
CMU 18-447
S’09 L17-1
© 2009
J. C. Hoe

18-447 Lecture 17:
Memory Hierarchy: Cache Design

James C. Hoe
Dept of ECE, CMU
March 24, 2009

Announcements: Project 3 is due
Midterm 2 is coming

Handouts: Practice Midterm 2 solutions

CMU 18-447
S’09 L17-2
© 2009
J. C. Hoe

The problem (recap)

Potentially M=2m bytes of memory, how to keep
the most frequently used ones in C bytes of fast
storage where C << M
Basic issues (intertwined)
(1) where to “cache” a memory location?
(2) how to find a cached memory location?
(3) granularity of management: large, small, uniform?
(4) when to bring a memory location into cache?
(5) which cached memory location to evict to free-up

space?
Optimizations

CMU 18-447
S’09 L17-3
© 2009
J. C. Hoe

Basic Operation

hit?

cache
lookup

return
data

data

address

yes

evict old
to Li+1

yesoccupied?
no

fetch new
from Li+1

update
cache

Ans to (4): memory location brought
into cache “on-demand”. What about prefetch?

(2)

choose
locationno

(1, 3, 5)

CMU 18-447
S’09 L17-4
© 2009
J. C. Hoe

Direct-Mapped Cache (v1)

Data Bank

C/G lines
by

G bytes

let t= lg2M−lg2(C)

tag idx g

G bytes

data

=

Tag Bank

C/G lines
by

t bits

hit?

t bits

t bits

lg2(C/G)
bits va

lid

What about writes?

lg2M-bit address

CMU 18-447
S’09 L17-5
© 2009
J. C. HoeStorage Overhead

For each cache block of G bytes, must also store
additional “t+1” bits where t=lg2M−lg2(C)
­ if M=232, G=4, C=16K=214

⇒ t=18 bits for each 4-byte block
60% storage overhead
16KB cache really needs 25.5KB of SRAM

Solution: let multiple G-byte words share a
common tag
­ each B-byte block holds B/G words
­ if M=232, B=16, G=4, C=16K
⇒ t=18 bits for each 16-byte block

15% storage overhead
16KB cache needs 18.4KB of SRAM

15% of 16KB is small, 15% of 1MB is 152KB
⇒ larger block size for lower/larger hierarchies

CMU 18-447
S’09 L17-6
© 2009
J. C. Hoe

Direct-Mapped Cache (final)

Data Bank

C/B-by-B bytes

let t= lg2M−lg2(C)

tag idx bo g

B bytes

G bytes

data

=

Tag Bank

C/B-by-t bits

hit?

t bits

t bitslg2(B/G)
bits

lg2(C/B)
bits va

lid

lg2M-bit address

CMU 18-447
S’09 L17-7
© 2009
J. C. Hoe

Direct-Mapped Cache
C bytes of storage divided into C/B blocks
A block of memory is mapped to one particular
cache block according the address’ block index field
All addresses with the same block index field map
to the same cache block
­ 2t such addresses; can cache only one such block at a time
­ even if C > working set size, collision is possible
­ given 2 random addresses, chance for collision is 1/(C/B)

Notice likelihood for collision decreases with increasing
number of cache blocks (C/B)

hi
t

ra
te

100%

working
set size (W)

C

CMU 18-447
S’09 L17-8
© 2009
J. C. Hoe

Block Size and mi

Bytes that share a common tag are all-in or all-out
Loading a multi-word block at a time has the
effect of prefetching for spatial locality
­ pay miss penalty only once per block
­ works especially well in instruction caches
­ effective up to the limit of spatial locality

But, increasing block size (while holding C
constant)
­ reduces the number of blocks
­ increases possibility for collision

hi
t

ra
te

B

CMU 18-447
S’09 L17-9
© 2009
J. C. Hoe

Block Size and Ti+1

Loading a large block can increase Ti+1
­ if I want the last word on a block, I have to wait for the

entire block to be loaded
solution 1 critical-word first reload
­ Li+1 returns the requested word first then rotate around

the complete block
­ supply requested word to pipeline as soon as available

solution 2: sub-blocking
­ individual valid bits for different sub-blocks
­ reload only requested sub-block on demand
­ note: all sub-blocks stall share common tag

tag v s-block0 v s-block1 v s-block2

CMU 18-447
S’09 L17-10
© 2009
J. C. Hoe

Test yourself: What is wrong with this?

Data Bank

C/B-by-B bytes

let t= lg2M−lg2(C)

idxbo g

B bytes

G bytes

data

=

Tag Bank

C/B-by-t bits

hit?

t bits

t bitslg2(B/G)
bits

lg2(C/B)
bits

va
lid

tag

CMU 18-447
S’09 L17-11
© 2009
J. C. Hoe

Direct-Mapped Cache (double check)

Data Bank

2kC/B-by-
B/2k bytes

let t= lg2M−lg2(C)

tag idx bo g

B/2k bytes

G bytes

data

=

Tag Bank
C/B-by-t bits

hit?

t bits

t bitslg2(B/G)-k
bits

lg2(C/B)+k
bits

va
lid

CMU 18-447
S’09 L17-12
© 2009
J. C. Hoe

“a”-way Set Associative Cache

Data

C/a/B
by

B bytes

t= lg2M−lg2(C/a)

tag idx bo g

data

=

Tag

C/a/B
by

t bits

va
lid

Data

C/a/B
by

B bytes

=

Tag

C/a/B
by

t bits

va
lid

C/a byte
direct-mapped

a banks

hit?

tristate mux bus

CMU 18-447
S’09 L17-13
© 2009
J. C. Hoe

“a”-way Set-Associative Cache
C bytes of storage divided into a banks each with
C/a/B blocks
Requires a comparators and a-to-1 multiplexer
An address is mapped to a particular block in a bank
according its block index field, but there are a such
banks (together known as a “set”)
All addresses with the same block index field map
to a common “set” of cache blocks
­ 2t such addresses; can cache a such blocks at a time
­ if C > working set size

higher-degree of associatively ⇒ fewer collisions

CMU 18-447
S’09 L17-14
© 2009
J. C. HoeReplacement Policy for Set

Associative Caches
A new cache block can evict any of the cached
memory block in the same set, which one?
­ pick the one that is least recently used (LRU)

simple function for a=2, complicated for a>2
­ pick any one except the most recently used
­ pick the most recently used one
­ pick one based on some part of the address bits
­ pick the one that you will need again furthest in the

future
­ pick a (pseudo) random one

Replacement policy only has second-order effect
­ if you actively use less than a blocks in a set, any sensible

replacement policy will quickly converge
­ if you actively use more than a blocks in a set, no

replacement policy can help you

CMU 18-447
S’09 L17-15
© 2009
J. C. HoePseudo-Associativity:

e.g MIPS R10K 2-way L2
a-way associativity is a placement policy
­ it says an address could be mapped to a different locations

in the cache
­ *** it doesn’t say lookups must be done in parallel banks

Pseudo a-way associativity:
­ given a direct-mapped array with C/B cache blocks
­ implement C/B/a sets
­ given an address A, sequentially search:
­ {0, A[lg(C/B/a)-1: lg(B)]}, {1, A[lg(C/B/a)-1: lg(B)]}, …

{a-1, A[lg(C/B/a)-1: lg(B)]}
­ Optimization: record the most recently used way (MRU) to

look up first

How does this compare with true associative caches?

CMU 18-447
S’09 L17-16
© 2009
J. C. Hoe

Fully Associative Cache: a≡C/B

1-by-B bytes

let t=lg2M−lg2(B)

tag bo g

data

1-by-t bits
t bits

v
=

1-by-B bytes1-by-t bits v
=

1-by-B bytes1-by-t bits v
=

C/
B

bl
oc

ks

hit?

CMU 18-447
S’09 L17-17
© 2009
J. C. HoeFully Associative Cache: a≡C/B

A “content-addressable” memory
­ not your regular SRAM
­ present a tag, return the block with matching tag, or else

miss
­ no index bits used in lookup

Any address can go into any of the C/B blocks
­ if C > working set size, no collisions

Requires 1 comparator per cache block, a huge
multiplexer, and many long wires
­ considered exorbitantly expensive/difficult for more than

32~64 blocks at L1 latencies.
Fortunately, there is little reason
for very large fully associative caches.
For any reasonably large values of
C/B, a=4~5 is as good as a=C/B for
typical programs

hi
t r

at
e

?

a

~5

CMU 18-447
S’09 L17-18
© 2009
J. C. Hoe

Recap: Basic Cache Parameters
Let M = 2m be the size of the address space in
bytes

sample values: 232, 264

Let G=2g be the cache access granularity in bytes
sample values: 4, 8

Let C be the “capacity” of the cache in bytes
sample values: 16 KBytes (L1), 1 MByte (L2)

Let B = 2b be the “block size” of the cache in
bytes

sample values: 16 (L1), >64 (L2)
Let a be the “associativity” of the cache

sample values: 1, 2, 4, 5(?),... “C/B”

IS
A

Im
pl

em
en

ta
ti

on

CMU 18-447
S’09 L17-19
© 2009
J. C. HoeRecap: Address Fields

lg2M -bit address

byte offset: lg
2 G bits

B.O.

block offset:

lg
2 (B/G) bits

index

block index:

lg
2 ((C/a)/B) bits

tag: lg
2 M

 − lg
2 (C/a) bits

tag

CMU 18-447
S’09 L17-20
© 2009
J. C. HoeRecap: M=32, G=_______,

C=_______, B=_______, a=_______

CMU 18-447
S’09 L17-21
© 2009
J. C. HoeClassification of Cache Misses

Compulsory miss (design factor: B and prefetch)
­ first reference to an address (block) always results in a

miss
­ subsequent references should hit unless the cache block is

displaced for the reasons below
dominates when locality is poor

Capacity miss (design factor: C)
­ cache is too small to hold everything needed
­ defined as the misses that would occur even in an fully-

associative cache of the same capacity
dominates when C < W

Conflict miss (design factor: a)
­ data displaced by collision under direct-mapped or set-

associative allocation
­ defined as any miss that is neither a compulsory nor a

capacity miss dominates when C≈W or when C/B is small

CMU 18-447
S’09 L17-22
© 2009
J. C. HoeClassification of Cache Misses

Compulsory miss (design factor: B and prefetch)
­ first reference to an address (block) always results in a

miss
­ subsequent references should hit unless the cache block

is displaced for the reasons below
dominates when locality is poor
­ for example, in a “streaming” data access pattern where

many addresses are visited, but each is visited exactly
once little reuse to amortize this cost

hi
t r

at
e

B

CMU 18-447
S’09 L17-23
© 2009
J. C. HoeClassification of Cache Misses

Capacity miss (design factor: C)
­ cache is too small to hold everything needed
­ defined as the misses that would occur even in an fully-

associative cache of the same capacity
dominates when C < W
­ for example, the L1 cache can never be made big enough

due to cycle-time tradeoff
hi

t r
at

e

100%

working
set size (W)

C

CMU 18-447
S’09 L17-24
© 2009
J. C. HoeClassification of Cache Misses

Conflict miss (design factor: a)
­ data displaced by collision under direct-mapped or set-

associative allocation
­ defined as any miss that is neither a compulsory nor a

capacity miss
dominates when C≈W or when C/B is small

hi
t r

at
e

?

a

~5

