
CMU 18-447
S’09 L14-1
© 2009
J. C. Hoe

18-447 Lecture 14:
Exceptions and Interrupts

James C. Hoe
Dept of ECE, CMU

March 16, 2009

Announcements: Spring break is over . . .
HW 3 is due now
Project 2 due this week
Midterm 2 on 3/30 in class (last lecture to be included)

Handouts:

CMU 18-447
S’09 L14-2
© 2009
J. C. HoeExceptions and Interrupts

A systematic way to handle exceptional conditions
that are relatively rare, but must be detected and
acted upon quickly
 instructions may fail and cannot complete
 external I/O devices may need servicing
 quantum expiration in a time-shared system

Option 1: write every program with continuous
checks (a.k.a. polling) for every possible contingency

acceptable for simple embedded systems (toaster)
Option 2: write “normal” programs for the best-
case scenario where nothing unusual happens
 detect exceptional conditions in HW
 “transparently” transfer control to an exception handler

that knows how to resolve the condition and then back to
your program

CMU 18-447
S’09 L14-3
© 2009
J. C. HoeTypes of Interrupts

Synchronous Interrupts (a.k.a. exceptions)
 exceptional conditions tied to a particular instruction
 e.g. illegal opcode, illegal operand, virtual memory

management faults
 the faulting instruction cannot be finished
no forward progress unless handled immediately

Asynchronous Interrupts (a.k.a. interrupts)
 external events not tied to a particular instruction
 I/O events, timer events
 some flexibility on when to handle it
cannot postpone forever or things start to “fall on the floor”

System Call/Trap Instruction
 an instruction whose only purpose is to raise an exception
 whatever for?

CMU 18-447
S’09 L14-4
© 2009
J. C. Hoe

Interrupt Sources

interrupt
control

logic

IR
Q

 li
ne

s
fr

om
 e

xt
er

na
l d

ev
ic

es
(I

/O
, D

M
A

, t
im

er
s,

 e
tc

.)

CPU

datapath - failed instructions
- system call instructions

Exceptions, a.k.a.
synchronous interrupts

Interrupts, a.k.a.
asynchronous interrupts
external interrupts

CMU 18-447
S’09 L14-5
© 2009
J. C. Hoe

Interrupt Control Transfer
An interrupt is an “unplanned”
function call to a system routine
(aka, the interrupt handler)
Unlike a normal function call, the
interrupted thread cannot
anticipate the control transfer or
prepare for it in any way
Control is later returned to the
main thread at the interrupted
instruction

The control transfer to the interrupt
handler and back must be 100%
transparent to the interrupted
thread!!!

i1

i2

i3

H1

H2

Hn

….

in
te

rr
up

t

restart

CMU 18-447
S’09 L14-6
© 2009
J. C. HoeVirtualization and Protection

Modern OS supports time-shared multiprocessing
but each “user-level” process still thinks it is alone
 each process sees a private set of user-level

architectural states that can be modified by the user-
level instruction set

 each process cannot see or manipulate (directly) state
and devices outside of this abstraction

OS implements and manages a critical set of
functionality
 keep low-level details out of the user-level process
 protect the user-level process from each other and itself

Do you want to access/manage harddisk directly? Do
you trust your buddy or yourself to access the
harddisk directly?

CMU 18-447
S’09 L14-7
© 2009
J. C. HoePrivilege Levels

The OS must somehow be more powerful to create
and maintain such an abstraction, hence a separate
privileged (aka protected or kernel) mode
 additional architectural states and instructions, in

particular those controlling virtualization/
protection/isolation

 the kernel code running in the privileged mode has
access to the complete “bare” hardware system

user-level level
state and instructions

privileged level

“hypervisor” level for
virtualizing multiple OSs

CMU 18-447
S’09 L14-8
© 2009
J. C. HoeControl and Privilege Transfer

User-level code never runs
in the privileged mode
Processor enters the
privileged mode only on
interrupts---user code
surrenders control to a
handler in the OS kernel
The handler restores
privilege level back to user
mode before returning
control to the user code

i1

i2

i3

H1

H2

Hn

….

in
te

rr
up

t

restart

us
er

->
pr

iv
ile

ge
d

privileged->user

CMU 18-447
S’09 L14-9
© 2009
J. C. Hoe

Implementing Interrupts

CMU 18-447
S’09 L14-10
© 2009
J. C. Hoe

Precise Interrupt/Exception
Sequential Code Semantics Overlapped Execution

A precise interrupt appears (to the interrupt handler) to
take place exactly between two instructions

• older instructions finished completely
• younger instructions as if never happened
• on synchronous interrupts, execution stops just before
the faulting instruction

i1

i2

i3

i1: i2: i3:

CMU 18-447
S’09 L14-11
© 2009
J. C. Hoe

Stopping and Restarting a Pipeline

I0

I0

I1

I0

I1

I2

I0

I1

I2

I3

bub

bub

bub

bub

Ih

bub

bub

bub

Ih

Ih+1

bub

bub

Ih

Ih+1

Ih+2

bub

Ih

Ih+1

Ih+2

Ih+3

I0

I1

I2

I3

I4

I1

I2

bub

bub

bub

I2

bub

bub

bub

bub

WB

MEM

EX

ID

IF

t10t9t8t7t6t5t4t3t2t1t0

What if I0, I1, I2, I3 and I4 all generate exceptions in t4?
How would things look different for asynchronous interrupts?

CMU 18-447
S’09 L14-12
© 2009
J. C. Hoe

Exception Sources in Different Stages
IF
 instruction memory address/protection fault

ID
 illegal opcode
 trap to SW emulation of unimplemented instructions
 system call instruction (a SW requested exception)

EX
 invalid results: overflow, divide by zero, etc

MEM
 data memory address/protection fault

WB
 nothing can stop an instruction now…

We can associate async interrupts (I/O) with any
instruction/stage we like

CMU 18-447
S’09 L14-13
© 2009
J. C. Hoe

Pipeline Flush for Exceptions

PC Instruction
memory

4

Registers

Sign
extend

M
u
x

M
u
x

M
u
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

M
u
x

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

=

Except
PC

40000040

0

M
u
x

0

M
u
x

0

M
u
x

ID.Flush EX.Flush

Cause

Shift
left 2

Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

- carry PC in the pipeline with each inst.
- new pipeline flush points

CMU 18-447
S’09 L14-14
© 2009
J. C. Hoe

MIPS Interrupt Architecture

CMU 18-447
S’09 L14-15
© 2009
J. C. Hoe

MIPS Interrupt Architecture
Privileged system control registers
 Exception Program Counter (EPC, CR14): which instruction

did we stop on
 Interrupt Cause Register (CR 13): what caused the

interrupt

 Interrupt Status Register (CR 12): enable and disable
interrupts, set privilege modes

Loaded automatically on interrupt transfer events
Also accessed by the “move from/to co-processor-
0” instruction: “mfc0 Ry, CRx” and “mtc0 Ry, CRx”

Figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L14-16
© 2009
J. C. Hoe

MIPS Interrupt Architecture
On an interrupt transfer, the CPU hardware saves
the interrupt address to EPC
 can’t just leave frozen in the PC: overwritten immediately
 can’t use r31 as in a function call: need to save user value

In general, CPU hardware must saves any such
information that cannot be saved and restored in
software by the interrupt handler (very few such
things)
For example, the GPR can be managed in SW by the
interrupt handler using a callee-saved convention
 however, r26 and r27 are reserved by convention to be

available to the kernel immediately at the start and the
end of an interrupt handler

CMU 18-447
S’09 L14-17
© 2009
J. C. Hoe

Interrupt Servicing
On an interrupt transfer, the CPU hardware records
the cause of the interrupt in a privileged registers
(Interrupt Cause Register)
Option 1: Control is transfer to a pre-fixed default
interrupt handler address
 this initial handler examines the cause and branches to the

appropriate handler subroutine to do the work
 this address is protected from user-level process so one

cannot just jump or branch to it
Option 2: Vectored Interrupt
 a bank of privileged registers to hold a separate specialized

handler address for each interrupt source
 On an interrupt, hardware transfer control directly to the

appropriate handler to save interrupt overhead
MIPS uses a 7-instruction handler for TLB-miss

CMU 18-447
S’09 L14-18
© 2009
J. C. Hoe

Example of Causes

Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
S’09 L14-19
© 2009
J. C. HoeHandler Examples

On asynchronous interrupts, device-specific
handlers are invoked to service the I/O devices

On exceptions, kernel handlers are invoked to either
 correct the faulting condition and continue the program

(e.g., emulate the missing FP functionality, update virtual
memory management), or

 “signal” back to the user process if a user-level handler
function is registered, or

 kill the process if the exception cannot be corrected

“System call” is a special kind of function call from
user process to kernel-level service routines

CMU 18-447
S’09 L14-20
© 2009
J. C. Hoe

Returning from Interrupt
Software restores all architectural state saved at
the start of the interrupt routine

MIPS32 uses a special jump instruction (ERET) to
atomically
 restore the automatically saved CPU states
 restore the privilege level
 jump back to the interrupted address in EPC

MIPS R2000 used a pair of instructions
jr r26 // jump to a copy of EPC in r26
rfe // restore from exception mode

// must be used in the delay slot!!

CMU 18-447
S’09 L14-21
© 2009
J. C. HoeBranch Delay Slot and RFE

What if the faulting address is a branch delay
slot?
 simply jumping back to the faulting address won’t

continue correctly if the preceding branch was taken
 we didn’t save enough information to do the right thing

MIPS’s solution
 the CPU HW makes a note (in the Cause register) if the

faulting address captured is in a delay slot
 in these cases, the handler returns to the preceding

branch instruction which gets executed twice (as the last
instruction before and first instruction after)

Generally harmless except “JALR r31”
 explicitly disallowed by the MIPS ISA
 think about what would happen in that case

CMU 18-447
S’09 L14-22
© 2009
J. C. Hoe

An Extremely Short Handler

_handler_shortest:
no prologue needed

.

epilogue
mfc0 r26,epc # get faulting PC
jr 26 # jump to retry faulting PC
rfe # restore from exception mode

Note: You can find more examples in the book CD. If you are
really serious about it, take a look inside Linux source. It is
not too hard to figure out once you know what to look for.

. . . short handler body . . . # can use only r26 and r27
interrupt not re-enabled for
something really quick

CMU 18-447
S’09 L14-23
© 2009
J. C. Hoe

A Short Handler
_handler_short:

prologue
addi sp, sp -0x8 # allocate stack space (8 byte)
sw r8, 0x0(sp) # back-up r8 and r9 for use in body
sw r9, 0x4(sp) #

epilogue
lw r8, 0x0(sp) # restore r8, r9
lw r9, 0x4(sp) #
addi sp, sp, 0x8 # restore stack pointer
mfc0 r26,epc # get EPC
j r26 # jump to retry EPC
rfe # restore from exception mode

. . . short handler body . . . # can use r26, r27, and r8, r9
interrupt not re-enabled

CMU 18-447
S’09 L14-24
© 2009
J. C. HoeNesting Interrupts

On an interrupt control transfer, further
asynchronous interrupts are disabled automatically
 another interrupt would overwrite the contents of the

EPC and Interrupt Cause and Status Registers
 the handler must be carefully written to not generate

synchronous exceptions itself during this window of
vulnerability

For long-running handlers, interrupt must be re-
enabled to not missed additional interrupts
 the handler must save the contents of EPC/Cause/Status

to memory (stack) before re-enabling asynchronous
interrupt

 once interrupts are re-enabled, EPC/Cause/Status is
clobbered by the next interrupt (contents appear to
change for no reason)

CMU 18-447
S’09 L14-25
© 2009
J. C. HoeInterrupt Priority

Asynchronous interrupt sources are ordered by
priorities
 higher-priorities interrupts are more timing critical
 if multiple interrupts are triggered, the handler handles

the highest-priority interrupt first
Interrupts from different priorities can be
selectively disabled by setting the mask in the
Status register (actually a SW convention in MIPS)
When servicing a particular priority interrupt, the
handler only re-enable higher-priority interrupts
 higher-priority interrupt won’t get delayed

Re-enabling same/lower-priority interrupts may
lead to an infinite loop if a device interrupts
repeatedly

CMU 18-447
S’09 L14-26
© 2009
J. C. HoeNestable Handler

_handler_nest:
prologue
addi sp, sp, -0x8 # allocate stack space for EPC
mfc0 r26, epc # get EPC
sw r26, 0x0(sp) # store EPC onto stack
sw r8, 0x4(sp) # allocate a register for use
later
addi r26, r0, 0x405 # set interrupt enable
bit
mtc0 r26, status # write into status reg

epilogue
addi r8, r0, 0x404 # clear interrupt enable
bit

 #

. . . interruptible # could free-up more registers
longer handler body . . . # to stack if needed

