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18-447 Lecture 17:
Memory Hierarchy: Cache Design

James C. Hoe
Dept of ECE, CMU
March 24, 2009

Announcements: Project 3 is due
Midterm 2 is coming

Handouts: Practice Midterm 2 solutions
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The problem (recap)

Potentially M=2m bytes of memory, how to keep 
the most frequently used ones in C bytes of fast 
storage where C << M
Basic issues (intertwined)
(1) where to “cache” a memory location? 
(2) how to find a cached memory location?
(3) granularity of management: large, small, uniform?
(4) when to bring a memory location into cache? 
(5) which cached memory location to evict to free-up 

space?
Optimizations
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Basic Operation
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Ans to (4): memory location brought
into cache “on-demand”. What about prefetch?
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Direct-Mapped Cache (v1)
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For each cache block of G bytes, must also store 
additional “t+1” bits  where t=lg2M−lg2(C)
­ if M=232, G=4, C=16K=214

⇒ t=18 bits for each 4-byte block
60% storage overhead
16KB cache really needs 25.5KB of SRAM

Solution: let multiple G-byte words share a 
common tag
­ each B-byte block holds B/G words
­ if M=232, B=16, G=4, C=16K
⇒ t=18 bits for each 16-byte block 

15% storage overhead
16KB cache needs 18.4KB of SRAM

15% of 16KB is small, 15% of 1MB is 152KB
⇒ larger block size for lower/larger hierarchies
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Direct-Mapped Cache (final)
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Direct-Mapped Cache
C bytes of storage divided into C/B blocks
A block of memory is mapped to one particular 
cache block according the address’ block index field
All addresses with the same block index field map 
to the same cache block
­ 2t such addresses; can cache only one such block at a time
­ even if C > working set size, collision is possible
­ given 2 random addresses, chance for collision is 1/(C/B)

Notice likelihood for collision decreases with increasing
number of cache blocks (C/B)
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Block Size and mi

Bytes that share a common tag are all-in or all-out
Loading a multi-word block at a time has the 
effect of prefetching for spatial locality
­ pay miss penalty only once per block
­ works especially well in instruction caches
­ effective up to the limit of spatial locality

But, increasing block size (while holding C
constant)
­ reduces the number of blocks 
­ increases possibility for collision
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Block Size and Ti+1

Loading a large block can increase Ti+1
­ if I want the last word on a block, I have to wait for the 

entire block to be loaded
solution 1 critical-word first reload
­ Li+1 returns the requested word first then rotate around 

the complete block
­ supply requested word to pipeline as soon as available

solution 2: sub-blocking
­ individual valid bits for different sub-blocks
­ reload only requested sub-block on demand
­ note: all sub-blocks stall share common tag

tag v s-block0 v s-block1 v s-block2
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Test yourself: What is wrong with this?
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C/B-by-B bytes
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Direct-Mapped Cache (double check)
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“a”-way Set Associative Cache
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“a”-way Set-Associative Cache
C bytes of storage divided into a banks each with 
C/a/B blocks
Requires a comparators and a-to-1 multiplexer
An address is mapped to a particular block in a bank 
according its block index field, but there are a such 
banks (together known as a “set”)
All addresses with the same block index field map 
to a common “set” of cache blocks
­ 2t such addresses; can cache a such blocks at a time
­ if C > working set size

higher-degree of associatively ⇒ fewer collisions
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Associative Caches
A new cache block can evict any of the cached 
memory block in the same set, which one?
­ pick the one that is least recently used (LRU)

simple function for a=2, complicated for a>2
­ pick any one except the most recently used
­ pick the most recently used one
­ pick one based on some part of the address bits
­ pick the one that you will need again furthest in the 

future 
­ pick a (pseudo) random one

Replacement policy only has second-order effect
­ if you actively use less than a blocks in a set, any sensible 

replacement policy will quickly converge
­ if you actively use more than a blocks in a set, no 

replacement policy can help you
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e.g MIPS R10K 2-way L2
a-way associativity is a placement policy
­ it says an address could be mapped to a different locations 

in the cache
­ *** it doesn’t say lookups must be done in parallel banks

Pseudo a-way associativity:
­ given a direct-mapped array with C/B cache blocks
­ implement C/B/a sets
­ given an address A, sequentially search:
­ {0, A[lg(C/B/a)-1: lg(B)]}, {1, A[lg(C/B/a)-1: lg(B)]}, …

{a-1, A[lg(C/B/a)-1: lg(B)]} 
­ Optimization: record the most recently used way (MRU) to 

look up first

How does this compare with true associative caches?
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Fully Associative Cache: a≡C/B

1-by-B bytes
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A “content-addressable” memory
­ not your regular SRAM
­ present a tag, return the block with matching tag, or else 

miss
­ no index bits used in lookup

Any address can go into any of the C/B blocks
­ if C > working set size, no collisions

Requires 1 comparator per cache block, a huge 
multiplexer, and many long wires
­ considered exorbitantly expensive/difficult for more than 

32~64 blocks at L1 latencies. 
Fortunately, there is little reason 
for very large fully associative caches. 
For any reasonably large values of 
C/B, a=4~5 is as good as a=C/B for 
typical programs
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Recap: Basic Cache Parameters
Let M = 2m be the size of the address space in 
bytes

sample values:  232, 264

Let G=2g be the cache access granularity in bytes
sample values:  4, 8

Let C be the “capacity” of the cache in bytes
sample values:  16 KBytes (L1), 1 MByte (L2)

Let B = 2b be the “block size” of the cache in 
bytes

sample values: 16 (L1), >64 (L2)
Let a be the “associativity” of the cache

sample values: 1, 2, 4, 5(?),... “C/B”
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lg2M -bit address

byte offset: lg
2 G bits

B.O.

block offset: 

lg
2 (B/G) bits 

index

block index:

lg
2 ((C/a)/B)  bits 

tag: lg
2 M

 − lg
2 (C/a) bits 

tag
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C=_______, B=_______, a=_______
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Compulsory miss (design factor: B and prefetch)
­ first reference to an address (block) always results in a 

miss
­ subsequent references should hit unless the cache block is 

displaced for the reasons below
dominates when locality is poor

Capacity miss (design factor: C)
­ cache is too small to hold everything needed
­ defined as the misses that would occur even in an fully-

associative cache of the same capacity
dominates when C < W

Conflict miss (design factor: a)
­ data displaced by collision under direct-mapped or set-

associative allocation
­ defined as any miss that is neither a compulsory nor a 

capacity miss dominates when C≈W or when C/B is small
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Compulsory miss (design factor: B and prefetch)
­ first reference to an address (block) always results in a 

miss
­ subsequent references should hit unless the cache block 

is displaced for the reasons below
dominates when locality is poor
­ for example, in a “streaming” data access pattern where 

many addresses are visited, but each is visited exactly 
once little reuse to amortize this cost
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Capacity miss (design factor: C)
­ cache is too small to hold everything needed
­ defined as the misses that would occur even in an fully-

associative cache of the same capacity
dominates when C < W
­ for example, the L1 cache can never be made big enough 

due to cycle-time tradeoff
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Conflict miss (design factor: a)
­ data displaced by collision under direct-mapped or set-

associative allocation
­ defined as any miss that is neither a compulsory nor a 

capacity miss
dominates when C≈W or when C/B is small
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