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! !**Assigned Reading**!
! !"Virtual memory in contemporary microprocessors." !
! !B. L Jacob and T. N. Mudge. IEEE Micro, July/August 1998.!
! !(on Blackboard)!
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  In a multi-tasking system, VM provides each process 
with the illusion of a large, private, and uniform 
memory!

  Ingredient A: Naming and Protection!
­  each process sees a large, contiguous memory segment 

without holes (“virtual” address space is much bigger than 
the available physical storage)!

­  each processʼs memory space is private, i.e. protected from 
access by other processes!

  Ingredient B: demand paging!
­  capacity of secondary storage (swap space on disk)!
­  at the speed of primary storage (DRAM)!
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J.F. Martínez!Mechanism: Address Translation !

  Protection, VM and demand paging enabled by a 
common HW mechanism: address translation!

  User process operates on “effective” addresses!
  HW translates from EA to PA on every memory 

reference!
­  controls which physical locations (DRAM and/or swap disk) 

can be named by a process!
­  allows dynamic relocation of physical backing store (DRAM 

vs. swap disk)!
  Address translation HW and policies controlled by the 

OS and protected from users, i.e., priviledged!
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J.F. Martínez!Evolution of Memory Protection!

  Earliest machines did not have the concept of 
protection and address translation!
­  no need---single process, single user!
!automatically “private and uniform” (but not very large)!

­  programs operated on physical addresses directly!
!cannot support multitasking protection!

  Multitasking 101!
­  give each process a non-overlapping, !
!contiguous physical memory region!

­  everything belonging to a process !
!must fit in that region!

­  how do you keep one process from!
!reading or trashing another processʼ!
!data?!

active process’s 
region 

another process’s 
region 
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  A processʼs private memory region can be defined by!
­  base: starting address of the region!
­  bound: ending address of the region !

  User process issue “effective” address (EA) between 
0 and the size of its allocated region !
! ! ! ! ! ! private and uniform !

active process’s 
region 

another process’s 
region 

base 

bound 
privileged control 

registers 

PA 

EA 

max 

0 

0 

max 
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J.F. Martínez!Base and Bound Registers!

  When switching user processes, OS sets base and 
bound registers!

  Translation and protection check in hardware on 
every user memory reference!
­  PA = EA + base!
­  if (PA < bound) then okay else violation!

  User processes cannot be allowed to modify the base 
and bound registers themselves!
!⇒ requires 2 privilege levels such that the OS can 
see and modify certain states that the user cannot !

!  privileged instructions and state!
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  Limitations of the base and bound scheme!
­  large contiguous space is hard to come by after the system 

runs for a while---free space may be fragmented!
­  how do two processes shared some memory regions but not 

others?!
  A “base&bound” pair is the unit of protection!
!⇒ give user multiple memory “segments”!
­  each segment is a continuous region!
­  each segment is defined by a base and bound pair!

  Earliest use, separate code and data segments!
­  2 sets of base-and-bound regʼs for inst and data fetch!
­  allow processes to share read-only code segments!
!became more elaborate later: code, data, stack, etc!
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  EA comprise a segment number (SN) and a segment 
offset (SO)!
­  SN may be specified explicitly or implied (code vs. data)!
­  segment size limited by the range of SO!
­  segments can have different sizes, not all SOs are meaningful!

  Segment translation table!
­  maps SN to corresponding base and bound!
­  separate mapping for each process!
­  must be a privileged structure!

SN SO 

segment 
table 

+,< base bound PA, 
okay? how to change mapping 

when swapping processes? 
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  In addition to naming, finer-grain access protection can 
be associated with each segment as extra bits in the 
segment table!

  Generic options include!
­  readable?!
­  writeable?!
­  executable?!
! ! !also misc. options such as cacheable? which level?!

  Normal data pages ⇒ RW(!E)!
  Static shared data pages ⇒ R(!W)(!E)!
  Code pages ⇒ R(!W)E !    What about self modifying code?!
  Illegal pages ⇒ (!R)(!W)(!E)   Why would any one want this?!
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  How to extend an old ISA to support larger addresses 
for new applications while remain compatible with old 
applications?!

  User-level segmented addressing!
­  old applications use identity mapping in table!
­  new applications reload segment table at run time with “active 

segments” to access different regions in memory!
­  complications of a “non-linear” address space: dereferencing 

some pointers (aka long pointers) requires more work if it is not 
in an active segment!

SN SO 

“large” base large 
EA 

small EA 

can be orthogonal 
from protection 
considerations 



CMU 18-447!
Spring ʻ10 11!
© 2010!
J.C. Hoe!
J.F. Martínez!Paged Address Space!

  Divide PA and EA space into fixed size segments 
known as “page frames”, historically 4KByte!

  EAs and PAs are interpreted as page number (PN) and 
page offset (PO)!
­  page table translates EPN to PPN!
­  VPO is the same as PPO, just concatenate to PPN to get PA!

EPN PO 

page 
table 

concat PA PPN 
protection? actual table 

is much more  
complicated than this 
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  External Fragmentation!
­  a system may have plenty of unallocated DRAM, but they 

are useless in a segmented system if they do not form a 
contiguous region of a sufficient size!

­  paged memory management eliminates external 
fragmentation!

  Internal Fragmentation!
­  with paged memory management, a process is allocated an 

entire page (4KByte) even if it only needs 4 bytes!
­  a smaller page size reduces likelihood for internal 

fragmentation!
­  modern ISA are moving to larger page sizes (Mbytes) in 

addition to 4KBytes !Why? !
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  Use main memory and “swap” disk as automatically 
managed levels in the memory hierarchies!
! ! !analogous to cache vs. main memory!

  Early attempts !
­   von Neumann already described manual memory 

hierarchies!
­   Brooknerʼs interpretive coding, 1960!

•  a software interpreter that managed paging between a 
40KByte main memory and a 640KByte drum!

­   Atlas, 1962!
•  hardware demand paging between a 32-page (512 word/

page) main memory and 192 pages on drums!
•  user program believes it has 192 pages!
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J.F. Martínez!Demand Paging vs. Caching!

 Drastically different size and time scale !
!     ⇒ drastically different design considerations!
! !L1 Cache !L2 Cache !Demand Paging!

Capacity !10~100KByte !MByte !GByte!
Block size !~16 Byte !~128 Byte !4K~4M Byte!
hit time !a few cyc !a few 10s cyc !a few 100s cyc!
miss penalty !a few 10s cyc !a few 100s cyc !10 msec!
miss rate !0.1~10% ! (?) !0.00001~0.001%!

hit handling !HW !HW !HW!
miss handling !HW !HW !SW!

Hit time, miss penalty and miss rate are not really 
independent variables!!!
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  Potentially M=2m bytes of memory, how to keep the 
most frequently used ones in C bytes of fast storage 
where C << M!

  Basic issues!
!(1) where to “cache” a virtual page in DRAM? !
!(2) how to find a virtual page in DRAM?!
!(3) granularity of management!
!(4) when to bring a page into DRAM? !
!(5) which virtual page to evict from DRAM to disk to 
free-up DRAM for new pages?!
! !(5) is much better covered in an OS course!
! !BTW, architects should take OS and compiler!

DRAM in 
the case 

of demand 
paging 
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  Physical Address!
­  addresses that refer directly to specific locations on DRAM 

or on swap disk!
  Effective Address!

­  addresses emitted by user applications for data and code 
accesses!

­  usage is most often associated with “protection”!
  Virtual Address!

­  addresses in a large, linear memory seen by user appʼs!
! ! !often larger than DRAM and swap disk capacity !

­  virtual in the sense that some addresses are not backed up 
by physical storage !(hopefully you donʼt try to use it)!

­  usage is most often associated with “demand paging”!
Modern memory system always have both protection and demand 

paging; usage of EA and VA is sometimes muddled!



CMU 18-447!
Spring ʻ10 17!
© 2010!
J.C. Hoe!
J.F. Martínez!EA, VA and PA (IBMʼs view)!

EA0 divided into X 
fixed-size segments 

EA1 divided into X 
fixed-size segments 

VA divided into Y segments (Y>>X);  

segmented EA: 
private, contiguous + sharing 

PA divided into W pages 
(Z>>W) 

Swap disk divided into V 
pages (Z>>V, V>>W) 

demand paged VA: 
size of swap, speed of DRAM 

also divided as Z pages (Z>>Y) 
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Swap disk divided into V 
pages (Z>>V, V>>W) 

PA divided into W pages 
(Z>>W) 

EA, VA and PA (almost everyone else)!

VA divided into N “address space” 
indexed by ASID; 

also divided as Z pages (Z>>Y) 

EA0 
with unique ASID=0 

EAi 
with unique ASID=i 

EA and VA almost 
synonymous how do processes  

share pages? 
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  A page table holds mapping from VPN to PPN!
  Suppose 64-bit VA and 40-bit PA, how large is the 

page table?     252 entries x ~4 bytes ≈ 16x1015 Bytes
! !!

! ! ! !and that is for just one process!!?!

VPN PO 

page 
table 

concat PA 

64-bit 

12-bit 52-bit 

28-bit 40-bit 
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J.F. Martínez!How large is the page table?!

  Donʼt need to keep track of the entire VA space !
­  the total allocated VA space in a system is 264 bytes x # 

processes, but most of which is not alive!
­  the system canʼt possibly use more memory locations than 

the physical storage (DRAM and swap disk)!
  A clever page table scales “linearly” with the size of 

physical storage (and not the size of the VA space)!
  Also cannot be too convoluted !

­  a page table must be “walkable” by HW!
­  a page table is accessed not infrequently ! !!

  Two basic themes in use today!
­  hierarchical page tables!
­  hashed (inverted) page tables!
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  Hierarchical page table is a “tree” data structure in 
DRAM!

VA[11:0] VA[21:13] VA[31:22] 

L1 
table 

descriptor 

L2 
table 

PTE 

page 
frame 

data 

PID 

context 
table 

descriptor 

PA to  
base of L1 

PA to  
base of L2 

PA to base of page 
frame (i.e., PPN) 

or 
location on swap disk 

Exact implementations vary  
greatly.  Next lecture!! 

L1 idx10 L2 idx10 PO12 
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  Hierarchical page table is a “tree” graph, !
­  for example on previous page!

•  L1 table has 1024 decedents (L2 tables) indexed by VA
[31:22]!

•  each L2 table has 1024 decedents (physical page frames) 
indexed by VA[21:12]!

­  more levels can be used to accommodate larger VA space!
­  assume 4-byte descriptors and PTEs, each table is 4KByte 

(size of page frames) such that the tables themselves can be 
demand paged between DRAM and disk!

  Hierarchical page table is a “sparse” tree graph!
­  if none of the virtual page frames associated with a L2 table is 

in used, the L2 table does not need to exist (corresponding L1 
entry simply points to null) !

­  in general, an entire unused sub-tree can avoided!
­  considering typical size ratio of VA to PA, the tree should be 

quite sparse  ! ! ! !How sparse?!
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  Assume 32-bit VA with 4 MByte in use!
  Best Case: one contiguous 4-MByte region in VA 

aligned on 4MByte boundaries!
­  1K physical page frames!
­  needs 1 L2 table + 1 L1 table=2 x 4KBytes, !!
­  overhead ≈ sizeof(PTE)/page_size per physical page!

  Worst Case: 1K 4-KByte regions in VA; each is 
4MByte aligned!
­  1K physical page frames!
­  needs 1K L2 tables (only 1 entry per L2 table in use)!
­  1025 x 4KBytes!
­  overhead ≈ 1 page per data page!

  Locality says we should be close to the best case!
! ! ! ! !4 bytes/4Kbytes ≈ 0.1% !
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  Choose an appropriate page table storage overhead!
­  at least 1 entry per physical page, but probably more to avoid 

“hash” conflicts!
­  e.g. 1GB DRAM ⇒ 256K frames ⇒ 256K PTEs!

  Page table works like a hash table!
­  to lookup a translation, hash VPN and PID into a index  e.g. 

(VPN⊕PID)%table_size (note: overly simplified)!
­  assumes the PTE was inserted according to the same hash!
­  each entry must be “tagged” by PID and VPN to detect collision!

VPN 
PID 

table base 

hash 

table 
offset + PA of entry 

PID VPN PTE 
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  Size of hashed page table is a function of physical 
memory size!

  The exact proportion is an engineering choice!
! ! !large enough to reduce hash collisions!

  Often hashed page table only stores translation for 
pages currently in DRAM; on a miss, must consult a 
complete table structure to determine if the VPN is on 
swap disk or if the VPN is non-existent!

  The original “inverted” page table (a historical note)!
­  allocate exactly 1 entry per physical page frame!
­  hashed location in table corresponds exactly to page frame in 

main memory (the table entries do not need to hold PPN)!
­  viewing the table by itself, it is indexed by PPN and returns VPN!
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  Every user memory reference (code or data) requires a 
translation!
­  how many memory accesses per translation? !
! ! ! ! ! !hierarchical vs. hashed!

­  what good is it to hit in the cache if translation takes forever!
  TLB: a “cache” of most recently used translations!

­  same type of “tagged” lookup structure as caches and BTBs!
­  given a VPN, returns a PTE (PPN & protections)!
­  TLB entry:!

tag: address tag (from VA), PID !
PTE: PPN, protection bits !
misc: valid, dirty, etc.!

­  similar design considerations as caches!
capacity, block size, associativity, replacement policy!
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PTE Bank 

tag idx 

PTE 

= 

Tag Bank 

hit? 

va
lid

 

VPN PO PID 
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  Separate I and D-TLB, multi-level TLBs make sense 
as in caches!

  C: if the L1 I-cache is 64KB, whatʼs the I-TLB size?!
­  should cover the same 64KB footprint!
­  a minimum of 16 TLB entries × some safety factor (2~8)!
­  in the old days 32~64 entries; nowadays a few hundred!

  B: after accessing a page, how likely is it to access 
the next page? (coarse grain spatial locality)!
­  typically one PTE per TLB entry   !
­  MIPS stores 2 consecutive pagesʼ translations per entry!

  a: what associativity to minimize collision?!
­  in the old days, fully-associative is the norm!
­  nowadays, 2~4-way-associative is more common !     Why?!
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  Most address translation resolved in ~1 cycle in the 
TLB!

  On a TLB miss!
­  must “walk” the page table to determine translation!
­  walk usually done by HW !(MIPS walks in SW)!
­  can take 100ʼs of cycles to complete!
­  if PTE is found and page is in memory, then replace TLB 

with new PTE and continue!
­  if PTE is found but the page is on disk, then trigger “page 

fault” exception to initiate kernel handler for demand paging!
­  if PTE is not found, trigger “segmentation fault” exception to 

initiate kernel handler ! ! !What to do now?!
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EA 

TLB 
lookup 

PT walk 

update TLB 
“page fault” 

demand 
paging 

protection 
check 

PA to 
cache 

no yes 

“protection 
violation” 

~1 pclk 

~100’s  
pclk 

10 msec 

hit 

found 
no yes 

okay no yes 
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CPU 

TLB 

cache 

lower 
hier. 

physical cache 

CPU 

cache 

tlb 

lower 
hier. 

virtual (L1) cache 

VA 
PA 

CPU 

cache tlb 

lower 
hier. 

hybrid??  

VA 
PA 

VA 
PA 
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  Even with TLB, translation takes time!
  Naively, memory access time in the best case is !
! ! ! !TLB hit time + cache hit time!

  Why not access cache with virtual addresses and 
only translate on a cache miss to DRAM!
! !make sense if TLB hit time >> cache hit time!

  Virtual caches in SUN SPARC, circa 1990!
­  CPU has gotten fast enough that off-chip a SRAM access 

takes multiple cycles!
­  dies size has gotten large enough to integrate L1 caches!
­  MMU and TLB still on a separate chip!
! ! ! ! !the conditions no longer hold!
! ! ! !!
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Managing Virtual Caches: 
Synonyms and Homonyms!

  Homonyms (same sound different meaning)!
­  same EA (in different processes) points to different PAs!
­  flush virtual cache between context; or include PID in cache 

tag!
  Synonyms (different sound same meaning)!

­  different EAs (from the same or different processes) point to 
the same PA!

­  in a virtually addressed cache!
•  a PA could be cached twice under different EAs!
•  updates to one cached copy would not be reflected in the 

other cached copy!
•  solution: make sure synonyms canʼt co-exist in the 

cache, e.g., OS can forces synonyms to have the same 
index bits in a direct mapped cache!
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(a misnomer)!
  If C≤(page_size × associativity), the cache index bits 

come only from page offset (same in VA and PA)!
  If both cache and TLB are on chip!

­  index both arrays concurrently using VA bits!
­  check cache tag (physical) against TLB output at the end!

VPN PO 

TLB 

PPN 

IDX BO 

physical 
cache 

tag data = 

cache hit? Only an issue for L1 caches TLB hit? 
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  If C>(page_size × associativity), the cache index bits 
include VPN ⇒ Synonyms can cause problems!

  Solutions!
­  increase associativity!
­  increase page size!
­  page coloring!
­  MIPS R10K! VPN PO 

TLB 

PPN 

IDX BO 

physical 
cache 

tag data = 

cache hit? TLB hit? 

a 
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  32KB 2-Way Virtually-Indexed L1!
­   needs 10 bits of index and 4 bits of block offset !
­   page offset is only 12-bits  ⇒ 2 bits of index are VPN[1:0]!

  Direct-Mapped Physical L2 !!
­   L2 is inclusive of L1 !
­   VPN[1:0] is appended to the “tag” of L2!

  Given two virtual addresses VA and VB that differs in a 
and both map to the same physical address PA!
­   Suppose VA is accessed first so blocks are allocated in L1&L2!
­   What happens when VB is referenced?!

1  VB indexes to a different block in L1and misses!
2  VB translates to PA and goes to the same block as VA in L2!
3. Tag comparison fails (VA[1:0]≠VB[1:0])!
4. L2 detects that a synonym is cached in L1 ⇒ VAʼs entry in L1 

is ejected before VB is allowed to be refilled in L1!

martinez
Callout
Two VAs may have different bits in "a" and therefore map to different cache sets, yet translate into the same PA -> must force IDX to stay within PO to guarantee conflict between synonyms in the cache




