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Abstract This paper presents a Maximum Likelihood Estimator (MLE) for the ZigBee networks. We propose a 
deployment of cluster-tree topology in the ZigBee networks and derive the MLE under the log-normal models for 
the Received Signal Strength (RSS) measurements. The ZiLA algorithm is also proposed to apply the MLE to 
ZigBee networks. To validate the RSS measurement model, we have conducted exhaustive experiments. 
Testbed experiments are also conducted to validate the effectiveness of ZiLA algorithm. 

 
1. Introduction 

In the past decade, we have witnessed a 
burgeoning amount of research and commercial 
interest in the area of ubiquitous computing and 
location-aware computing. These growth of 
interest provides a strong motivation to develop 
techniques for estimation the location of devices 
in home network environments. To achieve this 
goal, such wireless networking techniques as 
IrDA, WLAN, Bluetooth, UWB and ZigBee can 
be used as infrastructure. Among those ZigBee 
is remarked as a promising open standard. 
ZigBee is a new industrial standard for ad hoc 
networks based on IEEE 802.15.4 PHY and 
MAC[1]. The specification for network and 
higher layers are defined at ZigBee Alliance[2]. 
It is used for low data rate, low power, and cost 
effective wirelessly networked products. Thus, 
expected applications for ZigBee include remote 
monitoring, home control, industrial automation, 
and localization.  

To be sure, the RSS-based localization is a 
fascinating research topic. The RSS is 
traditionally notorious for its irregularity model of 
its measurements[3]. However, it has an 
attractive feature from the point of view of device 
complexity. In addition, the cost of a node is 
relatively cheap because no extra hardware is 
required. Due to its attractiveness, the research 
community in wireless sensor networks (WSN) 
has extensively studied and proposed several 
RSS-based algorithms. Despite rapidly-
increasing popularity of ZigBee and RSS-based 
localization in WSN, there is lack of studies 
about application localization algorithms to 
ZigBee networks. In the paper, we focus on a 
location estimation method using received signal 
strength (RSS) of RF hardware in ZigBee 
networks.  

We begin with Section 2 by providing a short 
survey of localization schemes using RSS. 
Section 3 considers a deployment of ZigBee 
networks in home networking environments. In 
Section 4, we formulate the location estimation 
problem in cluster-tree topology so as to derive 

maximum likelihood estimator (MLE). In Section 
5, we present experimental results to validate 
our channel model and the performance of 
developed algorithm. The paper concludes with 
Section 6. 

 
2. Related Works 

The problem of location estimation is very 
important for many engineering fields and has 
been researched for many years. In [4] a 
comparative study of many RSS based 
localization techniques is presented. Among 
them, Ecolocation[5], MoteTrack and Probability 
Grid[6] are three of the few localization  
algorithms that have been evaluated on a real 
sensor network that uses a low power wireless 
radio. Ecolocation reports a location error of 
3.04m for a quite small outdoor network 
deployment area (7.92m x 14.93m) while 
probability Grid reports a location error that is 
equal to the 70%-80% of the communication 
range for a 125m x 125m outdoor network 
deployment. MoteTrack reports a location error 
of approximately 3.96m for an indoor network 
deployment area of 41.75m x 41.75m. Other 
work on RSS-based localization algorithms has 
been developed in the context of two broad 
categories: map based such as [7] and distance 
(or area) prediction based [8],[9]. 
 
3. A Deployment of ZigBee networks 

The proper deployment of ZigBee networks in 
home environments does not only affect 
efficiency and flexibility of devices but also plays 
an important role for the location estimation 
algorithm. The ZigBee specifications permit 
three different network topologies to be 
implemented depending on the application; star, 
cluster-tree, and mesh. In the star topology, one 
device acts as the Personal Area Network 
(PAN) coordinator, through which all 
communications on a given radio channel takes 
place. The PAN coordinator should be capable 
of communicating with any other device on the 
network. The configuration is quite simple but 
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not scalable. In the mesh topology, there is full 
connectivity among all devices participating in 
the network. Thus, the primary advantages of 
the mesh topology are reliability and network 
throughput provided via multiple paths. The 
cluster-tree topology is formed by modifying the 
star topology. One or more of the ZigBee End 
Devices (ZED) connected to the PAN 
coordinator is replaced with a ZigBee Router 
(ZR), from which more devices may be 
attached. One advantage of the cluster-tree is 
that it may be used to extend the geographical 
spread of the network. Configuring a network of 
the entire home environments only using a star 
topology has a intrinsic problem which limits 
capability as well as operating flexibility of the 
network. The mesh topology also meets a 
problem that all devices within the network 
should be ZR. Additionally, it is difficult to 
operate at low power consumption. To 
overcome these problems, we propose a 
deployment of ZigBee networks to home 
environments using a cluster-tree topology. In 
the cluster-tree topology, network addresses of 
all devices are assigned using a distributed 
addressing scheme that is designed to provide 
every potential parent with a finite sub-block of 
network addresses. These addresses depend 
on both network rules and Cskip(d) function of 
ZigBee specification. It is essentially the size of 
the address sub-block being distributed by each 
parent at that depth to its router-capable child 
devices for a given network depth, d, which is 
described as follows: 

 
 
 
 
 

 
where Cm(nwkMaxChildren), Lm 

(nwkMaxDepth), and Rm (nwkMaxRouters) are 
the maximum number of children a parent may 
have, the maximum depth in the network, and 
the maximum number of routers which a parent 
may have as children, respectively. The 
Cskip(d) values for an example network having 
nwkMaxChildren=20, nwkMaxRouters=6 and 
nwkMaxDepth=5 are calculated and listed in 
Table 1. Fig.1 generically illustrates the example 
network. 
 

Table 1. CSkip(d) values for each given depth 
Network Depth , d Cskip(d) 

0 5181 
1 861 
2 141 
3 21 
4 1 
5 0 

 

Fig.1 Address assignment in the cluster-tree topology 
 
 
4. Location Estimation Algorithm in ZigBee 

In this section, we now specialize for the 
location estimation algorithm using pair-wise 
RSS measurements in the cluster-tree topology. 
Consider a ZigBee network described in the Fig. 
1 with n ZR, and a mobile ZED whose location is 
estimated. Because a vector of device 
parameters is ],...,[ 1+= nzed θθθ and we 
assume 2-dimensional coordinate, the 
parameter of the ith ZigBee device is T

iii yx ],[=θ . 
Thus, the location estimation problem for a 
mobile ZED is equivalent to finding the estimate 
of the coordinate, zed

∧
θ , given the coordinate 

vector of the reference ZR locations 
],...,[ 1 nzr θθθ = . 

 
4.1 Statistical Model and MLE 

The RSS measurements are commonly 
modeled as log-normal random variables [8]. 
We define izedP , as the measured received 
power at a mobile ZED transmitted by ZR i (in 
milliwatts). Thus, the random variable 

)(log10)( ,10, izedized PdBmP =  is Gaussian 
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where )(, dBmP ized  and )(0 dBmP are the mean 
received power and the received power at a 
reference distance 

0d , respectively. Typically, 
0d  

is 1m. pn  is the propagation exponent. 2
shσ  is the 

variance of the lognormal shadowing. Based on 
this statistical model, the log of the joint 
conditional pdf is obtained as follows: 
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Before deriving the location estimators, it is 
important to know a lower bound on the 
variance achievable by those.  The Cramer-Rao 
Bound (CRB) provides a means for calculating 
such a lower bound. Researchers who are 
testing localization algorithms can use the CRB 
as a benchmark for a particular algorithm. It is 
assumed that a vector parameter which is 
estimated is T

p ]...[ 21 θθθθ =  and the estimator 
∧
θ  

is unbiased. Then, the CRB is found as the [i,i] 
element of the inverse of a matrix, which is 
described by 
 

,)]([)var( 1
iiF θθ −

∧
≥             (4.3) 

 
where )(θF  is the pp×  Fisher Information 
Matrix (FIM). The latter is defined by 
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for pjpi ,...,2,1;,...,2,1 == . In our estimation 
problem, the parameter which is estimated is 

T
zedzed yx ],[=θ . Therefore, the FIM is derived as 

follows. 
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In general, the MLE finds the parameters which 
maximizes the likelihood function, or 
equivalently, minimizes the negative of the log-
likelihood function. Thus, the MLE of θ  is 
derived by 
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where T

iii yxz ],[=  and C is the multiplicative 
bias factor. 
 
4.2 ZigBee Location Algorithm 

In ZigBee networks, information about the 
current link quality is not only measured at IEEE 
802.15.4 PHY layer but also employed to 
measure a pair-wise RSS. It can be the received 

power, the estimated signal-to-noise ratio (SNR), 
or a combination of both. In our hardware and 
MAC software, the link quality indication (LQI) 
value is generated by simple scaling of the RSS 
value. Thus, we can compute the RSS value by 
appropriate inverse scaling. Using the 
information, the MLE, which is described in 4.1, 
can be calculated. It takes too much time to 
calculate the MLE in the 8-bit microcontroller. 
Thus, the mobile ZED collects RSS data in the 
beacon frame received from the ZRs and 
transmit those to a central “listening” device, ZC. 
Also, ZC uploads RSS data to a laptop computer, 
which calculate the minimum of the MLE using 
the optimization algorithm. Due to the resource 
constraints in ZigBee networks, we have the 
following assumptions.  
 

• The ZigBee network operates in a beacon-
enabled mode, and ZC covers the whole 
home environments.  

• Transmission power is fixed.  
• The beacon frames of all ZRs should not 

collide one another in the period of beacon 
order (BO).  

• The time of joining/leaving a network should 
be less than 2 seconds. 

 
In the ZigBee tree topology, we define the 
application object between a mobile ZED and a 
ZC for the location estimation. A mobile ZED 
should carry out the following ZigBee location 
algorithm (ZiLA). To the end, the modification of 
ZDO of the mobile ZED is inevitable. 
 
STEP1 If it is the first time to start location 

algorithm, initiate the network discovery 
procedure in the period of n * BO. 

STEP2 If the received beacon frames exist, 
push the network descriptors of ZRs to 
stack in the order of RSS measurement. 

STEP3 Join a network through association to 
ZR in the top of the stack. 

STEP4 Report the RSS measurement data 
which are pairs of {address, LQI} to ZC. 

 
 
5.  Experimental Results 
 
5.1 Channel Measurement Experiment 
In this section, we describe the ZigBee based 

measurement device and validate the RSS 
measurement model made at the beginning of 
subsection 4.1. The centerpiece of our system is 
the CC2420DB board which is developed using t
he Atmega128 microcontroller from ATMEL and 
CC2420 RF transceiver from Chipcon. The Chip
con Z-Stack is used for ZigBee protocol stack. 
To evaluate the basic characteristics of wireless 
link, we conducted several kinds of experiments: 
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RSS vs. Direction and RSS vs. Distance tests. 
The two CC2420DBs were placed in a vacant 
indoor office 2m away from the each other. One 
of them configured to send beacon packets 
continuously while the other was measuring the 
RSS value of each received packet. RSS value 
was measured in four different geographical 
directions by sampling 100 beacons received in 
each direction. 
 

 
Fig.2.  (a) The CC2420DB board.  (b) RSS(dBm) over 

Time in Four Directions.  (c) RSS(dBm) in Different 
Directions.  (d) RSS(dBm) vs. Distance Plot 

 
Fig. 2(b) shows that the RSS value in each 
direction is relatively stable over time. However, 
the RSS value received in the north is much 
higher than that received in the south, although 
devices have the same distance from the sender. 
We also measure the variation of RSS value 
with the changes in the angular direction of the 
receiver with respect to the sender. Fig. 2(c) 
shows the variation of the RSS value as a 
function of the angular direction with respect to 
the sender. These results show that the RSS 
value varies continuously with the direction. In 
other words, incremental changes in direction 
result in incremental variation in the RSS value. 
Fig. 2(d) shows the RSS vs Distance plot which 
means RSS value changes almost linearly with 
the log of the distance. 
  We verify the log-normal distribution of the 
RSS measurements by scrutinizing the RSS vs. 
Distance experimental data via chi-square test. 
Several thousands of RSS data are collected at 
the distance of 1m, 2m, 3m, and 4m and chi-
square statistics are calculated to determine the 
goodness of fit of the distribution to a set of 
experimental data. Fig. 3 shows both probability 
distribution from RSS measurement model and 
histogram from observed data at each distance. 
The chi-square values for the four histograms 
are 22.8, 23.2, 27.6, and 25.7, respectively. 
Each of them does not exceed the threshold 
value for chi-square test at a 10% significance 

level, so we conclude that the experimental data 
is consistent with that of a RSS measurement 
model.  
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Fig.3.  Goodness-Of-Fit Test  

(a) Distance (1m).  (b) 2m.  (c) 3m.  (d) 4m. 
 
 
5.2 Testbed Experiment 
To evaluate the effective performance of the 

proposed algorithm, we construct a testbed of 
ZigBee networks. Our experimental testbed is 
Brandon's home(8m x 9m), which is located on 
the third floor of a four-story apartment house. 
This is a typical home environment that includes 
indoor walls, furnishings, appliances, and 
exterior walls. The floor map and cluster-tree 
topology of a ZigBee network are depicted in  
Fig. 4.  

Fig.4 The floor map and deployment of a ZigBee 
network 

 
First of all, in testbed one ZigBee Coordinator 

(ZC), five ZRs, six static ZEDs, and one mobile 
ZED are deployed using the cluster-tree 
topology. Next, after fixing the mobile ZED 
location, we estimate the propagation exponent 

pn , which is 2.9. Finally, we divide the 8m x 9m 
testbed by the unit grid with 1m x 1m while 
putting the mobile ZED on the selected 16 
points to estimate its location. The minimum of 
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the MLE mentioned in subsection 4.1 is 
calculated using a conjugate gradient algorithm. 
The estimated locations are shown in Fig. 5. 
The mean distance error is 1.8m. These results 
demonstrate the accuracy of estimation. 
 

 
Fig.5 Location Estimation Results of ZiLA Algorithm 

 
 
6. Conclusion 

In this paper, we proposed a maximum 
likelihood location estimation algorithm which is 
applied to ZigBee networks. Based on the 
cluster-tree topology, the MLE under log-normal 
models for the RSS was derived, and the ZiLA 
algorithm also was proposed. We testified the 
RSS measurement model by using the chi-
square test. The performance of the proposed 
algorithm is validated through a testbed of 
ZigBee networks supporting the home 
environments. We implement our algorithm 
while evaluating it by utilizing commercially 
available ZigBee hardware and protocol stack. 
According to the experimental results, it shows a 
reasonable estimation accuracy enough to 
support intelligent services for the home 
networking environments. 
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