
CMU 18-447
S’09 L17-1
© 2009
J. C. Hoe

18-447 Lecture 17:
Memory Hierarchy: Cache Design

James C. Hoe
Dept of ECE, CMU
March 24, 2009

Announcements: Project 3 is due
Midterm 2 is coming

Handouts: Practice Midterm 2 solutions

CMU 18-447
S’09 L17-2
© 2009
J. C. Hoe

The problem (recap)

Potentially M=2m bytes of memory, how to keep 
the most frequently used ones in C bytes of fast 
storage where C << M
Basic issues (intertwined)
(1) where to “cache” a memory location? 
(2) how to find a cached memory location?
(3) granularity of management: large, small, uniform?
(4) when to bring a memory location into cache? 
(5) which cached memory location to evict to free-up 

space?
Optimizations



CMU 18-447
S’09 L17-3
© 2009
J. C. Hoe

Basic Operation

hit?

cache
lookup

return
data

data

address

yes

evict old
to Li+1

yesoccupied?
no

fetch new
from Li+1

update
cache

Ans to (4): memory location brought
into cache “on-demand”. What about prefetch?

(2)

choose
locationno

(1, 3, 5)

CMU 18-447
S’09 L17-4
© 2009
J. C. Hoe

Direct-Mapped Cache (v1)

Data Bank

C/G lines
by

G bytes

let t= lg2M−lg2(C) 

tag idx g

G bytes

data

=

Tag Bank

C/G lines
by

t bits

hit?

t bits

t bits

lg2(C/G)
bits va

lid

What about writes?

lg2M-bit address



CMU 18-447
S’09 L17-5
© 2009
J. C. HoeStorage Overhead

For each cache block of G bytes, must also store 
additional “t+1” bits  where t=lg2M−lg2(C)
 if M=232, G=4, C=16K=214

⇒ t=18 bits for each 4-byte block
60% storage overhead
16KB cache really needs 25.5KB of SRAM

Solution: let multiple G-byte words share a 
common tag
 each B-byte block holds B/G words
 if M=232, B=16, G=4, C=16K
⇒ t=18 bits for each 16-byte block 

15% storage overhead
16KB cache needs 18.4KB of SRAM

15% of 16KB is small, 15% of 1MB is 152KB
⇒ larger block size for lower/larger hierarchies

CMU 18-447
S’09 L17-6
© 2009
J. C. Hoe

Direct-Mapped Cache (final)

Data Bank

C/B-by-B bytes

let t= lg2M−lg2(C) 

tag idx bo g

B bytes

G bytes

data

=

Tag Bank

C/B-by-t bits

hit?

t bits

t bitslg2(B/G)
bits

lg2(C/B)
bits va

lid

lg2M-bit address



CMU 18-447
S’09 L17-7
© 2009
J. C. Hoe

Direct-Mapped Cache
C bytes of storage divided into C/B blocks
A block of memory is mapped to one particular 
cache block according the address’ block index field
All addresses with the same block index field map 
to the same cache block
 2t such addresses; can cache only one such block at a time
 even if C > working set size, collision is possible
 given 2 random addresses, chance for collision is 1/(C/B)

Notice likelihood for collision decreases with increasing
number of cache blocks (C/B)

hi
t 

ra
te

100%

working 
set size (W)

C

CMU 18-447
S’09 L17-8
© 2009
J. C. Hoe

Block Size and mi

Bytes that share a common tag are all-in or all-out
Loading a multi-word block at a time has the 
effect of prefetching for spatial locality
 pay miss penalty only once per block
 works especially well in instruction caches
 effective up to the limit of spatial locality

But, increasing block size (while holding C
constant)
 reduces the number of blocks 
 increases possibility for collision

hi
t 

ra
te

B



CMU 18-447
S’09 L17-9
© 2009
J. C. Hoe

Block Size and Ti+1

Loading a large block can increase Ti+1
 if I want the last word on a block, I have to wait for the 

entire block to be loaded
solution 1 critical-word first reload
 Li+1 returns the requested word first then rotate around 

the complete block
 supply requested word to pipeline as soon as available

solution 2: sub-blocking
 individual valid bits for different sub-blocks
 reload only requested sub-block on demand
 note: all sub-blocks stall share common tag

tag v s-block0 v s-block1 v s-block2

CMU 18-447
S’09 L17-10
© 2009
J. C. Hoe

Test yourself: What is wrong with this?

Data Bank

C/B-by-B bytes

let t= lg2M−lg2(C) 

idxbo g

B bytes

G bytes

data

=

Tag Bank

C/B-by-t bits

hit?

t bits

t bitslg2(B/G)
bits

lg2(C/B)
bits

va
lid

tag



CMU 18-447
S’09 L17-11
© 2009
J. C. Hoe

Direct-Mapped Cache (double check)

Data Bank

2kC/B-by-
B/2k bytes

let t= lg2M−lg2(C) 

tag idx bo g

B/2k bytes

G bytes

data

=

Tag Bank
C/B-by-t bits

hit?

t bits

t bitslg2(B/G)-k
bits

lg2(C/B)+k
bits

va
lid

CMU 18-447
S’09 L17-12
© 2009
J. C. Hoe

“a”-way Set Associative Cache

Data

C/a/B
by

B bytes

t= lg2M−lg2(C/a)

tag idx bo g

data

=

Tag

C/a/B
by

t bits

va
lid

Data

C/a/B
by

B bytes

=

Tag

C/a/B
by

t bits

va
lid

C/a byte
direct-mapped

a banks

hit?

tristate mux bus



CMU 18-447
S’09 L17-13
© 2009
J. C. Hoe

“a”-way Set-Associative Cache
C bytes of storage divided into a banks each with 
C/a/B blocks
Requires a comparators and a-to-1 multiplexer
An address is mapped to a particular block in a bank 
according its block index field, but there are a such 
banks (together known as a “set”)
All addresses with the same block index field map 
to a common “set” of cache blocks
 2t such addresses; can cache a such blocks at a time
 if C > working set size

higher-degree of associatively ⇒ fewer collisions

CMU 18-447
S’09 L17-14
© 2009
J. C. HoeReplacement Policy for Set 

Associative Caches
A new cache block can evict any of the cached 
memory block in the same set, which one?
 pick the one that is least recently used (LRU)

simple function for a=2, complicated for a>2
 pick any one except the most recently used
 pick the most recently used one
 pick one based on some part of the address bits
 pick the one that you will need again furthest in the 

future 
 pick a (pseudo) random one

Replacement policy only has second-order effect
 if you actively use less than a blocks in a set, any sensible 

replacement policy will quickly converge
 if you actively use more than a blocks in a set, no 

replacement policy can help you



CMU 18-447
S’09 L17-15
© 2009
J. C. HoePseudo-Associativity: 

e.g MIPS R10K 2-way L2
a-way associativity is a placement policy
 it says an address could be mapped to a different locations 

in the cache
 *** it doesn’t say lookups must be done in parallel banks

Pseudo a-way associativity:
 given a direct-mapped array with C/B cache blocks
 implement C/B/a sets
 given an address A, sequentially search:
 {0, A[lg(C/B/a)-1: lg(B)]}, {1, A[lg(C/B/a)-1: lg(B)]}, …

{a-1, A[lg(C/B/a)-1: lg(B)]} 
 Optimization: record the most recently used way (MRU) to 

look up first

How does this compare with true associative caches?

CMU 18-447
S’09 L17-16
© 2009
J. C. Hoe

Fully Associative Cache: a≡C/B

1-by-B bytes

let t=lg2M−lg2(B)

tag bo g

data

1-by-t bits
t bits

v
=

1-by-B bytes1-by-t bits v
=

1-by-B bytes1-by-t bits v
=

C/
B 

bl
oc

ks

hit?



CMU 18-447
S’09 L17-17
© 2009
J. C. HoeFully Associative Cache: a≡C/B

A “content-addressable” memory
 not your regular SRAM
 present a tag, return the block with matching tag, or else 

miss
 no index bits used in lookup

Any address can go into any of the C/B blocks
 if C > working set size, no collisions

Requires 1 comparator per cache block, a huge 
multiplexer, and many long wires
 considered exorbitantly expensive/difficult for more than 

32~64 blocks at L1 latencies. 
Fortunately, there is little reason 
for very large fully associative caches. 
For any reasonably large values of 
C/B, a=4~5 is as good as a=C/B for 
typical programs

hi
t r

at
e

?

a

~5

CMU 18-447
S’09 L17-18
© 2009
J. C. Hoe

Recap: Basic Cache Parameters
Let M = 2m be the size of the address space in 
bytes

sample values:  232, 264

Let G=2g be the cache access granularity in bytes
sample values:  4, 8

Let C be the “capacity” of the cache in bytes
sample values:  16 KBytes (L1), 1 MByte (L2)

Let B = 2b be the “block size” of the cache in 
bytes

sample values: 16 (L1), >64 (L2)
Let a be the “associativity” of the cache

sample values: 1, 2, 4, 5(?),... “C/B”

IS
A

Im
pl

em
en

ta
ti

on



CMU 18-447
S’09 L17-19
© 2009
J. C. HoeRecap: Address Fields

lg2M -bit address

byte offset: lg
2 G bits

B.O.

block offset: 

lg
2 (B/G) bits 

index

block index:

lg
2 ((C/a)/B)  bits 

tag: lg
2 M

 − lg
2 (C/a) bits 

tag

CMU 18-447
S’09 L17-20
© 2009
J. C. HoeRecap: M=32, G=_______, 

C=_______, B=_______, a=_______



CMU 18-447
S’09 L17-21
© 2009
J. C. HoeClassification of Cache Misses

Compulsory miss (design factor: B and prefetch)
 first reference to an address (block) always results in a 

miss
 subsequent references should hit unless the cache block is 

displaced for the reasons below
dominates when locality is poor

Capacity miss (design factor: C)
 cache is too small to hold everything needed
 defined as the misses that would occur even in an fully-

associative cache of the same capacity
dominates when C < W

Conflict miss (design factor: a)
 data displaced by collision under direct-mapped or set-

associative allocation
 defined as any miss that is neither a compulsory nor a 

capacity miss dominates when C≈W or when C/B is small

CMU 18-447
S’09 L17-22
© 2009
J. C. HoeClassification of Cache Misses

Compulsory miss (design factor: B and prefetch)
 first reference to an address (block) always results in a 

miss
 subsequent references should hit unless the cache block 

is displaced for the reasons below
dominates when locality is poor
 for example, in a “streaming” data access pattern where 

many addresses are visited, but each is visited exactly 
once little reuse to amortize this cost

hi
t r

at
e

B



CMU 18-447
S’09 L17-23
© 2009
J. C. HoeClassification of Cache Misses

Capacity miss (design factor: C)
 cache is too small to hold everything needed
 defined as the misses that would occur even in an fully-

associative cache of the same capacity
dominates when C < W
 for example, the L1 cache can never be made big enough 

due to cycle-time tradeoff
hi

t r
at

e

100%

working 
set size (W)

C

CMU 18-447
S’09 L17-24
© 2009
J. C. HoeClassification of Cache Misses

Conflict miss (design factor: a)
 data displaced by collision under direct-mapped or set-

associative allocation
 defined as any miss that is neither a compulsory nor a 

capacity miss
dominates when C≈W or when C/B is small

hi
t r

at
e

?

a

~5


