
CMU 18-447
S’09 L20-1
© 2009
J. C. Hoe

18-447 Lecture 20:
Virtual Memory, Protection and Paging

James C. Hoe
Dept of ECE, CMU

April 8, 2009

Announcements: Best class ever, next Mondayy

Handouts: H14 HW#4 (on Blackboard), due 4/22/09
Assigned Reading
"Virtual memory in contemporary microprocessors."
B. L Jacob and T. N. Mudge. IEEE Micro, July/August 1998.
(on Blackboard)

CMU 18-447
S’09 L20-2
© 2009
J. C. HoeMulti-Level Caches

L1-I L1-D
- a few pclk latency

- many GB/sec (random
)

Ti=ti+mi·Ti+1

access)

L2-Unified

intermediate hierarchy
is a cheaper way to

reduce T1 then using a
faster or bigger L1,

On-chip or
off-chip?

DRAM
- hundreds of pclk latency

- ~GB/sec (sequential)

Remember, memory hierarchy is also about memory bandwidth

CMU 18-447
S’09 L20-3
© 2009
J. C. Hoe

Multi-Level Cache Design
 Upper Hierarchies

 small C: upper-bound by SRAM access time
smallish B: upper bound by C/B effects and the benefits smallish B: upper-bound by C/B effects and the benefits
of fine-grain spatial locality

 a: required to counter C/B effects
 Lower Hierarchies

 large C: upper-bound by chip area (or how much you are
willing to pay off-chip)

 large B: to reduce tag storage overhead and to take g g g
advantage of coarse-grain spatial locality

 a: upper bound by complexity (off-chip implementations)
Very large off-chip caches are either direct-mapped or
use on-chip tag-RAM and hit-logic
Newer on-chip L2s can be highly associative

CMU 18-447
S’09 L20-4
© 2009
J. C. HoeInclusion Principle

 Traditionally, Li contents is always a subset of Li+1
 if a memory location is important enough to be in Li, it must

be important enough to be in Li+1

 external agents (I/O, other processors) only have to check
th l t l l t k if l ti i h d d the lowest level to know if a memory location is cached---do
not need to consume L1 bandwidth

 Nontrivial to maintain when Li+1 has lower associativity
 E.g. a single Li miss may trigger multiple Li evictions

 suppose Li has a>1, and Li+1 has a=1
 suppose x, y, z have same Li index

 h th L i d d diff t f ’ suppose y, z have the same Li+1 index and different from x’s
 suppose initially x and y are cached in Li (and hence Li+1)
 suppose a miss to z evicts x from Li according to LRU

z must evict y from Li+1 due to collision
y must also be evicted from Li to maintain inclusion

New multicores tend not to maintain inclusion anymore, why?

CMU 18-447
S’09 L20-5
© 2009
J. C. Hoe

Possible Inclusion Violation
step 1. L1 miss on z

step 2 x displaced

direct mapped L2

x yx

y

step 2. x displaced
to L2

2-way set asso. L1
z

x,y,z have same L1 idx bits
y,z have the same L2 idx bits

x,{y,z} have different L2 idx bits

step 3. y replaced
by z

CMU 18-447
S’09 L20-6
© 2009
J. C. Hoe

2 Parts to Modern VM

 In a multi-tasking system, VM provides each
process with the illusion of a large, private, and

funiform memory

 Ingredient A: Naming and Protection
 each process sees a large, contiguous memory segment

without holes (“virtual” address space is much bigger
than the available physical storage)

h ’ i i i d each process’s memory space is private, i.e. protected
from access by other processes

 Ingredient B: demand paging
 capacity of secondary storage (swap space on disk)
 at the speed of primary storage (DRAM)

CMU 18-447
S’09 L20-7
© 2009
J. C. Hoe

Mechanism: Address Translation

 Protection, VM and demand paging enabled by a
common HW mechanism: address translation

 User process operates on “effective” addresses
 HW translates from EA to PA on every memory

reference
 controls which physical locations (DRAM and/or swap

disk) can be named by a process
 allows dynamic relocation of physical backing store

(DRAM di k)(DRAM vs. swap disk)
 Address translation HW and policies controlled by

the OS and protected from users, i.e., priviledged

CMU 18-447
S’09 L20-8
© 2009
J. C. Hoe

Evolution of Memory Protection
 Earliest machines did not have the concept of

protection and address translation
 no need---single process, single userg p g

automatically “private and uniform” (but not very large)
 programs operated on physical addresses directly

cannot support multitasking protection
 Multitasking 101

 give each process a non-overlapping,
contiguous physical memory region

active process’s everything belonging to a process
must fit in that region

 how do you keep one process from
reading or trashing another process’
data?

active process s
region

another process’s
region

CMU 18-447
S’09 L20-9
© 2009
J. C. HoeBase and Bound

 A process’s private memory region can be defined
by
 base: starting address of the region

bound: ending address of the region bound: ending address of the region
 User process issue “effective” address (EA)

between 0 and the size of its allocated region
private and uniform

 ’base

PA

EA0

0

active process’s
region

another process’s
region

base

bound
privileged control

registers

EA

max

max

CMU 18-447
S’09 L20-10
© 2009
J. C. Hoe

Base and Bound Registers
 When switching user processes, OS sets base and

bound registers

 Translation and protection check in hardware on
every user memory reference
 PA = EA + base
 if (PA < bound) then okay else violation

 User processes cannot be allowed to modify the
base and bound registers themselves
 requires 2 privilege levels such that the OS can
see and modify certain states that the user
cannot privileged instructions and state

CMU 18-447
S’09 L20-11
© 2009
J. C. Hoe

Segmented Address Space
 Limitations of the base and bound scheme

 large contiguous space is hard to come by after the
system runs for a while free space may be fragmentedsystem runs for a while---free space may be fragmented

 how do two processes shared some memory regions but
not others?

 A “base&bound” pair is the unit of protection
 give user multiple memory “segments”
 each segment is a continuous region

each segment is defined by a base and bound pair each segment is defined by a base and bound pair
 Earliest use, separate code and data segments

 2 sets of base-and-bound reg’s for inst and data fetch
 allow processes to share read-only code segments

became more elaborate later: code, data, stack, etc

CMU 18-447
S’09 L20-12
© 2009
J. C. HoeSegmented Address Translation

 EA comprise a segment number (SN) and a segment
offset (SO)
 SN may be specified explicitly or implied (code vs. data)
 segment size limited by the range of SO
 segments can have different sizes, not all SOs are meaningful

 Segment translation table
 maps SN to corresponding base and bound
 separate mapping for each process
 must be a privileged structure

SN SO

segment
table

+,<base bound PA,
okay?how to change mapping

when swapping processes?

CMU 18-447
S’09 L20-13
© 2009
J. C. Hoe

Access Protections
 In addition to naming, finer-grain access protection

can be associated with each segment as extra bits in
the segment tablethe segment table

 Generic options include
 readable?
 writeable?
 executable?

also misc. options such as cacheable? which level?
 Normal data pages RW(!E) Normal data pages RW(!E)
 Static shared data pages R(!W)(!E)
 Code pages R(!W)E What about self modifying code?
 Illegal pages (!R)(!W)(!E) Why would any one want this?

CMU 18-447
S’09 L20-14
© 2009
J. C. HoeAnother Use of Segments

 How to extend an old ISA to support larger
addresses for new applications while remain
compatible with old applications?
U l l t d dd i User-level segmented addressing
 old applications use identity mapping in table
 new applications reload segment table at run time with

“active segments” to access different regions in memory
 complications of a “non-linear” address space: dereferencing

some pointers (aka long pointers) requires more work if it is
not in an active segment

SN SO

“large” base large
EA

small EA

can be orthogonal
from protection
considerations

CMU 18-447
S’09 L20-15
© 2009
J. C. Hoe

Paged Address Space
 Divide PA and EA space into fixed size segments

known as “page frames”, historically 4KByte
E d P d b (PN) EAs and PAs are interpreted as page number (PN)
and page offset (PO)
 page table translates EPN to PPN
 VPO is the same as PPO, just concatenate to PPN to get PA

EPN PO

page
table

concat PAPPN
protection?actual table

is much more
complicated than this

CMU 18-447
S’09 L20-16
© 2009
J. C. Hoe

Fragmentation

 External Fragmentation
 a system may have plenty of unallocated DRAM, but they

 l i d if h d f are useless in a segmented system if they do not form a
contiguous region of a sufficient size

 paged memory management eliminates external
fragmentation

 Internal Fragmentation
 with paged memory management a process is allocated an with paged memory management, a process is allocated an

entire page (4KByte) even if it only needs 4 bytes
 a smaller page size reduces likelihood for internal

fragmentation
 modern ISA are moving to larger page sizes (Mbytes) in

addition to 4KBytes Why?

CMU 18-447
S’09 L20-17
© 2009
J. C. Hoe

Demand Paging

 Use main memory and “swap” disk as automatically
managed levels in the memory hierarchies

analogous to cache vs. main memory
 Early attempts

 von Neumann already described manual memory
hierarchies

 Brookner’s interpretive coding, 1960
• a software interpreter that managed paging between

 40KB i d 640KB da 40KByte main memory and a 640KByte drum
 Atlas, 1962

• hardware demand paging between a 32-page (512
word/page) main memory and 192 pages on drums

• user program believes it has 192 pages

CMU 18-447
S’09 L20-18
© 2009
J. C. Hoe

Demand Paging vs. Caching

Drastically different size and time scale
 drastically different design considerationsy g

L1 Cache L2 Cache Demand Paging
Capacity 10~100KByte MByte GByte
Block size ~16 Byte ~128 Byte 4K~4M Byte
hit time a few cyc a few 10s cyc a few 100s cyc
miss penalty a few 10s cyc a few 100s cyc 10 msec
miss rate 0.1~10% (?) 0.00001~0.001%

hit handling HW HW HW
miss handling HW HW SW

Hit time, miss penalty and miss rate are not really
independent variables!!

CMU 18-447
S’09 L20-19
© 2009
J. C. Hoe

Same Fundamentals

 Potentially M=2m bytes of memory, how to keep the
most frequently used ones in C bytes of fast

 h storage where C << M
 Basic issues

(1) where to “cache” a virtual page in DRAM?
(2) how to find a virtual page in DRAM?
(3) granularity of management
(4) when to bring a page into DRAM?

DRAM in
the case

of demand
paging

(4) when to bring a page into DRAM?
(5) which virtual page to evict from DRAM to disk
to free-up DRAM for new pages?

(5) is much better covered in an OS course
BTW, architects should take OS and compiler

CMU 18-447
S’09 L20-20
© 2009
J. C. HoeTerminology and Usage

 Physical Address
 addresses that refer directly to specific locations on

DRAM or on swap disk
 Effective Address

 addresses emitted by user applications for data and code
accesses

 usage is most often associated with “protection”
 Virtual Address

 addresses in a large, linear memory seen by user app’s
f l h d d k often larger than DRAM and swap disk capacity

 virtual in the sense that some addresses are not backed
up by physical storage (hopefully you don’t try to use it)

 usage is most often associated with “demand paging”
Modern memory system always have both protection and

demand paging; usage of EA and VA is sometimes muddled

CMU 18-447
S’09 L20-21
© 2009
J. C. HoeEA, VA and PA (IBM’s view)

EA0 divided into X
fixed-size segments

PA divided into W pages
(Z>>W)

EA1 divided into X
fixed-size segments

VA divided into Y segments (Y>>X);

segmented EA:
private, contiguous + sharing

Swap disk divided into V
pages (Z>>V, V>>W)

demand paged VA:
size of swap, speed of DRAM

also divided as Z pages (Z>>Y)

CMU 18-447
S’09 L20-22
© 2009
J. C. HoeEA, VA and PA (almost everyone else)

PA divided into W pages
(Z>>W)

EA0
with unique ASID=0

Swap disk divided into V
pages (Z>>V, V>>W)

VA divided into N “address space”
indexed by ASID;

also divided as Z pages (Z>>Y)

EAi
with unique ASID=i

EA and VA almost
synonymous how do processes

share pages?

