on disk, then trigger “page

fault” exception to initiate kernel handler for demand paging!
­  if PTE is not found, trigger “segmentation fault” exception to

initiate kernel handler ! ! !What to do now?!

CMU 18-447!
Spring ʻ10 30!
© 2010!
J.C. Hoe!
J.F. Martínez!VA to PA Translation!

EA

TLB
lookup

PT walk

update TLB
“page fault”

demand
paging

protection
check

PA to
cache

no yes

“protection
violation”

~1 pclk

~100’s
pclk

10 msec

hit

found
no yes

okay no yes

CMU 18-447!
Spring ʻ10 31!
© 2010!
J.C. Hoe!
J.F. Martínez!How should VM and Caches Interact?!

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA
PA

CPU

cache tlb

lower
hier.

hybrid??

VA
PA

VA
PA

CMU 18-447!
Spring ʻ10 32!
© 2010!
J.C. Hoe!
J.F. Martínez!Virtual Caches!

  Even with TLB, translation takes time!
  Naively, memory access time in the best case is !
! ! ! !TLB hit time + cache hit time!

  Why not access cache with virtual addresses and
only translate on a cache miss to DRAM!
! !make sense if TLB hit time >> cache hit time!

  Virtual caches in SUN SPARC, circa 1990!
­  CPU has gotten fast enough that off-chip a SRAM access

takes multiple cycles!
­  dies size has gotten large enough to integrate L1 caches!
­  MMU and TLB still on a separate chip!
! ! ! ! !the conditions no longer hold!
! ! ! !!

CMU 18-447!
Spring ʻ10 33!
© 2010!
J.C. Hoe!
J.F. Martínez!

Managing Virtual Caches: 
Synonyms and Homonyms!

  Homonyms (same sound different meaning)!
­  same EA (in different processes) points to different PAs!
­  flush virtual cache between context; or include PID in cache

tag!
  Synonyms (different sound same meaning)!

­  different EAs (from the same or different processes) point to
the same PA!

­  in a virtually addressed cache!
•  a PA could be cached twice under different EAs!
•  updates to one cached copy would not be reflected in the

other cached copy!
•  solution: make sure synonyms canʼt co-exist in the

cache, e.g., OS can forces synonyms to have the same
index bits in a direct mapped cache!

CMU 18-447!
Spring ʻ10 34!
© 2010!
J.C. Hoe!
J.F. Martínez!Virtually-Indexed Physically-Tagged  

(a misnomer)!
  If C≤(page_size × associativity), the cache index bits

come only from page offset (same in VA and PA)!
  If both cache and TLB are on chip!

­  index both arrays concurrently using VA bits!
­  check cache tag (physical) against TLB output at the end!

VPN PO

TLB

PPN

IDX BO

physical
cache

tag data =

cache hit? Only an issue for L1 caches TLB hit?

CMU 18-447!
Spring ʻ10 35!
© 2010!
J.C. Hoe!
J.F. Martínez!Large Virtually-Indexed Caches!

  If C>(page_size × associativity), the cache index bits
include VPN ⇒ Synonyms can cause problems!

  Solutions!
­  increase associativity!
­  increase page size!
­  page coloring!
­  MIPS R10K! VPN PO

TLB

PPN

IDX BO

physical
cache

tag data =

cache hit? TLB hit?

a

CMU 18-447!
Spring ʻ10 36!
© 2010!
J.C. Hoe!
J.F. Martínez!R10000ʼs Virtually Index Caches!

  32KB 2-Way Virtually-Indexed L1!
­  needs 10 bits of index and 4 bits of block offset !
­  page offset is only 12-bits ⇒ 2 bits of index are VPN[1:0]!

  Direct-Mapped Physical L2 !!
­  L2 is inclusive of L1 !
­  VPN[1:0] is appended to the “tag” of L2!

  Given two virtual addresses VA and VB that differs in a
and both map to the same physical address PA!
­  Suppose VA is accessed first so blocks are allocated in L1&L2!
­  What happens when VB is referenced?!

1 VB indexes to a different block in L1and misses!
2 VB translates to PA and goes to the same block as VA in L2!
3. Tag comparison fails (VA[1:0]≠VB[1:0])!
4. L2 detects that a synonym is cached in L1 ⇒ VAʼs entry in L1

is ejected before VB is allowed to be refilled in L1!

martinez
Callout
Two VAs may have different bits in "a" and therefore map to different cache sets, yet translate into the same PA -> must force IDX to stay within PO to guarantee conflict between synonyms in the cache

