
CMU 18-447
S’09 L16-1
© 2009
J. C. Hoe

18-447 Lecture 16:
Memory Hierarchy

James C. Hoe
Dept of ECE, CMU
March 23, 2009

Announcements: Project 3 due this week
Midterm 2 next Monday

Handouts: Handout #12 HW 3 solutions (on Blackboard)

CMU 18-447
S’09 L16-2
© 2009
J. C. HoeFormat of the Quiz

Coverage
 lectures (L1~L14, emphasis on L8~L14), HWs, projects,

assigned readings (textbooks and papers)
Types of questions
 freebies: can you remember the materials
 probing: did you understand the materials
 applied: can you apply the materials in original thoughts

100 minutes, 100 points
 if a question is worth 5 points, don’t spend 20 minutes
 skip questions you can’t do and come back to them later
 closed-book, one 2-sided 8½x11 crib sheet
 no calculators

*** Use pencil or black/blue ink only
*** Be on time, 2:30 sharp!!!

CMU 18-447
S’09 L16-3
© 2009
J. C. Hoe

Wishful Memory

Lecture 6: a program sees a contiguous 4GB memory

Lecture 7: access anywhere in memory in 1 proc.
cycle

We are in good company

---- Burks, Goldstein, von Neumann,1946

CMU 18-447
S’09 L16-4
© 2009
J. C. Hoe

The Reality

Can’t afford and don’t need as much memory as the
size of the user address space (think about 64-bit
ISAs)
Most machines are multi-tasked between several
programs
You can’t find memory technology that is affordable
in GBytes and also cycle in GHz

The “magic” memory abstraction are nevertheless
very “useful” approximation of reality due to
 memory hierarchy: large and fast
 virtual memory: contiguous and private

CMU 18-447
S’09 L16-5
© 2009
J. C. Hoe

The Law of Storage

Bigger is slower
 SRAM, 512 Bytes, sub-nanosec
 SRAM, KByte~MByte, ~nanosec
 DRAM, Gigabyte, ~50 nanosec
 Hard Disk, Terabyte, ~10 millisec

Faster is more expensive (dollars and chip area)
 SRAM, < 10$ per Megabyte
 DRAM, < 1$ per Megabyte
 Hard Disk < 1$ per Gigabyte

Note these sample values scale with time

How to make memory Bigger, Faster, and Cheaper?

CMU 18-447
S’09 L16-6
© 2009
J. C. Hoe

Principles behind the solution

CMU 18-447
S’09 L16-7
© 2009
J. C. Hoe

Locality
One’s recent past is a very good predictor of
his/her near future.
Temporal Locality: If you just did something, it is
very likely that you will do the same thing again
soon
 since you are here today, there is a good chance you will

be here again and again regularly
 inverse is also true

Spatial Locality: If you just did something, it is
very likely you will do something similar/related
 every time I find you in this room, you are probably

sitting in the same seat
 you are probably sitting near the same people

CMU 18-447
S’09 L16-8
© 2009
J. C. Hoe

Memory Locality
A “typical” program has a lot of locality in memory
references
*** typical programs are composed of “loops”
Temporal: A program tends to reference the same
memory location many times and all within a small
window of time
Spatial: A program tends to reference a cluster of
memory locations at a time (most notable examples
1. instruction memory references and 2.
array/data structure references)

Corollary: a program may reference a large number
of different memory locations over its live time
but not all at the same time

CMU 18-447
S’09 L16-9
© 2009
J. C. Hoe

Memoization

If something is expensive to compute, you might
want to remember the answer for a while, just in
case you will need the same answer again
Memoization needs locality to work effectively
Without locality
 storing a large number of different answers (many of

which never reused)
 storing a very large number of answers and later locating

an answer on demand can be more expensive than
recomputing it

With locality
 store only small number of the most frequently used

answers avoids most recomputations
 the same answer gets reused many, many times!

CMU 18-447
S’09 L16-10
© 2009
J. C. Hoe

Cost Amortization

overhead cost : one-time cost to set something up
per-unit cost : cost for per unit of operation

total cost = overhead + per-unit cost x N
average cost = total cost / N

= (overhead / N) + per-unit cost

It is often okay to have a high overhead cost if
the cost can be distributed over a large number of
units

⇒ lower the average cost

CMU 18-447
S’09 L16-11
© 2009
J. C. Hoe

Putting the principles to work

CMU 18-447
S’09 L16-12
© 2009
J. C. Hoe

Memory Hierarchy

fast
small

big but slow

move what you use here

backup
everything

here

With good locality
of reference,

memory appears as
fast as

and as large as fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r

pe
r

by
te

CMU 18-447
S’09 L16-13
© 2009
J. C. HoeManaging Memory Hierarchy

You could manage data movement across hierarchies
manually
 already discussed in von Neumann paper (vacuum tubes vs

Selectron)
 “core” vs “drum” memory in the 50’s
 too painful for programmers on substantial programs
 still done in some embedded processors (on-chip scratch pad

SRAM in lieu of a cache)
Automatic management
 simple heuristic: keep most recently used items in fast mem
 dates back to ATLAS,1962
 today in every modern desktop and server system
 the average programmer doesn’t need to know about it

You don’t need to know how big the cache is to write a
“correct” program! (You may if you want a “fast” program.)

CMU 18-447
S’09 L16-14
© 2009
J. C. Hoe

Modern Memory Hierarchy
Register File

32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual
register spilling

automatic
demand
paging

automatic
cache

management

Memory
Abstraction

CMU 18-447
S’09 L16-15
© 2009
J. C. Hoe

Hierarchical Performance Analysis
For a given memory hierarchy level i it has a
technology-intrinsic access time of ti

The perceived access time Ti is longer than ti

Except for the outer-most hierarchy, when looking
for a given address there is
 a chance (hit-rate hi) you “hit” and access time is ti

 a chance (miss-rate mi) you “miss” and access time ti +Ti+1

 hi + mi = 1
Thus

Ti = hi·ti + mi·(ti + Ti+1)
Ti = ti + mi ·Ti+1

keep in mind, hi and mi are defined to be the hit-rate
and miss-rate of just the references that missed at Li-1

think of this as the “miss penalty”

CMU 18-447
S’09 L16-16
© 2009
J. C. Hoe

Hierarchy Design Compromises

Recursive latency equation
Ti = ti + mi ·Ti+1

The goal: achieve desired T1 within allowed cost
Ti ≈ ti is desirable but not necessary
Keep mi low
 increase capacity Ci lowers mi, but beware of increasing ti

 lower mi by smarter management (replacement::anticipate
what you don’t need, prefetching::anticipate what you will
need)

Keep Ti+1 low
 faster lower hierarchies, but beware of increasing cost
 introduce intermediate hierarchies as a compromise

CMU 18-447
S’09 L16-17
© 2009
J. C. HoeHierarchy Design Considerations

DRAM
 optimized for capacity/dollar
 TDRAM is essentially fixed for a given technology

generation
SRAM
 optimized first for capacity/latency (second for

capacity/dollar)
 different compromise between capacity and latency

possible
ti = O(Ci)

Hierarchies bridge the difference between CPU
speed and DRAM speed
 Tpclk ≈ TDRAM ⇒ no hierarchy needed
 Tpclk << TDRAM ⇒ one or more levels of SRAM hierarchies

to minimize T1 while staying within cost

CMU 18-447
S’09 L16-18
© 2009
J. C. Hoe

Intel P4 Example
90nm P4, 3.6 GHz
L1 D-cache
 C1 = 16K
 t1 = 4 cyc int / 9 cycle fp

L2 D-cache
 C2 =1024 KB
 t2 = 18 cyc int / 18 cyc fp

Main memory
 t3 = ~ 50ns or 180 cyc

Notice
 best case latency is not 1 anymore Why not?
 worst case access latency are into 300+ cyc, depending

exactly what happens

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

CMU 18-447
S’09 L16-19
© 2009
J. C. Hoe

Aside: Why is DRAM slow?
DRAM fabrication at the forefront of VLSI
technology nodes, but scales with Moore’s law in
capacity and cost, not speed
Between 1980 ~ 2004 DRAM
 64K bit 1024M bit (exponential ~55% annual)
 250ns 50ns (linear)

But, remember, this is a very deliberate choice.
We can “engineer” faster DRAM if we needed to

Memory capacity needs to grow linearly with CPU
speed to keep a balanced system – Amdahl
DRAM/processor speed difference reconciled
through memory hierarchies (L1, L2, L3,)
 L2 became common place in the 90s
 L3 becoming common place in the 00s

CMU 18-447
S’09 L16-20
© 2009
J. C. Hoe

Cache Basics

CMU 18-447
S’09 L16-21
© 2009
J. C. Hoe

Cache

Generically, any structure that “memoizes”
frequently used results to avoid repeating the
long-latency operations required to reproduce the
results from scratch, e.g. a web cache

Most commonly, an automatically-managed memory
hierarchy based on SRAM
 memoize in SRAM the most frequently accessed DRAM

memory locations to avoid repeatedly paying for the
DRAM access latency

CMU 18-447
S’09 L16-22
© 2009
J. C. Hoe

Cache Interface

Instruction
memory

Instruction
address

Instruction

MemRead

MemWrite

Data
memory

Write
data

Read
data

Address

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Like the magic memory we assume in Lecture 8
 present address, command, etc
 most of the time result or side-effect valid after a

short/fixed latency (1 cyc?)
Except, cache may not be valid/ready on every cycle
 the cache eventually must become valid/ready
 what happens to the pipeline until then?

valid
valid

ready

CMU 18-447
S’09 L16-23
© 2009
J. C. Hoe

The problem

Potentially M=2m bytes of memory, how to keep
the most frequently used ones in C bytes of fast
storage where C << M
Basic issues (intertwined)
(1) where to “cache” a memory location?
(2) how to find a cached memory location?
(3) granularity of management: large, small, uniform?
(4) when to bring a memory location into cache?
(5) which cached memory location to evict to free-up

space?
Optimizations

CMU 18-447
S’09 L16-24
© 2009
J. C. Hoe

Basic Operation

hit?

cache
lookup

return
data

data

address

choose
location occupied?

yes
no

no

fetch new
from Li+1

evict old
to Li+1

yes

update
cache

Ans to (4): memory location brought
into cache “on-demand”. What about prefetch?

(2)

(1, 3, 5)
(4)

CMU 18-447
S’09 L16-25
© 2009
J. C. Hoe

Basic Cache Parameters

Let M = 2m be the size of the address space in
bytes

sample values: 232, 264

Let G=2g be the cache access granularity in bytes
sample values: 4, 8

Let C be the “capacity” of the cache in bytes
sample values: 16 KBytes (L1), 1 MByte (L2)

hi
t

ra
te

100%

working set size (W

C

CMU 18-447
S’09 L16-26
© 2009
J. C. Hoe

Direct-Mapped Cache (v1)

Data Bank

C/G lines
by

G bytes

let t= lg2M−lg2(C)

tag idx g

G bytes

data

=

Tag Bank

C/G lines
by

t bits

hit?

t bits

t bits

lg2(C/G)
bits va

lid

What about writes?

M-bit address

CMU 18-447
S’09 L16-27
© 2009
J. C. HoeStorage Overhead

For each cache block of G bytes, must also store
additional “t+1” bits where t=lg2M−lg2(C)
 if M=232, G=4, C=16K=214

⇒ t=18 bits for each 4-byte block
60% storage overhead
16KB cache really needs 25.5KB of SRAM

Solution: let multiple G-byte words share a
common tag
 each B-byte block holds B/G words
 if M=232, B=16, G=4, C=16K
⇒ t=18 bits for each 16-byte block

15% storage overhead
16KB cache needs 18.4KB of SRAM

15% of 16KB is small, 15% of 1MB is 152KB
⇒ larger block size for lower/larger hierarchies

CMU 18-447
S’09 L16-28
© 2009
J. C. Hoe

Direct-Mapped Cache (final)

Data Bank

C/B-by-B bytes

let t= lg2M−lg2(C)

tag idx bo g

B bytes

G bytes

data

=

Tag Bank

C/B-by-t bits

hit?

t bits

t bitslg2(B/G)
bits

lg2(C/B)
bits va

lid

M-bit address

CMU 18-447
S’09 L16-29
© 2009
J. C. Hoe

Test yourself: What is wrong with this?

Data Bank

C/B-by-B bytes

let t= lg2M−lg2(C)

idxbo g

B bytes

G bytes

data

=

Tag Bank

C/B-by-t bits

hit?

t bits

t bitslg2(B/G)
bits

lg2(C/B)
bits

va
lid

tag
M-bit address

