
Implementing Profile-Guided Speculative Code Motion in LLVM ∗

Ben Jaiyen
bjaiyen@cmu.edu

Jamie Liu
jamiel@cmu.edu

02 May 2012

1. Introduction
Partial redundancy elimination [10] (PRE) is a class
of compiler optimizations that identifies and removes
redundant expressions on some execution paths. It
does this by searching for expressions that are present
on some, but not all, program paths and inserting
copies of the expression on the paths that do not com-
pute it such that it becomes fully redundant.

To ensure that optimized code is not slower than
the original code, most PRE algorithms will only copy
an expression in a program to a new location if it is
known that the value calculated by that expression
will be used on all paths leading out of its new lo-
cation. In other words, the expression must be fully
anticipated, or downsafe, on all paths so that the com-
piler knows it will not lengthen some critical path of
the program when moving code. Also, there is no
reason to move code to some location if the expres-
sion is already available at that location. That is, if
some previous calculation of an expression can still
be used at a point considered for code motion, there
is no reason to repeat the calculation again.

Figure 1a shows an example CFG in which an ex-
pression a+b is partially redundant at the block la-
beled Uses a+b. One of the paths leading up to the
block Uses a+b calculates a+b, i.e. a+b is partially
available at Uses a+b. Typical PRE would try to
copy the expression a+b into the other path, but this
would violate anticipation as a calculation of a+b
is being introduced into a path that it was not cal-
culated in previously as Figure 1b illustrates. Since
a+b is only partially anticipated as opposed to being
fully anticipated, the compiler cannot safely move the
expression.

By utilizing profile information, we can ignore this
notion of anticipation by relying on a probabilistic
argument. If a real run of the program tells us that
an expression will be used many times on some paths
leading out of a basic block, and not used a few times
on other paths leading out of the same basic block,
then ignoring anticipation at this basic block could

∗http://www.ece.cmu.edu/~jamiel/15-745/

lead to performance gains as the critical path is only
lengthened a few times whereas the amount of com-
putation done is reduced most of the time. Figure 1c
shows there is a good chance that breaking anticipa-
tion will lead to performance speedups in our example
as we are able to eliminate a redundant expression
that will lead to more performance gains than what
we lose by increasing the rarely executed critical path
by a little. This type of optimization is known as spec-
ulative code motion as there is still a chance that it
will degrade performance if, for example, the profile
run of the program being optimized was not represen-
tative of all input sets that the program might receive.

Our mechanism modifies an existing PRE algo-
rithm, GVN-PRE [11], to use profile information as
a metric for guiding speculative code motion. It vio-
lates the downsafety requirement in cases where the
profile information indicates that we can reduce the
amount of overall computation despite introducing
some useless computations.

1.1. Related Work
Lazy code motion [8], proposed by Knoop et al, is
a PRE algorithm that will not move an expression
unless it is fully anticipated at its new location. This
guarantees that the optimized code will not run slower
than the original code, or in other words, it produces
computationally optimal results.

Cai and Xue use edge profile information along
with the minimum cut algorithm to minimize the
amount of expression computations in PRE [4]. Their
mechanism, MC-PRE, removes edges and nodes from
the flow graph that do not affect the PRE computa-
tions to create a reduced flow graph. MC-PRE then
calculates the minimal cut on the reduced graph to
find the optimal insertion points.

Kennedy et al. describe an algorithm, SSAPRE [7],
that adapts PRE to programs that are represented in
single static assignment (SSA) form [5]. Zhou et al.’s
algorithm, MC-SSAPRE, expands on SSAPRE by
converting it into a flow network problem similar to
what is done in the MC-PRE algorithm. Contrary to
MC-PRE, MC-SSAPRE operates on expressions one
at a time, which allows it to form smaller flow graphs

1

bjaiyen@cmu.edu
jamiel@cmu.edu
http://www.ece.cmu.edu/~jamiel/15-745/


(a) Example CFG (b) Violating anticipation with nor-
mal PRE

(c) Using Profile Information
(Edge weights are execution
counts)

Figure 1: Example of how profile information can be used to violate anticipation smartly

and more efficiently compute the minimum cut.
VanDrunen et al. proposed global value number-

ing, an SSA based optimization that eliminates re-
dundant code [11]. It determines values produced by
expressions and assigned to variables, and removes
redundancy by looking at equal values.
1.2. Contributions
Our contributions are as follows:
• We augment the GVN-PRE algorithm by utiliz-

ing profile information to perform speculative
code motion.

• We describe a method of creating a flow network
graph from information gathered during GVN-
PRE passes.

• We implement our mechanism in LLVM Com-
piler Infrastructure [9] and evaluate the effective-
ness of it.

2. Design and Approach
Despite being developed specifically for programs
in SSA representation, SSAPRE only attempts to
eliminate redundancies between lexically identified
expressions (that is, expressions that share operand
variable names in the original, non-SSA source code).
Aside from limiting optimization potential, this is es-
pecially problematic in the context of LLVM, which
does not retain information about source variables in
its SSA representation. Previous work [3] attempted
to reverse-engineer the LLVM SSA representation
using a heuristic to find source variables, but their im-
plementation was outperformed by LLVM’s existing
GCSE and LICM optimizations, suggesting that this
heuristic was ineffective.

SSAPRE places two constraints on the SSA repre-
sentation. First, “each φ assignment [must have] the
property that its left-hand side and all of its operands
are version of the same program variable” [7]. Sec-
ond, “the live ranges of different version of the same
original program variable [must] not overlap” [7].

These restrictions severely restrict what optimizations
may be performed prior to applying SSAPRE. In
particular, [3] observed that the LLVM mem2reg
optimization, which promotes (among other things)
stack variable accesses to SSA registers, causes these
constraints to be violated. However, without the
mem2reg optimization, it is very difficult to do any
optimization since most interesting optimization op-
portunities are hidden behind loads and stores to stack
variables. We conjecture that this is part of why [3]
was unable to provide optimization benefits on par
with GCSE / LICM.

Our mechanism is focused on adapting the key idea
in MC-SSAPRE to the GVN-PRE framework [11].
GVN-PRE (global value numbering / partial redun-
dancy elimination) is a newer technique for perform-
ing PRE on programs in SSA form that is both more
powerful than SSAPRE (working on redundant values
rather than lexically identified expressions) and easier
to understand. GVN-PRE also represents the state of
the art; the most current version of GCC, GCC 4.7,
implements it [1],1 and LLVM implemented it up to
version 2.6, after which it was dropped due to lack of
maintenance (and not replaced) [2].

Our mechanism, which we call MC-GVN-PRE,
builds on top of the GVN-PRE mechanism in the fol-
lowing ways. We first create a reduced flow graph for
each PRE candidate expression by using the GVN-
PRE analysis to determine when an expression is
partially/fully anticipated and when it is used. GVN-
PRE only moves expressions to points where they are
fully anticipated. We allow the movement of expres-
sions to points where they are partially anticipated
provided they do not have side effects. The reduced
flow graph is then augmented with artificial source
and sink nodes. The artificial source node is placed to

1Notably, GCC’s implementation of GVN-PRE replaced an
earlier implementation of SSAPRE.

2



Figure 2: Flow graph construction example

prevent an expression from being introduced above
where it is last fully unavailable. (This is consistent
with both GVN-PRE and MC-SSAPRE, and leads to
lifetime optimality, i.e. the live ranges of any compu-
tations introduced is minimized. Placing the expres-
sion at an earlier point may lead to reduced code size,
but we leave this for future work.) The artificial sink
node is placed after each use of the expression, ensur-
ing that placing the expression at the minimum cut
will result in the expression being available at each
use. By calculating the minimum cut of this reduced
flow graph, we can determine the optimal points to
place the expression. To find the minimum cut of our
flow graph, we use the Ford-Fulkerson algorithm [6].
Similar to MC-SSAPRE, we also choose the mini-
mum cut closest to the sink to minimize the lifetimes
of temporaries.

Figure 2 shows an example of a flow graph that
might be constructed by our mechanism. Our initial
flow graph consists of the entire program CFG. It is
pruned to remove nodes that the expression cannot
be placed in and an artificial source and sink are in-
troduced to complete the flow graph. The source is
attached to blocks 1 and 3 as the expression is not
available above them. Blocks 1 and 5 contain uses

of the expression and therefore are hooked up to the
artificial sink. The edge weights in the flow graph
are determined by profiling and recording execution
counts. Once the minimum cut has been determined,
copies and φ nodes are placed above and below the
cut as per ordinary GVN-PRE.

In summary, MC-GVN-PRE compares to GVN-
PRE as follows:
• The first step in GVN-PRE, BuildSets, com-

putes availability and full anticipability for each
basic block. We augment this step to additionally
compute partial availability and partial anticipa-
bility (whereas full availability and anticipabil-
ity provide guarantees on execution-independent
optimality, partial availability and anticipability
are necessary to establish optimality under an
execution profile, as discussed above.)

• The second step in GVN-PRE, Insertion,
examines each merge point in the function and
performs partial redundancy elimination by in-
serting computations and φ nodes wherever nec-
essary. MC-GVN-PRE works much differently,
since it must work on one expression at a time.
As such, Insertion in MC-GVN-PRE pro-
ceeds as follows: For each expression,

3



– Construct a directed reduced flow graph
that is initially equivalent to the control
flow graph with edges weighted by branch
frequency (as determined by profiling).

– An artificial sink node is added to the graph.
This node serves two purposes. First, as
in MC-SSAPRE, it maintains the invariant
that computations precede their uses. This
is done by creating an edge from nodes
containing uses of the expression to the
sink node with infinite edge weight (such
that the minimum cut will never cross it).
Second, it ensures the minimum cut algo-
rithm does not waste time investigating re-
gions of the control flow graph in which
the expression under examination is not
partially anticipated (i.e. useless). This is
done by walking the dominance tree, find-
ing nodes at which the expression is not
partially anticipated, and replacing all of
the nodes strictly dominated by these nodes
with an infinite-weight edge to the sink.
(The initial node must be retained, as its
edge weight may affect the final minimum
cut.)

– An artificial source node is added to the
graph. This node ensures lifetime optimal-
ity (that is, added computations never have
a longer live range than necessary). This
is done by connecting all nodes at the fron-
tier of partial availability (i.e. where the
expression has previously been computed
at least once) to the source node.

– The minimum cut in the graph is computed
via the Ford-Fulkerson maximum-flow al-
gorithm and the min-cut/max-flow theo-
rem.

– Insertion is done at nodes at the frontier
of the cut using the same algorithm as in
GVN-PRE.

• The final step in GVN-PRE, Elimination,
eliminates fully-redundant expressions, includ-
ing those introduced by Insertion. We do
not modify this step.

3. Methodology
The system configuration that we used in our evalu-
ations is given in Table 1. We chose to evaluate our
mechanism with microbenchmarks as they are much
simpler to analyze and gain insight from. We compile
our microbenchmarks using Clang with the -O0 flag

and run the LLVM mem2reg pass on them before
applying our MC-GVN-PRE pass.

Table 2 describes the two characteristics of our mi-
crobenchmarks that we believe are the most important
to determining a program’s potential benefit with spec-
ulative code motion. If a program is able to remove
more redundancies with a speculative code move, or
if moving an expression has a minimal effect on the
paths in which the expression is not anticipated, then
the execution time will most likely be minimized.

The structure of each microbenchmark consists of
an outer loop that runs for a billion iterations and a
unique control flow graph inside the loop which tests
a different optimization aspect of MC-GVN-PRE.
4. Evaluation
We implemented MC-GVN-PRE and ran the LLVM
pass on some microbenchmarks, but some of the mi-
crobenchmarks caused it to fail and we were not able
to track down the cause of the failure in time. For the
microbenchmarks that did succeed , we were able to
verify that our mechanism was able to perform PRE
correctly and optimally. To get an idea of what kind
of results to expect after running a successful LLVM
pass we hand optimized the remaining benchmarks
with the MC-GVN-PRE mechanism.

Figure 3 shows the performance difference between
MC-GVNPRE and a baseline that does not eliminate
redundancy after we ran each microbenchmark, using
the unix time utility to measure performance. Perfor-
mance improves by at most 5% and degrades by at
most 7% on our set of microbenchmarks. The reason
that it degrades so much in benchmark 6 is because
the moved expression ends up increasing the critical
path of the program 25% of the time. This is not
enough to offset the gains from reducing redundancy.
This microbenchmark was written in order to show
the possible adverse affects of profile guided code
motion and the results support our hypothesis. Bench-
marks 1 and 2 do well for different reasons. Five
redundancies are removed every loop cycle for bench-
mark 1 whereas benchmark 2 doesn’t lose as much
performance from lengthening its critical path.

We were able to confirm our earlier insights with
regards to MC-GVN-PRE. Trading off reduced redun-
dancy with increased critical path length works up to
the point where the critical path begins to negate the
beneficial effects of speculative code motion. How-
ever, if profiling information is accurate, and some
branches have highly skewed execution counts, it is
potentially worth taking a small gamble for better

4



Component Specifications

Processor 2.66 GHz, 32KB per-core L1, 8MB shared L2
Main Memory 4GB DDR2 667 MHz
Operating System Ubuntu 11.10

Table 1: Evaluated system configuration

Microbenchmark Number Redundancies Per Loop % of time Critical Path Lengthened

1 5 10%
2 1 10%
3 3 5%
4 3 3.33%
5 3 1%
6 3 25%

Table 2: Microbenchmark Characteristics

Figure 3: Microbenchmark Performance Results

5



overall performance.

5. Lessons Learned
The most unexpected result was observed in mi-
crobenchmark 5 which increases the critical path ten
percent of the time while removing one redundancy
every loop iteration. This benchmark consists of an if
statement embedded within a for loop that executes
for many iterations. An expression is calculated on
one branch of the if statement and later recalculated
after the if statement merges back into the rest of the
control flow. Performance ended up degrading after
making this expression redundant on both paths of
the if statement. Although PRE optimizes for number
of computations, it does not reflect other practical is-
sues such as the effect of code density on instruction
and micro-operation caches, as well as the effect of
variable lifetimes on register pressure.

6. Conclusion
It has been shown in both our work and the work of
others that speculative code motion has the potential
to improve performance in some cases. As with most
profile guided optimizations, MC-GVN-PRE is heav-
ily reliant on having an accurate profile as differing
input sets can cause program behavior to change dras-
tically in some cases. As future work, we would like
to further explore other heuristics that can be used to
determine when it is valuable to speculatively move
code and when it is not.

References

[1] “GVN-PRE.” [Online]. Available: http://gcc.gnu.org/wiki/
GVN-PRE

[2] “GVNPRE removed from main line?”
[Online]. Available: http://old.nabble.com/
GVNPRE-removed-from-main-line--td26383411.html

[3] T. Brethour, J. Stanley, and B. Wendling, “An LLVM im-
plementation of SSAPRE,” 2002.

[4] Q. Cai and J. Xue, “Optimal and efficient speculation-
based partial redundancy elimination,” in Proceedings of
the international symposium on Code generation and opti-
mization: feedback-directed and runtime optimization, ser.
CGO ’03, 2003, pp. 91–102.

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single assign-
ment form and the control dependence graph,” ACM Trans.
Program. Lang. Syst., vol. 13, no. 4, pp. 451–490, Oct.
1991.

[6] D. R. Ford and D. R. Fulkerson, Flows in Networks.
Princeton, NJ, USA: Princeton University Press, 2010.

[7] R. Kennedy, S. Chan, S.-M. Liu, R. Lo, P. Tu, and F. Chow,
“Partial redundancy elimination in SSA form,” ACM Trans-

actions on Programming Languages and Systems, vol. 21,
no. 3, 1999.

[8] J. Knoop, O. Rüthing, and B. Steffen, “Lazy code motion,”
in Proceedings of the ACM SIGPLAN 1992 conference on
Programming language design and implementation, ser.
PLDI ’92, 1992, pp. 224–234.

[9] C. Lattner and V. Adve, “LLVM: A compilation frame-
work for lifelong program analysis & transformation,” in
Proceedings of the 2004 International Symposium on Code
Generation and Optimization, 2004.

[10] E. Morel and C. Renvoise, “Global optimization by sup-
pression of partial redundancies,” Commun. ACM, vol. 22,
no. 2, pp. 96–103, Feb. 1979.

[11] T. VanDrunen and A. L. Hosking, “Value-based partial
redundancy elimination,” in Proceedings of the 13th Inter-
nation Conference on Compiler Construction, 2004.

6

http://gcc.gnu.org/wiki/GVN-PRE
http://gcc.gnu.org/wiki/GVN-PRE
http://old.nabble.com/GVNPRE-removed-from-main-line--td26383411.html
http://old.nabble.com/GVNPRE-removed-from-main-line--td26383411.html

	Introduction
	Related Work
	Contributions

	Design and Approach
	Methodology
	Evaluation
	Lessons Learned
	Conclusion

