(0, Electrical & Computer CMU 18-447
ENGINEERING 509L20-1
© 2009

J. C. Hoe

18-447 Lecture 20:
Virtual Memory, Protection and Paging

James C. Hoe
Dept of ECE, CMU
April 8, 2009

Announcements: Best class ever, next Monday

Handouts: H14 HW#4 (on Blackboard), due 4/22/09
Assigned Reading
"Virtual memory in contemporary microprocessors."
B. L Jacob and T. N. Mudge. IEEE Micro, July/August 1998.
(on Blackboard)

L ENGINEERING . sosizoz
Multi-Level Caches
Titem Ty I I
- a few pclk latency
L1-I L1-D - many GB/sec (random
access)
t 1

¥

intermediate hierarchy

. is a cheaper way to
On-chip o%/ L2-Unified reduce T, then using a

off-chip? faster or bigger L1,
!
- hundreds of pclk latency
DRAM - ~GB/sec (sequential)

Remember, memory hierarchy is also about memory bandwidth

CMU 18-447

a, Electrical & Computer
) ERGiNEERING 5091203

Multi-Level Cache Design
+ Upper Hierarchies
- small C: upper-bound by SRAM access time

- smallish B: upper-bound by C/B effects and the benefits
of fine-grain spatial locality

- a: required to counter C/B effects

+ Lower Hierarchies

- large C: upper-bound by chip area (or how much you are
willing to pay of f-chip)

- large B: to reduce tag storage overhead and to take
advantage of coarse-grain spatial locality

- a: upper bound by complexity (of f-chip implementations)
Very large off-chip caches are either direct-mapped or
use on-chip tag-RAM and hit-logic
Newer on-chip L2s can be highly associative

((3, Electrical & Computer CMU 18-447
ENGINEERIN 509120-4
© 2009

Inclusion Principle

+ Traditionally, L; contents is always a subset of L.,

- if a memory location is important enough to be inL;, it must
be important enough to be inL,;,,

- external agents (I/0, other processors) only have to check
the lowest level to know if a memory location is cached---do
not need to consume L1 bandwidth

+ Nontrivial to maintain when L;,; has lower associativity

+ E.g. asingle L; miss may trigger multiple L; evictions
- suppose L, has a>1, and L,, has a=1
- suppose x, y, z have same L;index
- suppose y, z have the same L;,, index and different from x's
- suppose initially x and y are cached in L; (and hence L,,,)
- suppose a miss to z evicts x from L; according to LRU
z must evict y from L,,; due to collision
y must also be evicted from L; to maintain inclusion
New multicores tend not to maintain inclusion anymore, why?

CMU 18-447

((3 Eﬁ%‘ﬁ'ffé’ﬁfﬁ'& g%% 16;0-5
Possible Inclusion Violation

J. C. Hoe
step 1. L1 miss on z

direct mapped L2

step 2. x displaced
tol2

\X/ . 2-way set asso. L1

XY,z have same L1 idx bits
tep 3.y replaced lax bl
/S * byy"fp e y.z have the same L2 idx bits

x{y,z} have different L2 idx bits

((3, Electrical & Computer CMU 18-447
ENGINEERING 509 L20-6

2 Parts to Modern VM

J. C. Hoe

Ina multi-tasking system, VM provides each
process with the illusion of a large, private, and
uniform memory

¢ Ingredient A: Naming and Protection

- each process sees a large, contiguous memory segment
without holes ("virtual” address space is much bigger
than the available physical storage)

- each process's memory space is private, i.e. protected
from access by other processes

Ingredient B: demand paging
- capacity of secondary storage (swap space on disk)
- at the speed of primary storage (DRAM)

((a, Electrical & Computer CMU 18-447
ENGINEERING 5091207

Mechanism: Address Translation

J. C. Hoe

Protection, VM and demand paging enabled by a
common HW mechanism: address translation

User process operates on "effective” addresses

& HW translates from EA to PA on every memory
reference

- controls which physical locations (DRAM and/or swap
disk) can be named by a process

- allows dynamic relocation of physical backing store
(DRAM vs. swap disk)
Address translation HW and policies controlled by
the OS and protected from users, i.e., priviledged

((), Electrical & Computer CMU 18-447
ENGINEERING 509120-8

Evolution of Memory Protection

J. C. Hoe
+ Earliest machines did not have the concept of
protection and address translation
- no need---single process, single user
automatically "private and uniform” (but not very large)
- programs operated on physical addresses directly
cannot support multitasking protection

* Multitasking 101

- give each process a non-overlapping,
contiguous physical memory region

- everything belonging to a process
must fit in that region

- how do you keep one process from
reading or trashing another process’
data?

*(a, Electrical & Computer CMU 18-447
ENGINEERING 5091205

© 2009

Base and Bound

A process's private memory region can be defined
by
- base: starting address of the region
- bound: ending address of the region
User process issue "effective” address (EA)
between O and the size of its allocated region
private and uniform

°|PA
(]
base EA
bound
max
privileged control
registers
max’
*(), Electrical & Computer CMU 18-447
ENGINEERING $09120-10

© 2009
J. C. Hoe

Base and Bound Registers

When switching user processes, OS sets base and
bound registers

Translation and protection check in hardware on
every user memory reference
- PA=EA +base
- if (PA < bound) then okay else violation

User processes cannot be allowed to modify the
base and bound registers themselves

= requires 2 privilege levels such that the OS can

see and modify certain states that the user
cannot privileged instructions and state

CMU 18-447

a, Electrical & Computer
) ERGiNEERING 509 L2o-11

Segmented Address Space

J. C. Hoe

¢ Limitations of the base and bound scheme

- large contiguous space is hard to come by after the
system runs for a while---free space may be fragmented

- how do two processes shared some memory regions but
not others?

+ A "base&bound” pair is the unit of protection
= give user multiple memory "segments”
- each segment is a continuous region
- each segment is defined by a base and bound pair
Earliest use, separate code and data segments
- 2 sets of base-and-bound reg's for inst and data fetch
- allow processes to share read-only code segments

4}, Electrical & Computer CMU 18-447
ENGINEERING 509 L20-12

Segmented Address Translation

o EA comprise a segment number (SN) and a segment
offset (SO)

- SN may be specified explicitly or implied

- segment size limited by the range of SO

- segments can have different sizes, not all SOs are meaningful
Segment translation table

- maps SN to corresponding base and bound

- separate mapping for each process

- must be a privileged structure

SN SO

segment
table
base |bound PA

okay?

a, Electrical & Computer CMU 18-447
) ERGiNEERING 509 L20-13

Access Protections

J. C. Hoe

In addition to naming, finer-grain access protection
can be associated with each segment as extra bits in
the segment table

Generic options include

- readable?
- writeable?
- executable?
also misc. options such as cacheable? which level?

+ Normal data pages = RW(IE)

Static shared data pages = R(IW)('E)

Code pages = R(IW)E What about self modifying code?

¢ Illegal pages = (IR)(IW)('E) Why would any one want this?

((3, Electrical & Computer CMU 18-447
ENGINEERING 509 L20-14
© 2009

Another Use of Segments

+ How fo extend an old ISA to support larger
addresses for new applications while remain
compatible with old applications?

+ User-level segmented addressing
- old applications use identity mapping in table

- new applications reload segment table at run time with
"active segments” to access different regions in memory

- complications of a "non-linear" address space: dereferencing
some pointers (aka long pointers) requires more work if it is
not in an active segment

SN s0 | small EA
can be orthogonal | \/\ large
from proTecTion large” base U e

considerations

CMU 18-447

a, Electrical & Computer
) ERGiNEERING 509 L20-15

Paged Address Space

+ Divide PA and EA space into fixed size segments
known as "page frames", historically 4KByte

o EAs and PAs are interpreted as page number (PN)
and page offset (PO)

- page table translates EPN to PPN
- VPO is the same as PPO, just concatenate to PPN to get PA

EPN PO
page PPN concat PA

table protection?

4}, Electrical & Computer CMU 18-447
ENGINEERING 509 L20-16
© 2009

J. C. Hoe

Fragmentation

+ External Fragmentation

- asystem may have plenty of unallocated DRAM, but they
are useless in a segmented system if they do not form a
contiguous region of a sufficient size

- paged memory management eliminates external
fragmentation

Internal Fragmentation

- with paged memory management, a process is allocated an
entire page (4KByte) even if it only needs 4 bytes

- asmaller page size reduces likelihood for internal
fragmentation

- modern ISA are moving to larger page sizes (Mbytes) in
addition to 4KBytes

trical & Computer
) ERGiNEERING

Demand Paging

+ Use main memory and "swap” disk as automatically
managed levels in the memory hierarchies

analogous to cache vs. main memory

+ Early attempts

- von Neumann already described manual memory
hierarchies

- Brookner's interpretive coding, 1960

+ a software interpreter that managed paging between
a 40KByte main memory and a 640KByte drum

- Atlas, 1962

* hardware demand paging between a 32-page (512
word/page) main memory and 192 pages on drums

+ user program believes it has 192 pages

CMU 18-447
509 L20-17
© 2009

J. C. Hoe

rical & Computer
A EREINEERR

Demand Paging vs. Caching

#Drastically different size and time scale
= drastically different design considerations

CMU 18-447
5'09 L20-18
© 2009

J. C. Hoe

L1 Cache L2 Cache Demand Paging
Capacity 10~100KByte MByte GByte
Block size ~16 Byte ~128 Byte 4K~4M Byte
hit time a few cyc a few 10s cyc a few 100s cyc
miss penalty a few 10s cyc a few 100s cyc 10 msec
miss rate 0.1~10% ?) 0.00001~0.001%
hit handling HW HW HW
miss handling HW HW SW

Hit tfime, miss penalty and miss rate are not really
independent variablesl!!

CMU 18-447

a, Electrical & Computer
) ERGiNEERING 509 L20-19

Same Fundamentals

J. C. Hoe

+ Potentially M=2m bytes of memory, how to keep the
most frequently used ones in C bytes of fast
storage where C <« M

 Basic issues ?EAM in
(1) where to "cache” a virtual page in DRAM? . dZ,rffjf]j
(2) how to find a virtual page in DRAM? paging

(3) granularity of management
(4) when to bring a page info DRAM?
(5) which virtual page to evict from DRAM to disk
to free-up DRAM for new pages?
(5) is much better covered in an OS course
BTW, architects should take OS and compiler

((a. Electrical & Computer CMU 18-447
ENGINEERING 509 120-20

Terminology and Usage

J. C. Hoe

Physical Address
- addresses that refer directly to specific locations on
DRAM or on swap disk
+ Effective Address

- addresses emitted by user applications for data and code
accesses

- usage is most often associated with "protection”

¢ Virtual Address
- addresses in a large, linear memory seen by user app’s
often larger than DRAM and swap disk capacity

- virtual in the sense that some addresses are not backed
up by physical storage (hopefully you don't fry to use i)

- usage is most often associated with "demand paging”

Modern memory system always have both protection and
demand paging; usage of EA and VA is sometimes muddled

CMU 18-447

) ENGINEERING 2005

EA, VA and PA (IBM's view) =

EA, divided into X
fixed-size segments

PA divided intfo W pages
@»W)

v __ =

Swap disk divided into V
pages (Z>»V, V>>W)

EA, divided into X VA divided into Y segments (Y>X);
fixed-size segments also divided as Z pages (Z>Y)
~ segmented EA: ~ demand paged VA:
private, contiguous + sharing size of swap, speed of DRAM
A ENGINEERING el

009

EA, VA and PA (almost everyone else)™

—

EA,
with unique ASID=0

PA divided into W pages

/ (Z»>W)
EAi %
with unique ASID=i

Swap disk divided into V
pages (Z>»V, V>»>W)

EA and VA almost VA divided into N “address space” how do processes

synonymous indexed by ASID;
Y ym . also divided as Z pages (Z>>Y) share pages?

