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18-447 Lecture 20:
Virtual Memory, Protection and Paging

James C. Hoe
Dept of ECE, CMU

April 8, 2009

Announcements: Best class ever, next Mondayy

Handouts: H14 HW#4 (on Blackboard), due 4/22/09
**Assigned Reading**
"Virtual memory in contemporary microprocessors." 
B. L Jacob and T. N. Mudge. IEEE Micro, July/August 1998.
(on Blackboard)
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L1-I L1-D
- a few pclk latency

- many GB/sec (random 
)

Ti=ti+mi·Ti+1

access)

L2-Unified

intermediate hierarchy  
is a cheaper way to 

reduce T1 then using a 
faster or bigger L1,

On-chip or
off-chip?

DRAM
- hundreds of pclk latency

- ~GB/sec (sequential)

Remember, memory hierarchy is also about memory bandwidth
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Multi-Level Cache Design
 Upper Hierarchies

 small C: upper-bound by SRAM access time
smallish B: upper bound by C/B effects and the benefits  smallish B: upper-bound by C/B effects and the benefits 
of fine-grain spatial locality

 a: required to counter C/B effects
 Lower Hierarchies

 large C: upper-bound by chip area (or how much you are 
willing to pay off-chip)

 large B: to reduce tag storage overhead and to take g g g
advantage of coarse-grain spatial locality

 a: upper bound by complexity (off-chip implementations)
Very large off-chip caches are either direct-mapped or 
use on-chip tag-RAM and hit-logic
Newer on-chip L2s can be highly associative
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 Traditionally, Li contents is always a subset of Li+1
 if a memory location is important enough to be in Li, it must 

be important enough to be in Li+1

 external agents (I/O, other processors) only have to check 
th  l t l l t  k  if   l ti  i  h d d  the lowest level to know if a memory location is cached---do 
not need to consume L1 bandwidth

 Nontrivial to maintain when Li+1 has lower associativity
 E.g. a single Li miss may trigger multiple Li evictions

 suppose Li has a>1, and Li+1 has a=1
 suppose x, y, z have same Li index

 h  th   L i d  d diff t f  ’ suppose y, z have the same Li+1 index and different from x’s
 suppose initially x and y are cached in Li (and hence Li+1)
 suppose a miss to z evicts x from Li according to LRU

z must evict y from Li+1 due to collision
y must also be evicted from Li to maintain inclusion

New multicores tend not to maintain inclusion anymore, why?
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Possible Inclusion Violation
step 1. L1 miss on z

step 2  x displaced

direct mapped L2

x yx

y

step 2. x displaced
to L2

2-way set asso. L1
z

x,y,z have same L1 idx bits
y,z have the same L2 idx bits

x,{y,z} have different L2 idx bits

step 3. y replaced 
by z
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2 Parts to Modern VM 

 In a multi-tasking system, VM provides each 
process with the illusion of a large, private, and 

funiform memory

 Ingredient A: Naming and Protection
 each process sees a large, contiguous memory segment 

without holes (“virtual” address space is much bigger 
than the available physical storage)

h ’    i  i  i  d  each process’s memory space is private, i.e. protected 
from access by other processes

 Ingredient B: demand paging
 capacity of secondary storage (swap space on disk)
 at the speed of primary storage (DRAM)
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Mechanism: Address Translation 

 Protection, VM and demand paging enabled by a 
common HW mechanism: address translation

 User process operates on “effective” addresses
 HW translates from EA to PA on every memory 

reference
 controls which physical locations (DRAM and/or swap 

disk) can be named by a process
 allows dynamic relocation of physical backing store 

(DRAM   di k)(DRAM vs. swap disk)
 Address translation HW and policies controlled by 

the OS and protected from users, i.e., priviledged
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Evolution of Memory Protection
 Earliest machines did not have the concept of 

protection and address translation
 no need---single process, single userg p g

automatically “private and uniform” (but not very large)
 programs operated on physical addresses directly

cannot support multitasking protection
 Multitasking 101

 give each process a non-overlapping, 
contiguous physical memory region

active process’s everything belonging to a process 
must fit in that region

 how do you keep one process from
reading or trashing another process’
data?

active process s
region

another process’s
region
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 A process’s private memory region can be defined 
by
 base: starting address of the region

bound: ending address of the region  bound: ending address of the region 
 User process issue “effective” address (EA) 

between 0 and the size of its allocated region 
private and uniform

 ’base

PA

EA0

0

active process’s
region

another process’s
region

base

bound
privileged control

registers

EA

max

max
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Base and Bound Registers
 When switching user processes, OS sets base and 

bound registers

 Translation and protection check in hardware on 
every user memory reference
 PA = EA + base
 if (PA < bound) then okay else violation

 User processes cannot be allowed to modify the 
base and bound registers themselves
 requires 2 privilege levels such that the OS can 
see and modify certain states that the user 
cannot privileged instructions and state
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Segmented Address Space
 Limitations of the base and bound scheme

 large contiguous space is hard to come by after the 
system runs for a while free space may be fragmentedsystem runs for a while---free space may be fragmented

 how do two processes shared some memory regions but 
not others?

 A “base&bound” pair is the unit of protection
 give user multiple memory “segments”
 each segment is a continuous region

each segment is defined by a base and bound pair each segment is defined by a base and bound pair
 Earliest use, separate code and data segments

 2 sets of base-and-bound reg’s for inst and data fetch
 allow processes to share read-only code segments

became more elaborate later: code, data, stack, etc
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 EA comprise a segment number (SN) and a segment 
offset (SO)
 SN may be specified explicitly or implied (code vs. data)
 segment size limited by the range of SO
 segments can have different sizes, not all SOs are meaningful

 Segment translation table
 maps SN to corresponding base and bound
 separate mapping for each process
 must be a privileged structure

SN SO

segment
table

+,<base bound PA,
okay?how to change mapping

when swapping processes?
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Access Protections
 In addition to naming, finer-grain access protection 

can be associated with each segment as extra bits in 
the segment tablethe segment table

 Generic options include
 readable?
 writeable?
 executable?

also misc. options such as cacheable? which level?
 Normal data pages  RW(!E) Normal data pages  RW(!E)
 Static shared data pages  R(!W)(!E)
 Code pages  R(!W)E What about self modifying code?
 Illegal pages  (!R)(!W)(!E)   Why would any one want this?
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 How to extend an old ISA to support larger 
addresses for new applications while remain 
compatible with old applications?
U l l t d dd i User-level segmented addressing
 old applications use identity mapping in table
 new applications reload segment table at run time with 

“active segments” to access different regions in memory
 complications of a “non-linear” address space: dereferencing 

some pointers (aka long pointers) requires more work if it is 
not in an active segment

SN SO

“large” base large
EA

small EA

can be orthogonal 
from protection
considerations
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Paged Address Space
 Divide PA and EA space into fixed size segments 

known as “page frames”, historically 4KByte
E  d P   d   b  (PN)  EAs and PAs are interpreted as page number (PN) 
and page offset (PO)
 page table translates EPN to PPN
 VPO is the same as PPO, just concatenate to PPN to get PA

EPN PO

page
table

concat PAPPN
protection?actual table

is much more 
complicated than this
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Fragmentation

 External Fragmentation
 a system may have plenty of unallocated DRAM, but they 

 l  i   d  if h  d   f   are useless in a segmented system if they do not form a 
contiguous region of a sufficient size

 paged memory management eliminates external 
fragmentation

 Internal Fragmentation
 with paged memory management  a process is allocated an with paged memory management, a process is allocated an 

entire page (4KByte) even if it only needs 4 bytes
 a smaller page size reduces likelihood for internal 

fragmentation
 modern ISA are moving to larger page sizes (Mbytes) in 

addition to 4KBytes Why? 



CMU 18-447
S’09 L20-17
© 2009
J. C. Hoe

Demand Paging

 Use main memory and “swap” disk as automatically 
managed levels in the memory hierarchies

analogous to cache vs. main memory
 Early attempts 

 von Neumann already described manual memory 
hierarchies

 Brookner’s interpretive coding, 1960
• a software interpreter that managed paging between 

 40KB  i   d  640KB  da 40KByte main memory and a 640KByte drum
 Atlas, 1962

• hardware demand paging between a 32-page (512 
word/page) main memory and 192 pages on drums

• user program believes it has 192 pages
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Demand Paging vs. Caching

Drastically different size and time scale 
 drastically different design considerationsy g

L1 Cache L2 Cache Demand Paging
Capacity 10~100KByte MByte GByte
Block size ~16 Byte ~128 Byte 4K~4M Byte
hit time a few cyc a few 10s cyc a few 100s cyc
miss penalty a few 10s cyc a few 100s cyc 10 msec
miss rate 0.1~10% (?) 0.00001~0.001%

hit handling HW HW HW
miss handling HW HW SW

Hit time, miss penalty and miss rate are not really 
independent variables!!
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Same Fundamentals

 Potentially M=2m bytes of memory, how to keep the 
most frequently used ones in C bytes of fast 

 h    storage where C << M
 Basic issues

(1) where to “cache” a virtual page in DRAM? 
(2) how to find a virtual page in DRAM?
(3) granularity of management
(4) when to bring a page into DRAM? 

DRAM in
the case

of demand
paging

(4) when to bring a page into DRAM? 
(5) which virtual page to evict from DRAM to disk 
to free-up DRAM for new pages?

(5) is much better covered in an OS course
BTW, architects should take OS and compiler
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 Physical Address
 addresses that refer directly to specific locations on 

DRAM or on swap disk
 Effective Address

 addresses emitted by user applications for data and code 
accesses

 usage is most often associated with “protection”
 Virtual Address

 addresses in a large, linear memory seen by user app’s
f  l  h   d  d k  often larger than DRAM and swap disk capacity 

 virtual in the sense that some addresses are not backed 
up by physical storage (hopefully you don’t try to use it)

 usage is most often associated with “demand paging”
Modern memory system always have both protection and 

demand paging; usage of EA and VA is sometimes muddled
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EA0 divided into X 
fixed-size segments

PA divided into W pages 
(Z>>W)

EA1 divided into X 
fixed-size segments

VA divided into Y segments (Y>>X); 

segmented EA:
private, contiguous + sharing

Swap disk divided into V 
pages (Z>>V, V>>W)

demand paged VA:
size of swap, speed of DRAM

also divided as Z pages (Z>>Y)
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PA divided into W pages 
(Z>>W)

EA0
with unique ASID=0

Swap disk divided into V 
pages (Z>>V, V>>W)

VA divided into N “address space”
indexed by ASID;

also divided as Z pages (Z>>Y)

EAi
with unique ASID=i

EA and VA almost
synonymous how do processes 

share pages?


